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ABSTRACT

Applications written in Java have strengths to tackle diverse threats
in public clouds, but these applications are still prone to privileged
attacks when processing plaintext data. Intel SGX is powerful to
tackle these attacks, and traditional SGX systems rewrite a Java
application’s sensitive functions, which process plaintext data, us-
ing C/C++ SGX APL Although this code-rewrite approach achieves
good efficiency and a small TCB, it requires SGX expert knowledge
and can be tedious and error-prone. To tackle the limitations of
rewriting Java to C/C++, recent SGX systems propose a code-reuse
approach, which runs a default JVM in an SGX enclave to execute
the sensitive Java functions. However, both recent study and this
paper find that running a default JVM in enclaves incurs two major
vulnerabilities, Iago attacks, and control flow leakage of sensitive
functions, due to the usage of OS features in JVM.

In this paper, URANUS creates easy-to-use Java programming
abstractions for application developers to annotate sensitive func-
tions, and URANUS automatically runs these functions in SGX at
runtime. URANUS effectively tackles the two major vulnerabilities
in the code-reuse approach by presenting two new protocols: 1)
a Java bytecode attestation protocol for dynamically loaded func-
tions; and 2) an OS-decoupled, efficient GC protocol optimized for
data-handling applications running in enclaves. We implemented
URANUS in Linux and applied it to two diverse data-handling appli-
cations: Spark and ZooKeeper. Evaluation shows that: 1) UrRaNus
achieves the same security guarantees as two relevant SGX systems
for these two applications with only a few annotations; 2) URANUS
has reasonable performance overhead compared to the native, in-
secure applications; and 3) UraNUS defends against privileged at-
tacks. URANUs source code and evaluation results are released on
https://github.com/hku-systems/uranus.
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1 INTRODUCTION

The cloud computing paradigm enables various data-handling ap-
plications (e.g., Spark [76]) to be deployed in public clouds. Since
these applications inherently desire reliability and security, and
Java has diverse security features (e.g., type-safety), many of these
applications are written in Java. However, the JVM runtime alone
is insufficient to defend against privileged attacks, because adver-
saries may control the entire cloud software stack, including OS
kernels [59, 77].

Recently, Intel Software Guard eXtensions (SGX) [38] becomes a
promising technique on protecting sensitive data for data-handling
applications in public clouds. SGX provides an enclave execution
abstraction with limited memory (typically, about 100MB). SGX
runs trusted code in an enclave and uses the CPU hardware to
prevent attackers from seeing or tampering with the code and data
in the enclave. To allow untrusted code to invoke functions in an
enclave, SGX provides the ECall API in C/C++.

Traditionally, SGX systems for Java applications (e.g., Secure-
Keeper [28] and Opaque [77]) adopt a code-rewrite approach. In
this approach, the developers of an application partition Java code
into the trusted part, including all sensitive functions which process
plaintext data, and the untrusted part. They completely rewrite the
trusted code from Java to C/C++ using SGX API and Java Native
Interface (JNI), and then run the rewritten code in enclaves. This
approach can maintain a minimum TCB and memory footprint
because it runs only the rewritten code in enclaves. However, this
code-rewrite approach often requires non-trivial efforts from devel-
opers, including rewriting all dependent Java libraries into C/C++
code, which could be tedious and error-prone. Worse, the rewritten
code loses the type-safety of Java.

To tackle the limitations caused by rewriting Java code, recent
systems (e.g., SGX-Spark [11] and CordaSGX [4]) take a code-reuse
approach. In this approach, a JVM is run within an enclave to exe-
cute the trusted Java code using a dedicated thread, and encrypted
data is passed into the enclave for the thread to decrypt and to com-
pute on. For instance, SGX-Spark runs an unmodified JVM using
SGX-LKL [10] to execute only the Spark user-defined-functions
(UDF) in enclaves, and the other parts of Spark are run out of en-
claves. Running a dedicated JVM in an enclave greatly eases the
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deployment of trusted Java code and preserves type-safety, so this
code-reuse approach becomes increasingly popular.

However, despite much effort on developing advanced SGX sys-
tems [4, 11, 54] by this code-reuse approach, two major challenges
remain in these systems. First, running a default JVM in an enclave
can easily incur severe attack surface, which can expose or change
the control flow of the trusted Java code. Specifically, JVM uses OS
features frequently at runtime for efficiency, and attackers out of
enclaves can infer the control flow of the trusted code by observing
OS events. For example, our study (§4.4) found out that an attacker
can abuse its control of system signals to get the size of an object
in an enclave memory allocation, which reveals the control flow
and even the plaintext data in enclaves. Moreover, applications
running within enclaves may be vulnerable to Iago attacks [29], and
recent work [68] shows that such attacks still widely exist during
enclave transitions in SGX systems. Our study (§4) confirmed that
Iago attacks are more pronounced when porting the default JVM
into enclaves, since doing so results in many enclave transitions.

The second challenge is that a JVM running in an enclave can in-
cur severe performance degradation for data-intensive applications.
Specifically, JVM’s default GC reclaims objects when there is not
enough space for allocating a new object. Since the SGX memory is
merely around 100MB, the GC needs to frequently stop all threads
to scan the entire heap shared by multiple threads. After all, JVM’s
default GC is designed to manage GBs of memory and lacks an
efficient mechanism to reclaim memory for enclaves.

We present UraNus!, the first SGX system to tackle these two
challenges and to efficiently protect Java applications. URANUS pro-
vides two high-level Java programming abstractions: JECall and
J0Call. An application developer can use JECall to annotate func-
tions in trusted code, and such annotated but unmodified functions
and their callees will be executed in an enclave automatically. If a
function is annotated with J0Call and its caller is running in an
enclave, this annotated function will be executed outside.

To completely tackle the first challenge while maintaining a
small TCB, Uranus includes four JVM components (i.e., GC, dy-
namic code loader, JIT and exception handler) in an enclave. Our
methodology to eliminate their attack surface is isolating these com-
ponents from outside enclaves and verifying all content passed into
enclaves. A key novel component in URANUS is an OS-decoupled,
thread-safe GC protocol. This protocol is developed on one ob-
servation: URANUS’s JVM runtime contains sufficient application
bytecode structures (e.g., basic block back-edges and function entry
points) for doing code instrumentation, so threads in an enclave
can be efficiently stopped without going across the enclave bound-
ary. Therefore, UrRaNUS’s GC protocol eliminates transitions across
the enclave boundary, effectively protecting the confidentiality
and integrity of the control flow of the trusted Java code. Overall,
Uranus’s GC is completely isolated from outside enclaves, includ-
ing OS, so the first challenge is tackled in GC.

UraNUs also tackles the first challenges in the other three JVM
components. For the dynamic code loader, we design and implement
a class-level bytecode attestation protocol, which effectively verifies
the integrity of the bytecode loaded into in an enclave at runtime
and hides the control flow of the bytecode. For the JIT compiler, we

Uranus, an ancient Greek god, brings order and safety to the cosmic chaos.

leverage the bytecode-to-assembly template in OpenJDK’s inter-
preter to build an simple and efficient JIT with full support of all
Java-8 bytecode instructions, while maintaining a small TCB. This
JIT is completely isolated from outside enclaves; it prevents Iago
attacks during enclave transitions by conducting sanity checks on
the parameters passed through JECall/J0Call. URANUS’s excep-
tion handler also runs entirely within an enclave without involving
any OS feature.

