
Using Asynchronous Collaborative Attestation to
Build A Trusted Computing Environment for

Mobile Applications
Lei Zhou

School of Information Science and
Engineering, Central South University,

Changsha, 410083, China
Email: l.zhou@csu.edu.cn

Fengwei Zhang
Department of Computer Science,

Wayne State University,
Detroit, 48202, USA

Email: fengwei@wayne.edu

Guojun Wang*
School of Computer Science and

Educational Software,
Guangzhou University,

Guangzhou, 510006, China
*Correspondence to: csgjwang@gmail.com

Abstract—Nowadays, mobile applications like mobile payments
become more popular in public life, but users are eager to
acquire a trusted execution system to protect its secrets. This
paper presents the design, implementation, and evaluation of the
Trusted Computing Environment for the Mobile Application,
which protects the integrity and confidentiality of the software
from the risk of untrusted mobile platform. The mechanism
based on TrustZone and non-interactive verifiable computing
provides the Asynchronous Collaborative Attestation Mechanism
(ACAM) to runtime attest the active system. TrustZone is a
strong hardware-feature based isolated execution technique,
but it can not defend against the timing attacking. ACAM can
effective prevent this kinds of risk by asynchronous remote
attestation and reduces the overhead from real-time protection.
The security analysis and evaluation shows that the approach
has major potential in mobile trusted computing system and
provides a higher secure level environment for mobile users.

Keywords—Trusted Computing Environment; Asynchronous
Collaborative Attestation; TrustZone; Verifiable Computing;

I. INTRODUCTION

In recent years, mobile applications enter an explosive
growth stage that it greatly facilitate the users to enjoy the
Internet service. For example, the enterprise are more desirable
to offer the mobile device to the employees for company
business. However, to prevent the leakage of company secrets
which caused by malicious program running in the employee’s
mobile device is a challenge [1].

One may hope the Access Control Policy (ACP) can
produce a secure computing environment for the company’s
special software [2]. Unfortunately, increasing sophistication
of malware and illegal operations make them detection more
difficult. the application of ACP becomes more complexity and
leaves more vulnerabilities that can be attacked by malware.

To build a mobile Trusted Execution Environment (TEE)
simply and effectively, typical TEE techniques have proposed
for local machine security attestation like fTPM [3], Moat [4],
etc. Those approaches are eager to offer a trust base in its low
lever system, and create a trusted chain to high-level appli-
cations. Also, research has proposed the approximative real-
time attestation mechanisms by hardware-feature based isolat-

ed execution technique. These solutions each have coverage
limitations and introduce substantial overhead. The problem
is especially critical for mobile environment where memory
limitations and energy cost of detection impose substantial
limits on the resources that a system can dedicate to remote
malware detection. In addition, mobile system and applications
tend to update rapidly to meet the newest requirement, it will
result in a worse situation due to the continuously changing
of security policy and its trust base.

To solve the shortcoming of local TEE techniques that
the mobile devices may not be trustworthiness and the real-
time local attestation further occupy the computing ability,
remote attestation techniques have been proposed to offer a
lightweight and effective methods for application verification
of remote mobile client. Equipped with a remote attestation
method, users are more easy to prevent a remote illegal
software from accessing the secrets and legal program. The
Third Trusted Party (TTP) [5] is a common technique which
usually used to verify the certification of remote software.
Khaldi et al. [6] proposed a new way to promise module
safe in untrusted entity by introducing the TTP to protect data
integrity and service validation. While the limitation of the
remote attestation is obviously that attester will be failure to
catch a trust result from the attestee process if the attestee
work an error interactive communication with the attester.
Furthermore, remote attestation brings a time delay to attester
which might be attacked by timing attacks.

