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Abstract

USING HARDWARE ISOLATED EXECUTION ENVIRONMENTS FOR SECURING
SYSTEMS

Fengwei Zhang, PhD

George Mason University, 2015

Dissertation Director: Dr. Angelos Stavrou

With the rapid proliferation of malware attacks on the Internet, malware detection

and analysis play a critical role in crafting e↵ective defenses. Advanced malware detection

and analysis rely on virtualization and emulation technologies to introspect the malware in

an isolated environment and analyze malicious activities by instrumenting code execution.

Virtual Machine Introspection (VMI) systems have been widely adopted for malware detec-

tion and analysis. VMI systems use hypervisor technology to create an isolated execution

environment for system introspection and to expose malicious activity. However, recent

malware can detect the presence of virtualization or corrupt the hypervisor state and thus

avoid detection and debugging.

In this thesis, I developed several systems using hardware isolated execution environ-

ments for attack detection, malware debugging, and sensitive operations. My research

approach combines 1) the isolated execution concept with 2) hardware-assisted technolo-

gies. It leverages System Management Mode (SMM), a CPU mode in the x86 architecture,

to transparently detect and debug armored malware and perform sensitive workloads. This

research uses SMM to secure systems with a minimal Trust Computing Base (TCB) and

low performance overhead. In addition, I develop a BIOS-assisted isolation environment



that is capable of running a secure commodity OS.

To demonstrate the e↵ectiveness of my research, several prototypes of using SMM as

the isolated execution environment are implemented. First, I use SMM to introspect all

layers of system software, including applications, OSes, hypervisors, and firmware. Sec-

ondly, my research leverages SMM to transparently debug armored malware and achieve a

higher level of transparency than state-of-the-art systems. Lastly, this thesis uses SMM to

securely perform password-logins without trusting the operating system and prevents ring

0 keyloggers.



Chapter 1: Introduction

The proliferation of malware has increased dramatically and caused serious damage for

Internet users in the past few years. McAfee reported that the presence of malware has

been greatly increasing during the first quarter in 2014, seeing more than 30 million new

malware samples [1]. In the last year alone, Kaspersky Lab products detected almost 3

billion malware attacks on user computers, and 1.8 million malicious programs were found

in these attacks [2]. Symantec blocked an average of 568,000 web attacks per day in 2013,

a 23% increase over the previous year [3]. Nowadays, computer systems rely on a large

amount of applications and software to operate, and these software inevitability create

many vulnerabilities that can be easily exploited by attackers. As such, malware detection

and analysis are critical to understanding new infection techniques and maintaining a strong

defense.

Traditionally, malware detection is provided by installing anti-malware tools (e.g., anti-

virus) within the operating system. However, all defensive techniques that run as processes

in the operating system are inherently vulnerable to malicious code executing at the same

level. Therefore, when a rootkit compromises the OS, most if not all of the common protec-

tion suites become ine↵ective, misleading the user to believe that the system is protected

while the malware operates freely in the background.

To address this problem, security researchers use virtualization technology to analyze

system states for malware detection and debugging. It creates an isolated execution envi-

ronment that cannot be a↵ected by the advanced attacks (e.g., rootkits), and the malware

would have no place to hide. For instance, Virtual Machine Introspection (VMI) [4] exe-

cutes all programs inside a guest Virtual Machine (VM), translating their semantic state

information to malware detection tools that run outside the VM (e.g., host machine). This

1



approach isolates and protects the malware detection software from the potentially vulner-

able guest so that stealthy malware cannot interfere or corrupt the protection mechanisms.

However, virtualization-based systems have some practical limitations.

First, virtualization-based systems depend on the integrity of the hypervisor, which

has a sizable Trusted Computing Base (TCB). For instance, the latest Xen 4.2 contains

approximately 208,000 lines of code. Although this size is dwarfed by the code size of a

typical operating system, the attack surface posed by the hypervisor remains significant.

The National Vulnerability Database [5] shows that there are 100 vulnerabilities in Xen and

90 vulnerabilities in VMWare ESX.

Secondly, virtualization-based systems are not able to detect and analyze rootkits with

the same or higher privilege level. Hypervisor is referred to as ring -1, and it is capable of

detecting rootkits with lower privileges (e.g., OS rootkits with ring 0 privilege). However,

VM escape attacks [6, 7], hypervisor rootkits [8], and firmware rootkits [9, 10] are widely

deployed.

Thirdly, malware writers can easily escape this detection mechanism by using a variety

of anti-debugging, anti-virtualization, and anti-emulation techniques [11–17]. Malware can

easily detect the presence of a VM or emulator and alter its behaviors to hide itself. Indeed,

malware running inside of the VM can read a virtual device name or the IDT or LDT reg-

isters to detect the presence of a VM [18]. In such cases, attaining behavioral transparency

from the perspective of the malware is urgent yet di�cult to achieve.

Lastly, and most importantly, traditional VMI techniques incur a high overhead on sys-

tem performance, making them unpopular among end-users. Some of the more theoretical

solutions can incur such a high latency that they are deemed unfit for use in current com-

puting systems. For instance, existing VMI methods may take on the order of seconds to

pause a VM guest to scan its memory. I could potentially improve the performance through

the use of heuristics or other approximations, but this leads to false positives and false

negatives, adversely a↵ecting the end solutions.

2



1.1 Problem Statement

Traditionally, malware detection is provided by installing anti-virus tools, and malware

debugging is performed by user-level applications such as IDAPro. These defensive mech-

anisms that run as processes within the OS are vulnerable to malware executing at the

same privilege-level. Furthermore, a rootkit can compromise the OS and avoid being

detected. Recently, security researchers have used virtualization technology to create an

isolated execution environment for securing systems. For instance, Virtual Machine In-

trospection (VMI) has been wildly adopted for malware detection and analysis. However,

existing virtualization-based approaches have four major limitations for malware detection

and debugging, which are summarized as follows: 1) dependence on hypervisors with a large

amount of TCB; 2) incapability of detecting hypervisor and firmware rootkits with the same

or higher privilege-level; 3) visibility to malware with anti-debugging, anti-virtualization,

and anti-emulation techniques; and 4) su↵ering a high overhead on system performance.

Moreover, existing trusted execution environments (e.g., Flicker [19]) depend on Dynamic

Root of Trust for Measurement (DRTM), which introduces a large overhead in Trusted

Platform Module (TPM) operations.

1.2 Thesis Statement

This thesis addresses the limitations of existing isolated execution environments for system

security. My research uses System Management Mode (SMM), a special CPU mode in

the x86 architecture, to perform security operations. The proposed execution environment

can introspect all layers of system software, transparently debug malware, and securely

execute sensitive workloads with a minimal TCB and low performance overhead. This

thesis also develop a BIOS-assisted isolation environment that is capable of running a secure

commodity OS.

3



Chapter 2: Background

In this chapter, I introduce basic concepts and pertinent components. I first explain a

typical computer architecture. Then, I describe the basic input-output system (BIOS),

which serves as my trust base. I also introduce Coreboot, which is a particular open-source

BIOS that facilitated my implementation.

2.1 Computer Hardware Architecture

Figure 2.1 shows the hardware architecture of a typical computer. The Central Processing

Unit (CPU) connects to the Northbridge via the Front-Side Bus. The Northbridge has

Memory Management Unit (MMU) and IOMMU, collectively called the memory controller

hub. The Northbridge also connects to the memory, graphics card, and Southbridge. The

Southbridge, also called the I/O controller hub, connects a variety of I/O devices including

USB, SATA, and Super I/O, among others. Note that the BIOS is also connected to the

Southbridge.

2.2 BIOS and Coreboot

BIOS is an indispensable component for all computers. The main function of the BIOS

is to initialize the hardware devices, including the processor, main memory, chipsets, hard

disk, and other necessary IO devices. BIOS code is normally stored on a non-volatile ROM

chip on the motherboard. In recent years, a new generation of BIOS, referred to as uni-

fied extensible firmware interface (UEFI), has become increasingly popular in the market.

UEFI is a specification that defines the new software interface between OS and firmware.

One goal with UEFI is to ease the development by switching to the protected mode in
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Figure 2.1: Typical Hardware Layout of a Computer

an early stage and writing most of the code in C language. A portion of the Intel UEFI

frame (named Tiano Core) is open source; however, the main function of the UEFI (to

initialize the hardware devices) is still closed source. Coreboot [20] (formerly known as

LinuxBIOS) is an open-source project aimed at replacing the proprietary BIOS (firmware)

in most modern computers. It performs a small amount of hardware initialization and then

executes a so-called payload. Similar to the UEFI-based BIOS, Coreboot also switches to

protected mode in a very early stage and is written mostly in the C language. We choose to

use Coreboot rather than UEFI because Coreboot does all of the hardware initializations,

whereas we would need to implement UEFI firmware from scratch, including obtaining all

of the data sheets for our motherboard and other devices
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Chapter 3: Related Work

In this chapter, I first discuss memory-based attacks and existing detection mechanisms. I

also present related works on bridging the semantic gap in virtual machine introspection

(VMI) systems. Next, I survery related works on malware debugging and analysis. Then,

I explain related works on trusted execution environments. Lastly, I discuss related works

that use SMM to build new attacks and new protection mechanisms.

3.1 Memory-based Attacks and Detection

Memory-based attack detection is an active research area. Due to the extensive usage of web

browsers on various web applications in recent years, more and more heap-based memory

corruption attacks have surfaced [21–23], as attackers can easily allocate malicious objects

using scripting languages embedded in a web page. In 2009, heap spraying exploits were

identified in Adobe Reader using JavaScript embedded in malicious PDF documents [24].

Researchers have proposed a number of e↵ective defensive mechanisms [25, 26] against

heap-based memory attacks. DieHarder [27] analyzed several memory allocators and showed

they were vulnerable to attacks but also presented a new memory allocator against heap-

based attacks. Nozzle [28], a runtime heap spray detector, examined individual objects in

the heap, interpreted them as code, and performed static code analysis to detect malicious

intent. Instead of detecting the attacks at the operating system level, [29] can detect drive-

by-download attacks by emulation to automatically identify malicious JavaScript code.

A number of mechanisms and systems have been built to enforce kernel integrity and

detect potential rootkits. SecVisor [30] is a tiny hypervisor that leverages new hardware ex-

tensions to enforce lifetime kernel integrity. However, the deployment of SecVisor requires

modification of the kernel. Instead, I do not need to change any code in the operating

6



system, although it does require changing the BIOS. Flicker [19] and TrustVisor [31] em-

ploy Dynamic Root of Trust for Measurement (DRTM) to provide a trust environment for

running security code. One particular usage is to run a rootkit detector for OS integrity

checking. I can achieve a similar goal by using only SMM.

3.2 Bridging the Semantic Gap in VMI Systems

The semantic gap problem has fueled a large amount of research [32–34]. Recently, vir-

tualization has been employed in malware detection and debugging. Security researchers

have embraced virtual machine monitors (VMMs) as a new mechanism to guarantee deep

isolation of untrusted system software components. “Out-of-the-box” defense mechanisms

can resist tampering at the cost of a native, semantic view of the host that is enjoyed by

the “in-the-box” approach. I must solve the same semantic gap problem since it has no

context information when the system enters SMM.

VMWatcher [32] is a stealthy malware detection system that uses semantic view recon-

struction. Essentially, it pauses a VM guest to scan the memory of that guest and then

reconstructs semantic information of the data structures. Both Virtuoso [33] and VMST [34]

are techniques that can automatically bridge the semantic gap in VM guests. Note that

malware with ring 0 privilege can manipulate the kernel data structures to confuse the

reconstruction process, and current semantic gap solutions su↵er from this limitation [35].

As with VMI systems, SMM-based systems do not consider the attacks that mutate kernel

structures.

3.3 Malware Debugging and Analysis

VAMPiRE [36] is a software breakpoint framework that runs within the operating system.

Since it has the same privilege level as the operating system kernel, it can only debug Ring3

malware. Rootkits can gain kernel privileges to circumvent VAMPiRE.

Ether [37] is a malware analysis framework based on hardware virtualization extensions

7



(e.g., Intel VT). It runs outside of the guest operating systems by relying on underlying hard-

ware features. BitBlaze [38] and Anubis [39] are QEMU-based malware analysis systems.

They focus on understanding malware behavior instead of achieving better transparency.

V2E [40] is a new malware analysis platform that combines both hardware virtualization

and software emulation. Spider [41] uses Extended Page Table to implement invisible break-

points and hardware virtualization to hide its side e↵ects. Compared to my system, Ether,

BitBlaze, Anubis, V2E, and Spider all rely on easily detected emulation or virtualization

technology [11,15,16,18].

BareBox [42] is a malware analysis framework based on a bare-metal machine without

any virtualization or emulation technologies. However, it only targets the analysis of user-

mode malware. Willems et al. [43] used branch tracing to record all of the branches taken

by a program execution. As pointed out in the paper, the data obtainable by branch

tracing is rather coarse, and this approach still su↵ers from a CPU register attack against

branch tracing settings. BareCloud [44] is a recent armored malware detection system; it

executes malware on a bare-metal system and compares disk- and network-activities of the

malware with other emulation and virtualization-based analysis systems for evasive malware

detection.

Virt-ICE [45] is a remote debugging framework similar to this work. It leverages vir-

tualization technology to debug malware in a VM and communicates with a debugging

client over a TCP connection. As it debugs the system outside of the VM, it is capable of

analyzing rootkits and other ring 0 malware with debugging transparency. However, since

it uses a VM, malware may refuse to unpack itself in the VM.

There is a vast array of popular debugging tools. For instance, IDA Pro [46] and

OllyDbg [47] are commonly used debuggers running within the operating system that focus

on Ring3 malware. DynamoRIO [48] is a process virtulization system implemented using

software code cache techniques. It executes on top of the OS and allows users to build

customized dynamic instrumentation tools. WinDbg [49] uses a remote machine to connect

to the target machine using serial or network communications. However, these options

8



require special booting configuration or software running within the operating system, which

is easily detected by malware.

3.4 Trusted Execution Environments

Flicker [19] and TrustVisor [31] employ a hardware support called Dynamic Root of Trust

for Measurement (DRTM) with a small trusted computing base to create a secure environ-

ment. Flicker creates an on-demand secure environment using DRTM, while TrustVisor

uses DRTM to securely initialize a light-weight hypervisor that uses hardware virtualiza-

tion (VT-x/SVM) to protect the applications running in the secure environments. The two

systems use the TPM to provide remote attestations and to securely store data when they

are not executing. Compared to Flicker and TrustVisor, my thesis does not require DRTM

and introduces a lower performance overhead.

Lockdown [50] is a system that uses a hardware switch and LEDs to provide a trusted

path to a small hypervisor, which ensures virtual resource isolation between two OSes.

Lockdown relies on the light-weight hypervisor to ensure that trusted applications can

communicate only with trusted sites and thus can prevent malicious sites from corrupting

the applications. To switch, it uses an ACPI-based mechanism (S4) to hibernate one OS

and then wake up another one. Unfortunately, it requires more than 30 seconds to switch

because hibernating requires writing the whole main memory content to the hard disk and

reading it back later on.

Bumpy [51] is a Flicker-based system for securing sensitive network input. It handles

inputs in a special code module that is executed in an isolated environment using the

Flicker. Bumpy can protect a user’s sensitive web inputs even with a compromised OS

or web browser. Cloud Terminal [52] is a micro-hypervisor and provides secure access to

sensitive applications from an untrusted OS. It moves most application logic to a remote

server called the Cloud Rendering Engine and only runs a light-weight Secure Thin Terminal

on the end host, so end-users can securely execute sensitive applications. It also uses the

Flicker to setup the micro-hypervisor. Borders and Prakash proposed a Trusted Input
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Table 3.1: Summary of SMM Attacks and Solutions
SMM Attacks Solutions
Unlocked SMRAM [54–56] Set D LCK bit
SMRAM reclaiming [57] Lock remapping and TOLUD registers
Cache poisoning [58,59] SMRR
Graphics aperture [60] Lock TOLUD
TSEG location [60] Lock TSEG base
Call/fetch outside of SMRAM [60,61] No call/fetch outside of SMRAM

Proxy (TIP) [53] to secure network inputs. The TIP runs as a module in a separate VM

that proxies network connections of the primary VM. It uses the placeholder approach to

substitute the actual sensitive data. TIP does not require modification of the web browser

and server, and they are transparent to users. As stated in the limitation section of this

paper, TIP relies on a virtual machine monitor. It also introduces a large trusted code base

and significant slowdown for I/O intensive applications.

3.5 SMM-based Systems

System Management Mode (SMM) has been used as a basic building block for several de-

fensive mechanisms. HyperGuard [57] suggests using SMM to monitor hypervisor integrity

by taking snapshots of a VM guest and checking it in SMM. HyperSentry [62] used an

out-of-band channel, specifically the Intelligent Platform Management Interface, to trigger

SMM in checking the integrity of base code operating on critical data.

Several attacks based on SMM have been proposed, too. In 2004, Loic Dulfot [54] de-

veloped the first SMM-based attack to bypass protection mechanisms in OpenBSD. Before

2006, computers did not lock their SMRAM in the BIOS [55], and researchers used this

flaw to implement SMM-based rootkits [55,56]. Modern computers lock the SMRAM in the

BIOS so that SMRAM is inaccessible from any other CPU modes after booting. Wojtczuk

and Rutkowska demonstrated bypassing the SMRAM lock through memory reclaiming [57]

or cache poisoning [58]. The memory reclaiming attack can be addressed by locking the

remapping registers and Top of Low Usable DRAM (TOLUD) register. The cache poisoning
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attack forced the CPU to execute instructions from the cache instead of SMRAM by manip-

ulating the Memory Type Range Register (MTRR). Duflot also independently discovered

this architectural vulnerability [59], but it has been fixed by Intel adding SMRR [63]. Fur-

thermore, Duflot et al. [60] listed some design issues of SMM, but those issues can be fixed

by correct configurations in BIOS and careful implementation of the SMI handler. Table 3.1

shows a summary of attacks against SMM and their corresponding solutions. Wojtczuk and

Kallenberg [64] recently presented an SMM attack by manipulating UEFI boot script that

allows attackers to bypass SMM lock and modify the SMI handler with ring 0 privilege.

The UEFI boot script is a data structure interpreted by UEFI firmware during S3 resume.

When the boot script executes, system registers like BIOS NTL (SPI flash write protection)

or TSEG (SMM protection from DMA) are not set so that attackers can force an S3 sleep

to take control of SMM. Fortunately, as stated in the paper [64], the BIOS update around

the end of 2014 fixed this vulnerability. In this thesis, I assume that SMM can be trusted.
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Chapter 4: Hardware Isolated Execution Environments

4.1 System Management Mode

System Management Mode (SMM) is a mode of execution similar to Real and Protected

modes available on x86 architectures. It provides a transparent mechanism for implementing

platform-specific system control functions such as power management. It is implemented

by the Basic Input/Output System (BIOS).

SMM is triggered by asserting the System Management Interrupt (SMI) pin on the CPU.

This can be done in a variety of ways, which include writing to a hardware port or generating

Message Signaled Interrupts with a PCI device. At the boundary of the next instruction,

the CPU saves its state to a special region of memory called System Management RAM

(SMRAM); it then atomically executes the SMI handler that is also stored in SMRAM.

SMRAM cannot be addressed by the other modes of execution; the requests for addresses

in SMRAM are instead forwarded to video memory by default. This caveat therefore allows

SMRAM to be used as secure storage. The SMI handler is loaded into SMRAM by the BIOS

at boot time, but once loaded, it cannot be changed outside of SMM. The SMI handler has

unrestricted access to the physical address space and can run any instructions requiring any

privilege level1. The RSM instruction makes the CPU exit from SMM and resume execution

in the previous mode.

In terms of transparency, the Intel manual specifies the following mechanisms to make

SMM transparent to the application programs and operating systems [63]: 1) the only way

to enter SMM is by means of an SMI; 2) the processor executes SMM code in a separate

address space (SMRAM) that can be made inaccessible from the other operating modes; 3)

upon entering SMM, the processor saves the context of the interrupted program or task; 4)

1For this reason, SMM is often referred to as ring -2.
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Figure 4.1: Architecture of SecureSwitch System

all interrupts normally handled by the operating system are disabled upon entry into SMM;

and 5) the RSM instruction can be executed only in SMM.

My research will use SMM as an isolated execution environment to implement security

operations including malware detection, transparent malware debugging, and online login.

4.2 SecureSwitch: BIOS-Assisted Isolation Environment

I co-developed a novel BIOS-assisted mechanism for secure instantiation and management of

trusted execution environments [65]. A key design characteristic of this system is usability,

the ability to quickly and securely switch between operating environments without requiring

any specialized hardware or code modifications. The overall architecture of the SecureSwitch

system is depicted in Figure 4.1, in which two OSes are loaded into the RAM at the same

time. Commercial OSes that support ACPI S3 can be installed and executed without any

changes. Instead of relying on a hypervisor, we modify the BIOS to control the loading,

switching, and isolation between the two OSes.

The Secure Switching operation consists of two stages: OS loading stage and OS switch-

ing stage. In the OS loading stage, the BIOS loads two OSes into separated physical

memory space. The trusted OS should be loaded first, followed by the untrusted OS. In

the OS switching stage, the system can suspend one OS and then wake up another. In
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particular, it must guarantee a trusted path against the spoofing trusted OS attack when

the system switches from the untrusted OS to the trusted OS.

The system must guarantee a thorough isolation between the two OSes. Usually one

OS is not aware of the other co-existing OS in the memory. Even if the untrusted OS has

been compromised and can detect the coexisting trusted OS on the same computer, it still

cannot access any data or execute any code on the trusted OS.

The system must guarantee a strong isolation between the two OSes to protect the

confidentiality and integrity of the information on the trusted OS. According to the von

Neumann architecture, we must enforce the resource isolation on major computer compo-

nents, including CPU, memory, and I/O devices.

CPU Isolation: When one OS is running directly on a physical machine, it has full control

of the CPU. Therefore, the CPU contexts of the trusted OS should be completely isolated

from that of the untrusted OS. In particular, no data information should be left in CPU

caches or registers after one OS has been switched out.

CPU isolation can be enforced in three steps: saving the current CPU context, clearing

the CPU context, and loading the new CPU context. For example, when one OS is switching

o↵, the cache is flushed back to the main memory. When one OS is switching in, the cache

is empty. The content of CPU registers should also be saved separately for each OS and

isolated from the other OS.

Memory Isolation: It is critical to completely separate the RAM between the two OSes so

that the untrusted OS cannot access the memory allocated to the trusted OS. A hypervisor

can control and restrict the RAM access requests from the OSes. Without a hypervisor,

this system includes a hardware solution to achieve memory isolation. The BIOS allocates

non-overlapping physical memory spaces for two OSes and enforces constrained memory

access for each OS with a specific hardware configuration (e.g., DQS and DIMM Mask)

that can only be set by the BIOS. The OS cannot change the hardware settings to enable

access to the other OS’s physical memory.
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I/O Device Isolation: Typical I/O devices include hard disk, keyboard, mouse, network

card (NIC), graphics card (VGA), etc. The running OS has full control of these I/O devices.

For devices with their own volatile memory (e.g., NIC, VGA), we must guarantee that the

untrusted OS cannot obtain any remaining information within the volatile memory (e.g.,

pixel data in the VGA bu↵er) after the trusted OS has been suspended. When a stateful

trusted OS is switched out, the device bu↵er should be saved in the RAM or hard disk

and then flushed. When a stateless trusted OS is switched out, the device bu↵er is simply

flushed.

For I/O devices with non-volatile memory (e.g., USB, hard disk), the system must

guarantee that the untrusted OS cannot obtain any sensitive data from the I/O devices

used by the trusted OS. One possible solution is to encrypt/decrypt the hard disk when

the trusted OS is suspended/awoken. However, this method will increase the OS switching

time due to costly encryption/decryption operations. Another solution is to use two hard

disks for two OSes separately and use BIOS (SMM) to ensure the isolation. When targeting

browser-based applications that do not need to keep a local state, it is secure to save the

temporary sensitive data in a RAM disk, which can maintain its content during OS sleep

but gets cleaned when the system reboots.
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Chapter 5: Using Hardware Isolated Execution

Environments for Malware Detection

My research uses hardware isolated execution environments for malware detection. This

thesis leverage SMM to build several prototypes for these purposes, and they are able to

intropsect all layers of the system including application, OS, hypervisor, and firmware levels.

Next, I explain these prototypes in detail.

5.1 Spectre: Application- and OS-level Malware Detector

5.1.1 Introduction

Virtual Machine Introspection (VMI) systems have been widely adopted for malware de-

tection and analysis. VMI systems use hypervisor technology for system introspection and

to expose malicious activity. However, recent malware can detect the presence of virtual-

ization or corrupt the hypervisor state thus avoiding detection. I developed Spectre [66],

a hardware-assisted dependability framework that leverages System Management Mode

(SMM) to inspect the state of a system. Contrary to VMI, the trusted code base is limited

to BIOS and the SMM implementations. Spectre is capable of transparently and quickly

examining all layers of running system code including a hypervisor, the OS, and user-level

applications. We demonstrate several use cases of Spectre including heap spray, heap over-

flow, and rootkit detection using real-world attacks on Windows and Linux platforms. In

our experiments, full inspection with Spectre is 100 times faster than similar VMI systems

because there is no performance overhead due to virtualization. Next, I explain the threat

model, architecture, implementation, and evaluation of Spectre.
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5.1.2 Threat Model and Assumptions

Most malware will alter memory at some point, causing the system to enter a state not

intended in the original design. We call them memory-based attacks. For example, a typical

heap spray attack will place a large number of NOP instructions in dynamic memory, a heap

overflow attack will change heap application data or metadata in memory, and rootkits

will alter kernel code or data. Since Spectre is capable of examing all layers of running

system code and data (e.g., OS, user-level applications) in the memory, it can sucessfully

detect those memory-based attacks including heap spray, heap overflow, and rootkits when

accommodating corresponding memory checking modules.