Our observation to tackle the second challenge is that, although
a thread in a data-handling application often allocates many objects
within an enclave, only few objects are shared among threads.
Therefore, unshared objects can be efficiently reclaimed whenever a
thread finishes a JECall. With this observation, URANUS introduces
a region-based enclave memory management technique, which
mostly avoids stopping all threads in an enclave and efficiently
reclaims per-thread objects whenever a thread finishes a JECall.

We implemented UraNUSs in OpenJDK on Linux. In SGX practice,
the trusted code may read data from untrusted memory outside
enclaves, which may infect the control flow of the trusted code and
compromise the integrity of its computation result. Leveraging the
type-safety of Java, URANUS includes a runtime checking proto-
col to prevent the bytecode from running in an enclave accessing
memory outside (§4.3). Therefore, even if application developers
omit to annotate some sensitive functions, this protocol prevents
the trusted code from running in enclaves leaking plaintext data to
these functions running outside. Overall, URANUS achieves a small
TCB: all URANUS components running in enclaves, including the
four OS-decoupled JVM components, have only 25.2k LoC.

We integrated UraNus with two data-handling applications
written in Scala and Java: Spark [76] and ZooKeeper [36]. Spark-
URANUSs achieves the same confidentiality and integrity guarantees
as Opaque’s encryption mode [77]; ZooKeeper-URANUSs achieves
the same security guarantees as SecureKeeper [28]. We compared
Spark-Uranus to Opaque [77] (encryption mode) and ZooKeeper-
URANUS to SecureKeeper [28]. For Spark-Uranus, we included all 8
big-data queries evaluated in Opaque [77]. Evaluation shows that:

e URANUS is easy to use. We annotated only two or four func-
tions for each application. Spark-URANUS runs unmodified
UDF queries in enclaves.

e UrANUs is efficient. For ZooKeeper-URANUs, it incurred
merely up to 19.4% performance overhead compared to the
native (insecure) executions. Spark-URANUS incurred 1.2X to
7.6X performance overhead compared to native Spark on typ-
ical dataset sizes. Partly due to URANUS’s new GC protocol,
Spark-URANUs is the first SGX work that supports typical
big-data dataset sizes [76], two to three orders of magnitude
larger than the dataset sizes evaluated in Opaque.

o Uranvus effectively tackled privileged attacks.

The main novelty of this paper is two new protocols: 1) an OS-
decoupled, thread-safe GC protocol that enables Java big-data ap-
plications to run efficiently on the limited enclave memory; and
2) a first integrity attestation protocol for dynamically loaded Java
bytecode. UraNUs’s GC protocol can be integrated in existing SGX
big-data systems (e.g., SGX-Spark), greatly improving enclave mem-
ory efficiency and reducing attack surface in these systems.



The remaining of the paper is organized as follows. §2 introduces
SGX and JVM background. §3 gives an overview of the URANUS
framework. §4 introduces URANUS’s runtime. §5 gives the imple-
mentation details. §6 shows our evaluation results. §7 presents
related work and §8 concludes.

2 BACKGROUND
2.1 Intel SGX

An SGX enclave isolates the execution environment of the applica-
tion code and data running inside and protects them from outside
privileged access, including OS, hypervisor, and BIOS. Memory
pages belonging to an enclave reside in the Enclave Page Cache
(EPC). EPC has a total size of 128MB per CPU, and only around
100MB can be used by application code. If the code running in the
enclave uses more than 100MB, a slow SGX paging mechanism
will incur a 1,000X slowdown compared to regular OS paging [28].
An SGX enclave can execute only user-space instructions, so the
enclave code has to do OCalls to leave enclaves for system calls.
When an interrupt or hardware exception (e.g., General Fault) is
raised in an enclave, the processor performs an Asynchronous En-
clave Exit (AEX) to handle the exception or interrupt. Though AEX
and OCall do not directly leak secrets in enclaves, they can result
in severe side-channels or even attack surface (§4.4) for revealing
the control flow of trusted code and plaintext data.

2.2 Java Virtual Machine (JVM)

We denote Hotspot [6], the most popular implementation of Java
Virtual Machine, as JVM. For portability and language features (e.g.,
Reflection), JVM loads Java bytecode at runtime and executes it
with either an interpreter or JIT compiler. JVM runs the interpreter
initially, if some bytecode is executed frequently (known as hotspot),
JVM uses JIT to compile this code into highly optimized machine
code to speed up the execution. Compared to the interpreter (16k
LoC), verifying the correctness of the JIT compiler is much more
difficult because JIT is much larger (210k LoC) and contains complex
optimization logic. Therefore, we built a simple JIT for URANUS
based on the bytecode-to-assembly template in the default JVM
interpreter (§4.2). JVM has about 1 million LoC, and will result
in a large TCB when running in an enclave. When the code of a
type-safe language (e.g., Java) is executed in a bug-free JVM, JVM’s
runtime checks ensure that the code is memory-safe and has no
memory leaks or buffer overflow bugs.

3 OVERVIEW
3.1 Threat Model

URraNUs is designed for applications running in a client-server
manner, and its threat model is the same as typical SGX systems
(e.g., VC3 [59] and SecureKeeper [28]). Specifically, SGX, clients,
all URANUS’s components running in clients and enclaves, and a
server application’s functions running in enclaves are trusted.
Other hardware and software layers such as BIOS, hypervisor,
OS, Uranus’s components outside enclaves, and server application
code running outside enclaves can all be controlled by attackers and
therefore are untrusted. Attackers can access and tamper with mem-
ory, observe and hijack system calls, and drop network packages.

@JECall byte[] handle_request(byte[] r_en) { /* */ }
@J0oCall void store(byte[] k, byte[] v) { /x */ }

l:l trusted code (code_T)
l:luntrusted code (code_U)

void main(args)
While (running)
r=recv_request() JECall
re=handle_requ(r) --# byte[] handle_request(r_en)
Request r decrypt(r_enf)unction Iy P S———
call // decrypt and parse r_en
[ 1 return r

if (r.type == Request.PUT)
store(enc(r.key), enc(r.value))|

JOCall* void store(key, value)
// Store kv pair in hashtablg
——return

return
-
send_respone(re)

T
| _—_'return encrypt(0K) return

-

Figure 1: Code, JECal1/J0Call annotations and workflow of the key-
value store running on URANUS. enc encrypts the key and value.

Same as SGX-Spark and VC3, denial of Service (DoS) and micro-
architectural side-channel attacks (e.g., CPU cache side-channels)
are out of the scope of this paper. Nevertheless, URANUS’s threat
model considers two types of software-level side-channels, AEX
and OCall, caused by running a default JVM in an enclave. For
instance, when a JVM’s default GC is invoked, all threads within
the enclave will trigger AEX via OS signals and leave the enclave,
leading to control flow leakage.