Thus, building completely real-time trusted remote system
is not a easy work. In this paper, we propose an asynchronous
collaborative attestation mechanism to implement an interac-
tive attesting on the mobile client’s system, which combines
the advantages of two techniques: TrustZone-based TEE [7]–
[9] and verification computing based remote attestation [10]–
[12]. TrustZone is a newest special secure execution platform
that the normal program cannot access its running space.
Verifiable computing is a non-interactive approach to attest the
correctness of remote client’s functions. Then, implementing
such a secure architecture can effective avoids the disadvan-
tages of other similar methods.

In summary, our goal in this paper is eager to provide a
realtime trusted device for the mobile clients, The work is
proposed and makes the following contributions. First, we
provide a complete design of the asynchronous collaborative
attestation architecture describing the components running in
the trusted environment, in the OS, and in the untrusted
application. Second, we describe our scheme about secure sys-
tem implementation with TrustZone and verifiable computing
methods. We present the challenges related to the TrustZone
compatibility and portability issues of target mobile system,
namely Android. Third, we present a security analysis and
evaluation of our system.

The paper is organized as follows. In Section 2 we dis-
cuss the related work. We provide asynchronous collaborative
attestation system architecture in Section 3. In Section 4
we analysis the security and efficiency about our approach.
Finally, we wrap up with the conclusion in Section 5.

II. RELATED WORK

The ultimate goal for attestation system is to build a security
execution environment for the mobile user. In this section,
we present our assumptions and threat model, describe the
TrustZone based detection mechanism and VC-based remote
attestation, and discuss some of our design choices about how
to make a clean execution.

A. Assumptions and Threat Model

We define such a scenario: Company (Enterprise-employer)
provide an office environment for its employee. In the era of
the information, employees are eager to work on computer
device to improve their efficiency. However it creates several
problems, the most serious one is the security risk. For
example, employer provides the own devices for employees
to run the company owned service applications. Meanwhile,
users are hope to run some personal software for privacy and
secrets.

In summary, the security requirements defined as follow:
• employer fear that the employees install malicious soft-

ware or run illegal operations in the mobile system to
leak the company’s secrets.

• employees fear that the employer install malicious soft-
ware in the mobile system to steal the employees’ per-
sonal information.

However, the attacks from the malicious application and
the service provider are easy to cause a leakage of the mobile
system secrets. The features of malicious service provider:

• Provide the device to user and it have bundled the own
software into the device’s custom software package.

• Some unknown software has been tied up on normal
functions.

• Those unknown software are hard to discriminate be-
tween the benign and the malicious.

• Those unknown software are hard to remove which get
the high privilege and can easy to reinstall once the
user update it’s system from the same malicious service
provider.

Thus, the best way to solve this problem is to construct an
isolate execution environment in mobile system, and limit the
running software. However it is hard to reject the software in-
stall in mobile device system if they still enjoy the convenience
from the large-scale service provider, the feasible method to
stop those malicious software running is to construct a trusted
execution environment (TEE) in the system which has the
higher privilege than the bundled software from SP .

In our threat model, an adversary is capable of attacking
mobile system and putting malicious software into user’s
platform, and it cannot be found by the user, because the
mobile user does not know what is running in its mobile
computing environment at initial stage and whether the system
is compromised, because the mobile device are provided by the
employer at first. Then, when the mobile application running in
the system tend to update or replaced by a new one, malicious
applications are easy to invade the mobile system. To solve
those problems, we intent to design a ACAM method to build
a trusted execution environment in the mobile system.

B. TrustZone for Isolated Execution Environment

Various of Access Control Policy (ACP) [2] are purposely
to assure the correctness of computational resources access. It
is effectively most of time, but become more and more com-
plexly. Also, the execution of ACP is based on the operation
system, if some kernel-based attacks happen in mobile system,
all ACPs are seem to lost their effect. Furthermore, even the
enterprise Apple do the most strict access control policy and
encrypt algorithms, for example, people who want to bypass
the security mechanism by using brute-force, the device will
start the “auto-erase” function, which use to erase all the data
in device. But the Apple’s own software custom − signed
can easy bypass those functions and get the key data by using
an unknown backdoor. Besides, this is the worse situation in
other types of system, like Android and Microsoft Windows.