Spectre uses SMM to detect malware in the operating system. The attack is assumed

to have unlimited computing resources and can exploit zero-day vulnerabilities of desktop

applications. We have a similar threat model to VMI systems as in [32–34], but since we

do not rely on the operating system or hypervisor to accomplish the inspection task, we

do not need to trust the hypervisor or the OS. We assume SMM is locked and will remain

intact after boot, and the attacker cannot change the SMI handler or flash the BIOS and

reboot. Cache poisoning techniques that change the SMI handler [58] are out of the scope

of this paper. We assume that the target machine is equipped with trusted boot hardware,

such as a BIOS with Core Root of Trust for Measurement (CRTM) and a Trusted Platform

Module (TPM) [67] to ensure the integrity of the SMI handler upon booting the system.

We assume that the attacker does not have physical access to the machine. We also assume

that the hardware can be trusted to function normally; malicious hardware (e.g., hardware

trojans) is out of scope.

5.1.3 System Architecture

Figure 5.1 illustrates the operation of the proposed Spectre system, which consists of two

machines. The target machine is the machine to be protected, and the monitor machine

is responsible for receiving status messages from the target machine and triggering alerts.

The whole inspection process consists of four major stages. First, the target machine
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Figure 5.1: Operation of Spectre

enters SMM by triggering a system management interrupt (SMI) regularly and reliably.

Second, after entering SMM, the target machine rebuilds accurate semantic information

about the operating system in a trusted environment without relying on the (potentially

altered) operating system. Third, the target machine executes monitoring modules that

evaluate the integrity of the kernel or user-space processes. Finally, a “heartbeat” message

is sent securely to the monitor machine. When a suspicious behavior is detected, an alert

is transmitted as part of the heartbeat message.

SMM gives us several useful properties. First, it has unrestricted access to the whole

physical memory in the system, so it is di�cult for stealthy, malicious code to hide itself.

Second, the SMI handler is loaded only once when the computer is powered up and locked

thereafter. Thus, even if the malicious code can rewrite the BIOS or SMI handler, it will

not be able to execute that code until rebooting. However, I can use TPM to prevent this

attack by checking the integrity of the BIOS and SMM code before booting up. Third,

the SMI handler can quickly inspect memory because it executes atomically and benefits

tremendously from locality optimizations. Lastly, SMM provides a region of secure memory

(SMRAM) in which I store data each time the SMI handler runs. This secure memory allows

us to inspect system memory without having to trust the underlying operating system for

storing relevant data. This protection is ensured transparently by the memory management

unit (MMU), which redirects accesses to SMRAM addresses to a portion of video memory.
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Periodic Triggering of System Management Mode

I periodically assert a system management interrupt (SMI) on the target machine so that

it can enter SMM. There are two ways to trigger an SMI: software-based and hardware-

based. Software can cause a SMI via I/O access to a particular port specified by the

chipset. Software-based mechanisms are convenient and easy to implement, but they are not

transparent to the operating system. Therefore, if the OS becomes compromised, malicious

code can interfere with software and prevent it from accessing those special ports.

Alternatively, many hardware devices are also capable of triggering an SMI, including

PCI devices, keyboards, and hardware timers. My system utilizes a hardware timer built

into the chipset, which is capable of generating an SMI at a regular and configurable in-

terval. I will set the timer configuration parameters in the BIOS before the OS loads, so I

can trust the timer after booting. Nonetheless, advanced malware may be able to change

these configuration settings after compromising the OS. This would e↵ectively result in a

denial of service. However, a monitor machine can trivially detect denials of service —

it expects “heartbeat” messages to be sent at regular intervals. If these heartbeats cease,

then the monitor machine can detect a denial-of-service attack. Additionally, I can prevent

masquerading attacks by using a key exchange in the BIOS before the OS loads.

Rebuilding Semantic Information

Since SMM has unrestricted access to all physical memory and registers, the target machine

can introspect all its physical memory once it enters SMM. However, only physical address

space is visible in SMM, so I must reconstruct the semantics of various operating system

structures in order to evaluate data and code integrity of the kernel and user-space programs.

When the SMI handler is first triggered, the CPU context that is saved contains virtual

addresses relevant to the running thread. Moreover, in both Windows and Linux, many

kernel structures reference virtual addresses. Thus, I should first be able to translate virtual

addresses to physical addresses so that I can access important data from within the SMI

handler. Fortunately, this process is identical in both Windows and Linux.
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Figure 5.2: Translating Addresses from Virtual to Physical

Both operating systems reserve a large section of virtual address space for kernel mode

operations. Addresses above a constant, PAGE OFFSET, are considered kernel space.

PAGE OFFSET is 0xC0000000 for Linux, and 0x80000000 for Windows. In either case, find-

ing the physical address in the kernel space simply consists of subtracting PAGE OFFSET

from the virtual address.

For user-space virtual addresses (VA), both operating systems use a two-level paging

scheme on my test bed. Figure 5.2 shows the process of translating addresses from virtual

to physical. There is a page directory containing pointers to particular page tables, which in

turn point to specific pages. Each 32-bit virtual address is split into three regions: a 10-bit

page directory o↵set, a 10-bit page table o↵set, and a 12-bit page o↵set. The CR3 register

points to the base of the page directory. From there, the first 10 bits of the virtual address

are used to find an entry in the directory, which points to the base of a page table. The next

10 bits of the virtual address are used as an o↵set into the page table, yielding a pointer to

the page where the required data is stored. Physical Address Extension (PAE) essentially

adds a fourth level of translation, which could easily be integrated into my system.

Memory Checking Modules

This research is designed to easily accommodate various existing defensive technologies.

I will demonstrate this capability with several modules that detect an array of attacks,
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including heap spray, heap overflow, and rootkits. Other checking modules can be extended

into the SMI handler of my system.

My heap spray detection module regularly scans the heaps of vulnerable processes in

memory. When a heap spray attack occurs, it will fill the heap with a NOP sled. When

detecting a large region of NOP bytes, I will conclude that a heap spray attack has occurred.

This research will detect heap overflow attacks by evaluating the integrity of heap-related

structures in the operating system. Typically, heap overflow attacks will alter entries in the

free list maintained by the operating system [23]. This structure helps the OS track, from

which blocks of the heap have been freed by the program for reallocation. A heap overflow

attack will overflow the boundary of a heap bu↵er and rewrite data contained in an adjacent

free block. This behavior will cause inconsistencies in the free list for which I can easily

scan.

Once installed, rootkits pose a serious threat to a system’s health. Nonetheless, in order

to execute any code, they must alter the system memory in some detectable way, such as

corrupting the list of processes. Ultimately, I detect rootkits by evaluating the integrity of

kernel structures.

Reporting Alerts

When detecting an attack, the SMI handler alerts the monitor machine over a serial or

Ethernet cable. I must ensure that communicating with the monitor machine is secure.

There are two requirements to establish a trusted connection between the target machine

and the monitor machine: One is a shared secret key between the target and the monitor

machines, and the other is a trusted network interface on the target machine. The target

machine can establish a shared secret key with the monitor machine in the BIOS before

booting the OS. Since I trust the BIOS at startup, I can store the key in the trusted

SMRAM. This key is then rendered inaccessible from other execution modes; only my SMI

handler has access to it. This allows us to ensure that an attack cannot masquerade as my

system to the monitor machine.
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Since I cannot rely on the target machine’s untrusted operating system to relay the alert

message to the monitor machine, my approach involves writing driver code within the SMI

handler for my network card. I will use two separate network interfaces in my testbed: one

for normal network usage and one exclusively for use by my SMI handler. This approach

makes my system more transparent to the operating system. With no driver installed in the

OS, software is unaware of its presence. My system can remain undetected while operating

naturally at the expense of a PCI slot. However, while a compromised OS can scan the PCI

device and write a new driver to operate the network card, it still cannot fake the network

packet without the shared secret key. Thus, reporting alerts of my system are secure.

Moreover, my system can detect denial-of-service attacks that may occur if my sys-

tem becomes compromised. Since the monitor machine will expect to receive “heartbeat”

updates from the target machine at regular intervals, it is trivial to detect aberrations in

packet delivery time.

5.1.4 Implementation

Spectre supports both Windows and Linux OS environments. In our testbed, the tar-

get machine has a ASUS-M2V MX SE motherboard with AMD K8 northbridge and VIA

VT8237R southbridge, 2.2GHz AMD Sempron LE-1250 CPU, and 2GB Kingston DDR2

RAM. We use the integrated network card for normal network tra�c and an Intel e1000

Gigabit network card for SMM packet transmission. Additionally, the monitor machine

consists of a simple Linux machine. It runs an instance of minicom for communication

via the serial port and a simple socket program to receive network packets from the target

machine. Its specifications are inconsequential to the performance of the system. We use

an open source BIOS, Coreboot with a SeaBIOS payload. For a Linux environment, we use

CentOS 5.5 with kernel 2.6.24 and Debian with kernel 2.6.32. For a Windows environment,

we use Windows XP SP3. Each environment is 32 bit; however, our system is also capable

of running in a 64-bit environment with slight changes in the paging system.
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Figure 5.3: Finding the List of Processes in Windows

Periodically Triggering SMM

We use a hardware timer, General Purpose 0 (GP0), to periodically assert a system manage-

ment interrupt (SMI) [68]. The timer is configured via control registers in the southbridge,

which we set in Coreboot before the OS loads. This timer is configured with a starting

value and unit of time. When the specified unit of time elapses, the timer value decrements

by 1. Upon reaching 0, the timer will assert an SMI and then reset its value, restarting the

process again. For example, when we assign the timer a value of 5 and a time unit of 1

second, it will trigger a SMI every 5 seconds.

Though a software-based SMI triggering mechanism would be easier to use, it is not

usable for two reasons. First, software-based triggering would require extending our trust

base to the operating system—malware that compromises the OS is able to stop the trig-

gering software. Secondly, since it is software, the exact timing is left to the mercy of the

OS scheduler. If the software trigger does not get scheduled due to high multiprogramming

in the OS, then we may unintentionally su↵er a denial of service. Thus, we choose the

hardware-based approach that is much more reliable and transparent.
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Rebuilding Semantic Information

Spectre performs inspection operations within SMM, which is agnostic to the particular

operating system. However, in order to introspect the integrity of the OS, we have to

fill the semantic gap on the data structures, which are di↵erent for Windows and Linux

environments. We elaborate on this below.

Microsoft Windows maintains a complex hierarchy of data structures responsible for

processes and threads. In particular, each CPU is associated with a Kernel Processor

Control Region (KPCR) [69]. This data is always present at a static virtual address,

0x↵d↵000, in memory. Thus, if we can translate that virtual address to a physical address,

we can easily access it from within the SMI handler. Fortunately, the CR3 register stores

the physical address of the page directory of the currently executing process. This allows

us to find the physical address corresponding to any given virtual address used by that

process, including the KPCR. While each process has a unique CR3 value, SMM saves the

CR3 register when switching from protected mode. Therefore, we can simply read the CR3

value from SMRAM to find the KPCR regardless of what the OS was doing before the SMI

occurred.

At o↵set 0x34 of the KPCR, there is a pointer to another structure, the KdVersionBlock,

which contains certain global variables pertinent to the current version of the kernel.

Within the KdVersionBlock, the address of PsActiveProcessHead is stored at o↵set 0x78.

PsActiveProcesssHead is a pointer to the start of a circularly- and doubly-linked list of

pointers to executive process structures, which we then use to find the heap of each process.

Additionally, the executive process structure provides forward and backward links to other

executive process structures. Figure 5.3 provides a visual representation of the structures

we must traverse to find PsActiveProcessHead and the executive process structures to

which it links.

Unfortunately, some rootkits are capable of altering this linked list to hide themselves

through a technique called Direct Kernel Object Manipulation (DKOM) process hiding.

This means we must consider alternative ways of enumerating processes. We consider a
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Figure 5.4: Finding Heap Data in Windows

method used by a program called KProcCheck [70].

First, we can use the method above to find the first executive process running on the

system (called the PsInitialSystemProcess). This executive process is located at a fixed

address, so we only need to find it once when first starting the system. Even if a rootkit

removes this process from the linked list, we can still retrieve it from within the SMI handler.

Next, within the executive process structure, there is a HANDLE TABLE structure contain-

ing information about that process’s files, devices, ports, and similar handle objects. This

structure contains a HandleTableList consisting of backward and forward links to handle

tables of other processes. This means we can enumerate each handle table for every process

running on the system, regardless of whether a given process has been hidden. Addition-

ally, the HANDLE TABLE structure also contains a pointer to the executive process to which it

belongs. Thus, even if a rootkit uses DKOM hiding, we can still find the executive process

it tries to hide using this method.

Using the methods described above, we can enumerate all of the processes running on

the system. Each executive process structure exists in kernel space of a particular process.

It contains the name of the binary on the filesystem (e.g., “firefox.exe”). This allows us
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to find and analyze a specific process, regardless of which process is running when SMM

is triggered. While rootkits would be able to change the name of the process, we would

be able to detect it via simple integrity checking. We can store the name of the image in

SMRAM and check if that same executive process changes names during the next run.

Each executive process contains a pointer to a Process Environment Block (PEB), which

is a user-space structure that stores the locations of heap structures belonging to that

process. Each process has at least one default heap and can optionally create additional

private heaps as needed. Pointers to each heap are stored in the process’s PEB. Each heap

structure contains additional pointers to a maximum of 64 heap segments, each of which

stores a sequence of heap entries. The entries contain 8 bytes of metadata followed by

the actual heap data. The entries in a segment are stored contiguously in virtual memory.

Figure 5.4 illustrates the hierarchy of data structures we must traverse to enumerate entries

in the heap.

Linux o↵ers a much simpler process management scheme. There is a circularly- and

doubly-linked list of task struct structures, each of which contains information about

processes running in the system. We can enumerate all of the processes by finding a single

task struct and walking through the list.

We leverage the kernel-exported symbol information to find a starting task struct and

then enumerate all of the processes. Firstly, we find the virtual address of the init task

pointer from the System.map file in the /boot directory. The System.map file is produced

once when the kernel is compiled; it stores all of the symbol information about the kernel.

init task is a static address that points to the task struct of a specific process, swapper.

Within this task struct, we can find forward and backward links that form a circularly- and

doubly-linked list of tasks at o↵set 0x178 in our kernel. Additionally, o↵set 0x29b contains

the name of the process, which helps identify specific processes. Figure 5.5 illustrates these

steps to find the list of tasks in Linux. Similarly, we use the modules symbol in System.map

to find the list of kernel modules.

Since the task struct list is used by the scheduler, Linux rootkits cannot hide by
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Figure 5.5: Finding the List of Tasks in Linux

altering this list—otherwise, they might impact their own execution. Instead, they often

hide by altering the /proc directory.

Once we have the pointer to a task, all information related to the process address space

is included in an object called the memory descriptor, mm. The mm field stores the pointer to

a memory structure, called mm struct, for the process. The mm struct structure contains

start brk and brk fields, which correspond to the starting and ending addresses of the

heap.

In contrast to Windows, the Linux environment simply allocates heap space one page

at a time (via the sbrk system call). Typically, applications use heap allocators built into

libraries like glibc, and thus malware typically exploits vulnerabilities in a particular heap

allocator. For example, glibc uses a similar free list structure as in Windows—16 byte total

metadata in free entries with forward and backward links to other free entries of the same

size. Thus, the glibc allocator has free list vulnerabilities similar to those in Windows.

Running a Detection Module

Once we glean relevant semantic information from the operating system, we can start exe-

cuting a module for system inspection. Our system is flexible to easily accommodate various

existing defensive technologies. We demonstrate this capability with several modules that
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can detect various memory-based attacks, including heap spray attacks, heap overflow at-

tacks, and rootkits. Note that we acknowledge the simplicity of these detection algorithms

that should not be considered as major contributions of this paper; our goal is to show

the flexibility of our system framework to accommodate various checking modules. Other

checking modules can be extended into the SMI handler of our system.

Once we have access to heap data, detecting a heap spray is the same for both Windows

and Linux environments. We scan the heap for the presence of a potential NOP sled.

Unfortunately, the x86 NOP instruction, 0x90, is not the only technique used to achieve

NOP-like behavior. Other common instructions include or al, 0x0c and xor eax, eax.

In fact, many repeated sequences of bytes exhibit the behavior of a NOP sled, provided they

do not a↵ect the registers required for the shellcode to execute. Therefore, we heuristically

check for the presence of a NOP sled by searching for contiguous, repeated sequences of

bytes in the heap of a process.

Essentially, we wrote a regular expression engine in the SMI handler that recognizes the

following pattern: [^(0x00|0xFF)]{n,}. This pattern will recognize a sequence of at least

n or more repeated bytes other than 0x00 or 0xFF. Naturally, changing the value of n will

a↵ect the false positive rate.

In Windows, an application can have multiple heaps, and each heap has a free list array

with 128 elements called the FreeList. We can find this array at o↵set 0x178 from the

heap base. Each FreeList is a list of free chunks chained by a doubly-linked list. Each free

chunk has 16 bytes meta data including sizes of and pointers to the previous and current

free chunks. In Linux, heap management is provided by a library (e.g., glibc), but the

free blocks are chained by doubly-linked lists and use the same 16-byte header structure.

The attacks exploiting the FreeList depend on the specific heap implementation, but the

malicious code must change pointers to hijack execution. Our system transverses all entries

in each heap’s free list to see if there are any broken points. We did not implement a

heap overflow detection module for Linux because heap free blocks are maintained by the

glibc library. This adds another layer of the semantic gap problem for reconstructing heap
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structures. We have considered it as a future work.

Detecting rootkits depends upon monitoring the integrity of 1) kernel code, and 2) kernel

data. To check the integrity of the kernel code, we simply compute a hash of the static

kernel code within the SMI handler. Alternatively, we send the static kernel code to a

remote server for integrity attestation. Remote checking may be favorable in environments

where consumption of network bandwidth is less expensive than local hash computation.

Since the SMI handler essentially pauses the native system, we want to avoid overly long

computation in the SMI handler to avoid incurring too much overhead.

The more challenging aspect is maintaining integrity of dynamic data structures in the

kernel. Previous research has proposed many defensive techniques against rootkits [19,

32, 33]. In order to demonstrate this capability in our system, we wrote a simple rootkit

detection module of listing all running processes (pslist) and kernel modules (lsmod) for

both Microsoft Windows and Linux platforms. We leverage the security caveats of SMM

to bring accurate semantic information from the operating system to a trusted ‘external’

viewpoint. We can discover rootkits by comparing these external views with the internal

views of the operating system process states.

Communication with the Monitor Server

The last stage of our system requires communicating with an external server. We accomplish

this task by writing driver code for our particular network card in the SMI handler. It

consists of manually configuring registers on the device and interacting with the PCI bus.

In brief, we implemented a simple MAC-layer protocol for communicating with the

external server. It sends a 214 byte packet in the SMI handler consisting of a 14-byte

header and a fixed 200-byte payload. The payload is encrypted with a simple XOR with a

key we store in SMRAM, which is first retrieved before the OS loads. The payload contains a

sequencing number which simply increments by 1 each time the SMI handler runs. The rest

of the payload provides enough spaces for detection modules to convey specific information

to the monitor machine.
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Figure 5.6: Breakdown of SMI Handler Runtime

5.1.5 Evaluation

Code Size

First, we considered the size of the code required for our system to run. In total, there are

470 lines of new C code in the SMI handler, including all three memory checking modules.

Each module consisted of less than 100 lines of C code, and the total network transmission

code was 110 lines. After compiling the Coreboot code, the binary size of our SMI handler

was only 780 bytes, which reduced the trusted computing base of our system.

Breakdown of SMI Handler Runtime

Next, it is important to quantify how much time is required to execute each step of our

system. For this experiment, we have broken Spectre into the following logical operations:

1) Switching to SMM; 2) Reconstructing OS semantics; 3) Running a detection module; 4)

Reporting status via NIC; and 5) Switching from SMM to resume the OS. All of the above

except for step 3 should take constant amounts of time. The running time of a detection

module will depend upon the type of attack and the complexity of the detection technique.

For example, the time taken to traverse a linked list of processes will depend upon how

many processes are running (i.e., the length of the list) when the module begins executing.
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However, the rest of the steps execute a fixed set of instructions, and thus we expect them

to have somewhat constant running times. In this section, we wanted to understand the

‘fixed cost’ associated with using our system. In other words, how much time does Spectre

need to bring useful semantic information to the developer? Thus, we considered each of the

times associated with steps 1, 2, 4, and 5. Step 3 (running detection modules) is discussed

later.

We measured the time taken by each step by measuring the TSC register, which stores

how many CPU cycles have elapsed since powering on. We disabled technologies in the

BIOS that a↵ected CPU clock speed so that a di↵erence in the TSC register represented a

constant unit of time, computed with the equation,

T = (R1 �R0)(
1

C
),

where T is measured time, Rt is the value of the TSC register at time t, and C is the clock

speed on the CPU. We recorded the TSC register at several points during our system’s

execution, such as the beginning and end of the SMI handler.

Figure 5.6 shows the observed times taken for each step in each operating system. We

can see from the graph that switching to and resuming from SMM take a significant amount

of time. This is attributed to the power management operations that SMM must perform

before our SMI handler can execute. Similarly, the time to resume from SMM is explained

by several factors. Upon resuming from SMM, the hardware must also reconfigure itself to

allow subsequent SMIs to occur, which requires many I/O operations and thus leads to a

considerable running time.

Note the significant di↵erence in the time taken for reconstructing the semantics of

each operating system. Reconstructing Windows kernel semantics is much longer than in

Linux (by two orders of magnitude). This is mainly due to the page table translation steps

required in Windows since so much of the data about processes is stored in userspace. In

Linux, however, most of the required data is stored in kernel space, and therefore finding

the physical addresses reduces to simple subtraction of the PAGE OFFSET constant.
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Heap Spray Detection Module

We implemented a heap spray detection module as described previously. We tested Firefox,

Adobe Acrobat Reader, and the Adobe Flash plugin in both Windows and Linux, but since

MSIE is not available for Linux, we only tested it in Windows.

We chose four heap spray attacks available as Metasploit modules. Using Metasploit

eased the experimentation because it allowed rapid deployment of each attack. Each attack

has a corresponding Common Vulnerabilities and Exposures entry. The attacks we used

are:

1. Firefox 3.5 CVE-2009-2478

2. Internet Explorer 6, 7, 8 CVE-2010-3971

3. Adobe Acrobat 9, 10.1 CVE-2011-2462

4. Adobe Flash Player < 10.2 CVE-2011-6069

These attacks all exploit a vulnerability in an application that causes it to start executing

code in the heap. They are all written in scripting languages. The first three attacks use

JavaScript, and the last uses ActionScript. They cause the host program to start executing

the malicious script, which causes it to allocate large amounts of memory. Then, the

attack hijacks control through another means (use-after-free, stack overflow, etc.) to start

executing the sprayed memory. We ran this experiment in Windows but not Linux because

the dynamic memory system in Windows is much more complex, and thus provides a ‘worst-

case’ performance figure. Table 5.1 shows the average results for 25 trials of each type of

heap spray attack. The results shows that Spectre can detect these attacks in less than 32

ms.

Heap Overflow Detection Module

We tested our system against CVE-2012-0276, a real heap overflow attack a↵ecting an image

viewer in Windows called XnView. The vulnerability exists in XnView versions 1.98 and
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Table 5.1: Heap Spray Attack Detection Time (n=25)

Detection Time STD
Firefox 31.168 ms 0.272 ms
Internet Explorer 27.917 ms 0.154 ms
Adobe Acrobat Reader 25.839 ms 0.302 ms
Adobe Flash 29.455 ms 0.603 ms

earlier. In XnView, insu�cient validation while decompressing certain TIFF files enables a

heap-based bu↵er overflow. The malicious image overflows a heap entry and then it rewrites

metadata of nearby free chunks in the heap. Then, it simply waits for these blocks to be

reused. When the operating system unlinks one of these free blocks from the FreeList,

execution jumps to the shellcode.

We detected this attack by checking the integrity of the FreeList, and we found that it

takes 32 ms to detect this attack including 24 ms spent in the detection module and the

fixed 8 ms associated with entering and exiting SMM.

Rootkit Detection Module

We used real, publicly available rootkits to test out system on both Windows and Linux plat-

forms. On Windows platforms, we devised an e↵ective defense mechanism against the Fu

rootkit [71]. Fu Rootkits allow the intruder to hide information from user-mode applications

and even from kernel modules. Fu hides information by directly manipulating data struc-

tures in the kernel. In particular, it removes an entry from the PsActiveProcessHeader

list. However, we are able to find such hidden processes by finding and traversing the

HANDLE TABLE list.

We successfully detected the Fu rootkit using this method. On the target machine, Fu

hides the ssh.exe process. We detected the hidden process by enumerating the handle tables

in the SMI handler. This technique took only 8ms.

On the Linux platform, we tested a newly available rootkit, KBeast (Kernel Beast), on

kernel 2.6.32. KBeast is an advanced armored Linux rootkit that hides its loadable kernel
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module, hides files and directories, hides processes, hides sockets and connections, performs

keystroke logging, and has anti-kill functionality [72]. It is currently undetectable by the

latest rootkit detectors including chkrootkit [73] and rkhunter [74]. KBeast leverages the

sys write system call to fake output of system commands like ps, pstree, top, and lsof

to hide itself. Again, since SMM has an external view of the system states, our system

reconstructs the semantics of data structures from physical memory to detect malicious

behavior like process hiding.

We were able to detect KBeast in about 5ms using our system. Using the ps within

the OS missed a network daemon process for malicious remote access. However, Spectre

successfully discovered the hidden process by traversing the process list in the system.