3.2 Uranus’s Programming Method

To preserve confidentiality and integrity for server applications, de-
velopers partition code into two parts: trusted code (CodeT) running
in enclaves and untrusted code (Codey) running outside enclaves.
URraNUs has two annotations JECall and JOCall for applications
to run Codet’s functions in enclaves. Functions annotated with
JECall and their callees are in Codet. When a function annotated
with JECall is invoked, the application execution transits into an
enclave until the function returns. When a function annotated with
J0Call is invoked in Coder, the application execution transits out
of the enclave until the function returns.

Figure 1 shows a key-value server program, simplified from
ZooKeeper [13]; the partition of this program is based on the parti-
tion from SecureKeeper [28]. In the program, handle_request and
its callees (e.g., decrypt) are in Coder, while the other functions are
in Codey. Initially, the program runs outside enclaves, and URANUS
creates one enclave for it. When the program receives an encrypted
client request r_en, it calls handle_request to decrypt r_en to
r and conducts a get or put operation. Since handle_request is
annotated as JECall, the execution transits into an enclave. All
functions called by handle_request (e.g., decrypt) run in en-
claves, except the store function annotated as JOCall. store
stores encrypted key-value pairs outside enclaves, maintaining a
small TCB and low enclave memory footprint.

3.3 Architecture

Figure 2 shows URANUS’s architecture. URANUS consists of five
trusted components: a code integrity verifier, an JIT compiler, an
enclave adaptor, a garbage collector, and an exception handler. For a
server application, URANUS creates one enclave in the local machine
and loads these components into the enclave.
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Figure 2: The architecture of URaNUs. URANUS’s components are shaded.

Code Verifier (§4.1) loads only the classes executed in the en-
clave and verifies the hashes of the classes for their integrity, main-
taining a small TCB. URANUS’s JIT Compiler (§4.2) executes Java
bytecode in an enclave. It also handles JECall/J0Call transi-
tions with adaptors. Utility libraries (e.g., math) are included in
the enclave to provide necessary functionalities. Garbage Collec-
tor (§4.4) manages the enclave’s heap memory efficiently.

These components do not incur extra threats for confidential-
ity and integrity compared with the low-level SGX programming
model. For confidentiality, URANUS’s communication channels (i.e.,
Code Verifier and ECall Adaptor) between an enclave and untrusted
world do not leak secret data (§4). For integrity, URANUS provides
a protocol (§4.1) for clients to attest the integrity of the code dy-
namically loaded into server applications’ enclaves. Uranus’s GC,
JIT and Exception Handler run entirely in enclaves do not incur
additional threats as they do not communicate with outside.

4 URANUS RUNTIME

The existing SGX programming approach in C/C++ takes a static
way to guarantee code integrity [41]. It generates a digest using
the initial state of all server applications’ statically compiled code
that may be used in enclaves and exchanges the digest with clients
for attesting the integrity of the code (i.e., attestation).

However, this static compilation approach is unsuitable for lan-
guages (e.g., Java and JavaScript) that run code in a dynamically
loading manner, because the dynamically loaded code is not in-
cluded in the initial state. To fix this issue, SecureWorker [9] stat-
ically compiles the JavaScript language runtime with application
code and all its dependent libraries, leading to a huge TCB. For
instance, the SpiderMonkey libraries are 521k LoC [12]. Moreover,
this approach cannot support dynamically loading code determined
at runtime (e.g., through Java Reflection).

A key requirement for URANUS’s code loading protocol is that it
must not expose attack surface to attackers outside an enclave. For
instance, Java’s default code loading method is to load each class
on demand (when it is needed for executions), but doing so in an
enclave will require loading each class from outside the enclave,
which exposes control flow to attackers.

URrANUS’s code loading protocol is inspired by a static loading
protocol of dependent libraries, developed in Graphene-SGX [67].
Graphene-SGX loads executable and a manifest containing hashes
of dependent dynamic libraries during an enclave initialization, and
computes a hash of the executable and the manifest for clients to

verify. URANUs extends this static protocol in two aspects, leading
to a new runtime loading protocol. First, URANUS loads code in
the class level instead of the library level in order to minimize the
code size loaded into enclaves. Our analysis of one of our appli-
cations, Spark-URANUS, shows that loading only JECall’s depen-
dent classes consumes over 90% less enclave memory than loading
JECall’s dependent libraries (Appendix A). Second, URANUS sup-
ports loading classes provided at runtime (e.g., Spark UDF).

Given a version of application code, developers first compute
SHA256 hashes for all classes in a jar using jarsigner in OpenJDK.
Then, they use Uranus-dep provided by URANUS to automatically
find all dependent classes of all JECall (for the integrity of enclave
code, in §4.1) and all static invocation sequences of these JECall
(for the execution integrity of a sequence of JECall invocations, in
§4.3). Note that Uranus-dep’s class dependency is deterministic:
each version of application code has only one dependency. It also
generates a manifest of all JECall, JOCall, the static JECall invo-
cation sequences and package version. During the initialization of
an application enclave, URANUS loads all dependent classes into the
enclave and generates a measurement (hash) of both these classes’
hash and the manifest. This measurement serves as proof of the
integrity of loaded Java bytecode.

4.1 Integrity of Code Loading

Figure 3 shows the workflow of this protocol with six steps. (1)
URANUS creates an enclave using standard SGX API for each server
application. The enclave contains all URANUS’s trusted components
but does not contain any application code. (2) When a server ap-
plication launches, the (untrusted) URaNUS loader computes the
dependent classes of all JECalls and invokes the trusted UraNUS
loader in the enclave to copy all these classes’ content, their hashes
and the manifest into the enclave. (3) UrRANUS’s trusted loader first
verifies each class’s content with its hash, and then computes a
hash Hj from both all classes’ hash and the manifest file. Note that
the content of these classes is not parsed at this moment.

(4) When a remote client (trusted) tries to connect to the server,
the client attests URANUS’s trusted components following SGX’s
standard attestation protocol and establishes a secure communica-
tion channel using Diffie-Hellman [31]. (5) The enclave reveals H;
to the client. The client computes an Hy locally using Uranus-dep
for each version of an application’s code and caches Hy. The client
compares Hj with Hy, rejects the enclave if they are different. Note
that this key-exchange process only happens once when the client



Client (has H;)

A A

@ Reveal H ’

Manifest

&
depdency

Standard Attestation
& Create Secure Channel

Copy bytecode
& Manifest

Jars

Verify per-class H
hash & compute H ’ °

Code [——

Verifier

Signature
@JECall
Stringl J map(..)
{

JIT
Compiler

\

(:) Parse
class content

Signature

Uranus Enclave

Create Uranus
Encalve

void print(..){ T
. —

Untrusted Code
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connects. (6) When a function (JECall or its callees) is called for
the first time, URANUS parses the content of the function’s class to
Uranus’s JIT compiler for executions.