Hence, the new security mechanism should be improved to
protect our system security from the attacks which implement-
ed by the malicious service provider. The famous mobile CPU
manufacturer has launched the new security hardware-feature
security technique - TrustZone [13] on ARM architecture,
which is a hardware security extension of the ARM processor
architecture.

TrustZone divides the hardware and system software into
two worlds: Secure world and normal world, which is able
to build an isolate computing environment base on three
main reasons: i) The physical memory space can only be
accessed by TrustZone-based process; ii) secure world use
the special system control; and iii) only few outside approved
instructs can be used to trigger the status switching. Hardware
barriers are established to prevent normal world components
from accessing secure world resources; the secure world is
not restricted. Specifically, the memory system prevents the
normal world from accessing [14]:

Then, to construct a Rich Execution Environment(REE) in
normal world, it can select a general operating system, like
Android or Linux. However, the system running in secure

world should be OP-TEE or Customized Linux [15] because
of low computational ability and memory space. TrustZone
is regarded as a external security area that limited number of
partners (device manufacturers and TrustZone OS providers)
can deploy the TEE services [16], which is due to the TEE
security level and trustworthiness is maintained by adopting
restrictions, and only strictly verified applications can be
deployed in the TEE. Thus, we define those verified appli-
cations as trust base, and modify it as verification functions,
to build a trust chain to normal world for universal applications
attestation. This can be researched to reach our ultimately goal
for designing clean system, a framework whereby individual
users can build an isolated execution environment for its
applications.

C. Non-interactive Verifiable Computing Mode

Except the traditional cryptographic algorithm for mobile
data protection, the effective method to prevent the secrets
leakage from illegal software attacking the mobile system is
to build a Trusted Execution Environment based on Trusted
Computing or other secure hardware-based approach. While
the TPM-based and the TrustZone-based TEE approaches
have its weakness for verifying the dynamic changed mobile
applications, while the remote attestation method is better
choice to runtime mobile security verification.

Non-interactive verifiable computing (NIVC) is a concrete
system for efficiently verifying general computations while
making only cryptographic assumptions. In particular, NIVC
supports public verifiable computation [17], [18], which allows
an untrusted worker to produce signatures of computation.
Then, to be a provable security algorithm, the verification
system update it as a remote attestation method to verify
whether the functions in untrusted system can work out the
correct computing.

Initially, the challenger chooses a function and generates a
public evaluation key and a public verification key. The public
evaluation key and the encrypted input are sent to untrusted
worker. The worker can choose one of the inputs (or verifiably
use one provided by the challenger), compute the function,
and produce a proof (or signature) to accompany the result.
Anyone (not just the challenger) can then use the verification
key to check the correctness of the worker’s result for the
specific input used. As an additional feature, NIVC supports
zero-knowledge verifiable computation, in which the untrusted
work convinces the challenger that it knows an input with a
particular property, without revealing any information about
the input.

Based on above features on NIVC, the remote attestation
can be designed as a lightweight scheme and is feasible to
build a real-time attestation system. we analysis that only key
functions in attestee are attested and its trust base can be
provided by TrustZone-based attestation.

III. DESIGN

To access the feasibility and effectiveness of our approach,
we combine TrustZone-based local attestation and remote

Fig. 1. The Architecture of Asynchronous Collaborative Attestation System

attestation together, to build a entire life cycle applications
attestation environment. In this section, we need to modify
existing technology to develop optimized model. The archi-
tecture is shown in Figure 1.