System Overhead

The last and most important experiment tested how much overhead our system introduces

to the target machine. We used freely available benchmarking software for both Microsoft

Windows and Linux environments. This helped us account for the impact on overall system

performance caused by our system’s periodic operation. For this experiment, we ran the

benchmarking software without our system in place. Next, we ran the same benchmark with

Spectre enabled at several di↵erent time intervals ranging from 0.0625 to 5.0 seconds using

the General Purpose 0 (GP0) hardware timer on the southbridge to periodically trigger a

SMI. We then calculated the overhead as a ratio between the scores with and without the

system in place. In this experiment, the heap spray detection module targeted the heap

of the Adobe Acrobat Reader application in both Windows and Linux. The heap overflow

detection module targeted the heap of the XnView process in Windows. We did not consider

a Linux-based heap overflow detection module because it requires reconstructing another

layer of semantic information from the particular heap allocator used by a process. Lastly,

the rootkit detection module listed all of the running processes in memory to find hidden

processes.

In Windows, we used PassMark PerformanceTest to measure the benchmark on our
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Figure 5.7: Overhead Introduced in Microsoft Windows
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Figure 5.8: Overhead Introduced in Linux

test system. We specifically ran the CPU, disk, and memory tests in PassMark to see the

implications on raw performance. Figure 5.7 shows the results of this experiment. These

results indicate the relatively low overhead introduced at all sampling intervals. From

Figure 5.7, we can see that the heap spray and heap overflow modules have slightly larger

overhead than the rootkit detection module. This is because the heap-based modules must

scan heap data, which takes roughly 30ms. Rootkit detection, on the other hand, simply

scans the list of running tasks in memory. This task takes only 8ms in the SMI handler.

We used a similar methodology to test the overhead in Linux. We used the UnixBench

suite to test performance while the system ran. This was less geared toward CPU and
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memory performance, instead focusing on specific Unix-like operations, like system call

and shell piping performance. The results are presented Figure 5.8. In general, Spectre

introduces low overhead in Linux. Even at the lowest sampling interval of 1
16s (62.5ms), it

causes only 20% overhead in the heap spray detection module, and only 5% overhead in the

rootkit detection module.

Comparison with VMI Systems

Spectre provides a new framework for transparent system introspection and stealthy mal-

ware detection. Compared to well-known virtual machine introspection based architec-

tures [4], the BIOS in Spectre serves a role similar to the hypervisor in VMI systems.

Theoretically, Spectre can achieve the same level of protection as VMI if 1) we are able

to implement and execute the same detection algorithms in SMRAM, and 2) we are able

to reconstruct all of the necessary kernel- and user-space data structures that serve as the

input to the detection algorithms. In this paper, we show several ways to include di↵erent

detection modules and recover the necessary semantic data in Spectre.

Spectre improves upon VMI systems in three ways. First, Spectre is a hardware-assisted

introspection tool which relies only on the BIOS—it does not need to trust the large-size

hypervisor. Thus, Spectre has a much smaller TCB. Second, Spectre can achieve better

transparency than VMI systems. Nowadays, armored malware [11, 14, 15, 18] can easily

detect the presence of a VM, but Spectre can remain transparent while monitoring these

malware. Third, Spectre achieves better performance because it does not need to deal with

nested page table translation, and SMM switching is faster than VM switching. Table 5.2

shows the runtime comparison between Spectre and Virtuoso [33]. The program pslist

shows all of the running process information in the OS, and the program lsmod shows all

of the loaded kernel modules. The results show that Spectre can run these tools 100 times

faster than those in Virtuoso. Recently, hardware virtualization extensions (e.g., Intel VT,

AMD-V) have been adopted to VMI systems to speed up the introspection process.

VMI systems can operate based on trap conditions, allowing asynchronous, event-based
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Table 5.2: Runtime Comparison of Introspection Programs Between Spectre and Virtuoso
Spectre (ms) Virtuoso (ms)

Windows
pslist 6.6 450.2
lsmod 7.6 698.1

Linux
pslist 4.3 6494.1
lsmod 4.4 2437.0

tools. The current Spectre prototype can only execute periodically, but it is a straightfor-

ward engineering challenge to implement similar functionality by using performance coun-

ters to trigger SMIs. We can assert SMIs when certain conditions are met in the CPU

performance counters. For instance, when the instruction cache miss counter overflows, we

can assert an SMI.

5.2 HyperCheck: Hypervisor-level Malware Detector

5.2.1 Introduction

The advent of cloud computing and inexpensive multi-core desktop architectures has led to

the widespread adoption of virtualization technologies. Furthermore, security researchers

embraced virtual machine monitors (VMMs) as a new mechanism to guarantee deep iso-

lation of untrusted software components, which coupled with their popularity promoted

VMMs as a prime target for exploitation. In this thesis, I present HyperCheck [75], a

hardware-assisted tampering detection framework designed to protect the integrity of hy-

pervisors and operating systems. It leverages System Management Mode (SMM), a CPU

mode in x86 architecture, to transparently and securely acquire and transmit the full state

of a protected machine to a remote server. I have implemented two prototypes based on

our framework design HyperCheck-I and HyperCheck-II, which vary in their security as-

sumptions and OS code dependence. In the experiments, I am able to identify rootkits that

target the integrity of both hypervisors and operating systems. I show that HyperCheck

can defend against attacks that attempt to evade our system. In terms of performance, we
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measured that HyperCheck can communicate the entire static code of Xen hypervisor and

CPU register states in less than 90 million CPU cycles, or 90 ms on a 1 GHz CPU. Next, I

explain the threat model, architecture, implementation, and evaluation of Hypercheck.

5.2.2 Threat Model

Attacker’s Capabilities

The adversary is able to exploit vulnerabilities in any software running in the machine after

booting. The software includes the VMM and all of its privileged components. For instance,

the attacker can compromise a guest domain and escape to the privileged domain. When

using PCI pass-through on Intel VT-d chipsets that do not have interrupt remapping, Xen

4.1 and 4.0 allow guest OS to gain host OS privileges by using DMA to generate malicious

MSIs [76]. In Xen 3.0.3, pygrub [77] allows local users with elevated privileges in the guest

domain (Domain U) to execute arbitrary commands in Domain 0 via a crafted grub.conf

file [78]. In addition, the attacker can modify the hypervisor code or data using any known

or zero-day attacks. For instance, the DMA attack [79] hijacks a device driver to perform

unauthorized DMA accesses to the hypervisor’s code and data.

HyperCheck aims to detect OS rootkits or hypervisor rootkits. One kind of rootkit

only modifies the memory and/or registers and runs in the kernel level. For instance, the

idt-hook rootkit [80] modifies the interrupt descriptor table (IDT) in the memory and then

gains control of the complete system. A stealthier version of the idt-hook rootkit (which

we can call it copy-and-change attack) could keep the original IDT unchanged by copying

it to a new location and altering it. Next, the attacker could change the IDTR register to

point to the new location. Thus, a malicious interrupt handler would be executed when an

interrupt occurs [81]. Our system could detect rootkits in an OS running on bare metal

and rootkits in a native hypervisor.
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General Assumptions

First of all, we assume BIOS is trusted. Since SMM code is loaded into SMRAM from the

BIOS, we assume the SMRAM is properly set up by the BIOS while booting. To secure

the BIOS code [82, 83], we can use a signed-BIOS mechanism to prevent any modification

of the BIOS code, but this method requires that the BIOS updating process is securely

implemented and trusted. An alternative way to secure the BIOS is to use Static Root

of Trust Measurement (SRTM) to perform a trusted boot, and it requires that the Core

Root of Trust Measurement (CRTM) is trusted and secure. The SMRAM is locked after

booting into the OS. Once it is locked, we assume it cannot be subverted by the attacker

(an assumption supported by current hardware). Furthermore, we assume attackers do not

have physical access to our system.

Currently, our system cannot protect against attacks that modify dynamic data, such as

modification of dynamically generated function pointers and return-oriented programming

attacks. In these attacks, the control flow is redirected to a memory location controlled

by the attackers. HyperCheck can leverage existing solutions (e.g., Address Space Layout

Randomization (ASLR) [84,85]) to prevent or mitigate such attacks; however, it is not the

focus of this paper.

5.2.3 System Architecture

HyperCheck is composed of three key components: the physical memory acquisition module,

the analysis module, and the CPU register checking module. Both the physical memory

acquisition module and the CPU register checking module are on the target machine, and

the analysis model is on the monitor machine. The memory acquisition module reads the

memory contents of the protected machine and sends it to the analysis module, which

then checks the memory contents for any malicious alterations. The CPU register checking

module reads the CPU registers and validates their values. The overall architecture of

HyperCheck is shown in Figure 5.9.
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Figure 5.9: Architecture of HyperCheck

Acquiring Physical Memory

In HyperCheck, I will choose the hardware-based method to read the physical memory.

There are several options for hardware components, such as PCI devices, FireWire bus

devices, or a customized chipset. I will use a PCI network card because it is the most

popular and commonly used hardware device. Note that existing commercial Ethernet

cards need to install device drivers, and these drivers normally run in the OS or the driver

domain, which is vulnerable to the attacks and may be compromised in my threat model.

To avoid this problem, HyperCheck moves these device drivers into the SMI handler, which

is inaccessible to the attackers after the SMRAM is locked. In addition, to prevent a

malicious NIC from spoofing the NIC driver in SMM, I will use a secret key to authenticate

the transmitted packets. The key can be obtained from the monitor machine while the

target machine is booting up and then stored in the SMRAM. The key is used as a random

seed to selectively hash a small portion of the data to avoid data replay attacks.

Another class of attacks is denial-of-service (DoS) attacks. This attack aims to stop or

disable the device. For instance, according to the ACPI [86] specification, every PCI device

supports the D3 state. This means that an ACPI-compatible device can be suspended by

attackers who control the OS. Since neither the hypervisor nor the OS are trusted compo-

nents in my framework, one possible attack is to selectively stop the NIC without stopping

any other hardware. To prevent ACPI DoS attacks, I need an out-of-band mechanism to

verify that the PCI card is not disabled. The monitor machine receiving the state snapshots
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plays this role.

Since paging is not enabled in SMM, HyperCheck uses the CR3 register to translate the

virtual memory addresses used by the OS kernel to the physical memory addresses used by

the SMM. Since the acquisition module relies on physical addresses to read the memory

contents, HyperCheck needs to find the physical address of the protected hypervisor and

privileged domain. One method is to use the system.map file, which HyperCheck uses to

obtain the virtual addresses of monitoring symbols. However, I believe there are many

other ways to obtain these addresses. For instance, the system call table address can be

found by using the interrupt vector of the INT 0x80 system call [87]. From the symbol files,

HyperCheck first reads the virtual addresses of the target memory and then utilizes CR3

register to find the physical addresses corresponding to the virtual ones. Another possible

way to get the physical addresses without using page table translation is to scan the entire

physical memory and use pattern matching to find all potential targets. However, this

method is not e�cient because hypervisors and OS kernels have a small memory footprint.

Furthermore, HyperCheck should be able to check the integrity of any software above

the BIOS. Although I focus on the Xen hypervisor in this paper, HyperCheck also can

be used to check KVM or other hypervisors. Some operating systems use Address Space

Layout Randomization (ASLR) in kernel booting (e.g., Windows 7 [84]), and it adds a fixed

o↵set when setting up virtual address space. For example, Kernel Processor Control Region

(KPCR) is located at a fixed virtual address 0x↵d↵000 in Windows XP and Windows 2000.

In Windows 7, KPCR structure is no longer at a fixed address. However, researchers have

demonstrated that the KPCR structure can be acquired by conditional searching of physical

memory [88]. After obtaining the KPCR structure, I am able to bridge the semantic gap

in the physical memory and identify the targeting memory contents.

Analyzing Memory Content

In practice, there is a semantic gap between the physical memory addresses in SMM that I

will monitor and the virtual memory addresses used by the hypervisor or the OS. To verify
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the memory contents, the analysis module must be aware of the semantics of the memory

layout, which depends on the specific hypervisor or the OS I monitor. The current analysis

module depends on three properties of the kernel (OS or hypervisor) memory: linearity,

stability, and perpetuity.

The linearity property means the kernel virtual memory is linearly mapped to physical

memory and the o↵set is fixed. For instance, on x86 architecture, the virtual memory of Xen

hypervisor is linearly mapped into the physical memory. In order to translate the virtual

address to the physical address in Xen, I only need to subtract the virtual address from

an o↵set. In addition, Domain 0 of Xen is also linearly mapped to the physical memory.

The o↵set for Domain 0 is machine-dependent but remains the same on any given machine.

Moreover, other OS kernels, such as Windows [89], Linux [90], and OpenBSD [54], also have

this property when they are directly running on bare metal.

The stability property means that the contents of monitoring memory must be static.

If the contents are changing, there might be a time window between when the memory

changes and when my acquisition module reads them. This may result in inconsistency for

analysis and verification. As a result, HyperCheck does not check on dynamic kernel data

(e.g., kernel stack).

The perpetuity property means the memory used by hypervisors will not be swapped

out to the hard disk. If the memory is swapped out, then I cannot identify or match any

content by only reading the physical memory. I would have to read the swap files on the

hard disk. For instance, Windows kernel code can be swapped to a disk. For this case, I

have two solutions to read these swap pages in HyperCheck system. One method is to port

a small disk driver in SMM to enable disk access. Then, I can use page table information to

locate these pages on the disk and send them to the monitor machine for integrity checking.

The other solution is simply to wait for the swapped pages to swap back into memory.

Since HyperCheck enters SMM periodically, I can check the page table information to see

if the pages have been swapped in. After these pages are present in memory, I will send

them out in SMM. Additionally, I can force these pages to be swapped back into memory
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by accessing them to generate page faults.

The HyperCheck relies on linearity, stability, and perpetuity to work correctly. Besides

the Xen hypervisor, most OSes have these three properties, too.

Reading and Verifying CPU Registers

Since the PCI NIC card cannot read the CPU registers, I must use another method to

read them. Fortunately, SMM can read and verify the CPU registers. When the CPU

switches to SMM, it saves the register context in the SMRAM. The processor fetches the

first instruction of the SMI handler at the address [SMBASE + 0x8000] and stores the CPU

states in the area from [SMBASE + 0xFE00] to [SMBASE + 0xFFFF] [63]. The default

value of SMBASE is 0x30000. HyperCheck verifies the registers in SMM and reports the

results via the Ethernet card to the monitor machine. HyperCheck focuses on monitoring

two registers: IDTR and CR3. IDTR should never change after system initialization. CR3

is used by SMM code for memory address translation of the hypervisor kernel code and

data. The o↵sets between physical addresses and virtual ones should never change as I

discussed in Section 5.2.3.

5.2.4 Implementation

We implement two prototypes for HyperCheck on two physical machines: HyperCheck-I

uses an original closed source BIOS, and HyperCheck-II uses an open source BIOS called

Coreboot [20]. We first develop HyperCheck-I for quick prototyping and debugging in our

previous conference publication. After that, we implement HyperCheck-II as an improved

version of our previous prototype in terms of security and scalability.

HyperCheck-I follows the HyperCheck framework but uses two physical machines: one

as the target machine and the other one as the monitor machine. On the target machine,

we install Xen 3.1 natively and use Intel e1000 Ethernet card as the acquisition module. We

modify the default SMM code in the original Dell BIOS on the target machine to transfer

system states to the monitor machine. Since we use original BIOS with closed source code,
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we need to apply reverse engineering methods to change the default SMI handler code [56] on

the target machine. However, HyperCheck-I comes with two drawbacks. First, it needs to

rely on an unlocked SMRAM to inject the customized SMI handler code and most machines

today have locked their SMRAM. The other drawback of HyperCheck-I design is the high

development complexity. Due to the time-consuming reverse engineering requirement and

the usage of assembly language, it is di�cult to add new functions into the BIOS. For

instance, we have to use a kernel module to prepare the network transmit descriptors,

instead of implementing all the functions in the BIOS. Therefore, we implement another

HyperCheck prototype called HyperCheck-II using Coreboot, an open source BIOS.

HyperCheck-II also uses one physical machine as the target machine and another phys-

ical machine as the monitor machine. Coreboot can provide an unlocked SMRAM for us to

add customized SMI handler code. HyperCheck-II locks the SMRAM in the Coreboot after

booting. Since we can directly modify the BIOS code on the target machine, we can easily

program the SMM code in the BIOS instead of performing reverse engineering of the BIOS

in HyperCheck-I. In addition, we write C code in HyperCheck-II rather than assembly code

in HyperCheck-I.

Memory Acquisition Module

HyperCheck uses a dedicated PCI network card to transfer the memory contents. In our

prototype, we have two network interfaces on the target machine. We use an Intel e1000

network card to transfer the system states and the integrated network card for the normal

tra�c. When we implement the acquisition module, the main task is to port the e1000

network card driver into SMM to scan the memory and send the memory out to the monitor

machine. Since HyperCheck-I does not have the source code of the BIOS, we uses a similar

method mentioned in [56] to modify the default SMM code in the BIOS. It writes the

SMM code in 16-bit assembly code, uses a user-level program to open the SMRAM, and

then copies the assembly code to the SMRAM. While HyperCheck-II uses the open source

Coreboot as the BIOS, we have full control over the BIOS code. Thus, we can write C code
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to port the e1000 NIC driver into the SMI handler of HyperCheck-II.

Both HyperCheck-I and HyperCheck-II split the e1000 NIC driver into two parts: ini-

tialization and data transferring. The initialization part is complex and similar to the Linux

NIC driver. The data transferring part is much simpler than the NIC initialization part.

Therefore, we modify the existing Linux e1000 NIC driver to only initialize the network card

and move the packet transferring part into the SMI handler. In HyperCheck-I, we compile

the assembly code of data transferring into an ELF object file, use a small loader to parse

the ELF object file, and then load the code into SMRAM. In HyperCheck-II, we write the

data transferring code in Coreboot directly, compile the BIOS code to a new ROM image,

and flash the image into the BIOS chip of the target machine.

After porting the e1000 NIC driver into the SMM, we modify the driver to scan the

memory and send the contents to the monitor machine. HyperCheck uses two transmission

descriptors per packet, one for the packet header and the other for the packet data. The

content of the header should be predefined. In our prototypes, there are 14 bytes in the

header, which includes the source MAC address, destination MAC address, and two bytes

of protocol type. Since the NIC has been initialized by the OS, the driver in SMM only

needs to prepare the TX descriptor ring, and then write the index of last descriptor in the

ring to the Transmit Descriptor Tail (TDT) register. The NIC would automatically send

all of the packets in the TX descriptor ring to the monitor machine using DMA. The NIC

driver also needs to prepare a header structure and point the header TX descriptors to this

header. For the payload, the data descriptors directly point to the address of the memory

that needs to be sent out.

To prevent replay attacks, a secret key is transferred from the monitor machine to the

target machine during the booting of target machine. The key is used to create a random

seed to selectively hash the data. If we hash the entire data stream, the performance impact

may be high. To reduce the overhead, we use the secret key as a seed to generate one big

random number used for one-time pad encryption and another set of serial random numbers.

The serial random numbers are used as the indices of the positions of the memory. Then,

45



the contents at these positions are XORed with the big random number before starting

NIC DMA. After the transmission is done, the memory contents received at the monitor

machine are XORed again to restore the original value.

The NIC driver also checks the loop-back setting of the device before sending the packet.

To further guarantee the data integrity, the NIC driver stays in the SMM until all of the

packets have been written to the internal FIFO of the NIC. Then, it adds extra 16 KB data

to the end to flush the internal 16 KB FIFO bu↵er of the NIC. Thus, the attacker cannot

use loop-back mode to get the secret key or peek into the internal NIC bu↵er through

debugging registers of the NIC.

Analysis Module

We use a direct Ethernet cable to connect the monitor machine and the target machine,

and we assume that the monitor machine is trusted. Therefore, the target machine does

not need to authenticate the monitor machine. If we connect the two machines through

Internet, further authentication mechanism will be needed. On the monitor machine, we

run tcpdump to capture the packets from the acquisition module and send the output of

tcpdump to the analysis module. The analysis module is written in a Perl script that reads

the input and checks for any alteration. First, the analysis module recovers the memory

contents using the same secret key. Then, it compares two consecutive memory snapshots

bit by bit. If they are di↵erent, the analysis module outputs an alert on the console. The

administrator can decide whether it is a normal update of the hypervisor or an intrusion.

Note that during the booting time of the system, the contents of the control data and code

may change.

The analysis module checks the integrity of the static code and control data of Xen. The

static code is Xen hypervisor code; the control data includes the IDT table, the hypercall

table, and the exception table of Xen. To find the physical addresses of these control

tables, we use Xen.map symbol file. First, we find the virtual addresses of idt_table,

hypercall_table and exception_table. The physical addresses of these symbols are
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equal to the virtual address minus fixed o↵set 0x↵000000 on x86-32 bit architecture with

PAE enabled. The address of Xen hypervisor code is from _stext to _etext. HyperCheck

can also monitor the control data and static code of Domain 0. It includes the system call

table and the code part of Domain 0 (Cent OS 5.3 uses a modified Linux 2.6.18 kernel).

The kernel of Domain 0 is also linearly mapped to the physical memory. We use a kernel

module running in Domain 0 to compute the exact o↵set. On our target machine, the o↵set

is 0x83000000. Note that there is no IDT table for Domain 0, since there is only one such

table in the hypervisor. We also use these parameters in the acquisition module to improve

the scan e�ciency.

CPU Register Checking Module

HyperCheck monitors IDTR and CR3 registers in CPU register checking module. The

contents of IDTR should never change after system boots up. The SMM code can read this

register by lidt instruction. HyperCheck uses CR3 to translate the virtual addresses to

physical addresses. Essentially, it walks through all the page tables as a hardware Memory

Management Unit (MMU) does. Note that o↵set between the virtual address and the

physical address of hypervisor kernel code and data should never change due to the static

mapping. For example, it is 0x↵000000 for Xen 32 bit with PAE enabled. If any physical

address is not equal to the virtual address minus the o↵set, it indicates a potential attack.

The SMM code reports the checking result via the Ethernet card to the monitor machine.

From HyperCheck-I to HyperCheck-II

Since we cannot directly change the closed source BIOS in HyperCheck-I, the development

and debugging complexity hinders the system extension with other functionalities and the

verification of system security. Therefore, we are motivated to implement another Hyper-

Check prototype using Coreboot, an open source BIOS.

Similar to HyperCheck-I, HyperCheck-II reserves a small portion of memory by adding

the boot parameter mem=2000M to the Xen hypervisor or Linux kernel. Since the total
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memory size is 2048 MB, it saves 48 MB of memory to store the TX descriptor ring.

HyperCheck-II does not rely on any kernel modules but the trusted BIOS. After the

system triggers SMI, it enters SMM and executes the SMI handler, which scans the memory,

obtains the location of the memory, prepares the TX descriptors, and writes them to the

TX descriptor ring in the reserved memory. Next, the NIC card reads the TX descriptor

ring and sends out the data. After NIC finishes sending the data, the system exits SMM.

HyperCheck-II is more secure than HyperCheck-I. HyperCheck-I prepares the TX de-

scriptor ring using a kernel module that may be compromised by attackers. Instead,

HyperCheck-II can overcome this security flaw by preparing the TX descriptors in the

SMI handler. Even if the attacker owns the OS, it still cannot manipulate the operations in

the SMI handler that is securely loaded into the locked SMRAM. In addition, HyperCheck-

I requires an unlocked SMRAM to load our customized SMM code; Coreboot can add

a customized SMI hander and lock SMRAM before the system boots up. Additionally,

HyperCheck-II is robust against evasion attacks, as discussed in the next section.

Evasion Attack Defense

Most polling-based integrity checking systems (e.g., [57, 62, 75]) are vulnerable to evasion

attacks. If the polling time is detectable, an attacker can clean the attacking trace before

the polling and then reload the malicious code. As discussed in our previous work [91],

there are three types of evasion attacks for polling-based systems. The first type (Type-I) is

to directly intercept the triggering events by detouring SMI invocation. The software-based

SMI triggering writes to a specific port, and the attacker can locate the code (out %al,

%0xb2) in memory to detour the program execution before triggering SMI. The hardware-

based SMI triggering method can be rerouted to normal interrupt and reissue another SMI

triggering. The second type (Type-II) of evasion attack is to indirectly derive periodicity of

the polling time by using an SMI detector. After knowing the polling time, an attacker can

launch the evasion attack between two checks. The last type (Type-III) of evasion attack

is to avoid random polling by running a small malicious task after exiting from SMM. This
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type of evasion attack assumes the attacker knows when the SMM exits.

HyperCheck-I may su↵er from evasion attacks; however, HyperCheck-II can prevent all

three types of evasion attacks. We use Message Signaled Interrupts (MSI) in a PCI network

card to invoke SMI. The delivery mode of MSI register in PCI configuration space can be set

as the SMI mode. However, if the hypervisor or OS has been compromised, the attacker can

modify MSI register to trigger a normal interrupt controlled by the attacker and then reissue

an SMI (Type-I evasion attack). To trigger the same SMI, the attacker needs to know the

MAC address of the dedicated NIC card and use another machine to send an authenticated

packet to reissue the same SMI. Since the secret key is saved in SMRAM, the attacker

cannot send the authenticated packet without knowing the secret key. Furthermore, the

attacker may use other methods to trigger SMI, but we can prevent it by checking the

reason for the triggered SMI, which has also been implemented in HyperSentry [62].

In order to defend against Type-II evasion attack, HyperCheck-II randomly triggers SMI

using a dedicated commercial network card. We read /dev/random on the monitor machine

as the pseudo-random generator seed and set a random delay between two SMI triggering

packets. When an authenticated packet reaches the NIC interface, an SMI is generated by

a Message Signaled Interrupt.