In addition to JECall and dependent classes, URANUS also pre-
serves integrity of dynamically loaded code using Reflection (e.g.,
Spark’s UDF). UraNus provides an API (i.e., LloadClass (className))
for the trusted code to load a class C and its dependent classes into
an enclave. This API runs step (2) ~ (3) of the code loading proto-
col, except that class dependencies are computed at runtime using
Uranus-dep (§5). LloadClass returns a hash H/ of all the classes’
hashes, and H/ is compared with a client provided H, for integrity.
Since UrANUs-dep is ran outside the enclave, an attacker can forge
the dependencies, but clients can detect this attack by comparing
H/ and H,.

Security Analysis: URANUs guarantees the integrity of byte-
code being loaded and runs within an enclave, as all JECalls’
dependent classes’ hashes are kept in an enclave. If an attacker
alters the content of a class before it is loaded, URANUS’s verifica-
tion of class content (Step 3) fails, and the enclave exits. When the
attacker provides a fake Java class and its corresponding hash, or
incorrect dependent classes to the enclave, clients will reject the
enclave (Step 5) as Hj; is different from Ho.

4.2 Executing Java Bytecode in Enclaves

Java bytecode can be executed by an interpreter or a JIT compiler.
The interpreter in Hotspot (JVM) fetches a bytecode before jump-
ing to its assembly code snippet, generated by the interpreter. This
fetch-and-dispatch process adds many branch instructions to the
assembly code and often causes time-consuming missed branch pre-
dictions (§6.3). The JIT compiler in Hotspot is much faster than the
interpreter because it translates multiple Java bytecode to assembly
code, greatly reducing the branches of fetch-and-dispatch. This JIT
also contains an intermediate representation (IR) process with com-
plex optimizations during the translation to improve performance.
The IR and its optimizations have a large TCB (210k LoC).

To maintain a small TCB, we first built a simple interpreter
based on OpenJDK’s interpreter [6]. Unfortunately, the interpreter
was too slow for diverse workload with loops (§6.3). To improve
performance, we built a simple JIT compiler for UrRaNUs based
on Hotspot’s interpreter. UraNuUS’s JIT directly compiles each Java

method’s bytecode to assembly code using the interpreter’s bytecode-
to-assembly template. URANUS’s JIT excludes the IR and its optimiza-
tions, because they contain a large TCB and are hard to verify [44].
Appendix B shows the assembly code generated by the JIT.

UraNus’s enclave adaptor handles transitions of JECal1/J0Call.
In such a transition, an Iago attack may incur: an attacker can ma-
nipulate an object reference passed to JECall’s parameters, and
make the reference point to an arbitrary memory address within
the enclave. If such manipulations are not detected, the trusted code
within enclaves may write to this arbitrary memory address, easily
leading to various attacks (e.g., ROP attacks [24, 48]).

To eliminate Iago attacks from breaking type-safety of enclave
code during enclave transitions, when a thread calls a function
annotated as JECall, URANUS’s adaptor copies stack elements into
an enclave, verifies if it is a valid JECall by checking the function’s
metadata in the manifest, parses the corresponding loaded class file
and compiles the code (if the class has not been parsed in step (6) in
Figure 3). Then, the thread starts executing the JECall within the
enclave. Since stack elements are copied from outside, the adaptor
scans the stack content to ensure that no object reference in the
stack points to enclave memory. URANUS’s adaptor does the same
check for the returned value of JOCall.

Security Analysis: URANUS’s JIT does not incur any new attack
surface as it is completely isolated from outside the enclave. It takes
only verified class files from the dynamic code loader and compiles
them to native code, which does not require help from OS or leaving
enclaves. Therefore, attackers outside enclaves cannot infer the
execution flow of the trusted bytecode by observing OS signals or
AEX. UraNus’s enclave transitions eliminate Iago attacks. Overall,
Uranus’s JIT compiler supports all 203 bytecode instructions of
Java, achieves good performance on applications (§6.3), yet adds
only 2.1k LoC to the interpreter’s TCB.

4.3 Ensuring Enclave Confidentiality and
Integrity at Runtime

This paper requires the developers of an application to make efforts
to partition the trusted code and untrusted code. Developers should
have sufficient knowledge to include all or most sensitive functions
in the trusted code partition, or they can use static analysis tools
(e.g., Glamdring [51], Civet [16]) to infer the trusted partition. De-
velopers then use URaNUS’s JECall and J0Call annotations to
realize the trusted and untrusted code partition. Specifically, they
add decryption functions to decrypt data passed into the entry
points of the partition, and add encryption functions to encrypt
computation results or updated data passed through the exit points
of the partition. This paper assumes that the entry and exit points
of the partition are correctly identified by developers, which is also
required by Glamdring.

To prevent code running within enclave from leaking secret
within enclaves to outside, URANUS enforces a tight boundary be-
tween trusted bytecode and untrusted bytecode at runtime by lever-
aging the type-safety of Java. Specifically, Uranus forbids enclave
code from accessing untrusted memory, unless these accesses use
URANUS’s untrust-memory-access APIL To ease discussion, Coder
denotes trusted application code running in an enclave. Ot denotes



Algorithm 1: SafeGetfield(obj, field_name, type)

1 offset = field_metadata(obj, field_name);
2 if (obj + offset) € [Enclavestart, Enclaveenq) then

s | abort;

1 else

5 val = *(obj + offset);

6 if type == Object and val € [Enclavestart, Enclaveenq) then
7 | abort;

8 else

9 L return val;

objects located in an enclave’s heap, and Oy denotes objects located
in the outside heap.

This boundary is enforced by two properties using runtime
checks injected in compiled code generated by UraNuUs’s JIT. The
first property is read-integrity: Coder (trusted code) does not read
fields from Oy (objects created by untrusted code). This prevents
Coder reading a value from outside enclaves and changing Coder’s
control flow.

The second property is write-confidentiality: Coder does not
write any data in enclave memory to fields of Oy. When the data is
written to untrusted memory, it is possible that the value is com-
puted from sensitive input data and thus also sensitive. Writing
this value to untrusted memory will probably break enclave confi-
dentiality. By enforcing this property, even if developers carelessly
omit to annotate some sensitive functions, the bytecode running
inside enclaves is forbidden to write any data to these functions
running outside enclaves via memory access.

Read-integrity and write-confidentiality are enforced by sim-
ply checking if a bytecode accesses objects in an enclave. These
checks compare an object pointer with the constant bound of en-
clave memory (i.e., [Enclavestart, Enclaveenq)), throwing an error
if the object is out of bound . The bound is cached in two global vari-
ables and located in CPU registers for efficiency. As JVM provides
an Unsafe API to access raw memory of an object, URANUS also
includes bound checks in Unsafe. URANUS also prevents trusted
code invoking Oy’s member functions in enclaves, as JVM decides
the entry point of an object’s member function according to its
class at runtime due to polymorphism. If such function calls are
allowed, attackers outside enclaves can tamper with Oy’s classes to
inject arbitrary code.

In practice, some accesses to untrusted memory (e.g., reading en-
crypted data from outside enclave) are intended by developers and
should be allowed. In such cases, developers can use URANUs’s four
untrust-memory-access API: SafePutfield (obj, fieldname, val),
SafeGetfield(obj, fieldname, type)and SafeArrayCopy (src,
dest, len). This API disables runtime checks of read-integrity and
write-confidentiality as in the compiled enclave code.