The model of the asynchronous collaborative attestation
system contains two main parts: Trusted Sever (TS) and
Mobile Client (MC). The TS is regard as trusted third parts to
store the security policy and implement the management, its
security is promised by other physical or software isolation
mechanism which does not analysis in this paper. MC is
divided into two components: The secure world and normal
world. These is a trusted agent in normal world which is set of
TrustZone driver, library or some other additional functional
functions, and it is protected by TEE. Messaging between
mobile TEE and TS is designed to share the security message
and promise a correct asynchronous collaborative attestation.

A. TrustZone for Initial/Idle-Time Attestation

TrustZone is eager to reach the goal of providing an isolated
execution environment (IEE) for mobile security software.
Thus, we design a initial/idle-time attestation mechanism
based on those IEE. The trusted attestation function running
on isolation environment by TrustZone can be explained from
two aspects:

(1) Inter Trusted Messaging: REE (in normal world)
and TEE(in security world) are statically separated by isolate
memory, when a REE process employs resources from the
TEE, it is necessary to construct a communication channel
for the transmission of messages between the two domains.
The channel is normally to use the shared memory which can
be accessed by those two domains. Before a REE application
running, we verify its integrity and keep the original value
ido on TEE security store [19]. We design a monitoring
function and bind it with TrustZone driver. The function is
used to record the software running information including the
initiation, implementing and stop steps on the shared memory
space. Moreover, the functions tend to trigger the secure-
monitor call (SMC) instruction and switch the REE to TEE
for next attestation.

(2) Process of Software Attestation: After the argument
of software entry point address is transferred to TrustZone by

Fig. 2. The Process of TrustZone-based Attestation

aspect 1, the attest functions are able to access those memory
blocks [20], and computer the integrity of verified software
like this:

We get a first address a of mobile application A store in
untrusted memory space and its size size, and we develop
a memory acquisition function Famem to fetch the code and
data of software mem(A):

mem(A) = Famem (a, size)

Then, we get a more specific expression.

id = fSHA−256 (mem(A))

fSHA−256 is one of the hash functions for identifying the
application which store in security area. We get an one-to-one
identity mapping between mobile application and hash value.

Before we confirm the id as an identity, the comparing
function Fcompare needs compare with the origin identity ido.
If 1 = Fcompare(id, ido), we regard the software running in
the safe state, 0 vice versa. In addition, there is no ido compare
to the id means an unknown mobile application running. The
process are shown in figure 2

(3) External Trusted Messaging: Since the attestation
function in TrustZone has been finished the process of mobile
application’s integrity verification, those application’s infor-
mation are recorded in secure store. Under the work of
the optimization function, we get a fixed message including
application identity, timestamp, security status, etc. Finally, the
message is encrypted and send to TS for next analysis.

B. Remote Verification for Runtime Attestation

With the trust base, mobile client system is eager to design a
trusted chain and verifiable system to report its device security
status to a challenger. According to the TCG and IMA, the
security status of a mobile system is evaluated by measuring
integrity of loaded application components in REE. However,
TrustZone-based attestation is unable to verify the runtime
REE application because the REE should be suspended once
the TEE starting. Then, the TrustZone-based attestation work
out a static attestation result which defines as an initial status.

To measure the runtime status of each components of the
mobile application efficiency and effectiveness, we design a
verifiable computing based (VC-based) attestation mechanism,
which consists of two main parties: an attestee (the Mobile
Client), an attester (attestation challenger). The attestee is
required to compute the verified arguments from the attester.
Here, the initial trusted system state is assumed by TrustZone-
based attestation. After a stage of certain application behav-
iors, the mobile system is changed to new state.

The initial system status including the mobile application
information Msg(A), Msg(A) = Aname, Aid, Aversion,
While H(x) is a list of hash functions, that H =
H1, H2, ...,Ht,

Then, to an application A, a vector X = H1(A), ...,Ht(A)
means its hash value under different hash functions. Thus,
the following four steps are used to verify the correctness of
application in mobile system.

• Acquire the verified application and input value: A =
Fselect(Msg(A)). Since the attester receives the message
from attestee, it finds the correct application A by se-
lection function Fselect. the application parameter input
x = F (A), we define F = Hi here, i ∈ (1, ..., t).