A Type-III evasion attack runs a small malicious task after SMM exits to avoid the

random polling. However, this type of evasion attack needs to know when SMM exits. In

HyperCheck-II, we include a random delay function in SMI handler, so the SMI handler

will take various amounts of time between two checks. Thus, the attacker cannot accurately

predict when SMM exits.

5.2.5 Evaluation

We evaluate the HyperCheck system on two di↵erent testbeds for HyperCheck-I and HyperCheck-

II. The monitor machine is the same for both HyperCheck-I and HyperCheck-II. It is a Dell

Precision 690 with 8 GB RAM and one 3.0 GHz Intel Xeon CPU with two cores. The host

operating system is 64-bit CentOS 5.3. The target machine in HyperCheck-I is implemented
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Table 5.3: Symbols for Xen hypervisor, Domain 0, Linux and Windows
System Symbol Usage

Xen

idt table Interrupt Descriptor Table
hypercall table Hypercall Table
exception table Exception Table
stext Beginning of Hypervisor Code
etext End of Hypervisor Code

Dom0
sys call table Dom0’s System Call Table
text Beginning of Dom0’s Kernel Code
etext End of Dom0’s Kernel Code

Linux

idt table Kernel’s Interrupt Descriptor Table
sys call table Kernel’s System Call Table
text Beginning of Kernel Code
etext End of Kernel Code

Windows
PCR!idt Kernel’s Interrupt Descriptor Table
KiServiceTable Kernel’s System Call Table

on a Dell Optiplex GX 260 with one 2.0 GHz Intel Pentium 4 CPU and 512 MB memory.

Xen 3.1 and Linux 2.6.18 is installed on the physical machine and the Domain 0 is CentOS

5.4. The Dell BIOS version A09 is closed source. The target machine in HyperCheck-II

uses an ASUS M2V-MX SE motherboard with 2.2 GHz AMD Sempron LE-1250 CPU and

2 GB memory. We install CentOS 5.5 as the operating system. We replace the original

BIOS with the open source Coreboot V4.

Code Size

In the HyperCheck-I implementation, we inject about 100 lines of assembly code into the

original BIOS. Since HyperCheck-II uses the open source Coreboot, we add only 200 lines

of C code into Coreboot source tree. The code base of Coreboot V4 is 232,315 lines of code,

and its payload Seabios has 21,576 lines of code, which are measured using SLOCCount [92].

Verifying the Static Property

We verify an important system assumption that the control data and respective code are

statically mapped into the physical memory. We use a monitoring module designed to detect
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Figure 5.10: Breakdown of HyperCheck Runtime

legitimate control data and code modifications throughout the experiments. It enables us to

test our approach against data changes and self-modifying code in the Xen hypervisor and

Domain 0. We also test the static properties of Linux 2.6 and Windows XP 32-bit kernels.

In all these tests, the hypervisor and the OSes are booted into a minimal state. The symbols

used in the experiments are shown in Table 5.3. During system booting time, we find that

the control data and the code may change. For example, the physical memory of IDT is

all 0s when the system first boots up, but after several seconds, it becomes non-zero and

static. The reason is that the IDT table is initialized later in the booting process.

Integrity Attack Detection

To verify HyperCheck’s capability of detecting attacks against the hypervisor, we implement

DMA attacks [79] on the Xen hypervisor. Firstly, we port the HDD DMA attacks to modify

the Xen hypervisor and Domain 0. In this experiment, there are four attacks against the

Xen hypervisor (modifying IDT table, hypercall table, exception table, and Xen code)

and two attacks against Domain 0 (modifying system call table and Domain 0 code). In

another experiment, we modify the PCnet network card to perform the DMA attack from

the hardware directly. The modified PCnet NIC is used to attack Linux and Windows
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Figure 5.11: Network Time Delay for Variable Data Size in HyperCheck

operating systems. This experiment includes three attacks against Linux 2.6.18 kernel

(modifying IDT table, system call table and kernel code) and two attacks to Windows XP

SP2 kernel (modifying IDT table and system call table). In our experiments, HyperCheck-I

and HyperCheck-II correctly detect all these attacks and report the memory content changes

on the target machine.

Breakdown of HyperCheck

To quantify how much time is required to execute each step in the system, we breakdown

the HyperCheck into four logical operations: 1) SMM context switch; 2) TX descriptors

preparation; 3) XOR data; and 4) packet transmission. To measure the time for each

operation, we use rdtsc instruction to print out the TSC counter value. This experiment is

conducted on both HyperCheck-I and HyperCheck-II. The sending data size is about 2.8 MB

including Xen code and Domain 0 code; we also add an extra 16 KB data at the end to flush

the NIC internal bu↵er. In addition, we use 7 KB as the packet size because it introduces

the lowest network delay; more details of network delay can be found in Section 5.2.5.

Figure 5.10 shows the observed times of each breakdown operation in HyperCheck-I and

HyperCheck-II. We can see that the majority is packet transmission time. Additionally,

HyperCheck-II spends more CPU cycles for preparing TX descriptors because the same

amount of code running in SMM takes more time than in normal protected mode. This
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Figure 5.12: Network Time Delay for Variable Packet Size in HyperCheck

is mainly due to the fact that 1) SMM operates in 32-bit mode while normal OS runs in

64-bit protected mode, and 2) SMM physical memory needs to be uncacheable to avoid

cache poisoning attacks [58, 59].

The size of di↵erent hypervisors and OSes may vary (e.g., Linux running with KVM).

HyperCheck is scalable to measure other hypervisors and OSes, but it should expect more

performance overhead when measuring larger code base systems. We measure the time

delay for sending di↵erent sizes of data in both HyperCheck-I and -II where the packet size

is 7 KB. The results are shown in Figure 5.11. We can see that the time increases almost

linearly along with the size of memory in both prototypes.

Network Packet Size Analysis

To optimize the network time delay for our system, we measure the packet transmission

time by varying the packet size for sending a fixed amount of memory. The memory size

is about 2.8 MB including Xen code and Domain 0 code. We range the packet size from

1 KB to 16 KB on both HyperCheck-I and HyperCheck-II. Figure 5.12 shows the results.

When the packet size is less than 7 KB, the transmission time is about constant. However,

when the packet size increases to 8 KB, the overhead increases dramatically and remains

constant after that. The reason is that the internal NIC transfer FIFO bu↵er size is 16 KB
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Table 5.4: Time Measurements for Variable Packet Sizes in HyperCheck-II
Packet size (KB) 3 4 5 6 7 8 9 10 11
Sending time on target (million CPU cycles) 77 77 76 76 76 99 99 99 98
Receiving time on monitor (million CPU cycles) 87 87 86 86 86 114 114 114 114
Processing time on monitor (million CPU cycles) 21 22 21 21 21 20 21 21 21

for our network card. Therefore, when the packet size becomes 8 KB or larger, the bu↵er

cannot hold two packets at the same time, and this introduces the delay.

Table 5.4 shows the time measurements on both the target machine and the monitor

machine for variable packet size ranging from 3 KB to 11 KB in HyperCheck-II. The total

amount of data transferred is 2,897 KB, including Xen code, Domain 0 code, and 16 KB

for flushing the internal NIC bu↵er. The sending time is measured on the target machine

in HyperCheck-II; the receiving time and processing time are measured on the moniter

machine. The receiving time represents the time period between the first packet arrives

and the time when the last one arrives, and it is measured by tcpdump. To process the

data, we use a customized program on the monitor machine to compare the Xen code and

Domain 0 code byte by byte, and it takes about 21 million CPU cycles. To optimize the

time delay on the monitor machine, we can process packets while receiving packets. In this

case, the total time delay on the monitor machine will be bounded by the receiving time

because receiving packets takes more time than processing packets.

System Overhead

We also measure the overall system overhead incurred by di↵erent sampling intervals of

HyperCheck-II. In this experiment, we run the UnixBench [93] suite without our system

in place. Next, we run the benchmark with HyperCheck-II enabled at several di↵erent

time intervals ranging from 0.0625 to 5 seconds using Global Standby Timer (GP0) on the

southbridge to periodically trigger an SMI. We then calculate the overhead as a ratio with

and without the system in place. In this experiment, we transfer Xen and domain 0 code

(2,881 KB) and use 7 KB as the packet size. Figure 5.13 shows the result of overhead. In
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Table 5.5: Comparison on Time Overhead
Code base (Size:MB) HyperCheck HyperGuard Flicker
Linux (2.0) 31 ms 203 ms 1022 ms
Xen+Dom0 (2.7) 40 ms 274 ms >1022 ms
Window XP (1.8) 28 ms 183 ms >972 ms
Hyper-V (2.4) 36 ms 244 ms >1022 ms
VMWare ESXi (2.2) 33 ms 223 ms >1022 ms

general, HyperCheck-II introduces a low overhead. It causes 2% overhead when trigging

SMI every 5 seconds and 11% overhead with a 1 second sampling interval.

Comparison with Other Methods

HyperGuard [57] suggests using SMM to read the memory and hash it on the target machine.

Flicker [19] is a TPM-based approach that can be used to monitor the integrity of the

kernels. We compare our method with them, and Table 5.5 shows the results. We can see

that the overhead of HyperCheck is one order of magnitude lower than HyperGuard and

TPM-based method. In HyperGuard, it hashes the entire data to check its integrity, while

HyperCheck only hashes a random portion of the data and then sends the entire data out

using an Ethernet card. For the TPM-based method, the most expensive operation is the

TPM quote, which takes 972 ms. Although HyperCheck needs TPM in SRTM process to
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Table 5.6: Comparison on Capability and Overhead
Memory Registers Overhead

HyperCheck x x Low
HyperGuard x x High
Copilot x Low
Flicker x x High

secure the BIOS, it does not require TPM at the runtime. Once the SMM is securely setup,

HyperCheck leverages SMM to perform its integrity checking, while Flicker requires TPM

operation for each check. Additionally, an overall comparison between HyperCheck and

other methods is shown in Table 5.6. In summary, HyperCheck can monitor both memory

and registers with a lower overhead.

5.3 IOCheck: Firmware-level Malware Detector

5.3.1 Introduction

As hardware devices have become more complex, firmware functionality has expanded, ex-

posing new vulnerabilities to attackers. The National Vulnerabilities Database (NVD [5])

shows that 183 firmware vulnerabilities have been found since 2011. The Common Vul-

nerabilities and Exposures (CVE) list from Mitre shows 537 entries that match the key-

word ‘firmware,’ and 94 new firmware vulnerabilities were found in 2013 [94]. A recent

study shows that 40,000 servers are remotely exploitable due to vulnerable management

firmware [95]. Attackers can exploit these vulnerabilities in firmware [9] or tools for updat-

ing firmware [10].

After compromising the firmware of an I/O device (e.g., NIC card), attackers alter

memory via DMA [9, 96, 97] or compromise surrounding I/O devices [98, 99]. Fortunately,

the Input Output Memory Management Unit (IOMMU) mechanism can protect the host

memory from DMA attacks. It maps each I/O device to a specific area in the host memory

so that any invalid access fails. Intel Virtualization Technology for Directed I/O (VT-d) is
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one example of IOMMU. AMD also has its own I/O virtualization technology called AMD-

Vi. However, IOMMU cannot always be trusted as a countermeasure against DMA attacks,

as it relies on a flawless configuration to operate correctly [100]. In particular, researchers

have demonstrated several attacks against IOMMU [76,101,102].

Static Root of Trust for Measurement (SRTM) [103] with help from the Trust Platform

Module (TPM) [67] can check the integrity of the firmware and I/O configurations while

booting. It uses a fixed or immutable piece of trusted code, called the Core Root of Trust for

Measurement (CRTM), contained in the BIOS at the start of the entire booting chain, and

every piece of code in the chain is measured by the predecessor code before it is executed,

including firmware. However, SRTM only secures the booting process and cannot provide

runtime integrity checking.

Trust Computing Group introduced Dynamic Root of Trust for Measurement (DRTM) [104].

To implement this technology, Intel developed Trusted eXecution Technology (TXT) [105],

providing a trusted way to load and execute system software (e.g., OS or VMM). TXT uses

a new CPU instruction, SENTER, to control the secure environment. Intel TXT does not

make any assumptions about the system state, and it provides a dynamic root of trust for

Late Launch. Thus, TXT can be used to check the runtime integrity of I/O configurations

and firmware. AMD has a similar technology called Secure Virtual Machine, and it uses

the SKINIT instruction to enter the secure environment. However, both TXT and SVM

introduce a significant overhead on the late Launch Operation (e.g., the SKINIT instruction

in [19]).

In this thesis, I present IOCheck [106], a framework to enhance the security of I/O de-

vices at runtime. It leverages System Management Mode (SMM), a CPU mode in the x86

architecture, to quickly check the integrity of I/O configurations and firmware. IOCheck

identifies the target I/O devices on the motherboard and checks the integrity of their cor-

responding configurations and firmware. In contrast to existing firmware integrity checking

systems [107,108], our approach is based on SMM instead of Protected Mode (PM). While

PM-based approaches assume the booting process is secure and the OS is trusted, our
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approach only assumes a secure BIOS boot to set up SMM, which is easily achieved via

SRTM.

The superiority of SMM over PM is two-fold. First, we can reduce the Trusted Comput-

ing Base (TCB) of the analysis platform. Similar to Viper [108] and NAVIS [107], IOCheck

is a runtime integrity checking system. Viper and NAVIS assume the OS is trusted and

use software in PM to check the integrity, while IOCheck uses SMM without relying on the

OS, resulting in a much smaller TCB. IOCheck is also immune to attacks against the OS,

facilitating a stronger threat model than the checking systems running in the OS. Second,

we achieve a much higher performance compared to the DRTM approaches [19] running in

PM. DRTM does not rely on any system code; it can provide a dynamic root of trust for

integrity checking. IOCheck can achieve the same security goal because SMM is a trusted

and isolated execution environment. However, IOCheck is able to achieve a much higher

performance over Intel TXT or AMD SVM approaches. Based upon experimental results,

SMM switching time takes microseconds, while the switching operation of the DRTM ap-

proach [19] takes milliseconds.

We implement a prototype of our system using di↵erent methods to enter SMM. First,

we develop a random polling-based integrity checking system that checks the integrity of I/O

devices, which can mitigate transient attacks [91, 109]. To further defend against transient

attacks, we also implement an event-driven system that checks the integrity of a network

card’s management firmware.

We conduct extensive experiments to evaluate IOCheck on both Microsoft Windows

and Linux systems. The experimental results show that the SMM code takes about 10

milliseconds to check PCI configuration space and firmware of NIC and VGA. Through

testing IOCheck with popular benchmarks, IOCheck incurs about a 2% overhead when we

set the random polling instruction interval between [1,0x↵↵↵↵]1. We also compare IOCheck

with the DRTM approach; our results indicate that our system’s switching time is three

orders of magnitude faster than DRTM. Furthermore, the switching time of IOCheck is

1It takes about .5s to run 0x↵↵↵↵ instructions. Table 5.11 explains this further.
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constant while the switching operation in DRTM depends on the size of the loaded secure

code.

5.3.2 Threat Model and Assumptions

Threat Model

We consider two attack scenarios. First, we consider an attacker who gains control of a host

through a software vulnerability and then attempts to remain resident in a stealthy manner.

We assume such an attacker installs firmware rootkits (specifically, a backdoor [110]) after

infecting the OS so that the malicious code remains even if the user reinstalls the OS.

In the second scenario, we assume the firmware itself can be remotely exploited due

to vulnerabilities. For instance, Duflot et al. [9] demonstrate an attack that remotely

compromises a Broadcom NIC with crafted UDP packets. Additionally, Bonkoski et al. [95]

show a bu↵er overflow vulnerability in management firmware that a↵ected thousands of

servers.

Assumptions

An attacker is able to tamper with the firmware by exploiting zero-day vulnerabilities.

Since IOCheck does not rely on the operating system, we assume the attacker has ring 0

privilege. Thus, attackers are granted more capabilities in our work than those OS-based

systems [107, 108]. We assume the system is equipped with SRTM, in which CRTM is

trusted so that it can perform a self-measurement of the BIOS. Once the SMM code is

securely loaded into the SMRAM, we lock the SMRAM in the BIOS. We assume the SMM

is secure after locking SMRAM. Moreover, we assume the attacker does not have physical

access to our system.

5.3.3 System Architecture

IOCheck is a framework that enhances the security of I/O devices at runtime, and it checks

the static configurations and code of I/O devices. Figure 5.14 shows the architecture of
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Figure 5.14: Architecture of IOCheck

IOCheck. The target machine on the left connects to the remote machine via a serial cable.

In the target machine, the box on the left lists all of the I/O devices on a motherboard; the

box on the right represents the System Management Mode that checks the integrity of I/O

configurations and firmware. The framework takes the following four steps for each check:

1) the target machine switches into SMM using a polling-based or event-driven triggering

approach; 2) the SMI handler checks the integrity of target I/O devices; 3) if a potential

attack is found, the system plays an audible tone on the target machine, and SMM sends

a message to the remote machine via the serial cable; and 4) the target machine executes

RSM instruction to exit SMM. Next, I detail the design of these four steps.

Triggering an SMI

Triggering an SMI is the only way to enter SMM [63]. In general, there are software- and

hardware-based methods to trigger an SMI. In software, I can write to an ACPI port to raise

an SMI. For example, Intel chipsets use port 0x2b as specified by the southbridge datasheet.

My test bed with VIA VT8237r as the southbridge uses 0x52f as the SMI trigger port [68].

In terms of hardware-based methods, there are many hardware devices that can be used to

raise an SMI, including keyboards, network cards, and hardware timers.

The algorithm for triggering SMIs plays an important role in the system design. In

general, there are polling-based and event-driven approaches for generating SMIs. The
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polling-based approach aims to poll and check the state of a target system at regular

intervals. When I use this approach to check the integrity of a target system, it compares the

newly retrieved state with the pristine state to see if any malicious change has happened. For

instance, I can periodically trigger an SMI and check the firmware and I/O configurations

on the target machine. However, polling at regular intervals in the system is susceptible to

transient [109] and evasion attacks [91].

Transient attacks are a class of attacks that do not produce persistent changes within a

victim’s system. Periodic polling-based integrity checking systems su↵er from this kind of

attack. This is because they require the presence of inconsistent system states to infer an

intrusion. The transient attack can avoid detection by removing all evidence of an attack

before the integrity checks begin, while resuming the malicious code after the checks finish.

There are two approaches to mitigating the transient attack in polling-based systems. One

is to minimize the time window of the polling to reduce the likelihood that an attacker can

finish cleaning its traces. Alternatively, I can randomize the polling so that the attacker

is less likely to learn a particular polling pattern. These two methods can be achieved by

using performance counters to generate an SMI.

Moreover, I can use an event-driven triggering method to further mitigate transient at-

tacks. The polling-based systems are likely to miss events between two checks, while the

event-driven triggering approach cannot. For instance, supposing that my system monitors

a static memory region to see if any malicious modification happens, the event-driven ap-

proach can trigger an SMI for every memory change. Thus, I am able to monitor all of the

memory updates, including malicious ones.

Checking I/O Configurations and Firmware

After the target machine switches into SMM, I will check the I/O configuration and firmware.

Next, I describe the I/O devices that my system can check.

Before the system boots up, the BIOS initializes all of the hardware devices on the

motherboard and sets corresponding configurations to them. These devices rely on the
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configurations to operate correctly. Here I use the PCI configuration space and IOMMU

configuration as examples.

PCI Configuration Space: Each PCI or PCI Express controller has a configuration

space. Device drivers read these configurations to determine what resources (e.g., memory

mapped location) have been assigned by the BIOS to the devices. Note that the PCI

configurations should be static after the BIOS initialization. However, an attacker with

ring 0 privilege can modify the PCI configuration space. For example, the attacker can

relocate the device memory by changing the Base Address Register in the PCI configuration

space. Additionally, PCI/PCIe devices that support Message Signaled Interrupts (MSI)

contain registers in the PCI configuration space to configure MSI signalling. Wojtczuk

and Rutkowska demonstrate that the attacker in the driver domain of a VM can generate

malicious MSIs to compromise a Xen hypervisor [76]. Note that IOCheck assumes that

the PCI configuration remains the same after the BIOS initialization and does not consider

“Plug-and-Play” PCI/PCIe devices.

IOMMU Configurations: IOMMU restricts memory access of I/O devices. For example,

it can prevent a Direct Memory Access (DMA) attack from a compromised I/O device.

IOMMU is composed of a set of DMA Remapping Hardware Units (DRHU). They are

responsible for translating addresses from I/O devices to physical addresses in the host

memory. The DRHU first identifies a DMA request by BDF-ID (Bus, Device, Function

number). Then, it uses BDF-ID to locate the page tables associated with the requested

I/O controller. Finally, it translates the DMA Virtual Address (DVA) to a Host Physical

Address (HPA), which is similar to the MMU translation.

Although IOMMU gives us e↵ective protection from DMA attacks, it relies on correct

configurations to operate appropriately. Several ways have been demonstrated to bypass

IOMMU [76, 101]. I can mitigate these attacks by checking the integrity of the critical

configurations of IOMMU at runtime.

For example, the DMA Remapping (DMAR) Advanced Configuration and Power Inter-

face (ACPI) table should never change after booting. The DMAR ACPI table describes
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Table 5.7: IOMMU Configurations
Register/Table Name Description

Root-entry table address register Define the base address of the root-entry table (first-level table
identified by bus number)

Domain mapping tables Include root-entry table and context-entry tables (second-level
tables identified by device and function numbers)

Page tables Define memory regions and access permissions of I/O controllers
(third-level tables)

DMA remapping ACPI table Define the number of DMA remapping hardware units and I/O
controllers assigned to each of them

the number of DRHUs present in the system and I/O controllers associated with each of

them. It is set by the BIOS before the system boots up. In addition, the base address of

the configuration tables for DMA remapping unit should be static. I can check the integrity

of these static configurations to ensure that IOMMU operates correctly. Table 5.7 shows

the static configuration of IOMMU.

IOCheck will check the firmware of I/O devices including the network card, graphics

card, keyboard, and mouse. Next, I will use a NIC and the BIOS as examples.

Network Interface Controller: Modern network cards continue to become more and

more complex. NICs usually include a separate on-chip processor and memory to support

various functions. Typically, a NIC loads its firmware from Electric Erasable Programmable

Read-Only Memory (EEPROM) to flash memory and then executes the code on the on-

chip processor. To check the integrity of NIC’s firmware at runtime, IOCheck stores a hash

value of the original firmware image in SMRAM while the system executes the BIOS code.

After the operating system boots up, IOCheck reads the NIC’s firmware code from the

flash memory and calculates the hash value of the current image. If the computed hash

value does not match the stored value, an attack against NIC may have occurred. For some

network cards [111], I can monitor the Program Counter of the on-chip CPU through the

NIC’s debugging registers, which can restrict the instruction pointer to the code section

of the memory region. For instance, if the instruction pointer points to a memory region

that stores heap or stack data, then a code injection and control flow hijacking may have
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happened.

Monitoring the integrity of the static code and instruction pointer can prevent an at-

tacker from injecting malicious code into firmware; however, it cannot detect advanced

attacks, such as Return Oriented Programming attacks, which technically do not inject any

code. To detect these attacks, I can implement a shadow stack to protect the control flow

integrity of the NIC firmware. Duflot et al. implemented a similar work in NAVIS [107]. I

will study the control flow integrity of the firmware as my future work.

Basic Input/Output System: As mentioned before, SRTM can check the integrity of

the BIOS at booting time, which helps us securely load the SMM code from the BIOS to

the SMRAM. After the system boots up, attackers with ring 0 privilege might modify the

BIOS using various tools (e.g., flashrom [112]). However, they are not able to access locked

SMRAM. Thus, I can use the SMM code to check the runtime integrity of the BIOS. The

checking method is similar to other firmware verification techniques. IOCheck stores a hash

value of initial code and checks if any alterations occur while the system is running.

Although the modified BIOS with malicious code cannot be executed until the system

resets and SRTM detects this BIOS attack before booting, I can detect this attack earlier

than SRTM, which provides runtime detection and serves as a complementary defense.

Earlier detection of such attacks can also limit the damage they wreak against the system.

Note that I assume CRTM in the BIOS is immutable and trusted, but attackers can modify

any other BIOS code (e.g., ACPI tables). Otherwise, I cannot perform SRTM correctly.

Reporting an Alert and Exiting SMM

The last stage of IOCheck is to report any alerts to a human operator. I will accomplish

this task by playing an audible tone to notify a user that a potential attack may happen.

To distinguish the type of attack (e.g., firmware attack vs. configuration attack), I will use

di↵erent tone frequencies for a variety of I/O attacks. In addition, I will use a serial cable

connecting the target machine to the remote machine. If a potential attack has been found,

SMM prints the attacking information on the remote machine through the serial port.
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Note that the reporting stage happens in SMM. Even if an attack disables the PC

speaker or serial console in PM, I can enable it in SMM and guarantee an audible tone and

a serial message to be delivered when an attack is detected. After the reporting stage, the

SMI handler simply executes the RSM2 instruction to exit from SMM.

5.3.4 Implementation

We implement a prototype of IOCheck system using two physical machines. The target ma-

chine uses an ASUS M2V-MX SE motherboard with an AMD K8 Northbridge and a VIA

VT8237r Southbridge. It has a 2.2 GHz AMD LE-1250 CPU and 2 GB Kingston DDR2

RAM. We use a PCIe-based Intel 82574L Gigabit Ethernet Controller and a PCI-based

Jaton VIDEO-498PCI-DLP Nvidia GeForce 9500GT as the testing devices. To program

SMM, we use open-source BIOS, Coreboot. Since IOCheck is OS-agnostic, we install Mi-

crosoft Windows 7 and CentOS 5.5 on the target machine. The external machine is a Dell

Inspiron 15R laptop with Ubuntu 12.04 LTS. It uses a 2.4 GHz Intel Core i5-2430M CPU

and 6 GB DDR3 RAM.