Similar to enclave transitions, the untrusted memory accessed
by this API must not contain a reference to any memory address
within an enclave to avoid Iago attacks. URANUs does sanity checks
on these objects references. Algorithm 1 shows the pseudo-code
of SafeGetfield in URANUS, and SafeGetfield ensures the ob-
ject references returned are not pointing to enclave memory. The
checks in SafePutfield are similar to SafeGetfield’s, except
that SafePutfield uses val’s type in line 6 instead of the one pro-
vided by developers in SafeGetfield. SafeArrayCopy ensures

@JEcall
public void udf_process(char[] secrets) {
char[] plaintext = decrypt(secrets);
Record record = deserialize(plaintext);
if (record.disease == "cancer") {
// CanerCheck is 10KB and incurs GC
ret = new CancerCheck(record).analyze();
// an attacker can observe GC and
// infer the disease is cancer
}
}

Figure 4: An Attack on OS-assisted GC.

that primitive array references (src or dest) pointing to enclave
memory are in-bound. In fact, SGX programming in C/C++ faces a
similar problem, as it requires developers to write code to check all
cross-boundary memory access [38], tedious and error-prone.

URraNUS’s tight boundary ensures the execution integrity of each
JECall invocation. However, an attacker can manipulate the invo-
cation order of JECall to tamper with an application’s execution
integrity. To prevent this attack, URANUs uses the approach from
Glamdring [51]: During each JECall, URANUs checks within en-
clave if the actual invocation sequence complies with one of the
sequences computed by UrRaNUs-dep, and aborts the enclave with
an exception if not.

Security Analysis: URANUS provides stronger isolation and
type-safety compared with the traditional SGX programming in
C/C++. First, read-integrity and write-confidentiality enforce com-
plete isolation between enclave objects and outside. Second, JVM’s
built-in checks in UrRaNUS’s JIT guarantees the type-safety of en-
clave objects. Third, runtime checks in SafeGetfield reject any
returned object’s reference pointing to enclave memory.

4.4 Memory Management (GC)

A naive approach for Uranus’s GC is to directly adopt Hotspot’s
OS-assisted garbage collection. Hotspot stops all threads (i.e., Stop-
The-World, or STW) during each GC, because some objects may
be concurrently used by the GC thread and other threads. Hotspot
makes use of OS signals (i.e., segfault) for STW. Specifically,
Hotspot injects a memory read instruction on a special page before
each back-edge of basic blocks, and this page is set unaccessible
using mprotect by the GC thread. Therefore, all threads execut-
ing Java bytecode will incur segfault and be stopped. After all
executing threads are stopped, the GC thread does a GC and then
resumes the stopped threads.

However, simply adopting the approach is neither secure nor
efficient in UrRANUS due to two issues. First, handling segfault
requires the threads to leave an enclave and go through OS, which
exposes significant attack surface. Figure 4 shows an example of
how the OS-assisted GC leaks sensitive secrets of an enclave. An
attacker can manipulate enclave heap [63] by frequently invoking
the JECall such that enclave heap does not have enough space
for a CancerCheck object. Therefore, the attacker can infer that a
GC is invoked by observing the segfault signal in the OS level.
The attacker can infer that the enclave has likely executed line 7,
and that the encrypted record has cancer. Second, since an enclave
has a small memory space, sharing one enclave heap among mul-
tiple threads incurs frequent GC and enclave transitions, greatly
downgrading application performance.
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To tackle these two issues, URANUS presents an OS-decoupled,
thread-safe, and efficient GC protocol. Figure 5 shows the architec-
ture of URANUS s region-based GC. When a thread enters an enclave,
Uranus allocates a region for the thread. The thread-private re-
gion consists of multiple large pages mapped from a global page
pool. Each page is 32KB (adopted from the setting of Yak [55], a
big-data friendly GC) instead of 4KB to reduce fragmentation. Each
object has a regionID stored in its JVM object header. There is
also a global heap that stores persisted objects across JECalls (e.g.,
static objects). Some objects in one region may escape to other re-
gions. For example, if one CancerCheck object is written to a static
object’s field, then this object may be read by other threads and
escape. URANUS captures an escape object while an object is writ-
ten to a field of an object in different regions. onObjectPutfield
in Algorithm 2 capturing escaped objects of a region. When two
objects’ region IDs are different, a mapping is added to escapeMap
of the current thread (line 30), and this onObjectPutfield code
is injected by Uranus’s JIT to an enclave’s compiled code. Note
that escapeMap can be either appended or cleared, but is not trun-
cated. This is because an object may transitively escape to multiple
regions, and escapeMap denotes a history of escaped objects for
each thread’s region. Since URANUS need only track escaped ob-
jects, not Java primitives, onObjectPutfield incurred only 0.8%
performance overhead for the big-data queries in our evaluation.

Algorithm 2 shows URaNUS’s complete GC protocol. When a
thread finishes a JECall execution, a URANUS GC (doGC) is invoked.
Doing a GC contains a fast path and a slow path. The fast path
(line 12 ~ 13) simply clears all pages in the current thread’s region,
if the thread’s escapeMap is empty.

The other lines in the doGC function show the slow path. The
slow path first tries to invoke an OS-decoupled STW (line 15 ~
27). If a thread T succeeds (needGC is atomically set True in line
20), it calls startGC to find all escaped objects by scanning all
threads’ stack and escapeMap, to migrate the escaped objects to
the global region, and to clear all pages in thread T’s region. Thread
T’s escapeMap entries, whose escaped objects’ regionID differs
from T’s regionID, will be migrated to the objects’ corresponding
regions. If T fails (i.e., another thread successfully sets needGC), T
waits for the successful thread to finish and then retries.

When a thread cannot find enough memory for a new object
in the enclave heap during execution, the thread also invokes a
doGC(False) to conduct a standard MarkSweepCompact GC [6].

To implement STW, UraNus’s JIT injects onGCCheck to all back-
edges and function entries (including JECalls) in an enclave’s
compiled code. Importantly, for efficiency, line 7 does not involve

Algorithm 2: GC Protocol
Variables:
bool needGC // GC is being invoked
int nEncGCThds  // # of threads stopped for a GC
int nEncThds
Thread self // Current thread, thread-private
1 Function onJECallEnter()
2 L atomic_inc(nEncThds);

3 Function onJECallExit()
4 doGC(True);
5| atomic_dec(nEncThds);

// # of threads in an enclave

6 Function onGCCheck()

7 while needGC do

8 atomic_inc(nEncGCThds);

9 while(needGC);

10 atomic_dec(nEncGCThds);
11 Function doGC(bool onExit)

12 if onExit and self.escapeMap is @ then

13 ‘ self.resetRegion() // Simply clear page mapping.
14 else

15 while True do

16 curGC = needGC;

17 if curGC then

18 onGCCheck();

19 continue;

20 gcFlag = compare_swap(&needGC, curGC, 1);
21 if !gcFlag then

22 atomic_inc(nEncGCThds);

23 while(nEncGCThds < nEncThds);
24 self.startGC();

25 atomic_dec(nEncGCThds);

26 needGC = False;

27 break;

28 Function onObjectPutfield(destObj, offset, obj)
29 if obj.regionID != val.regionID then
30 L self.escapeMap « (obj, (destObj, offset));

31| *(destODbj + offset) = obj // Default putfield logic

an atomic operation, and a thread can finally be stopped at following
back-edges or function entries. Moreover, because the frequency of
GC is often low (needGC is False most of the time), checking the
needGC flag incurs negligible overhead in our evaluation. On the
start of a JOCall, URANUS simply decreases nEncThds atomically,
but Uranus does not invoke a GC at this point because enclave
memory needs to be used on the J0Call’s return. On the return of
the J0Call, URANUSs increases nEncThds atomically.