• Generates the key of target application:
KenGen(F, α) → (Pk, Sk), Based on the security
parameter α, the randomized key generation algorithm
from attester generates a public key that encodes the
application, the secret key is kept private by the attester.

• Transfer the verified argument: ProGen Sk (x, i) →
(σx, σi, ϕx, ϕi), the problem generation algorithm from
attester uses the secret key Sk to encode the application
parameter input x and function parameter input i as
the public values σx which are given to the attestee to
compute with, and a secret value ϕx which is kept private
by the server, the same process to input i.

• Compute the verified application:
Compute Pk(σx, σi) → (σy), using the server’s
public key Pk and the encoded input σx, σi, the attestee
computes an encoded version of the function’s output
y = F (x).

• Verify the computational result: {0, 1} →
V erify(Sk, ϕx, ϕi, y, σy), using the secret key Sk

and the secret ”decoding ϕx, the verification algorithm
from attester converts the attestee’s encoded output σy
into the output of the application, e.g., y = F (x) or
outputs 0 indicating that σy does not represent the valid
output of F on x.

An encrypted attestation result from the attestee is sent
to the attester and compare with original status. Runtime
Attestation is a high overhead service for the local device,
In the current implementation, we directly create a hash
computing module and place it into TrustZone-based security
area in normal world. If the TrustZone-based attestation finish
the initial stage proof, the remote attestation stage begin to
go on real-time verification. The attester records the software
identity and feedback the MC status switch trigger command.

To keep the communicational messages in a secure state,
data from attestee is automatically encrypted when it is sent to
TS, We assume that communication channel is safety enough.
The messaging mechanism from TS to MC TEE is the
same process as the TrustZone-based messaging. However, the
message content has some difference that only contains the
verified functions’s status, the value of application integrity,
etc, which use to support the TEE controlling the REE.
Before the message transferring, the switch instruct should
be triggered at the end of the process of remote attestation.

C. Asynchronous Collaborative Attestation Mechanism

Since TrustZone-based local attestation and VC-based re-
mote attestation can not construct a trusted execution envi-
ronment individually. The former is due to the suspension of
normal world while the system switch to secure world, which
will lead to a non-real time verification. The latter is due to
lack of trust base to promise the integrity of verified functions
even those functions may work out correct result but may
additionally do other malicious computing. Thus, we combine
those two approaches to build a trusted computing environ-
ment for mobile applications by asynchronous collaborative
attestation, which will effectively eliminate the negative parts
of those two approaches. The following steps are shown in
Figure 3.

Booting stage: After the secure physical booting on mobile
device, mobile system first to start the TrustZone system. Since
memory space of REE can be accessed by TEE functions
which has the higher privilege, TrustZone-based attestation
will check the integrity of memory block about REE software.
The original integrity value has been store in TrustZone secure
area, it provide a clean state REE for users.

Runtime stage: i)once a mobile application begin to run in
the system, hooking function in REE kernel catch this message
and will trigger the SMC instruct to switch the system to
TEE. The application information (including memory address,
size,etc.) will send to TEE at the same time. Then, the
TrustZone-based attestation method verify its integrity and
transfer those result to attester. ii) After received a initial
trusted application, the remote attestation will runtime monitor
the status of process. It will prompted the hash function
in TrustZone-Protect area to compute the integrity value of
application, and verify it on attester part. iii) A little function
added in remote attestation module which record the idle time
and trigger the switch to TrustZone-based attestation again.

In the summary, the safety of the mobile system is deter-
mined by the work of those two different attestation methods.
It is possible that adversary succeeds to produce an malicious
application to stole the secrets from the key process. We design
a trust base with TrustZone-based attestation method to verify
the initial system environment. And with the asynchronous
collaborative attestation method to promise a runtime security
system.