Triggering an SMI

We implement a random polling-based triggering algorithm to check integrity of I/O config-

urations and firmware by using performance counters to generate SMIs. The performance

monitoring registers count hardware events such as instruction retirement, L1 cache miss,

or branch misprediction. The x86 machines provide four of these counters from which we

can select a specific hardware event to count [113]. To generate an SMI, we first configure

one of the performance counters to store its maximum value. Next, we select a desired

event (e.g., a retired instruction or cache miss) to count so that the next occurrence of that

event will overflow the counter. Finally, we configure the Local Advanced Programmable

Interrupt Controller (APIC) to deliver an SMI when an overflow occurs. Thus, we are able

to trigger an SMI for the desired event. The performance counting event is configured by

2The RSM instruction can only be used while in SMM [63].
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the PerfEvtSel register, and the performance counter is set by the PerfCtr register [113].

To randomly generate SMIs, we first generate a pseudo-random number, r, ranging

from 1 to m, where m is a user-configurable maximum value. For example, a user could

set m as 0x↵↵ (216 � 1), so the random number resides in the set [1,0x↵↵]. Next, we set

the performance counter to its maximum value (0x↵↵↵↵↵↵) minus this random number

(248 � 1 � r). We also set the desired event in PerfEvtSel and start to count the event.

Thus, an SMI will be raised after r occurrences of the desired event. We use a linear-

congruential algorithm to generate the pseudo-random number, r, in SMM. We use the

parameters of the linear-congruential algorithm from Numerical Recipes [114]. We use the

TSC value as the initial seed and save the current random number in SMRAM as the next

round’s seed.

To further mitigate transient attacks, we consider event-driven-based triggering ap-

proaches. We implement an event-driven-based version of IOCheck for checking the in-

tegrity of a NIC’s management firmware, and the detailed implementation is described as

follows. When a management packet arrives at the PHY interface of the NIC, the manage-

ability firmware starts to execute. We use Message Signalled Interrupts (MSI) to trigger

an SMI when a manageability packet arrives at the network card. First, we configure the

network card to deliver an MSI to the I/O APIC with the delivery mode specified as SMI.

When the I/O APIC receives this interrupt, it automatically asserts the SMI pin, and an

SMI is generated. Next, we use the SMM code to check the integrity of the management

firmware. Note that the act of this triggering is generated via a hardware interrupt in the

NIC, and the management firmware code is decoupled from this. Thus, we trigger an SMI

for every manageability packet before the firmware has an opportunity to process it.

Checking I/O Configurations and Firmware

We use a popular commercial network card, an Intel 82574L Gigabit PCIe Ethernet Con-

troller, as our target I/O device. First, we check the PCIe configuration space of the network
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Figure 5.15: Architecture Block Diagram of Intel 82574L

card. The NIC on our testbed is at bus 3, device 0, and function 0. To read the config-

uration space, we use standard PCI reads to dump the contents. We use a standard hash

function MD5 [115] to hash these 256 bytes of the configuration and compare the hash value

with the original one generated during booting.

Network management is an increasingly important requirement in today’s networked

computer environments, especially on servers. It routes manageability network tra�c to a

Management Controller (MC). One example of MC is the Baseboard Management Con-

troller (BMC) in Intelligent Platform Management Interface (IPMI). The management

firmware inevitably contains vulnerabilities that could be easily exploited by attackers.

Bonkoski et al. [95] identified more than 400 thousand IPMI-enabled servers running on

publicly accessible IP addresses that are remotely exploitable due to textbook vulnera-

bilities in the management firmware. The 82574L NIC [116] provides two di↵erent and

mutually exclusive bus interfaces for manageability tra�c. One is the Intel proprietary

System Management Bus (SMBus) interface, and the other is the Network Controller -

Sideband Interface (NC-SI). Each manageability interface, it has its own firmware code
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Table 5.8: PCI Expansion ROM Header Format for x86
O↵set Length Value Description
0h 1 55h ROM signature, byte 1
1h 1 AAH ROM signature, byte 2
2h 1 xx Initialization size
3h 3 xx Entry point for INIT function
6h-17h 12h xx Reserved
18h-19h 2 xx Pointer to PCI data structure

that implements the functions. Figure 5.15 shows a high-level architectural block diagram

of the 82574L NIC [116].

The management firmware of these two interfaces is stored in a Non-Volatile Memory

(NVM). The NVM is I/O mapped memory in the NIC, and we use the EEPROM Read

Register (EERD 0x14) to read it. EERD is a 32-bit register used to cause the NIC to read

individual words in the EEPROM. To read a word, we write a 1b to the Start Read field.

The NIC reads the word from the EEPROM and places it in the Read Data field and then

sets the Read Done field to 1b. We poll the Read Done bit to make sure that the data

has been stored in the Read Data field. All of the configuration and status registers of

82574L NIC, including EERD, are memory-mapped when the system boots up. To access

EERD, we use normal memory read-and-write operations. The memory address of EERD

is INTEL 82574L BASE plus EERD o↵set.

Jaton VIDEO-498PCI-DLP GeForce 9500GT is a PCI-based video card. It is at bus

7, device 0, and function 0 on our testbed. Similar to the checking approach of NIC, we

first check the PCI configuration space of the VGA device. Then, we check the integrity

of the VGA expansion ROM. The VGA expansion ROM is memory-mapped, and the four-

byte register at o↵set 0x30 in the PCI configuration space specifies the base address of the

expansion ROM. Note that bit 0 in the register enables the accesses to the expansion ROM.

PCI expansion ROMs may contain multiple images for di↵erent architectures. Each image

must contain a ROM header and PCI data structure, which specify image information such

as code type and size. Table 5.8 shows the formats of ROM header and Table 5.9 shows
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Table 5.9: PCI Data Structure Format
O↵set Length Description
0h 4 Signature, the string ”PCIR”
4h 2 Vendor identification
6h 2 Device identification
8h 2 Reserved
Ah 2 PCI data structure length
Ch 1 PCI data structure revision
Dh 3 Class code
10h 2 Image length
12h 2 Revision level of code/data
14h 1 Code type
15h 1 Indicator
16 2 Reserved

the PCI data structure. Note that we only check the image for x86 architecture since our

testbed is on Intel x86.

We first use the base address of expansion ROM to locate the header of the first image.

Next, we read the pointer to PCI data structure at o↵set 0x18 to 0x19. Then, we identify

the code type at o↵set 0x14 in the PCI data structure. If this image is for Intel x86

architecture, we check the integrity of this image by comparing the hash values. Otherwise,

we repeat the steps above for the next image.

Reporting an Alert and Exiting SMM

To play a tone, we program the Intel 8253 Programmable Interval Timer (PIT) in the SMI

handler to generate tones. The 8253 PIT performs timing and counting functions, and it

exists in all x86 machines. In modern machines, it is included as part of the motherboard’s

Southbridge. This timer has three counters (Counters 0, 1, and 2), and we use the third

counter (Counter 2) to generate tones via the PC speaker. In addition, we can generate

di↵erent kinds of tones by adjusting the output frequency. In the prototype of IOCheck,

a continuous tone would be played by the PC speaker if an attack against NIC has been

found. If an attack against VGA has been found, an intermittent tone would be played.

We use a serial cable to print status messages and debug corresponding I/O devices in
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SMM. The printk function in Coreboot prints the status messages to the serial port on

the target machine. When the target machine executes the BIOS code during booting, the

external machine sends a 16-byte random number to the target machine through the serial

cable. Then, the BIOS stores the random number as a secret in the SMRAM. Later, the

status messages are sent with the secret for authentication. We run a minicom instance on

the external machine and verify if the secret is correct. If a status message is not received in

an expected time window or the secret is wrong, we conclude that an attack has occurred.

5.3.5 Evaluation

Code Size

In total, there are 310 lines of new C code in the SMI handler. The MD5 hash function

has 140 lines of C code [115], and the rest of the code implements the firmware and PCI

configuration space checking. After compiling the Coreboot, the binary size of the SMI

handler is only 1,409 bytes, which introduces a minimal TCB to our system. The 1,409-

byte code encompasses all functions and instructions required to check the integrity of the

NIC and VGA firmware and their PCI configuration spaces. The code size will increase if

we check more I/O devices. Additionally, other static code exists in Coreboot related to

enabling SMM to run on a particular chipset. For example, a printk function is built into

the SMM code to enable raw communication over a serial port.

Attack Detection

We conduct four attacks against our system on both Windows and Linux platforms. Two of

them are I/O configuration attacks, which relocate the device memory by manipulating the

PCI configuration space of NIC and VGA. The other two attacks modify the management

firmware of the NIC and VGA option ROM. The Base Address Registers (BARs) in the

PCI configuration space are used to map the device’s register space. They reside from

o↵set 0x10 to 0x27 in the PCI configuration space. For example, the memory location

BAR0 specifies the base address of the internal NIC registers. An attacker can relocate
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Table 5.10: Breakdown of SMI Handler Runtime (Time: µs)
Operations Mean STD 95% CI
SMM switching 3.92 0.08 [3.27,3.32]
Check NIC’s PCIe configuration 1169.39 2.01 [1168.81,1169.98]
Check NIC’s firmware 1268.12 5.12 [1266.63,1269.60]
Check VGA’s PCI configuration 1243.60 2.61 [1242.51,1244.66]
Check VGA’s expansion ROM 4609.30 1.30 [4608.92,4609.68]
Send a message 2082.95 3.00 [2082.08,2083.82]
Configure the next SMI 1.22 0.06 [1.20,1.24]
SMM resume 4.58 0.10 [4.55,4,61]

Total 10,383.07

these memory-mapped registers for malicious purposes by manipulating the BAR0 register.

To conduct the experiments, we first enable IOCheck to check the PCI configuration space.

Next, we modify the memory location specified by the BAR0 register on Windows and

Linux platforms. We write a kernel module to modify the BAR0 register in Linux and use

the RWEverything [117] tool to configure it in Windows. We also modify the management

firmware of NIC and the VGA option ROM. The management firmware is stored as a Non-

Volatile memory, and it is I/O mapped memory; the VGA option ROM is memory-mapped.

These attacks are also conducted on both Windows and Linux platforms.

After we modify NIC’s PCIe configuration or the firmware, IOCheck automatically plays

a continuous tone to alert users and the minicom instance on the external machine shows

an attack against NIC has been found. After the modification of VGA’s PCI configuration

or option ROM, an intermittent tone is played by the PC speaker.

Breakdown of SMI Handler Runtime

To quantify how much time each individual step is required to run, we break down the SMI

handler into eight operations. They are 1) switch into SMM; 2) check the PCIe configuration

of NIC; 3) check the firmware of NIC; 4) check the PCI configuration of VGA; 5) check the

option ROM of VGA; 6) send a status message; 7) configure the next SMI; and 8) resume

Protected Mode. For each operation, we measure the average time taken in SMM. We use
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Table 5.11: Random Polling Overhead Introduced on Microsoft Windows and Linux
Random Polling Intervals Benchmark Runtime(s) System Slowdown
Instructions Time (µs) Windows Linux Windows Linux

1 [1,0x↵↵↵↵] (0,⇠650,752] 0.285 0.393 0.014 0.011
2 [1,0x↵↵↵f] (0,⇠40,672] 0.297 0.398 0.057 0.023
3 [1,0x↵↵↵] (0,⇠2,542] 0.609 0.463 1.167 0.190
4 [1,0x↵↵f] (0,⇠158] 4.359 1.480 14.512 2.805
5 [1,0x↵↵] (0,⇠10] 91.984 18.382 ⇠326 ⇠46

the Time Stamp Counter (TSC) register to calculate the time. The TSC register stores

the number of CPU cycles elapsed since powering on. First, we record the TSC values at

the beginning and end of each operation, respectively. Next, we use the CPU frequency to

divide the di↵erence in the TSC register to calculate how much time this operation.

We repeat this experiment 40 times. Table 6.5 shows the average time taken for each op-

eration. We can see that the SMM switching and resuming take only 4 and 5 microseconds,

respectively. Checking 256 bytes of the PCIe/PCI configuration space register takes about 1

ms. The 82574L NIC has 70 bytes of SMBus Advanced Pass Through (APT) management

firmware and 138 bytes of NC-SI management firmware. The size of the x86 expansion

ROM image is 1 KB in the testing VGA. Checking NIC’s firmware takes about 1 ms, while

checking VGA’s option ROM takes about 5 ms. Naturally, the size of the firmware a↵ects

the time of the checking operation. We send a status message (e.g., I/O devices are OK) in

each run of the SMI handler, which is about 2 ms. The time it takes to generate a random

number and configure performance counters for the next SMI is only 1.22 ms. Thus, the

total time spent in SMM is about 10 milliseconds. Additionally, we calculate the standard

deviation and 95% confidence interval for the runtime of each operation.

System Overhead

To measure system overhead introduced by this approach, we use the SuperPI [118] pro-

gram to benchmark our system on Windows and Linux. We first run the benchmark without

IOCheck enabled. Then, we run it with di↵erent random-polling intervals. Table 5.11 shows
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the experimental results. The first column shows the random polling intervals used in the

experiment. For example, (0,0x↵↵f] means a random number, r, is generated in that inter-

val. We use retired instructions as the counting event in the performance counter. Thus,

after running r sequential instructions, an SMI will be asserted. The second column also

indicates the time elapsed. Since the CPU (AMD K8) on our testbed is 3-way super-

scalar [119], we assume that the average number of instructions-per-cycle (IPC) is 3, and

the equation for this transformation is T = I
(C⇤IPC) , where T is the real time, I is the

number of instructions, and C is the clock speed on the CPU.

We can see from Table 5.11 that the overhead will increase if we reduce the random-

polling interval, while small intervals have a higher probability of quickly detecting attacks.

Intervals in rows 1 and 2 introduce less than 6% overhead, so intervals similar to or between

them are suitable for normal users in practice. Other intervals in the table have large

overhead, making them unsuitable in practice. These results demonstrate the feasibility

and scalability of our approach.

Comparison with the DRTM Approach

IOCheck provides a new framework for checking firmware and I/O devices at runtime.

Compared to the well-known DRTM approach (e.g., Flicker [19]), SMM in IOCheck serves

a similar role as the trusted execution environment in DRTM. However, IOCheck achieves

a better performance in comparison. AMD uses the SKINIT instruction to perform DRTM,

and Intel implements DRTM using a CPU instruction called SENTER. The SMM switching

operation in IOCheck plays the same role as SKINIT or SENTER instructions in the DRTM

approach. As stated in the Table II of Flicker [19], the time required to execute the SKINIT

instruction depends on the size of the Secure Loader Block (SLB). It shows a linear growth

in runtime as the size of the SLB increases. From Table 5.12, we can see that the SKINIT

instruction takes about 12 milliseconds for 4 KB of SLB. However, SMM switching only takes

about 4 ms, which is about three orders of magnitude faster than the SKINIT instruction.

Furthermore, SMM switching time is independent from the size of the SMI handler. This
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Table 5.12: Comparison between SMM-based and DRTM-based Approaches
IOCheck Flicker [19]

Operation SMM switching SKINIT instruction
Size of secure code Any 4 KB
Time 3.92 µs 12 ms
Trust BIOS boot Yes No

is because IOCheck does not need to measure the secure code every time before executing

it, and we lock the secure code in SMRAM.

Note that IOCheck trusts the BIOS boot while Flicker does not. IOCheck requires a

secure BIOS boot to ensure the SMM code is securely loaded into SMRAM. However, the

DRTM approach (e.g., Intel TXT) also requires that the SMM code is trusted. Wojtczuk

and Rutkowska demonstrate several attacks [102,120,121] against Intel TXT by using SMM

if the SMM-Transfer Monitor is not present. From this point of view, both systems must

trust the SMM code.
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Chapter 6: Using Hardware Isolated Execution

Environments for Malware Debugging

6.1 MalT: Towards Transparent Debugging

6.1.1 Introduction

Traditional malware analysis employs virtualization [37, 41, 122] and emulation [39, 40, 45]

technologies to dissect malware behavior at runtime. This approach runs the malware

in a Virtual Machine (VM) or emulator and uses an analysis program to introspect the

malware from the outside so that the malware cannot infect the analysis program. Unfor-

tunately, malware writers can easily escape this analysis mechanism by using a variety of

anti-debugging, anti-virtualization, and anti-emulation techniques [11,13–16,123]. Malware

can easily detect the presence of a VM or emulator and alter its behavior to hide itself. Chen

et al. [11] executed 6,900 malware samples and found that more than 40% of them reduced

malicious behavior under a VM or with a debugger attached. Branco et al. [123] showed

that 88% and 81% of 4 million analyzed malware samples had anti-reverse engineering and

anti-virtualization techniques, respectively. Furthermore, Garfinkel et al. [12] concluded

that virtualization transparency is fundamentally infeasible and impractical. To address

this problem, security researchers have proposed analyzing malware on bare metal [42, 43].

This approach makes anti-VM malware expose its malicious behavior, and it does not re-

quire any virtualization or emulation technology. However, malware analysis on bare metal

runs an analysis program within the Operating System (OS), and ring 0 malware can easily

detect its presence. Thus, stealthy malware detection and analysis still remains an open

research problem.

I present MalT [124], a novel approach that progresses toward stealthy debugging by
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leveraging System Management Mode (SMM) to transparently debug software on bare-

metal. Our system is motivated by the intuition that malware debugging needs to be

transparent, and it should not leave artifacts introduced by the debugging functions. SMM

is a special-purpose CPU mode in all x86 platforms. The main benefit of SMM is to provide

a distinct and easily isolated processor environment that is transparent to the OS or running

applications. With the help of SMM, we are able to achieve a high level of transparency,

which enables a strong threat model for malware debugging. We briefly describe its basic

workflow as follows. We run malware on one physical target machine and employ SMM to

communicate with the debugging client on another physical machine. While SMM executes,

Protected Mode is essentially paused. The OS and hypervisor, therefore, are unaware of code

executing in SMM. Because we run debugging code in SMM, we expose far fewer artifacts

to the malware, enabling a more transparent execution environment for the debugging code

than existing approaches.

The debugging client communicates with the target server using a GDB-like protocol

with serial messages. We implement the basic debugging commands (e.g., breakpoints

and memory/register examination) in the current prototype of MalT. Furthermore, we

implement four techniques to provide step-by-step debugging: (1) instruction-level, (2)

branch-level, (3) far control transfer level, and (4) near return transfer level. We also design

a user-friendly interface for MalT to easily work with several popular debugging clients,

such as IDAPro [46] and GDB.

MalT runs the debugging code in SMM without using a hypervisor. Thus, it has a

smaller Trusted Code Base (TCB) than hypervisor-based debugging systems [37,39,40,45],

which significantly reduces the attack surface of MalT. Moreover, MalT is OS-agnostic and

immune to hypervisor attacks (e.g., VM-escape attacks [6, 7]). Compared to existing bare-

metal malware analysis [42,43], SMM has the same privilege level as hardware. Thus, MalT

is capable of debugging and analyzing kernel and hypervisor rookits as well [8, 125].

We develop a prototype of MalT on two physical machines connected by a serial ca-

ble. To demonstrate the e�ciency and transparency of our approach, we test MalT with
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popular packing, anti-debugging, anti-virtualization, and anti-emulation techniques. The

experimental results show that MalT remains transparent against these techniques. Addi-

tionally, our experiments demonstrate that MalT is able to debug crashed kernels/hypervi-

sors. MalT introduces a reasonable overhead: It takes about 12 microseconds on average to

execute the debugging code without command communication. Moreover, we use popular

benchmarks to measure the performance overhead for the four types of step-by-step execu-

tion on Windows and Linux platforms. The overhead ranges from 2 to 973 times slowdown

on the target system, depending on the user’s selected instrumentation method.

6.1.2 Threat Model and Assumptions

Threat Model

MalT is intended to transparently analyze a variety of code that is capable of detecting or

disabling typical malware analysis or detection tools. We consider two types of powerful

malware in our threat model: armored malware and rootkits.

Armored malware or evasive malware [44] is a piece of code that employs anti-debugging

techniques. Malicious code can be made to alter its behavior if it detects the presence

of a debugger. There are many di↵erent detection techniques employed by current mal-

ware [13]. For example, IsDebuggerPresent() and CheckRemoteDebuggerPresent() are

Windows API methods in the kernel32 library that return values based upon the presence

of a debugger. Legitimate software developers can take advantage of such API calls to ease

the debugging process in their own software. However, malware can use these methods to

determine if it is being debugged to change or hide its malicious behavior from analysis.

Malware can also determine if it is running in a virtual machine or emulator [11,14,16].

For instance, Red Pill [18] can e�ciently detect the presence of a VM. It executes a non-

privileged (ring 3) instruction, SIDT, which reads the value stored in the Interrupt Descriptor

Table (IDT) register. The base address of the IDT will be di↵erent in a VM than on a bare-

metal machine because there is only one IDT register shared by both host-OS and guest-

OS. Additionally, QEMU can be detected by accessing a reserved Model Specific Register
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(MSR) [40]. This invalid access causes a General Protection (GP) exception on a bare-metal

machine, but QEMU does not.

Rootkits are a type of stealthy malicious software. Specifically, they hide certain process

information to avoid detection while maintaining continued privileged access to the system.

There are a few types of rootkits ranging from user mode to firmware level. For example,

kernel mode rootkits run in the operating system kernel (in ring 0) by modifying the kernel

code or kernel data structures (e.g., Direct Kernel Object Modification). Hypervisor-level

rootkits run in ring -1 and host the target operating system as a virtual machine. These

rootkits intercept all of the operations including hardware calls in the target OS, as shown in

Subvirt [8] and BluePill [125]. Since MalT runs in SMM with ring -2 privilege, it is capable

of debugging user mode, kernel mode, and hypervisor-level rootkits. As no virtualization

is used, MalT is immune to hypervisor attacks (e.g., VM escape [6, 7]). However, because

firmware rootkits run in ring -2, MalT cannot detect these kind of rootkits.

Assumptions

As our trusted code (SMI handler) is stored in the BIOS, we assume the BIOS will not

be compromised. We assume the Core Root of Trust for Measurement (CRTM) is trusted

so that we can use Static Root of Trust for Measurement (SRTM) to perform the self-

measurement of the BIOS and secure the boot process [103]. We also assume the firmware

is trusted, although we can use SMM to check its integrity [106]. After booting, we lock

the SMRAM to ensure the SMI handler code is trusted. We assume the debugging client

and remote machine are trusted. Further, we consider an attacker that can have unlimited

computational resources on our machine. We assume the attacker launches a single vulner-

able application that can compromise the OS upon completing its first instruction. Lastly,

we assume the attacker does not have physical access to the machines. Malicious hardware

(e.g., hardware trojans) is also out of scope.
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6.1.3 System Architecture

Figure 7.1 shows the architecture of the proposed MalT system. The remote client is

equipped with a simple GDB-like debugger. The user inputs basic debugging commands

(e.g., list registers), then the target machine executes the command and replies to the client

as required. When a command is entered, the client sends a packet to the target server.

The network packet contains the actual command. The target machine in SMM transmits

a response packet containing the information requested by the command. Since the target

machine executes the actual debugging command within the SMI handler, its operation

remains transparent to the target application and underlying operating system.

As shown in the Figure 6.1, the debugging client first sends an SMI triggering packet to

the debugging server. I will dedicate a PCI-based network card on the debugging server and

make use of Message Signaled Interrupts (MSIs) to generate SMIs when the NIC receives

packets. Secondly, once the debugging server enters into SMM, the debugging client starts

to send debugging commands to the SMI handler on the server. Thirdly, the SMI handler

transparently executes the corresponding commands (e.g., list registers and set breakpoints),

and sends a response message back to the client.

The SMI handler on the debugging server inspects the debugged application at run

time. If the debugged application hits a breakpoint, the SMI handler sends a ”breakpoint

hit” message to the debugging client and stays in SMM until further debugging commands

are received. In addition, the proposed system can achieve step-by-step debugging via

performance counters on the CPU. Next, I will detail each component of the system.

Remote Debugger: Client

The client can ideally implement a variety of popular debugging options. For example,

I could use the SMI handler to implement the GDB protocol so that it would properly

interface with a regular GDB client. Similarly, I might implement the necessary plug-in for

IDAPro to correctly interact with my system. However, this would require implementing a

full TCP network stack within the SMI handler.
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Figure 6.1: Architecture of MalT

Instead, I will implement a custom protocol with which to communicate between the

remote client and the SMI handler. I will implement a small GDB-like client to simplify

my implementation.

Debugging Target: Server

The debugging server consists of two parts: the SMI handler and the debugging target

application. The SMI handler implements the critical debugging features (e.g., breakpoints

and state reports), thus restricting the execution of debugging code to System Management

Mode (SMM). The debugging target executes in Protected Mode as usual. I will cause SMIs

frequently, and since the CPU state is saved within SMRAM each time the SMI handler

executes, I can reconstruct useful information and perform typical debugging operations

each time an SMI is triggered.

SMRAM contains architectural state information of the thread that was running when

the SMI was triggered. Since the SMIs are produced regardless of the running thread,

SMRAM will often contain states unrelated to the debugging target. In order to find the

relevant state information, I must solve the semantic gap problem. By bridging the semantic

gap within the SMI handler, I can ascertain state of the thread executing in Protected Mode.

This is similar to Virtual Machine Introspection systems [32–34]. I would need to continue

my analysis in the SMI handler only if the SMRAM state belongs to a thread I am interested

in debugging. Otherwise, I can exit the SMI handler immediately.
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Communicating Debugging Commands

In order to implement remote debugging in my system, I will define a simple network

protocol used by the client and server hosts.