Security Analysis: URANUS’s GC does not expose attack sur-
face to attackers. Since thread synchronization is implemented
without any OS help or leaving an enclave, an attacker cannot infer
the invocation of a GC using OS signals, so UraNUs’s GC does
not reveal trusted code’s control flow. Moreover, URANUsS’s GC is
type-safe. Algorithm 2’s fast path can safely clear all objects in a
thread’s region when the thread finishes a JECall, because the
thread’s empty escapeMap means that no object has ever escaped
during the JECall execution. Algorithm 2’s slow path can find all
escape objects, by scanning all threads’ stack and escapeMap, as
escapeMap is a history of objects escaped to other regions.



5 IMPLEMENTATION DETAILS

URrANUS’s implementation is based on OpenJDK-8, a popular open-
source JVM. URANUS’s runtime supports multiple utility libraries, in-
cluding Javareflection API(e.g., java.langand Arrays). URANUS’s
JVM codebase running in an enclave is merely 25.2k LoC, as it ex-
cludes javax, java.security, debugging, etc. A comparison of
LoC between UrRaNUs and other code-reuse systems is given in
Appendix E. URANUSs also supports necessary system calls such as
standard I/O, Time and File. URANUS does a system call by simply
calling an OCall that does the system call outside enclaves, similar
to Panoply [62] which supports system calls with a minimized TCB.
UraNus currently does not support thread operations (e.g., thread
creation or thread-local storage) in the java.lang.Thread pack-
age. Multi-threading and synchronization on enclave objects are
supported, while synchronizations across enclave boundaries fail
with an EnclaveException exception. Details of implementing
0OS-decoupled multi-threading, synchronization and exception han-
dling are given in Appendix C. URANUS’s current implementation
is sufficient to run all applications in our evaluation.

UraNUs-dep is implemented using the Java ASM package [5], an
easy-to-use library for analyzing Java bytecode file. To obtain class
dependencies for JECall (§4.1), URanus-dep begins by traversing
a class file (JECall’s) and finding out dependent classes of the
current class, then puts the dependencies into an AdjacencyList.
This is executed recursively until all classes are found. To obtain the
invocation sequences of JECall (§4.3), UraNUs-dep traverses all
functions invoked by main recursively and constructs a set of static
invocation sequences of JECall. We do not construct the dynamic
invocation sequences, as doing so requires heavy static analysis
costs [23]. Uranus-dep is also used in loadClass(C) (§4.1) to
compute dependent classes of class C at runtime.

6 EVALUATION

6.1 Case Study

We integrated Uranus with Spark [76] and Zookeeper [13] to
build two a privacy-preserving big-data computation platform
(Spark-Uranus) and a privacy-preserving co-ordination service
(ZooKeeper-URANUS). Details of our modifications to the two soft-
wares are shown in Appendix D.

For Spark-UrRANUS, we run only the user-define-functions (UDFs)
within enclaves to preserve the confidentiality and integrity of user
data and computed results. We added annotations to three functions
of the Spark framework. Each annotated function decrypts input
data and encrypts computed output. To preserve the integrity of
UDFs, the annotated functions use URANUS’s loadClass API to
load and verify UDF’s dependent classes. To preserve the execution
integrity of Spark DAG (Direct Acyclic Graph), a sequence of UDF,
we adopted the self-cation protocol in Opaque [77].

ZooKeeper-URANUSs preserves confidentiality and integrity of
data in ZooKeeper. ZooKeeper-UrRaNuUs adopts trusted code par-
tition presented in SecureKeeper [28], an SGX system that cus-
tomizes ZooKeeper to preserve data confidentiality and integrity.
ZooKeeper-UrRaNus adds annotations to three functions, which
decrypt data received from client requests and encrypt data after

Opaque’s workload [Dataset]  Opaque’s size URANUS’s size

Filtering [Rankings] 1.1 Million 0.9 Billion
AdvRevenue [UserVisits] 1.2 Million 1.8 Billion
RevenueAggr [UserVisits] 1.2 Million 1.8 Billion
PageRank [Friendster] 10 Million 1.8 Billion
LinearRegr [Linear regression] 1.0 Million 1.8 Billion
PatientsQuery [Diseases] 0.5 Million 0.2 Billion
TreatmentQuery [Treatments] 0.5 Million 0.2 Billion
GeneQuery [Genes] 0.5 Million 0.2 Billion

Table 1: Queries and dataset. All Opaque’s queries are evaluated by
Uranvus. All dataset sizes are the number of records.

parsing it. ZooKeeper’s file path names are encrypted using a de-
terministic encryption approach, and payloads are encrypted with
path names to prevent attackers replacing a path’s data.

Overall, URANUS is easy-to-use, as it requires less than 500 LoC,
much fewer than the rewriting approach which usually requires
adding more than 5k LoC to its Java and unsafe C/C++ code (Ap-
pendix D). The developments of Spark-URaNUs and ZooKeeper-
UraNus take two weeks and one week for one researcher, respec-
tively. Most of our efforts in developing the two applications mainly
fall in classifying the boundary between the enclave and outside.
For example, since executing Oy’s member functions are not allowed
within an enclave, we have to reconstruct Oy using data passed into
the enclave to execute these functions when executing them is
necessary.

6.2 Setup and Workload

Our evaluation was conducted on ten computers with SGX-equipped
Intel(R) Xeon(R) CPU E3-1280 v6 with 4 cores, 64GB RAM and 2TB
SSD. All computers form a cluster with 40Gbps network. For the
setup of clients in ZooKeeper-URANUS, we ran the clients in host
machines outside the cluster, as clients are trusted and run outside
the cloud in our threat model. ping latency between clients and
servers is 800us. URANUS’s enclave heap size is 80MB to avoid SGX
paging. This heap size setting is common in practice [77].

We compared Spark-UrRaNus and ZooKeeper-URaNUs with two
security systems (i.e., Opaque [77] and SecureKeeper [28]) and two
native and insecure applications (i.e., Spark [76] and ZooKeeper [13]).
We ran Spark-Uranus with all applications using Uranus’s JIT
compiler (§4.2) by default. We used ten machines for each query,
and each machine runs one enclave with four threads by default.
For Spark-UraNus, we included all 8 queries evaluated in Opaque.