Fig. 3. The Process of RA-based Attestation

IV. SECURITY ANALYSIS AND EVALUATION

The asynchronous collaborative attestation method oriented
to shared mobile computing services, it solves the attestation
of trusted status of mobile application running environment
in mobile device system, which promise a trusted execution
environment for tenants to enjoy the employer’s services and
protect the secrets leakage from malicious attacking and inter-
nal illegal operation by employers. Compared with the TCG
remote attestation mechanism, TrustZone-based attestation and
individually VC-based remote attestation mechanism, it has
following characteristic.

First, through TCG-technique research has been proposed,
we solve the popularized mobile client with TrustZone tech-
nique and without special TPM hardware. Not only the initial
time of system, we can attest the execution environment under
the system idle time, which improves the security and do not
work a bad effect to running mobile application.

Second, TrustZone-based attestation is unable to runtime
attest the normal system application running, but it can provide
a trust base for remote attestation, which can runtime check
the application integrity without blocking the normal process
running.

Third, the messaging mechanism between the remote at-
tester and local TrustZone system will share the security in-
formation about the normal world application, which improves
the reliability of the asynchronous collaborative attestation
method.

A. Security Analysis

Throughout section 3, we discussed in detail how asyn-
chronous collaborative attestation method builds a trusted
computing environment for mobile clients, including remote
function verification and local application attestation. In this
section, we first summarize how these features fulfill the
required security guarantees. Afterwards, we discuss how the
system prevents other possible attack scenarios.

Security Guarantees: As mentioned in Section 3, ACAM
provides two principal security guarantees. First, the Trust-
Zone technique guarantees that the REE cannot break the
TEE’s isolation. Second, it guarantees that switching from the

normal world to the security world cannot expose the address
space protection.

B. Efficiency

Attacks against the Trusted Environment: If the malicious
application bypass the REE’s conventional defense mechanis-
m, and hajack the TrustZone-driver or other key functions.
VC-based attestation will encrypted compute the integrity of
those functions. If there is no or an error result was acquired,
it will trigger the TrustZone instruct for next attestation.
Nevertheless, the exact same risk faces the cross-validation
by those two mechanisms.

In fact, ACAM profoundly enhances the system security in
this case. If vulnerability exists in the REE security tool, then
the extent of the attack will be limited to the same privilege
level of the kernel. On the other hand, if the same security
tool is hosted by the hypervisor or by TrustZone, then such
attack would have an even higher impact by compromising
these security sensitive system components.

V. OUR CONSTRUCTION

We introduced the asynchronous collaborative attestation
mechanism (ACAM), to build a trusted computing environ-
ment for running mobile application. We assume that the
REE applications may be attacked by malicious software to
generate a risk for user’s secrets leakage. ACAM splits the
mobile system into trusted and untrusted domain by lever-
aging TrustZone and Non-interactive Verifiable Computing
approaches. Then, ACAM protects the entire life cycle of REE
applications while the TrustZone-based attestation method
spends an initial and idle-time verification, and VC-based
remote attestation method provides the runtime verification.
The messaging mechanism between the remote attester and the
local TrustZone is under effective encrypted approach with the
aid of the secure channel, to promise the security of the remote
attestation. Through analysis of the security and efficiency
evaluation, ACAM effectively provides a trusted environment
for mobile clients.

similar approach has been tested by other teams, however,
we proposed a new model and implementation scheme, it still
has a lot of work to improve our ultimately goals. Our future
work will focus on building a trusted and non-repudiation
protocol between mobile clients and services provider under
these proposed techniques, like hardware-assisted interrupts,
remote verification, etc.

VI. ACKNOWLEDGMENTS

This work is supported in part by the National Natural
Science Foundation of China under Grant Numbers 61632009
and 61472451, and High Level Talents Program of Higher Ed-
ucation in Guangdong Province with Funding Support Number
2016ZJ01.