These commands are derived from basic GDB stubs, which are intended for debugging

embedded software. The commands cover the basic debugging operations, which the client

can expand upon. The small number of commands greatly simplifies the process of network-

ing within the SMI handler. The remote client, after all, can glean an array of semantic and

symbolic information from the command feedback and user interaction. For instance, there

is no reason to store symbolic information on the target server; the user does not directly

interact with the target machine while debugging software on it.

The overarching principle of the proposed system is that the communication between

the client and the server should not a↵ect normal tra�c on the target machine. To simplify

the network implementation, I will use two network interfaces on the target machine: one

for normal tra�c and one dedicated to debugging. I will install a PCI-based network card

on the motherboard and port its driver into the SMI handler. Furthermore, I will use

a crossover Ethernet cable to directly connect the client machine to the target machine.

Since I directly attach the two machines, I statically assign the MAC addresses of the two

machines to populate the packet header.

6.1.4 Implementation

The MalT system is composed of two main parts: 1) the debugging client used by the

malware analyst and 2) the debugging server, which contains the SMI handler code and

the target debugging application. In this section, we will describe how these two parts are

implemented and used.

Debugging Client

The client machine consists of a simple command line application. The user can direct

the debugger to perform useful tasks, such as setting breakpoints. For example, the user
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writes simple commands such as b 0xdeadbeef to set a breakpoint at address 0xdeadbeef.

The specific commands are described in Table 6.1. We did not implement features such as

symbols; such advanced features pose an engineering challenge that we will address in our

future work. The client machine uses serial messages to communicate with the server.

Debugging Server

The target machine consists of a computer with a custom Coreboot-based BIOS. We changed

the SMI handler in the Coreboot code to implement a simple debugging server. This custom

SMI handler is responsible for all of the typical debugging functions found in other debug-

gers such as GDB. We implemented remote debugging functions via said serial protocol to

achieve common debugging functions such as breakpoints, step-by-step execution, and state

inspection and mutation.

Semantic Gap Reconstruction

As with Virtual Machine Introspection (VMI) systems [4], SMM-based systems encounter

the well-known semantic gap problem. In brief, SMM cannot understand the semantics of

raw memory. The CPU state saved by SMM only belongs to the thread that was running

when the SMI was triggered. If we use step-by-step execution, there is a chance that another

application is executing when the SMI occurs. Thus, we must be able to identify the

target application so that we do not interfere with the execution of unrelated applications.

This requires reconstructing OS semantics. Note that MalT has the same assumptions as

traditional VMI systems [35].

In Windows, we start with the Kernel Processor Control Region (KPCR) structure asso-

ciated with the CPU, which has a static linear address, 0x↵d↵000. At o↵set 0x34 of KPCR,

there is a pointer to another structure called KdVersionBlock, which contains a pointer to

PsActiveProcessHead. The PsActiveProcessHead serves as the head of a doubly and cir-

cularly linked list of Executive Process (EProcess) structures. The EProcess structure is a

process descriptor containing critical information for bridging the semantic gap in Windows
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Table 6.1: Communication Protocol Commands
Message format Description

R A single byte, R is sent to request that all registers be read. This includes
all the x86 registers. The order in which they are transmitted corresponds
with the Windows trap frame. The response is a byte, r, followed by the
registers r1r2r3r4...rn.

mAAAALLLL The byte m is sent to request a particular memory address for a given
length. The address, A, is a 32-bit little-endian virtual address indicating
the address to be read. The value L represents the number of bytes to be
read.

Wr1r2r3...rn The byte W is sent to request that the SMI handler write all of the regis-
ters. Each value ri contains the value of a particular register. The response
byte, + is sent to indicate that it has finished.

SAAAALLLLV... The command, S, is sent when the debugger wants to write a particular
address. A is the 32-bit, little-endian virtual address to write, L represents
the length of the data to be written, and V is the memory to be written,
byte-by-byte. The response is a byte, +, indicating that the operation has
finished, or a - if it fails.

BAAAA The B command indicates a new breakpoint at the 32-bit little-endian
virtual address A. The response is + if successful, or - if it fails (e.g., trying
to break at an already-broken address). If the SMI handler is triggered
by a breakpoint (e.g., the program is in breakpoint debugging status),
it will send a status packet with the single character, B, to indicate the
program has reached a breakpoint and is ready for further debugging. The
SMI handler will wait for commands from the client until the Continue
command is received, whereupon it will exit from SMM.

C The C command continues execution after a breakpoint. The SMI handler
will send a packet with single character, +.

X The X command clears all breakpoints and indicates the start of a new
debugging session.

KAAAA The K command removes the specified breakpoint if it was set previ-
ously. The 4-byte value A specifies the virtual address of the requested
breakpoint. It responds with a single + byte if the breakpoint is removed
successfully. If the breakpoint does not exist, it responds with a single -.

SI, SB, SF, SN The SI command indicates stepping the system instruction by instruction.
The SB command indicates stepping the system by taken branches. The
SF command indicates stepping the system by control transfers including
far call/jmp/ret. The SN command indicates stepping the system by near
return instructions. The SMI handler replies with single character, +.
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Figure 6.2: Finding a Target Application in Windows

NT kernels. Figure 6.2 illustrates this procedure.

In particular, the Executive Process contains the value of the CR3 register associated

with the process. The value of the CR3 register contains the physical address of the base

of the page table of that process. We use the name field in the EProcess or task struct

to identify the CR3 value of the target application when it executes first instruction. Since

malware may change the name field, we only compare the saved CR3 with the current

CR3 to identify the target process for further debugging. Alternatively, we can compare

the EIP value with the target application’s entry point. This method is simpler but less

reliable since multiple applications may have the same entry point. Filling the semantic

gap in Linux is a similar procedure, but there are fewer structures and thus fewer steps.

Previous works [32,66] describe the method, which MalT uses to debug applications on the

Linux platform. Note that malware with ring 0 privilege can manipulate the kernel data

structures to confuse the reconstruction process, and current semantic gap solutions su↵er

from this limitation [35]. As with VMI systems, MalT does not consider the attacks that

mutate kernel structures.

Triggering an SMI

The system depends upon reliable assertions of System Management Interrupts (SMIs).

Because the debugging code is placed in the SMI handler, it will not work unless the CPU
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can stealthily enter SMM.

In general, we can assert an SMI via software or hardware. The software method writes

to an Advanced Configuration and Power Interface (ACPI) port to trigger an SMI, and we

can use this method to implement software breakpoints. We can place an out instruction in

the malware code so that when the malware’s control flow reaches that point, SMM begins

executing, and the malware can be analyzed. The assembly instructions are:

mov $0x52f, %dx;

out %ax, (%dx);

The first instruction moves the SMI software interrupt port number (0x2b on Intel, and

0x52f in our chipset [126]) into the dx register, and the second instruction writes the contents

stored in ax to that SMI software interrupt port. (The value stored in ax is inconsequential).

In total, these two instructions take six bytes: 66 BA 2F 05 66 EE. While this method is

straightforward, it is similar to traditional debuggers using INT3 instructions to insert

arbitrary breakpoints. The alternative methods described below are harder to detect by

self-checking malware.

In MalT, we use two hardware-based methods to trigger SMIs. The first uses a serial

port to trigger an SMI to start a debugging session. In order for the debugging client

to interact with the debugging server and start a session, we reroute a serial interrupt

to generate an SMI by configuring the redirection table in I/O Advanced Programmable

Interrupt Controller (APIC). We use serial port COM1 on the debugging server, and its

Interrupt Request (IRQ) number is 4. We configure the redirection table entry of IRQ 4

at o↵set 0x18 in I/O APIC and change the Delivery Mode (DM) to be SMI. Therefore, an

SMI is generated when a serial message arrives. The debugging client sends a triggering

message, causing the target machine to enter SMM. Once in SMM, the debugging client

sends further debugging commands to which the target responds. In MalT, we use this

method to trigger the first SMI and start a debugging session on the debugging server. The

time of triggering the first SMI is right before each debugging session after reboot because

MalT assumes that the first instruction of malware can compromise the system.
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The second hardware-based method uses performance counters to trigger an SMI. This

method leverages two architectural components of the CPU: performance monitoring coun-

ters and Local Advanced Programmable Interrupt Controller (LAPIC) [113]. First,

we configure the Performance Counter Event Selection (PerfEvtSel0) register to select the

counting event. There is an array of events from which to select; we use di↵erent events to

implement various debugging functionalities. For example, we use the Retired Instructions

Event (C0h) to single-step the whole system. Next, we set the corresponding performance

counter (PerfCtr0) register to the maximum value. In this case, if the selected event hap-

pens, it overflows the performance counter. Lastly, we configure the Local Vector Table

Entry (LVTE) in LAPIC to deliver SMIs when an overflow occurs. HyperSentry [62] and

[127] use similar methods to switch from a guest VM to the hypervisor VMX root mode.

Breakpoints

Breakpoints are generally software- or hardware-based. Software breakpoints allow for

unlimited breakpoints, but they must modify a program’s code, typically placing a single

interrupt or trap instruction at the breakpoint. Self-checking malware can easily detect or

interfere with such changes. On the other hand, hardware breakpoints do not modify code,

but there can only be a limited number of hardware breakpoints as restricted by the CPU

hardware. Stealthy breakpoint insertion is an open problem [36].

In MalT, we emulate the behavior of software breakpoints simply by modifying the

target’s code to trigger SMIs. An SMI is triggered on our testbed by writing a value to

the hardware port, 0x52f. In total, this takes six bytes. We thus save six bytes from the

requested breakpoint address and replace them with the SMI triggering code. Thus, when

execution reaches this point, the CPU enters SMM. We store the breakpoint in SMRAM,

represented as 4 bytes for the address, 6 bytes for the original instruction, and one byte for a

validity flag. Thus, each breakpoint occupies 11 bytes in SMRAM. When the application’s

control reaches the breakpoint, it generates an SMI. In the SMI handler, we write the saved

binary code back to the application text and revert the Extended Instruction Pointer (EIP)
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register so that it will resume execution at that same instruction. Then, we wait in the

SMI handler until the client sends a continue command. In order to remove an inserted

breakpoint, the client can send a remove-breakpoint command and the SMI handler will

disable that breakpoint by setting the enable flag to 0. However, this software breakpoint

solution still makes changes to the application memory that are visible to malware–MalT

does not use software breakpoints.

We implement a new hardware breakpoint technique in MalT. It relies on performance

counters to generate SMIs. Essentially, we compare the EIP of the currently executing

instruction with the stored breakpoint address during each cycle. We use 4 bytes to store

the breakpoint address and 1 byte for a validity flag. In contrast to the software breakpoint

method described above, we do not need to store instructions because we do not change

any application memory. Thus, we need only 5 bytes to store such hardware breakpoints.

For each Protected Mode instruction, the SMI handler takes the following steps: (1) Check

if the target application is the running thread when the SMI is triggered; (2) check if the

current EIP equals a stored breakpoint address; (3) start to count retired instructions in

the performance counter, and set the corresponding performance counter to the maximum

value; (4) configure LAPIC so that the performance counter overflow generates an SMI.

Breakpoint addresses are stored in SMRAM, and thus the number of active breakpoints

we can have is limited by the size of SMRAM. In our system, we reserve a 512-byte region

from SMM BASE+0xFC00 to SMM BASE+0xFE00. Since each hardware breakpoint takes

5 bytes, we can store a total 102 breakpoints in this region. If necessary, we can expand the

total region of SMRAM by taking advantage of a region called TSeg, which is configurable via

the SMM MASK register [113]. In contrast to the limited number of hardware breakpoints

on the x86 platform, MalT is capable of storing more breakpoints in a more transparent

manner.
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Table 6.2: Stepping Methods in MalT
PMC Events Description [113]
Retired instructions Counts retired instructions, plus exceptions and interrupts
Retired taken branches Includes all architectural control flow changes, plus exceptions and interrupts
Retired far control transfers Includes far calls/jumps/returns, exceptions and interrupts
Retired near returns Counts near return instructions (RET or RET Iw) retired

Step-by-Step Execution Debugging

As discussed above, we break the execution of a program by using di↵erent performance

counters. For instance, by monitoring the Retired Instruction event, we can achieve instruction-

level stepping in the system. Table 6.2 summarizes the performance counters we used in

our prototype. First, we assign the event to the PerfEvtSel0 register to indicate that the

event of interest will be monitored. Next, we set the value of the counter to the maximum

value (i.e., a 48-bit register is assigned 248 � 2). Thus, the next event to increase the value

will cause an overflow, triggering an SMI. Note that the -2 term is used because the Retired

Instruction event also counts interrupts. In our case, the SMI itself will cause the counter to

increase as well, so we account for that change accordingly. The system becomes deadlocked

if the value is not chosen correctly.

Vogl and Eckert [127] also proposed the use of performance counters for instruction-

level monitoring. It delivers a Non-Maskable Interrupt (NMI) to force a VM Exit when a

performance counter overflows. However, the work is implemented on a hypervisor. MalT

leverages SMM and does not employ any virtualization, which provides a more transpar-

ent execution environment. Additionally, their work [127] incurs a time gap between the

occurrence of a performance event and the NMI delivery, while MalT does not encounter

this problem. Note that the SMI has priority over an NMI and a maskable interrupt as

well. Among these four stepping methods, instruction-by-instruction stepping achieves fine-

grained tracing, but at the cost of a significant performance overhead. Using the Retired

Near Returns event causes low system overhead, but it only provides coarse-gained debug-

ging.
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6.1.5 Transparency Analysis

In terms of transparency, it heavily depends on its subjects. In this paper, we consider the

transparency of four subjects. They are (1) virtualization, (2) emulation, (3) SMM, and (4)

debuggers. Next, we discuss the transparency of these subjects one by one.

Virtualization: The transparency of virtualization is di�cult to achieve. For instance,

Red Pill [18] uses an unprivileged instruction SIDT to read the interrupt descriptor (IDT)

register to determine the presence of a virtual machine. To work on a multi-processor

system, Red Pill needs to use SetThreadA�nityMask() Windows API call to limit thread

execution to one processor [15]. nEther [128] detects hardware virtualization using CPU

design defects. Furthermore, there are many footprints introduced by virtualization such

as well-known strings in memory [11], magic I/O ports [42], and invalid instruction behav-

iors [14]. Moreover, Garfinkel et al. [12] argued that building a transparent virtual machine

is impractical.

Emulation: Researchers have used emulation to debug malware. QEMU simulates all

the hardware devices including CPU, and malware runs on top of the emulated software.

Because of the emulated environment, malware can detect it. For example, accessing a re-

served or unimplemented MSR register causes a general protection exception, while QEMU

does not raise an exception [16]. Table 6.3 shows more anti-emulation techniques. Although

some of these defects could be fixed, determining perfect emulation is an undecidable prob-

lem [37].

SMM: SMM is a hardware feature existing in all x86 machines. Regarding its trans-

parency, the Intel manual [63] specifies the following mechanisms that make SMM trans-

parent to the application programs and operating systems: (1) the only way to enter SMM

is by means of an SMI; (2) the processor executes SMM code in a separate address space

(SMRAM) that is inaccessible from the other operating modes; (3) upon entering SMM, the

processor saves the context of the interrupted program or task; (4) all interrupts normally
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handled by the operating system are disabled upon entry into SMM; and (5) the RSM in-

struction can be executed only in SMM. Note that SMM steals CPU time from the running

program, which is a side e↵ect of SMM. For instance, malware can detect SMM based on

the time delay. However, SMM is more transparent than virtualization and emulation.

Debuggers: An array of debuggers have been proposed for transparent debugging.

These include in-guest [36, 46], emulation-based [38, 39], and virtualization-based [37, 41]

approaches. MalT is an SMM-based system. As to the transparency, we only consider the

artifacts introduced by debuggers themselves, not the environments (e.g., VMM or SMM).

Ether [37] proposes five formal requirements for achieving transparency, including 1) high

privilege, 2) no non-privileged side e↵ects, 3) identical basic instruction execution semantics,

4) transparent exception handling, and 5) identical measurement of time. MalT satisfies

the first requirement by running the analysis code in SMM with ring -2. We enumerate

all of the side e↵ects introduced by MalT in Section 6.1.5 and attempt to meet the second

requirement in our system. Since MalT runs on bare metal, it immediately meets the third

and fourth requirements. Lastly, MalT partially satisfies the fifth requirement by adjusting

the local timers in the SMI handler. We further discuss the timing attacks below.

Side E↵ects Introduced by MalT

MalT aims to transparently analyze malware with minimum footprints. Here we enumerate

the side e↵ects introduced by MalT and show how we mitigate them. Note that achieving

the highest level of transparency requires MalT to run in single-stepping mode.

CPU: We implement MalT in SMM, another CPU mode in the x86 architecture, which

provides an isolated environment for executing code. After recognizing the SMI assertion,

the processor saves almost the entirety of its state to SMRAM. As previously discussed,

we rely on the performance monitoring registers and LAPIC to generate SMIs. Although

these registers are inaccessible from user-level malware, attackers with ring 0 privilege can

read and modify them. LAPIC registers in the CPU are memory-mapped, and its base ad-

dress is normally at 0xFEE00000. In MalT, we relocate LAPIC registers to another physical
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address by modifying the value in the 24-bit base address field of the IA32 APIC BASE

Model Specific Register (MSR) [63]. To find the LAPIC registers, attackers need to read

IA32 APIC BASE MSR first that we can intercept. Performance monitoring registers are

also MSRs. RDMSR, RDPMC, and WRMSR are the only instructions that can access the perfor-

mance counters [113] or MSRs. To mitigate the footprints of these MSRs, we run MalT

in instruction-by-instruction mode and adjust the return values seen by these instructions

before resuming Protected Mode. If we find a WRMSR to modify the performance counters,

the debugger client will be notified.

Memory and Cache: MalT uses an isolated memory region (SMRAM) from normal

memory in Protected Mode. Any access to this memory in other CPU modes will be

redirected to VGA memory. Note that this memory redirection occurs in all x86 machines,

even without MalT; this is not unique to our system. Intel recently introduced System

Management Range Registers (SMRR) [63] that limits cache references of addresses in

SMRAM to code running in SMM. This is the vendor’s response to the cache poisoning

attack [58]; MalT does not flush the cache when entering and exiting SMM to avoid cache-

based side-channel detection.

IO Configurations and BIOS: MalT reroutes a serial interrupt to generate an SMI

to initialize a debugging session, and the modified redirection table entry in I/O APIC can

be read by malware with ring 0 privilege. We change the redirection table entry back to

its original value to remove this footprint in the first generated SMI handler. Once SMM

has control of the system, the SMIs are triggered by configuring performance counters.

MalT uses a custom BIOS, Coreboot, to program the SMM code. An attacker with ring

0 privilege can check the hash value of the BIOS to detect the presence of our system.

To avoid this fingerprint, we flash the BIOS with the original image before the debugging

process using the tool Flashrom [112], and it takes about 28 seconds to flash the Coreboot

with the original AMI BIOS. At that time, the SMI handler, including the MalT code, has

been loaded into SMRAM and locked. Note that we also need to reflash the Coreboot image

for the next system restart.
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Timing: There are many timers and counters on the motherboard and chipsets, such as

the Real Time Clock (RTC), the Programmable Interval Timer (8253/8254 chip), the High

Precision Event Timer (HPET), the ACPI Power Management Timer, the APIC Timer, and

the Time Stamp Counter (TSC). Malware can read a timer and calculate its running time.

If the time exceeds a certain threshold, malware can conclude that a debugger is present.

For the configurable timers, we record their values after switching into SMM. When SMM

exits, we set the values back using the recorded values minus the SMM switching time.

Thus, the malware is unaware of the time spent in the SMI handler. However, some of the

timers and counters cannot be changed, even in SMM. To address this problem, we adjust

the return values of these timers in instruction-level stepping mode. For example, the RDTSC

instruction reads the TSC register and writes the value to the EAX and EDX registers. While

debugging, we can check if the current instruction is RDTSC and adjust the values of EAX

and EDX before leaving the SMI handler.

Unfortunately, MalT cannot defend against timing attacks involving an external timer.

For instance, malware can send a packet to a remote server to get correct timing information

(e.g., NTP service). In this case, malware can detect the presence of our system and alter

its behavior accordingly. One potential solution to address this problem is to intercept the

instruction that reaches out for timing information and prepare a fake time for the OS.

Naturally, this would not be foolproof as an attacker could retrieve an encrypted time from

a remote location. Such attacks are di�cult to contend with because we cannot always

know when a particular packet contains timing information. To the best of our knowledge,

all existing debugging systems with any measurable performance slowdown su↵er from this

attack. As stated in Ether [37], defending against external timing attacks for malware

analysis systems is Turing undecidable. However, external timing attacks require network

communications and thus dramatically increase the probability that the malware will be

flagged. We believe that this deterrent–malware will avoid using external timing attacks

precisely because it wants to minimize its footprint on the victim’s computer, including

using spin loops. We can also analyze portions of the malware separately and amortize the
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analysis time.

Analysis of Anti-debugging, -VM, and -emulation Techniques

To analyze the transparency of MalT system, we employ anti-debugging, anti-virtualization,

and anti-emulation techniques from [11, 13–16] to verify our system. Since MalT runs

on a bare-metal machine, these anti-virtualization techniques will no longer work on it.

Additionally, MalT does not change any code or the running environments of operating

systems and applications so that normal anti-debugging techniques cannot work against

it. For example, the debug flag in the PEB structure on Windows will not be set while

MalT is running. Table 6.3 summarizes popular anti-debugging, anti-virtualization, and

anti-emulation techniques, and we have verified that MalT can evade all these detection

techniques.

Testing with Packers

Packing is used to obfuscate the binary code of a program. It is typically used to protect

the executable from reverse-engineering. Nowadays, malware writers also use packing tools

to obfuscate their malware. Packed malware is more di�cult for security researchers to

reverse-engineer the binary code. In addition, many packers contain anti-debugging and

anti-VM features, further increasing the challenge of reverse-engineering packed malware.

To demonstrate the transparency of MalT, we use popular packing tools to pack the

Notepad.exe application in a Windows environment and run this packed application in

MalT with near return stepping mode, OllyDbg [47], DynamoRIO [130], and a Windows

virtual machine, respectively. Ten packing tools are used, including UPX, Obsidium, AS-

Pack, Armadillo, Themida, RLPack, PELock, VMProtect, eXPressor, and PECompact. All

these packing tools enable the settings for anti-debugging and anti-VM functions if they

have them. After running the packed Notepad.exe, if the Notepad window appears, we

know that it has launched successfully. Table 6.4 lists the results. All the packing tools

except UPX, ASPack, and RLPack can detect OllyDbg. Obsidium, Armadillo, Themida,
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Table 6.3: Summary of Anti-debugging, Anti-VM, and Anti-emulation Techniques

Anti-debugging [13, 123]
API Call Kernel32!IsDebuggerPresent returns 1 if target process is being debugged

ntdll!NtQueryInformationProcess: ProcessInformation field set to -1 if the process is being
debugged
kernel32!CheckRemoteDebuggerPresent returns 1 in debugger process
NtSetInformationThread with ThreadInformationClass set to 0x11 will detach some de-
buggers
kernel32!DebugActiveProcess to prevent other debuggers from attaching to a process

PEB Field PEB!IsDebugged is set by the system when a process is debugged
PEB!NtGlobalFlags is set if the process was created by a debugger

Detection ForceFlag field in heap header (+0x10) can be used to detect some debuggers
UnhandledExceptionFilter calls a user-defined filter function, but terminates in a debug-
ging process
TEB of a debugged process contains a NULL pointer if no debugger is attached; valid
pointer if some debuggers are attached
Ctrl-C raises an exception in a debugged process, but the signal handler is called without
debugging
Inserting a Rogue INT3 opcode can masquerade as breakpoints
Trap flag register manipulation to thwart tracers
If entryPoint RVA set to 0, the magic MZ value in PE files is erased
ZwClose system call with invalid parameters can raise an exception in an attached debugger
Direct context modification to confuse a debugger
0x2D interrupt causes debugged program to stop raising exceptions
Some In-circuit Emulators (ICEs) can be detected by observing the behavior of the un-
documented 0xF1 instruction
Searching for 0xCC instructions in program memory to detect software breakpoints
TLS-callback to perform checks

Anti-virtualization

VMWare Virtualized device identifiers contain well-known strings [11]
checkvm software [129] can search for VMWare hooks in memory
Well-known locations/strings associated with VMWare tools

Xen Checking the VMX bit by executing CPUID with EAX as 1 [128]
CPU errata: AH4 erratum [128]

Other LDTR register [15]
IDTR register (Red Pill [18])
Magic I/O port (0x5658, ‘VX’) [42]
Invalid instruction behavior [14]
Using memory deduplication to detect various hypervisors including VMware ESX server,
Xen, and Linux KVM [17]

Anti-emulation

Bochs Visible debug port [11]
QEMU cpuid returns less specific information [40]

Accessing reserved MSR registers raises a General Protection (GP) exception in real hard-
ware; QEMU does not [16]
Attempting to execute an instruction longer than 15 bytes raises a GP exception in real
hardware; QEMU does not [16]
Undocumented icebp instruction hangs in QEMU [40], while real hardware raises an
exception
Unaligned memory references raise exceptions in real hardware; unsupported by
QEMU [16]
Bit 3 of FPU Control World register is always 1 in real hardware, while QEMU contains
a 0 [40]

Other Using CPU bugs or errata to create CPU fingerprints via public chipset documentation [16]
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Table 6.4: Running Packed Notepad.exe under Di↵erent Environments
Packing Tool MalT OllyDbg V1.10 DynamoRIO V4.2.0-3 VMware Fusion V6.0.2
UPX V3.08 OK OK OK OK
Obsidium V1.4 OK Access violation at 0x00000000 Segmentation fault OK
ASPack V2.29 OK OK OK OK
Armadillo V2.01 OK Access violation at 0x42434847 Crash Crash
Themida V2.2.3.0 OK Privileged instruction exception Exception at 0x10a65d7 Message: cannot run under a VM
RLPack V1.21 OK OK OK OK
PELock V1.0694 OK Display message and terminate Segmentation fault OK
VMProtect V2.13.5 OK Message: a debugger was found OK Crash
eXPressor V1.8.0.1 OK Message: unknown executable format Segmentation fault Crash
PECompact V3.02.2 OK Access violation at 0x00000000 OK OK

PELock, and eXPressor are able to detect DynamoRIO, and the VM can be detected by

Armadillo, Themida, VMProtect, and eXpressor. In contrast, MalT remains transparent

to all these packing tools as we expected.