We did not compare Spark-Uranus with VC3 [59] because it is
close-source. VC3 obtains its performance overhead in an SGX sim-
ulator, so we did not compare our results with VC3’s. We compared
Spark-Uranus and Opaque’s encryption mode [77], which provides
the same security guarantee as Spark-UrRaNus. Therefore, the com-
parison between Spark-Uranus and Opaque’s encryption mode
is apple-to-apple. Opaque uses the code-rewrite approach, among
existing SGX-based big-data systems [11, 54, 59, 77], Opaque’s en-
cryption mode [77] is the most efficient system in terms of dataset
sizes and performance overhead. Opaque also has an oblivious
mode to handle CPU architectural access pattern attacks, out of
the scope of this paper (§3.1). For SGX-Spark [11], we compiled
its code and found that it is undergoing development. We were
unable to compile SGX-Spark in our cluster due to missing code
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Figure 6: Spark-UraNnus performance overhead compared with native Spark and Opaque. “1” (red line) means no overhead.

Program Total | JOCAIL | /Deceyption
Time (s) | Count Time (s) Time (s)
Filter 4.28 582 0.01164 0.307
AdvRevenue 6.02 97 0.00194 0.776
RevenueAggr 51.1 5.5k 0.10954 4.382
TreatmentJoin 7.57 185 0.0037 0.074
PatientsQuery 5.32 167 0.00334 0.033
GeneQuery 9.87 425 0.0085 0.085
PageRank 59.8 3.89k  0.07774 2.021
LinearRegre 4.13 97 0.00194 0.093

Table 2: Breakdown of Spark-Uranus (Opaque’s dataset).

components (e.g., shm). Therefore, we did a qualitative analysis
between Spark-UrRanus and SGX-Spark in §6.3.

For Spark-URANUS, the evaluated 7 dataset is taken from Opaque,
including 3 medical dataset and 4 big-data dataset. For all 8 queries,
Spark-URaNUS was evaluated with typical sizes of dataset as in
Spark [76], two to three orders of magnitude larger than the dataset
sizes evaluated in Opaque (Table 1). For ZooKeeper-URANUS, we
used a popular benchmark ZK-Smoketest [14]. We used concurrent
connections to make the servers reach peak throughput. All data
points were the median of 11 executions. We focused on these
questions:

§6.3 What is the performance of Spark-URANUS compared to
Opaque and Spark?

§6.4 What is the performance of ZooKeeper-URANUs compared
with SecureKeeper and ZooKeeper?

§6.5 How does Uranus defend against attacks?

§6.6 What are URANUS’s limitations?

6.3 Spark-Uranus v.s. Opaque

Figure 6a shows the performance overhead of Spark-Uranus and
Opaque on Opaque’s dataset. Spark-UrRaNUSs’s performance is nor-
malized to native Spark, and Opaque’s performance is normalized
to native SparkSQL because Opaque is built on SparkSQL. Opaque’s
implementation can run a maximum 10 million records for all the
eight queries (Table 1). We looked into Opaque’s code and found
that its code restricted dataset size using assertions, and we were
unable to make Opaque work with larger dataset even the asser-
tions were removed. With the dataset size Opaque can support,
Spark-URANUS is on-average 3.7X faster than Opaque.

Program Total JOCALL | /Decryption
Time (s) | Count Time (s) Time (s)
Filter 23.4 1.2M 3.88 5.37
AdvRevenue 58.6 4.16M 12.40 22.92
RevenueAggr 85.0 5.46M 16.38 29.20
Treatment]Join 73.8 1.27M 3.83 6.87
PatientsQuery 39.2 0.70M 2.10 3.49
GeneQuery 176.9 1.39M 4.18 7.00
PageRank 185.0 14.1M 42.36 75.59
LinearRegr 33.7 1.2M 3.60 6.15

Table 3: Breakdown of Opaque (Opaque’s dataset).

To analyze why Spark-URANUS is faster than Opaque, we col-
lected UraNUS’s and Opaque’s runtime micro events in Table 2 and
Table 3. By comparing the number of (J)ECalls, Opaque’s ECall fre-
quency is much higher. The reason is that Opaque does ECalls for
each SparkSQL operator [77]; Spark-Uranus’s JECall wraps UDF
(e.g., map), and the call frequency of these functions is proportional
to the total number of executed Spark tasks [76]. The number of
these tasks is much small than the number of SparkSQL operators
in practice. The encryption/decryption time of these queries was
negligible except for the first three queries in Table 2, because these
queries did fewer computations than the other queries. For example,
Filter checks only if each record meets a condition provided in
UDF. Spark queries are all functional, objects did not escape across
threads in an enclave, so URANUS’s region-based GC took the fast
path (§4.4) and did not incur observable performance overhead. We
will evaluate our region-based GC in Figure 7.

Overall, URANUS enables a simple trusted and untrusted code
partition for Spark: each UDF is called by a wrapper function anno-
tated with JECall (§6.1). Opaque integrates SGX in the SparkSQL
layer (i.e., each SQL operator does one ECall), because this can
avoid rewriting the readily mature Java UDF (Spark queries) or
SparkSQL queries using C/C++. Opaque’s design choice makes its
ECall frequency much higher than Spark-Uranus’s (Table 2).

Because SGX-Spark’s code cannot compile in our cluster, we
did a qualitative study between Spark-Uranus and SGX-Spark
on both performance and security guarantees. To the best of our
knowledge, Carlos et al. [19] is the only paper that reports SGX-
Spark’s performance. This paper runs SGX-Spark Streaming on up
to 32MB medical dataset and reports a performance overhead of
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4X ~ 5X over vanilla Spark. On the similar dataset size (around
100 MB), Figure 6a shows that Spark-UrRANUS incurs an overhead
of 1.7% ~ 80.2%, so Spark-URANUSs is much faster than SGX-Spark.
Because SGX-Spark runs an unmodified JVM in an enclave, it lacks
a protocol to verify the integrity of loaded UDF. URANUS’s new
bytecode attestation protocol (§4.1) can be integrated in SGX-Spark
to achieve the verification task. Uranus’s efficient GC (§4.4) can
also be integrated in SGX-Spark.

To compare URANUS’s interpreter and JIT compiler performance
(§4.2), we wrote a simple PI calculation program in Java and ran it in
an enclave with the perf command in Linux. URANUS’s interpreter
took 9.9s to finish, while its compiler took only 1.7s. We found that
the interpreter incurred 59M missed predicted branch instructions
in 3 billion branch instructions, while the compiler incurred 1.6M
missed predicted branches in 152M branches. Compared to the
interpreter, URANUS’s JIT is more efficient, as it greatly reduces
missed branches.

Figure 6b shows Spark-UrRaNUS’s performance overhead on large
dataset. Spark-Uranus incurred 1.2X to 7.6X overhead compared
to native Spark on typical large dataset. Spark-URANUS incurred
the smallest overhead in RevenueAggr, as it is shuffle-intensive and
shuffle code runs outside enclaves.