REFERENCES

[1] S. Chakraborti, D. P. Acharjya, and S. Sanyal, “Application security
framework for mobile app development in enterprise setup,” Computer
Science, 2015.

[2] R. Abdunabi, I. Ray, and R. France, “Specification and analysis of access
control policies for mobile applications,” in ACM Symposium on Access
Control MODELS and Technologies, 2013, pp. 173–184.

[3] H. Raj, S. Saroiu, A. Wolman, R. Aigner, and etc, “ftpm: A software-
only implementation of a TPM chip,” in 25th USENIX Security Sym-
posium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016.,
2016, pp. 841–856.

[4] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani, “Moat: Verifying
confidentiality of enclave programs,” in ACM Sigsac Conference on
Computer and Communications Security, 2015, pp. 1169–1184.

[5] P. X. Wang and H. Q. Zhou, “Research on cloud security model based
on trusted third party on multi-tenant environment,” Computer Science,
2014.

[6] A. Khaldi, K. Karoui, N. Tanabene, and H. Ben Ghzala, “A secure cloud
computing architecture design,” in IEEE International Conference on
Mobile Cloud Computing, Services, and Engineering, 2014, pp. 289–
294.

[7] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using arm trustzone to
build a trusted language runtime for mobile applications,” vol. 49, no. 4,
pp. 67–80, 2016.

[8] M. Jeon, S. Kim, and H. Yoo, “Inter-guestos communications in
multicore-based arm trustzone,” vol. 42, no. 5, pp. 551–557, 2015.

[9] J. Jang, C. Choi, J. Lee, N. Kwak, S. Lee, Y. Choi, and B. Kang,
“Privatezone: Providing a private execution environment using arm
trustzone,” vol. PP, no. 99, pp. 1–1, 2016.

[10] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish, “A hybrid architecture
for interactive verifiable computation,” in Security and Privacy, 2013,
pp. 223–237.

[11] H. Lipmaa, Succinct Non-Interactive Zero Knowledge Arguments from
Span Programs and Linear Error-Correcting Codes. Springer Berlin
Heidelberg, 2013.

[12] R. Gennaro, C. Gentry, and B. Parno, Non-interactive Verifiable Comput-
ing: Outsourcing Computation to Untrusted Workers. Springer Berlin
Heidelberg, 2010.

[13] J. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “Secret: Secure
channel between rich execution environment and trusted execution
environment,” in Network and Distributed System Security Symposium,
2015.

[14] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. De Lara, H. Raj, S. Saroiu,
and A. Wolman, “Protecting data on smartphones and tablets from
memory attacks,” ACM SIGPLAN Notices, vol. 50, no. 4, pp. 177–189,
2015.

[15] H. Sun, K. Sun, Y. Wang, and J. Jing, “Trustotp: Transforming s-
martphones into secure one-time password tokens,” in ACM Sigsac
Conference on Computer and Communications Security, 2015, pp. 976–
988.

[16] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. G. Chun, L. P. Cox,
J. Jung, P. Mcdaniel, and A. N. Sheth, “Taintdroid: An information-flow
tracking system for realtime privacy monitoring on smartphones,” in
Usenix Symposium on Operating Systems Design and Implementation,
OSDI 2010, October 4-6, 2010, Vancouver, Bc, Canada, Proceedings,
2014, pp. 393–407.

[17] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter,
M. Naehrig, B. Parno, and S. Zahur, “Geppetto: Versatile verifiable
computation,” pp. 253–270, 2015.

[18] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in IEEE Symposium on Security and
Privacy, 2013, pp. 238–252.

[19] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: Enforcing kernel code
integrity on the trustzone architecture,” Computer Science, 2014.

[20] H. Sun, K. Sun, Y. Wang, and J. Jing, “Reliable and trustworthy
memory acquisition on smartphones,” IEEE Transactions on Information
Forensics & Security, vol. 10, no. 12, pp. 2547–2561, 2015.