Transparency of MalT

Section 6.1.5 show that existing anti-debugging, anti-VM, anti-emulation, and packing tech-

niques cannot detect the presence of MalT. This is because the current techniques are not

targeting MalT’s functions or code, so it is possible that future malware could detect MalT

due to the ever-present cat-and-mouse game between attackers and defenders. As for ‘to-

morrow’s malware,’ we enumerate and mitigate the side e↵ects introduced by MalT in

Section 6.1.5. Note that mitigating all footprints require stepping instructions granularity.

As with other debugging systems, MalT cannot defend against external timing attacks.

Running Environment Used by MalT: MalT is built on SMM so that the trans-

parency of MalT depends on the implications of SMM usage. Since SMM is not intended

for debugging, the hardware devices and software on the system may not expect this usage,

which may introduce side-channel footprints for attackers to detect MalT (e.g., performance

slowdown and frequent switching). However, we believe using SMM is more transparent

than using virtualization or emulation as done in previous systems due to its minimal TCB

and attack surface.

Towards True Transparency: Debugging transparency is a challenging and recently

active problem in the security community. Unlike previous solutions that use virtualization
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or emulation, MalT isolates the execution in the CPU, which provides a novel idea of

addressing the transparency problem. Although MalT is not fully transparent, we would

like to draw the attention to the community of this hardware-based approach because the

running environment of the debugger is more transparent than those of previous systems

(i.e., virtualization and emulation). Moreover, we further argue hardware support for truly

transparent debugging. For instance, there could be a dedicated and well-designed CPU

mode for debugging, perhaps with performance counters that are inaccessible from other

CPU modes; that provides a transparent switching method between CPU modes.

6.1.6 Evaluation

Testbed Specification and Code Size

We evaluated MalT on two physical machines. The target server used an ASUS M2V-

MX SE motherboard with an AMD K8 northbridge and a VIA VT8237r southbridge. It

has a 2.2 GHz AMD LE-1250 CPU and 2 GB Kingston DDR2 RAM. The target machine

used Windows XP SP3, CentOS 5.5 with kernel 2.6.24, and Xen 3.1.2 with CentOS 5.5 as

domain 0. To simplify the installation, they are installed on three separate hard disks, and

the SeaBIOS manages the booting. The debugging client was a Dell Inspiron 15R laptop

with Ubuntu 12.04 LTS. It uses a 2.4 GHz Intel Core i5-2430M CPU and 6 GB DDR3

RAM. We used a USB-to-serial cable to connect two machines.

We used cloc [131] to compute the number of lines of source code. Coreboot and its

SeaBIOS payload contained 248,421 lines. MalT added about 1,500 lines of C code in the

SMI hander. After compiling the Coreboot code, the size of the image was 1MB, and the

SMI hander contained 3,098 bytes. The debugger client contained 494 lines of C code.

Debugging with Kernels and Hypervisors

To demonstrate that MalT is capable of debugging kernels and hypervsiors, we intentionally

crash the OS kernels and domain 0 of a Xen hypervisor and then use MalT to debug them.

For the Linux kernel and domain 0 of the Xen hypervisor, we simply run the command
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echo c > /proc/sysrq-trigger, which performs a system crash by a NULL pointer derefer-

ence. To force a Blue Screen of Death (BSOD) in Windows, we create a new value named

CrashOnCtrlScroll in the registry and set it equal to a REG DWORD value of 0x01. Then,

the BSOD can be initiated by holding the Ctrl key and pressing the Scroll Lock key twice.

After a system crashes, MalT can start a debugging session by sending an SMI triggering

message. In our experiments, MalT is able to examine all of the CPU registers and the

physical memory of the crashed systems.

Breakdown of Operations in MalT

In order to understand the performance of our debugging system, we measured the time

elapsed during particular operations in the SMI handler. We used the Time Stamp Counter

(TSC) to measure the number of CPU cycles elapsed during each operation; we multiplied

the clock frequency by the delta in TSCs.

After a performance counter triggers an SMI, the system hardware automatically saves

the current architectural state into SMRAM and begins executing the SMI handler. The

first operation in the SMI handler is to identify the last running process in the CPU. If

the last running process was not the target malware, we only need to configure the per-

formance counter register for the next SMI and exit from SMM. Otherwise, we perform

several checks. First, we check for newly received messages and whether a breakpoint has

been reached. If there are no new commands and no breakpoints to evaluate, we recon-

figure the performance counter registers for the next SMI. Table 6.5 shows a breakdown

of the operations in the SMI handler if the last running process is the target malware in

instruction-by-instruction stepping mode. This experiment shows the mean, standard de-

viation, and 95% confidence interval of 25 runs. The SMM switching time takes about 3.29

microseconds. Command checking and breakpoint checking take about 2.19 microseconds

in total. Configuring performance monitoring registers and SMI status registers for sub-

sequent SMI generation takes about 1.66 microseconds. Lastly, SMM resume takes 4.58

microseconds. Thus, MalT takes about 12 microseconds to execute an instruction without
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Table 6.5: Breakdown of SMI Handler (Time: µs)
Operations Mean STD 95% CI
SMM switching 3.29 0.08 [3.27,3.32]
Command and BP checking 2.19 0.09 [2.15,2.22]
Next SMI configuration 1.66 0.06 [1.64,1.69]
SMM resume 4.58 0.10 [4.55,4.61]
Total 11.72

Table 6.6: Stepping Overhead on Windows and Linux (Unit: Times of Slowdown)
Stepping Methods Windows Linux

⇡ ls ps pwd tar ⇡ ls ps pwd tar
Retired far control transfers 2 2 2 3 2 2 3 2 2 2
Retired near returns 30 21 22 28 29 26 41 28 10 15
Retired taken branches 565 476 527 384 245 192 595 483 134 159
Retired instructions 973 880 897 859 704 349 699 515 201 232

debugging commands communication.

Step-by-Step Debugging Overhead

In order to demonstrate the e�ciency of our system, we measure the performance overhead

of the four stepping methods on both Windows and Linux platforms. We use a popular

benchmark program, SuperPI [118] version 1.8, on Windows and version 2.0 on Linux. Su-

perPI is a single-threaded benchmark that calculates the value of ⇡ to a specific number of

digits and outputs the calculation time. This tightly written, arithmetic-intensive bench-

mark is suitable for evaluating CPU performance. Additionally, we use four popular Linux

commands, ls, ps, pwd, and tar to measure the overhead. ls is executed with the root

directory; pwd is executed under home directory; and tar is used to compress a hello-world

program with 7 lines of C code. We install Cygwin on Windows to execute these commands.

First, we run the programs and record their runtimes. Next we enable each of the four step-

ping methods separately and record the runtimes. SuperPI calculates 16 K digits of ⇡, and

we use shell scripts to calculate the runtimes of the Linux commands.
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Table 6.6 shows the performance slowdown introduced by step-by-step debugging. The

first column specifies four di↵erent stepping methods; the following five columns show the

slowdown on Windows, which is calculated by dividing the current running time by the

base running time; and the last five columns show the slowdown on Linux. It is evident

that far control transfer (e.g., call instruction) stepping only introduces a 2x slowdown

on Windows and Linux, and this facilitates coarse-grained tracing for malware debugging.

As expected, fine-grained stepping methods introduce more overhead. The instruction-by-

instruction debugging causes about 973x slowdown on Windows for running SuperPI, which

demonstrates the worst-case performance degradation in our four debugging methods. This

high runtime overhead is due to the 12-microsecond cost of every instruction (as shown

in Table 6.5) in the instruction-stepping mode. One way to improve the performance is

to reduce the time used for SMM switching and resume operations by cooperating with

hardware vendors. Note that MalT is three times as fast as Ether [37, 40] in the single-

stepping mode.

Despite a three order-of-magnitude slowdown on Windows, the debugging target ma-

chine is still usable and responsive to user interaction. In particular, the instruction-by-

instruction debugging is intended for use by a human operator from the client machine,

and we argue that the user would not notice this overhead while entering the debugging

commands (e.g., Read Register) on the client machine. We believe that achieving high

transparency at the cost of performance degradation is necessary for certain types of mal-

ware analysis. Note that the overhead in Windows is larger than that in Linux. This

is because 1) the semantic gap problem is solved di↵erently in each platform, and 2) the

implementations of the benchmark programs are di↵erent.
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Chapter 7: Using Hardware Isolated Execution

Environments for Executing Sensitive Workloads

7.1 TrustLogin: Securing Password-Login

7.1.1 Introduction

Logging in is part of daily practice in the modern world. We use it to authenticate ourselves

to applications for resource accesses. Consequently, login credentials are one of the top tar-

gets for attackers. For example, keylogger malware was found on UC Irvine health center

computers in May 2014, and it is estimated that 1,813 students and 23 non-students were

impacted [132]. Additionally, it is reported that attackers have stolen credit card informa-

tion from customers who shopped at 63 Barnes & Noble stores using keyloggers [133]. A

case study has shown that 10,775 unique bank account credentials were stolen by keyloggers

in a seven-month period [134]. Protecting login credentials is a critical part of daily life.

Nowadays, operating systems are complex and rely on millions of lines of code to operate

(e.g., the Linux kernel has about 17 million lines of code [135]). The large Trusted Comput-

ing Base (TCB) of these OSes inevitably creates vulnerabilities that could be exploited by

attackers. The Common Vulnerabilities and Exposures (CVE) list shows that 240 vulner-

abilities have been found for the Linux kernel [136]. An attacker can easily leverage these

vulnerabilities to create rootkits and keyloggers.

On top of an untrusted OS, no matter how secure the network applications are, the

sensitive data used by secure applications is at risk of leakage. For example, an attacker

can install a stealthy keylogger after compromising the OS, so the banking login informa-

tion entered in a web browser can be obtained by the attacker without a user awareness.

Therefore, the protection of the user’s sensitive data during network operations is crucial;
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we need to prevent malicious behaviors of attackers on network applications.

In this chapter, I present TrustLogin [137], a framework to securely perform login oper-

ations on commodity operating systems. Even if the operating system and applications are

compromised, an attacker is not able to reveal the login password from the host. TrustLogin

leverages System Management Mode (SMM), a CPU mode that exists in x86 architecture, to

transparently protect the login credentials from keyloggers. Since we assume the attackers

have ring 0 privilege, all of the software including the operating system cannot be trusted.

SMM is a separate CPU mode with isolated execution memory, and it is inaccessible from

the OS, which satisfies the needs of our system.

When users enter their passwords, TrustLogin automatically switches into SMM and

records the keystroke. It provides a randomly generated string to the OS kernel and then

the network driver prepares the login packets. When the login packets arrive at the net-

work card, TrustLogin switches into SMM again and replaces the placeholder with the real

password. Under the protection of TrustLogin , rootkits (e.g, keyloggers) cannot steal the

sensitive data even with ring 0 privilege. To combat spoofing attacks, we implement two

novel techniques that ensure the trust path when switching to SMM. They use the LED

lights on keyboard and the PC speaker to interact with users. More importantly, TrustLo-

gin does not modify application- and OS-code, and it is transparent from client and server

sides.

To demonstrate the e↵ectiveness of our approach, we conduct two study cases to use

TrustLogin with legacy and secure applications. We test TrustLogin with real-world key-

loggers on both Windows and Linux platforms, and the experiment results show that Trust-

Login is able to protect the login password against them. We also measure the performance

overhead introduced by executing code in SMM. Our results show SMM switching only takes

about 8 microseconds. TrustLogin takes 33 milliseconds to store and replace a keystroke

and most of the time is consumed by the trusted path indication (i.e., playing a melody

and showing a LED light sequence); it spends 30 microseconds on injecting the password

back to a login packet for the tested application.
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7.1.2 Threat Model and Assumptions

Threat Model

Keyloggers can be classified into two types: hardware- and software-based. Hardware-

based keyloggers are small electronic devices that are used to capture the keystrokes. They

are often built in the keyboard itself and have separate non-volatile memory to store the

keystrokes. Hardware keyloggers do not require installation of any software or power source

for their operations. For instance, there are some commercial hardware keyloggers avail-

able [138]. In this paper, we do not consider this type of keylogger, and we assume the

keyboard is not malicious.

Software-based keyloggers are installed within the operating system, and most of the

keyloggers in the real world are this type. There are two kinds of software keyloggers: user-

and kernel-level. For instance, a user-level keylogger can use the GetKeyboardState API

function to capture keystrokes in Windows. This kind of keylogger is e�cient but also

easily detected. Kernel-level keyloggers are implemented at the kernel level and require

administrator privilege to install. For example, a keyboard filter driver can be used to

stealthily capture keystrokes [139]. TrustLogin considers software-based keyloggers as the

threat model, and it guarantees that keystrokes cannot be stolen if such a keylogger is

present.

Assumptions

TrustLogin assumes that the attackers have unlimited computing resources and can exploit

zero-day vulnerabilities of the host OS and desktop applications. We only consider attacks

against the host machine; network attacks are out of the scope of this paper. We do not

consider phishing attacks, which trick users to send their credentials to a remote host. We

assume the hardware and firmware of the host machine are trusted, and the attacker cannot

flash the BIOS or modify the firmware. We assume SMRAM is locked and remains intact

after boot, and the attacker cannot change the SMI handler. We assume that the attacker

does not have physical access to the machine. We do not consider Denial-of-Service (DoS)
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Figure 7.1: Architecture of TrustLogin

attacks against our system. Ring 0 malware can easily disable SMI triggering and stop the

login process.

7.1.3 System Architecture

Figure 7.1 shows the architecture of TrustLogin. There are four rectangles in the figure; the

green rectangles represent trusted components, including the keyboard, Network Interface

Card (NIC), and System Management Mode (SMM). The red rectangle represents the op-

erating system in Protected Mode, which may have been compromised by attackers. When

a user inputs the sensitive information (e.g., password) from the keyboard, the keyboard

automatically triggers an SMI for every key press. The SMI handler (which executes in

SMM) records the keystrokes and inserts bogus place-holders in the keyboard bu↵er. After

resuming Protected Mode, the OS only handles the place-holders. In other words, the at-

tackers with ring 0 privilege can only retrieve the string of place-holders. When the login

packet is about to transmit, TrustLogin triggers another SMI by using the network card.

The SMI handler replaces the bogus place-holders with the original keystrokes in the net-

work packet. We also make sure the packet leaves the network card within the SMI handler

so that malware cannot read the packet. Next, we explain the system step by step.
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Entering Secure Input Mode

In TrustLogin, we have two modes for the system. One is the secure input mode, and the

other is the normal input mode. In the secure input mode, TrustLogin intercepts all of

the keystrokes and protects them from the keyloggers or rootkits. When the user is about

to enter the sensitive information (e.g., password), he or she needs to switch to the secure

input mode. Past systems have used a variety of ways to notify the system. For instance,

Bumpy [51] uses “@@” as a Secure Attention Sequence (SAS) to signal to the system that

the user is about to enter sensitive inputs.

One requirement of switching into the Secure Input Mode is that the entering method

should be rarely used by default. Ideally, it should be unique (e.g., a dedicated hardware

switch [65]), but SAS-like “@@” sequence also works. The other requirement is usability. In

TrustLogin, we simply use the key combination, Ctr+Alt+1, to signal our system and enter

the secure input mode. When TrustLogin reads an Enter key in the secure input mode, it

stops intercepting keystrokes and switches to the normal input mode. Since users often end

password inputs by pressing Enter, this is reasonable.

Intercepting Keystrokes

TrustLogin intercepts every keystroke and records them in the SMRAM in the secure input

mode. Before introducing how keystrokes are intercepted in TrustLogin, we will explain

how keystrokes are handled normally.

The input/output devices (e.g., keyboard) connect to the Southbridge (a.k.a. I/O con-

troller Hub). Whenever a key is pressed or released, the keyboard notifies the I/O Advanced

Programmable Interrupt Controller (APIC) in the Southbridge. I/O APIC looks up the I/O

redirection table based on the Interrupt Request (IRQ), and then creates the corresponding

interrupt message. The IRQ for the keyboard is 1, and the interrupt message includes the

Delivery Mode (DM), Fixed, and the interrupt vector, 0x93. The interrupt message goes

through the PCI and system buses, and arrives at the local APIC in the CPU. Based on the

DM and interrupt vector, the local APIC looks up the Interrupt Descriptor Table (IDT),
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Figure 7.2: Keystroke Handling in TrustLogin

and then the CPU jumps to the base address of the OS keyboard interrupt handler. The

OS keyboard interrupt handler starts to execute keyboard handling functions. Specifically,

it reads the keyboard data registers by accessing port 0x60 and may display the key value

on the display monitor. Figure 7.2 shows the keystroke handling process.

Note that there are two interrupts for each keystroke: key press and key release. When

the key is pressed or released, the keyboard sends a message known as “scan code” to the

keyboard controller output bu↵er that the OS handler read later. There are two di↵erent

types of scan codes: “make codes” and “break codes.” A make code is sent when a key is

pressed, and a break code is sent when a key is released. Every key has a unique make code

and break code. There are three di↵erent sets of scan codes. Our keyboard uses the scan

code set 1 [140]. For example, the make code of the A key is 0x1E, and its break code is

0x9E. If a user keeps holding the key, the keyboard would continue to send interrupts with

the make code. When the user releases the key, the break code would be written into the

output bu↵er of the keyboard controller.
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To record the keystrokes, TrustLogin raises an SMI during the key press or release

handling process and saves the keystrokes in the SMRAM. Additionally, we also save the

scan code set mapping in the SMI handler to figure out which key is pressed or released.

Next, we explain two approaches that we implement to trigger an SMI during the keystroke

handling.

TrustLogin can use hardware I/O traps to generate an SMI [113]. The I/O trap feature

allows SMI trapping on access to any I/O port using IN or OUT instruction. As mentioned,

the OS interrupt handler needs to read the keyboard data register by accessing port 0x60.

If we configure the SMI I/O trap, an SMI would be triggered when the OS handler reads the

keyboard data registers. In this way, we are able to intercept all keystrokes and save them in

the SMRAM. When the OS keyboard interrupt handler executes IN al, 0x60 instruction,

the system automatically generates an SMI. However, this IN instruction would not be

executed again when resuming the OS in Protected Mode. To address this problem, the

SMI handler needs to read the key value from the keyboard data register and store it in the

EAX as if no trap has been created. Additionally, we need to disable the SMI I/O trap in

the SMI handler. Otherwise, an SMI will be bu↵ered when accessing the I/O port. In that

case, the SMI will be immediately triggered after exiting SMM and the system will halt.

Note that Wecherowski demonstrated similar triggering approach in [141].

The other approach of triggering SMIs is to reroute keyboard interrupt by reconfiguring

I/O APIC. As shown in Figure 7.2, The Delivery Mode (DM) of the I/O redirection table

can be configured as “SMI” instead of “Fixed” normally. In other words, we are able to

deliver an SMI to the CPU for every keyboard interrupt; that is, every key press causes

our code to execute in SMM. Next, we store the keystroke to the SMRAM by reading the

keyboard data register in the SMI handler.

We read the 1-byte scan code from the keyboard data register by reading I/O port

0x60. After extracting the scan code, we map the scan code to the key value using the scan

code set 1 table. Next, we store the key in the SMRAM. Since this approach reroutes the

keyboard interrupt to an SMI, the original keyboard interrupt is not handled. To address
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this problem, we configure the keyboard control register (i.e., IO port 0x64) to reissue

the interrupt. We write the command code, 0xD2, to the control register. This special

command means the next byte written to the keyboard data register (i.e., I/O port 0x60)

will be as if it came from the keyboard [68]. We write a replaced scan code back to the

data register after writing the command code. After exiting SMM, another interrupt is

generated due to the new data in the keyboard data register. Additionally, we need to

disable SMI triggering in I/O APIC when reissuing the interrupt in the SMI handler. This

makes sure that the reissued interrupt is a normal keyboard interrupt with “fixed” as the

DM. Otherwise, an immediate SMI will be generated after exiting SMM, which causes an

infinite loop (deadlock). The method for accessing the I/O APIC or keyboard controller is

specified in the Southbridge datasheet [68].

Embleton et al. also used a similar approach to generate SMIs in [55]. However, we

did not see that the I/O read operation of the keyboard data register was destructive in

the SMI handler; we were able to read the data register multiple times until a new value

was written. Additionally, it uses interprocessor interrupts (IPI) to reissue the interrupt by

configuring the Interrupt Command Register (ICR), while we simultaneously write to the

keyboard control register to reissue the normal interrupt.

Universal Serial Bus (USB) is a popular external interface standard that enables com-

munication between the computer and other peripherals. There are currently three versions

of USB in use: USB 1.1, 2.0, and 3.0. A USB system has a host controller, and it sits be-

tween the USB device and the operating system. USB 1.1 uses Universal Host Controller

Interface (UHCI) [142]; USB 2.0 uses Enhanced Host Controller Interface (EHCI) [143];

and the recent USB 3.0 uses eXtensible Host Controller Interface (XHCI) [144]. From the

manuals of these standards, all support triggering SMIs. For instance, XHCI uses a 32-bit

register to enable SMIs for every xHCI/USB event it needs to track, and we are able to

trigger an SMI for every key press required by TrustLogin. This register is located at xHCI

Extended Capabilities Pointer (XECP) + 0x04, and we can find XECP from the base ad-

dress of the XHCI + 0x10. Similar registers that enable SMIs can also be found at EHCI
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and UHCI. Moreover, Schi↵man and Kaplana [145] demonstrated that USB keyboards can

generate SMIs.

Generating Placeholders

To replace the original password, we generate a placeholder for each keystroke intercepted in

the SMI handler. One of the simplest methods is to replace each keystroke with a constant

character (e.g., character ‘p’). However, this method cannot pass the security checks that

ensure the strength of the password. For instance, most of the password policies require

that passwords contain at least one digit, one lowercase character, one uppercase character,

and one special character. Although these checks are usually performed on the server side,

they could be done on the client application. To address this problem, TrustLogin replaces

a keystroke based on its type. TrustLogin substitutes the original keystroke with a random

one of the same type.

We use a linear-congruential algorithm to generate a pseudo-random number n in the

SMI handler. The parameters of the linear-congruential algorithm we used are from Nu-

merical Recipes [114]. Next, we use n mod k, where k is the cardinality of the corresponding

type (e.g., 26 each for lower- or uppercase characters) to generate a random character. In

terms of the special characters, di↵erent applications or servers may have a di↵erent set of

valid special characters. For instance, the American Express website does not allow spe-

cial characters like ‘.’ in the password, while Bank of America and CitiBank do accept it.

TrustLogin assumes the application allows six special characters as follows: dot, underscore,

star, percent, question mark, and sharp. We can always update the set of special characters

based on the application requirements. Next, we discuss how the network card intercepts

packets and replaces the placeholders with the original password.

Intercepting Network Packets

TrustLogin starts to intercept the network packets when the Enter key is received in the

secure input mode. This means the user has finished entering the password and the OS is
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about to transmit the login credentials. We use a popular commercial PCI-based network

card, Intel e1000 [146], to demonstrate this in TrustLogin.

Message Signaled Interrupts (MSIs) are an optional feature incorporated into PCI de-

vices. They essentially allow a PCI device to generate an interrupt without having to make

use of a physical interrupt pin on the connector. Introduced in PCI version 2.2, MSIs allow

the device to send a variety of di↵erent interrupts to the CPU via the chipset. One such

interrupt is the SMI. We can configure the MSI configuration registers (o↵set 0xF0 to 0xFF)

in the PCI configuration space to enable SMI triggering.

When MSIs are enabled, the network card generates a message when any of the un-

masked bits in the Interrupt Cause Read register (ICR) are set to 1 [146]. The ICR contains

all interrupt conditions for the network card. Each time an interrupt occurs, the correspond-

ing interrupt bit is set in the register. The interrupts are enabled through Interrupt Mask

Set/Read Register (IMS). For instance, the first bit of IMS sets a mask for Transmit De-

scriptor Written Back (TDWB). When the hardware finishes transmitting a packet, it sets

a status bit back to the transmit descriptor; this action could be an interrupt condition. In

TrustLogin, we reroute this interrupt to an SMI by using MSI. This means we can trigger

an SMI for each packet when it is transmitted. In the SMI handler, we then inspect all of

the transmit descriptors in the transmit queue and search for the login packet. It is possible

that the first packet that generates the SMI is the login packet. To address this edge case,

we create a transmit descriptor in the SMI handler beforehand and make sure the first SMI

from NIC is triggered by this transmit descriptor. This transmit descriptor is created when

TrustLogin enables the NIC’s SMI triggering by rerouting TDWB interrupts to an SMI.

Note that the transmit queue may become empty before finding the login packet, so we

may miss the first transmit descriptor that arrives at the empty transmit queue. Thus, we

insert a transmit descriptor whenever the transmit queue becomes empty until identifying

the login packet.

Figure 7.3 shows the format of the transmit descriptor structure [146]. Bu↵er Address

points to the data in the host memory. The CMD (i.e., command) field specifies the RS
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Figure 7.3: Transmit Descriptor Format

(i.e., report status) bit. With this bit set, the hardware writes a status bit back to the STA

(i.e., status) field in the descriptor when a packet is transmitted. For the inserted packet,

we set the RS bit and NULL to the Bu↵er Address so that it transfers no data. We also

make sure all of the inspected packets have the RS bit set.

To replace the placeholders in the network packets, TrustLogin can simply search the

sequence of the placeholders in the packets. We can use the Transmit Descriptor Base

Address (TDBA) and Transmit Descriptor Tail (TDT) to find the addresses of the transmit

descriptors. The transmit descriptor structure contains all of the information about the

packet including the address of the payload. Note that the addresses here are physical

addresses (i.e., no paging) because the Direct Memory Access (DMA) engine of the NIC

only understands the physical addresses. One challenge of this method is that the network

packets are encrypted (e.g., TLS). After the SMI handler finds and replaces the placeholders,

it waits until the packet leaves the host to avoid further sensitive data leakage. Moreover,

the attacker may use NIC’s diagnostic registers to access transmitted packet connects. We

empty the NIC’s internal Packet Bu↵er Memory (PBM) by writing 16KB random data

since the size of the internal bu↵er of our testing NIC is 16KB [146].

Ensuring Trusted Path

One challenge of TrustLogin is the reliability of triggering SMIs. As shown in Figure 7.2,

the I/O redirection table in red is not trusted. An attacker with ring 0 privilege can modify

the table to intercept an SMI, and then prepare a fake switching process so that the users

think that he or she is in the SMM. In this case, the attacker can trick the user and get

the password. This is a typical spoofing attack. There has been some research tackling this
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problem [50–52, 65]. Bumpy [51] uses an external smartphone as the trusted monitor to

acknowledge the switching. SecureSwitch [65] and Lockdown [50] use a dedicated switch to

ensure the trust path. Cloud Terminal [52] uses a UI with strawberries on the screen as a

shared secret to prevent spoofing attack. In TrustLogin, we implement two novel methods

to prevent the spoofing attacks. One approach is to use the keyboard Light Emitting Diode

(LED) lights, and the other is to use the PC speaker. Next, we explain the implementation

details of these two approaches.

We use the LED lights on the keyboard to ensure the trust path. Usually, there are

three LED lights on the keyboard, indicating Num, Caps, and Scroll locks. The users can

set a shared secret LED light sequence to indicate that the system is in SMM. For instance,

we can refer to scroll lock as 0, number lock as 1, and caps lock as 2. {[0 on]![0 o↵]![1

on]![1 o↵]![2 on]![2 o↵]} is a LED light sequence. When the system switches into SMM,

the SMI handler performs the shared secret LED light sequence so that the user knows the

system is in SMM and not tricked by attackers.

To program the keyboard LED lights, we write a command byte, 0xED, into the keyboard

data register, and then write an LED state byte to the same I/O port. Bit 0 is for scroll

lock; bit 1 is for number lock; bit 2 is for caps lock. Value 1 means on and 0 indicates o↵.

Since every keystroke generates two interrupts (i.e., key press and release), TrustLogin only

shows the LED light sequence when the key is released. We can easily identify a key release

by checking the value of the scan code (greater than 0x80 [140]).

To help the user to identify the LED light sequence, we set a time delay between two

lights. For instance, there should be a time delay between [0 o↵] and [1 on] for distinction. In

TrustLogin, each light is on for 1 ms, and we set the same time delay when switching lights.

The authors can identify that sequence based on their observations in the experiments. The

user can adjust the time delay based on their preference.
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mov $0x30D40 , %ecx ;1 CPU cycle

DELAY:

nop ;1 CPU cycle

nop ;1 CPU cycle

nop ;1 CPU cycle

loop DELAY ;8 CPU cycles

Listing 7.1: Assembly Code that Introduces 1 ms Delay on Our Testbed

Listing 7.1 shows the assembly code that introduces a 1 ms delay on our testbed. This

delay function loads a counter, 0x30D40 or 200,000 in decimal, into EAX, and spinlocks until

the counter is 0. The value, 200,000, is calculated from the time it takes to execute the

loop instructions on our testbed. The testbed has an AMD Sempron LE-1250 2.2 GHz

processor with AMD K8 chipset. The MOV and NOP instructions take 1 CPU cycle and the

LOOP instruction takes 8 CPU cycles [147]. We also assume it takes 7 CPU cycles for a LOOP

instruction when the contents of EAX is zero. The equations explain the steps that calculate

the counter for performing 1 ms time delay on our testbed.

T imeDelay =
ClockCycles

ClockSpeed

1ms =
1 +N ⇤ (1 + 1 + 1) + (N � 1) ⇤ 8 + 7

2.2GHz
=) N = 200, 000

We also use the PC speaker to ensure the trusted path. TrustLogin plays simple music

on the PC speaker when each key is pressed in the secure input mode. The users can choose

their favorite melodies and embed them in the SMI handler. By recognizing their selected

tone sequence, they can ensure that an SMI is triggered for their every key press. Thus,

the selected music should be short but recognizable. TrustLogin plays a C major scale in

the SMI handler to demonstrate this idea. Table 7.1 shows the notes and corresponding

frequencies for one complete octave starting from a middle C. We set the middle C as 523.25

Hz based on a musical reference guide [148].
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Table 7.1: Musical Notes of an Octave

Musical Note Frequency (Hz) Divisor
C 523.25 0x08E2
D 587.33 0x07EA
E 659.26 0x070D
F 783.99 0x06A8
G 783.99 0x05EE
A 880.00 0x0548
B 987.77 0x04B5
C 1046.50 0x0471

To play a tone, we program the Intel 8253 Programmable Interval Timer (PIT) in

the SMI handler to generate musical notes. The 8253 PIT performs timing and counting

functions, and it exists in all x86 machines. In modern machines, it is included as part

of the motherboard’s southbridge. This timer has three counters (Counters 0, 1, and 2),

and we use the third counter (Counter 2) to generate tones via the PC Speaker. We can

generate di↵erent kinds of tones by adjusting the output frequency. The output frequency

is calculated by loading a divisor into the 8253 PIT.

Divisor = IF/OF,

where IF is the input frequency of the 8253 PIT. IF used by the PIT chip is about 1.19

MHz, and OF is the output frequency. Column 3 of Table 7.1 shows the calculated divisors

for the musical notes of an octave based on their output frequencies.

Playing a note on the PC speaker takes the following steps: 1) Configure mode/command

register of the PIT chip through port 0x43 with value 0xB6, which selects channel 2 to use

and sets the mode to accept divisors; 2) load a divisor into channel 2 through port 0x42;

3) turn on bit 0 and bit 1 of port 0x61 to enable the connection between PIT chip and the

PC speaker; 4) set a time for the note to play; 5) turn o↵ the PC speaker by configuring

port 0x61. Similar to the LED lights sequnce, we need to set a time delay so that the users

can easily identify the music. In TrustLogin, each note is produced in 1 ms, and we set the

same time of the delay between every two notes.
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7.1.4 Case Study

We study legacy and secure applications to demonstrate the e↵ectiveness of TrustLogin.

For the legacy applications that we referenced, they are normally built on a client-server

architecture, and authentication occurs using a plaintext username/password pair. We

consider Remote Shell (rsh), File Transfer Protocol (FTP), and Telent legacy applications.

Note that TrustLogin is OS-agnostic for legacy applications because it does not need to

reconstruct the semantics of OS kernels and rebuild the packet in the NIC. For the secure

applications that we noted, their network tra�c is securely encrypted. We consider Secure

Shell (SSH), Secure File Transfer Protocol (SFTP), and Transport Layer Security (TLS)

secure protocols.

Hardware and Software Specifications

We conduct the case study on a physical machine, which uses an ASUS M2V-MX SE

motherboard with an AMD K8 Northbridge and a VIA VT8237r Southbridge. It has

a 2.2 GHz AMD LE- 1250 CPU and 2GB Kingston DDR2 RAM. We use a Dell PS/2

keyboard and PCI-based Intel 82541 Gigabit Ethernet Controller as the triggering devices.

To program SMM, we use the open-source BIOS, Coreboot [20]. We also install Microsoft

Windows 7 and CentOS 5.5 on this machine.

Case Study I: Legacy Applications

For legacy applications, we use FTP as the study example. Next, we demonstrate the

e↵ectiveness of our system on both Windows and Linux platforms. Figure 7.4 shows the

screenshots of the FTP login with and without TrustLogin on Windows and Linux. We cre-

ate an FTP account on a server. The username and password for the account is hack3r and

AsiaCCS., respectively. OnWindows, we install the Free Keylogger Pro version 1.0 [149] and

use the FTP client to connect to the server. We first start the keylogger to log keystrokes.

Next, we login to the FTP server without TrustLogin enabled. As shown in subfigure 7.4(a),

we can see that the keylogger records the timestamp, application name, username, and
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password in a file. The red rectangle shows the password is AsiaCCS. as recorded by the

keylogger. Then, we enable TrustLogin and login to the FTP server again. However, the

password recorded by the keylogger has been changed to a random string generated by

TrustLogin. In other words, the keylogger cannot steal the real password when TrustLogin

is enabled. We install Logkeys version 0.1.1a [150] on the CentOS 5.5, and subfigure 7.4(b)

shows the results. Similar to the experiments on Windows, we login to the FTP server with

and without TrustLogin enabled. We can see that the keylogger logs the random place-

holders when TrustLogin enabled, and the keylogger cannot steal the login password. Note

that attackers can easily steal the passwords from legacy applications by sni�ng out the

network. However, TrustLogin is used to address the general problem of securing keystrokes

on the local host. Here studying the legacy applications emphasizes that TrustLogin is a

framework that works with various applications to prevent keyloggers.

Case Study II: Secure Applications

TrustLogin replaces the password placeholders in a network packet when the packet is about

to transmit. However, since most of the network packets are encrypted, we cannot simply

search for the placeholder sequence though the encrypted data. For example, Transport

Layer Security (TLS) encrypts the data of network connections in the application layer.

Secure Shell (SSH) is one of the most popular application protocols for access to shell

accounts on Unix-based systems. There are several client authentication methods supported

by SSH. For instance, we can use a public and private key pair to authenticate the client.

However, we only consider the password-based authentication method in this paper. The

password-based authentication method is the most commonly used authentication mecha-

nisms in SSH. The SSH server simply uses a username and password to authenticate the

client, and the password transmitted by the client to the server is encrypted by a session

symmetric key. Unlike the legacy applications, we cannot simply search for the login packet

and replace the original password. To address this problem, TrustLogin decrypts and re-

encrypts the login packets using the session symmetric key. Next, we explain how we find
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(a) FTP Login With and Without TrustLogin on Windows

(b) FTP Login With and Without TrustLogin on Linux

Figure 7.4: FTP Login With and Without TrustLogin on Windows and Linux
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Figure 7.5: Filling the Semantic Gap by Using Kernel Data Structures in Linux

the session states like the session key.

As mentioned, SSH protocol uses a session symmetric key to encrypt the tra�c. To

decrypt the login packet, we first need to find the session states in the memory. Fortunately,

SMM is able to access all of the physical memory because it has the highest privilege.

TrustLogin uses signature-based searching. Typically, software data structures inevitably

create some signatures in memory. For example, researchers extract SSL private key in

memory by validating RSA/DSA structures on multiple applications including Apache,

SSH, and OpenVPN [151].

We use session state structure as the signature for the searching. The session state

structure stores the session information for SSH communication. By analyzing the source

code of OpenSSH [152], some fields of session state structure in the packet.c file are

static before users authenticate themselves. For instance, the max packet size field is set

to constant, 0x8000. Listing 7.2 shows part of session state structure, and these fields

are static and continuous. Thus, TrustLogin uses this static signature as the search string

and then finds the session states in memory. Since we assume malware has ring 0 privilege,

an advanced malware can prepare a fake session key for TrustLogin. This attack breaks

the login process but cannot steal the real password. Note that a DoS attack is out of the

scope of this paper.
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struct session_state {

/* default maximum packet size , 0x8000 */

u_int max_packet_size;

/* Flag indicating whether this module has been initialized , 0x1 */

int initialized;

/* Set to true if connection is interactive , 0x0 */

int interactive_mode;

/* Set to true if we are the server side , 0x0 */

int server_side;

/* Set to true if we are authenticated , 0x0 */

int after_authentication;

/* Default before login , 0x0 */

int keep_alive_timeouts;

/* The maximum time that we will wait to send or receive a packet , -1, 0xffffffff

*/

int packet_timeout_ms;

Listing 7.2: Static Fields of Session Structure in SSH Source Code

One naive approach for implementation would be searching byte-by-byte through all of

physical memory, but this is very slow. We instead search only the SSH instance in Trust-

Login. Since only the physical memory is visible to SMM, we must reconstruct semantics

of the raw data. In other words, we must understand the location of the SSH process and

what its content means in memory. This is referred to as the “semantic gap problem.” Re-

cently, researchers proposed an array of approaches to address this problem [35], including

hand-crafted data structure signatures [32,66] and automated learning and bridging [33,34].

Similar to the previous systems [32,66], we manually reconstruct the semantics using kernel

data structure signatures.

We first use the ESP value saved in the SMRAM to calculate the pointer to the current

process’s task struct. Alternatively, we can obtain the address of the init task from the

System.map file. Next, we traverse the doubly linked list of task structs or run lists to
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locate the SSH process by comparing the comm field. Note that multiple instances of SSH

could be running at the same time in the memory. We use the prev field for the transversal,

which ensures that the first SSH process found is the last process launched. In this case,

we assume the user interacts with the most recently launched SSH instance. Next, we

obtain a pointer to the mm struct from the mm field in task struct. The mmap field in the

mm struct points to the head of the list of memory regions with the type vm area struct.

The memory region object contains vm start and vm end fields, which define the start and

end addresses of the memory region. Figure 7.5 shows the semantic reconstruction using

kernel data structures in Linux. As pointed out in [35], all of the current solutions to the

semantic gap assumes the kernel data structures are benign. Our semantic reconstruction

approach also assumes this. We search the session state signature in the memory regions

of the SSH process, which achieves a better performance than the linear searching approach.

Section 7.1.4 details the overheads of these two approaches.

All pointers in these structures are virtual. However, SMM does not use paging, meaning

it addresses physical memory directly. Thus, we must translate addresses manually from

virtual to physical space. For kernel-space structures (e.g., task struct and mm struct),

there is a constant o↵set, 0xc0000000, to move from virtual to physical space. For userspace

structures (e.g., vm start and vm end), we locate and employ the process’s page tables.

Fortunately, the pgd field in the mm struct stores the cr3 value that tells us the location

of the global page directory. After we retrieve all of the required information from memory,

we decrypt the data and replace the placeholder sequence with the real password in the

packet. Finally, we rebuild the network packet with the corresponding checksum by using

the functions from OpenSSH source code.

Performance Evaluation

In order to understand the performance overhead of our system, we measure the runtime

of each individual operation in the SMI handler. In TrustLogin, we have two parts of the

handling code in the SMI handler; one is to handle the SMI triggered by the keyboard (i.e.,
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Table 7.2: Breakdown of the SMI Handler Runtime (Time: µs )

Operations Mean STD 95% CI

KB SMI

Play music 26,244 3,675 [25,199,27,288]
Show LED 6,317 251 [6,245,6,388]
Disable KB SMI 1.47 0.21 [1.40,1.53]
Read keystroke 2.38 0.33 [2.28,2.47]
Enable NIC SMI 8.40 0.05 [8.39,8.419]
Replace keystroke 8.94 1.27 [8.57,9.30]
Enable KB SMI 1.14 0.17 [1.09,1.19]
Total of KB SMI 32,583

NIC SMI

Read NIC registers 3.96 0.10 [3.93,3.99]
Search packets 18.27 1.18 [17.93,18.60]
Disable NIC SMI 7.44 0.05 [7.42,7.45]
Total of NIC SMI 29.67
Switch into SMM 3.29 0.08 [3.27,3.32]
Resume from SMM 4.58 0.10 [4.55,4.61]
Total of switching 7.87

KB SMI), and the other part is executed when the NIC triggers an SMI (i.e., NIC SMI).

The KB SMI contains 7 steps.

1. Play a melody

2. Show an LED sequence

3. Disable keyboard SMIs (prevent reissuing)

4. Read the keystroke from the keyboard data register and save it in SMRAM

5. If Enter is pressed, break out and enable NIC SMIs

6. Generate random scan code and replace the keystroke

7. Enable keyboard SMIs for subsequent keystroke

Additionally, the NIC SMI consists of 3 operations.

1. Locate received packet in NIC memory

2. Search packets and inject original password

3. Disable NIC SMIs after password is injected

We measure the time delay for all of these operations in the SMI handler. The hardware

automatically saves and resumes the CPU context when switching to SMM.We also measure
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Table 7.3: Comparison between Linear Searching and Semantic Searching

Approaches Search Space Time
Linear Searching 2 GB 70.21 s
Semantic Searching 18 MB (1.39+227.45) ms

the overhead induced by switching to and resuming from SMM.

Table 7.2 shows the time breakdown of each operation. We use the Time Stamp Counter

(TSC) to measure the time delay for each operation. We first record the TSC value at the

beginning and end of each operation took. Next, we use the CPU frequency to divide the

di↵erence in the TSC register to compute how much time this operation. We conduct the

experiment based on the FTP login for 30 trials. We calculate the mean, standard deviation,

and 95% confidence interval for each operation. From Table 6.5 we can see that the total

time for KB SMIs is about 32 ms. Note that most of the time is consumed by playing the

melody and showing the LED sequence. Each note in the melody and each part of the LED

sequence takes 1 ms (See Section 7.1.3 for details). The total time of the NIC SMI code and

SMM switching are only about 30 µs and 8 µs, respectively.

Searching the SSH session states after reconstructing the memory semantic (called se-

mantic searching) achieves a better performance than linear searching. To demonstrate

this, we compared the linear searching with the semantic searching. We conducted the

experiment on the Linux machine. We installed the latest OpenSSH client version 6.6p1

on the testbed, and the testing machine has 2 GB physical memory. For linear searching,

we compare the signature of the session states with the 2 GB memory byte-by-byte. As

for semantic searching, we first find the SSH process in memory using kernel data struc-

tures and then only search the memory regions pointed by mmap. After a user types ssh

username@hostname in a terminal, the SSH server waits for the password from the client.

At this time, we trigger an SMI and let the SMI handler perform both searching methods.

We also use the TSC to measure the time it takes for each approach.
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Table 7.3 shows the comparison between linear searching and semantic searching. The

linear searching has 2 GB of searching space and takes about 70 seconds to find the session

states. The semantic searching only has about 18 MB of searching space; it takes 1.39 ms

to fill the semantic gap and 227 ms for searching.
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Chapter 8: Conclusions and Future Work

8.1 Conclusions

This thesis used hardware-level isolated execution environments for securing data and com-

puter systems. System Management Mode (SMM) is a special CPU mode in the x86

architecture. SMM utilizes an isolated region of memory that is inaccessible from any other

CPU modes. This caveat therefore allows SMM to be used as an isolated execution environ-

ment. To validate my research approach, I used SMM as an isolated execution environment

to build defensive tools [66,75,106,124,137,153] for protecting the computer systems. Note

that the tools running in SMM are OS-agnostic since SMM is a hardware feature. Addi-

tionally, I co-developed a BIOS-assisted isolation environment that is capable of running a

secure commodity OS [65].

8.1.1 System Introspection for Malware Detection

In my dissertation, I used SMM as an isolated execution environment, to introspect all layers

of system software for malware detection with a minimal TCB. I developed three novel tools

in SMM, which targets di↵erent layers of the system software for attack detection.

Firmware-level: I designed and implemented IOCheck [106, 153], a tool to quickly check

the integrity of I/O configurations and firmware at runtime. I demonstrated the e↵ectiveness

of IOCheck by checking the integrity of a network card and video card, and the experiments

showed that it can detect configuration and firmware attacks against the I/O devices.

Hypervisor- and OS-level: HyperCheck [75] is a hardware-assisted tampering detection

system, that aims to protect the static code integrity of hypervisors and kernels running

on commodity hardware. The experimental results show that HyperCheck operation is
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lightweight, and it can complete one round of integrity checking of Xen hypervisor code and

CPU register states in less than 90 milliseconds.

OS- and Application-level: I also designed and implemented Spectre [66], a dependable

framework that inspects the memory of a live system. Besides checking static code, Spectre

analyzes dynamic code and data of applications. It can detect memory attacks including

heap spray, heap overflow, and rootkits on both Windows and Linux platforms with low

overhead.

8.1.2 Transparent Malware Debugging

In my dissertation, I designed MalT [124], a novel approach that progresses towards stealthy

debugging by leveraging SMM to transparently debug software on bare-metal. The system is

motivated by the intuition that malware debugging needs to be transparent, and it should

not leave artifacts introduced by the debugging functions. The main benefit of SMM is

to provide a distinct and easily isolated processor environment that is transparent to the

operating system and running applications. With the help of SMM, MalT is able to achieve

a high level of transparency, which enables a strong threat model for malware debugging.

Because we run debugging code in SMM, MalT exposes far fewer artifacts to the malware,

enabling a more transparent execution environment for the debugging code than existing

approaches.

I implemented a prototype of MalT on two physical machines connected by a serial

cable. To demonstrate the e�ciency and transparency of the approach, I tested MALT

with popular packing, anti-debugging, anti-virtualization, and anti-emulation techniques.

The experimental results show that MalT remains transparent against these techniques.

Additionally, the experiments demonstrate that MalT is able to debug crashed kernels/hy-

pervisors. MalT introduces a reasonable overhead: It takes about 12 microseconds on

average to execute the debugging functions. Moreover, the prototype of MALT introduces

moderate but manageable overheads on both Windows and Linux platforms.
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8.1.3 Executing Sensitive Workloads

I designed and implemented TrustLogin [137], a system to securely perform login operations

on commodity operating systems. Even if the operating system and applications are com-

promised, an attacker is not able to reveal the login password from the host. TrustLogin

leverages SMM to transparently protect the login credentials from keyloggers. TrustLogin

does not modify application- and OS-code, and it is transparent from both end-users and

servers. The prototype of TrustLogin was implemented on legacy and secure applications.

The experimental results showed that TrustLogin can prevent real-world keyloggers from

stealing passwords on Windows and Linux platforms. TrustLogin is robust against spoofing

attacks by ensuring the trusted path of SMM switching. The performance experiments

show that TrustLogin is light-weight and e�cient to use.

Additionally, I co-developed SecureSwitch [65], a BIOS-assisted mechanism to enable

secure instantiation and management of isolated computing environments, tailored to sepa-

rate security-sensitive activities from untrusted ones on the x86 architecture. A key design

characteristic of this system is usability–the ability to quickly and securely switch between

operating environments without requiring any specialized hardware or code modifications.

SecureSwtich loads two OSes into the RAM at the same time and uses the ACPI S3 sleep

mode to control switching between the two OSes. The prototype of the secure switching

system used commodity hardware and both commercial and open source OSes (Microsoft

Windows and Linux). It can switch between OSes in approximately six seconds.

8.2 Future Work

Commodity systems and software are complex, and the problem of security of computer sys-

tems is far from solved. The systems I developed–Malt [124], TustLogin [137], IOCheck [106,

153], HyperCheck [75], Spectre [66]–only represent a few contributions to this field of re-

search. However, the bulk of this work still lies ahead. In my future research, I will pursue

three areas.
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First, I will continue developing current defensive tools in hardware-level isolated ex-

ecution environments. For instance, the prototype of TrustLogin [137] only protects the

password-login of simple applications like SSH. I plan to extend TrustLogin to secure bank-

ing logins and transactions in popular browsers. Additionally, I plan to mitigate phishing

attacks against TrustLogin by validating the destination host in SMM. IOCheck [106, 153]

and HyperCheck [75] only verify the integrity of the static code of the firmware and hy-

pervisor. Building upon this, I will check dynamic data of firmware and hypervisors for

malware detection.

Second, I will investigate other hardware-level isolated execution environments for trust-

worthy computing on x86 architecture. Trust Computing Group introduced Dynamic Root

of Trust for Measurement (DRTM). To implement this technology, Intel developed Trusted

eXecution Technology (TXT), providing a trusted way to load and execute system software

(e.g., OS or VMM). TXT uses a new CPU instruction, SENTER, to control the secure

environment. AMD has a similar technology called Secure Virtual Machine, and it uses the

SKINIT instruction to enter the secure environment. Last year, Intel introduced Software

Guard Extensions (SGX), a set of instructions and mechanisms for memory accesses added

to future Intel architecture processors. SGX is an up-and-coming technology. These exten-

sions allow an application to instantiate a protected container, referred to as an enclave. An

enclave could be used as an isolated execution environment, which provides confidentiality

and integrity even in the presence of privileged malware.

Intel TXT, AMD SVM, and SGX provide isolated execution environments that execute

code on the main CPU (i.e., processor). However, modern x86-based platforms always

have micro-processors that help the main x86 processor (e.g., Intel Management Engine

or AMD System Management Unit). These micro-processors have their own registers and

memory, which provide isolated execution environments on a separate processor (we often

refer to the kernel as having ring 0 privilege, hypervisor as ring -1, SMM as ring -2, and

Intel ME/AMD SMU as ring -3). On one hand, we can create stealthy malware in these

execution environments on separate processors from the main CPU. On the other hand,
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we can build defensive tools to secure the main memory and code executed on the main

processor.

Third, I will study the trustworthy execution environments on the ARM architecture. As

smartphones and mobile computing become increasingly ubiquitous, trustworthy execution

environments play a critical role for running security-sensitive workloads and applications.

The ARM community introduced TrustZone technology, which enables a full trusted exe-

cution environment. I plan to study and use TrustZone to build defensive tools for securing

mobile systems such as Android. Moreover, ARM is a child compared to the age of x86,

I believe there will be more hardware-level isolated execution environments supported on

ARM in the near future (e.g., SGX on ARM) by observing the evolution of the isolated

execution environments on the x86 architecture. I believe this research direction will have

impact due to the proliferation of mobile computing.
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