Comparing Figure 6a and 6b, Spark-URANUS incurred higher
overhead when dataset was larger. A possible reason is that native
Spark’s Hotspot JIT compiler generated more optimized code when
execution time was longer, while Uranus’s JIT (§4.2) contains no IR
optimizations to maintain a small TCB. To validate this reason, we
ran Spark-URANUS completely with interpreters both within and
outside enclaves (Spark-URaNUs-int), and native Spark completely
in interpreter (Spark-int), shown in Figure 6b. Spark-UrRANUS-int
has similar performance to Spark-int. This implies that URANUS’s
JIT is the main reason of Spark-URANUs’s performance overhead
due to the removal of IR optimizations. Spark-UrANUSs-int is faster
than Spark-int on some queries due to URANUS’s efficient region-
based GC (§4.4).

Figure 7a investigates the effectiveness of Uranus’s GC on
multi-threading. We ran Spark-Uranus and Spark-UrRaNus with
URANUS’s region-based mechanism disabled (all threads share a
global enclave heap). In native Spark, when each machine ran only
one thread to process data, Spark’s execution time was 80.0s. When
each machine ran four threads to process data concurrently, the
execution time was 49.1s, a 38% improvement. For Spark-Uranus,
when the number of thread increased from one to four, Spark-
URANUS’s execution time decreased from 628.2s to 193.0s, a 69.2%
improvement. When we disabled Spark-URANUS’s region-based
memory management in each enclave, and when the number of
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threads in each enclave increased from one to four, Spark-URANUS’s
execution time decreased from 777.1s to 600.2s, a merely 22.7% im-
provement. This 22.7% improvement is worse than native Spark’s,
because enclave memory is merely about 100MB, and frequent
GCs were invoked on the enclave heap. Surprisingly, URANUS’s
region-based GC is more scalable than native Spark’s, indicating
that URANUS’s region-based memory management is suitable for
data-handling applications. Actually, Yak [55] has also confirmed a
similar scalability benefit when a GC adopts a per-thread memory
management for Spark.

Figure 7b evaluates the sensitivity of input data size for each
thread (task). This figure suggests that a 2MB partition size for
input data is suitable for running big-data queries with SGX. While
increasing this size, URANUS consumes more enclave memory, and
UraNnus’s GC starts to invoke MarkSweepCompact when the en-
clave page pool has no available page (§4.4). The time taken in
UraNus’s GC grew when the size of each partition increased. Note
that enclave memory consumption includes both the partition and
its intermediate results. If EPC capacity increases in the future [56],
Spark-URANUS’s performance overhead would be further reduced.

To analyze the performance overhead of URANUS’s runtime
checks for enforcing enclave boundary (§4.3) and GC STW (§4.4),
we disabled both their checks in all Spark-URANUS queries using the
typical dataset sizes (Spark-UrRAaNUs queries do not share objects
among threads, so disabling GC STW will not affect the executions);
UraNUs’s performance improved by merely at most 1.2% among
all queries. For enforcing the enclave boundary, only the trusted
bytecode accessing heap objects (e.g., putfield) requires injecting
runtime checks on the constant enclave memory bounds (§4.3), and
the trusted bytecode accessing stack variables (e.g.,aload) does not
require these checks. UrRaNus’s GC STW injects only checks to func-
tion entry points and back-edge of basic blocks, and these checks
observe only needGC without doing an atomic operation (§4.4).
needGC remains zero most of the time for real-world applications.

To stress test the overhead of these runtime checks, we wrote a
simple Java program, which does only getfield and putfieldin
abusy loop within enclaves. This query incurred a 8.9% performance
degradation when UrRaNUS’s runtime checks were re-enabled. In
real-world applications, the percentage of heap-access and back-
edge instructions among all trusted bytecode instructions is much
lower than the percentage in this simple query, so URANUS’s runtime
checks incur little performance overhead in real-world applications.

6.4 ZooKeeper-URANUS v.s. SecureKeeper

We ran Zk-Smoketest for ZooKeeper, ZooKeeper-URANUs and Se-
cureKeeper with a typical workload of 30% SET and 70% GET, and
make all these systems reach peak throughput. This workload is



evaluated in SecureKeeper’s paper. Figure 8 shows the latency and
throughput of three systems. ZooKeeper-Uranus had only 19%
performance overhead compared with ZooKeeper, which is reason-
able considering ZooKeeper-URANUS’s security guarantees. Secure-
Keeper’s performance is close to ZooKeeper-URANUS’s, because
SecureKeeper’s code is highly customized and uses little memory
in enclaves. SecureKeeper adds around 3.4k LoC C/C++ code to
ZooKeeper’s Java code base, making ZooKeeper hard to maintain.
In contrast, ZooKeeper-UrRaNuUs adds only a few JECall annota-
tions to ZooKeeper and has the same security guarantee compared
to SecureKeeper. Our evaluation (Appendix F) shows that URANUS’s
GC is efficient even when slow paths exists in an application.

6.5 Attack Analysis.

OS root privileged attacks. An attacker may try to see sensitive
data or to tamper with application logic. URANUS tackles these at-
tacks: for data confidentiality, all objects created in URANUS enclave
are stored in enclave memory; for integrity, the URANUS runtime
(§4) does not take unverified data or code from outside enclaves.
UrANUS ensures the execution integrity of each JECall and its
invocation sequence.

Code and data rollbacks. An attacker may try to replace applica-
tion code with a stall, buggy version to compromise data privacy.
URANUS ensures the integrity of each code version, because clients
can verify the hash of all dependent classes and manifest (§4.1). An
attacker may try to rollback encrypted data outside enclaves. Prior
work [53] shows that this attack can be tackled by SGX monotonic
counters in enclaves. URANUS tackles this attack by providing API
for trusted code to access these counters and to compare their value
with the value of the counters in the decrypted data.

Iago attacks. In this paper, we consider Iago attacks that break
the type-safety or control flow integrity of the trusted code when
running a JVM within an enclave. Specifically, an attacker may
manipulate values or object references passed to JECall or return
results from J0Call during enclave transitions to conduct three
kinds of attacks. First, an attacker may try to forge a field of Oy
in order to change the control flow of enclaves. URANUS prevents
such attacks as it forbids enclave code from reading objects outside
enclaves, and asks developers to use URANUS’s API to read and
verify the legitimacy of the content. Second, an attacker may change
the pointers stored in a field of Oy to memory stack within enclaves,
so that subsequent writes to the forged pointer will poison the
call stack. URANUS prevents such attacks, since URANUS’s API of
reading from Oy checks if the pointer read into enclave is within
the enclave memory. Third, an attacker may forge the class of Oy
to change the control flow when executing its member functions.
URANUS prevents such attacks by forbidding executing Oy’s member
functions within enclaves. Overall, attackers cannot poison enclave
memory during enclave transitions or during proactive/mistaken
cross-boundary memory access, so URANUS prevents lago attacks
from compromising type-safety and integrity of the trusted Java
code. Verifying the content of J0Call to prevent application-level
Tago attacks is application developers’ responsibility, as UrRANUs do
not know the semantic and actual return results of JOCall.
Information leakage via AEX and OCall. An attacker may try
to observe the number of AEX or OCall in JVM components during

the execution of trusted code. Specifically, he can observe the OS
signals thrown from enclaves and infer the number of exceptions or
GC during a JECall, so he may infer the plaintext data being pro-
cessed in enclaves. URANUs prevents this leakage by isolating its GC
and exception handler components from OS, so that the execution
flows of the same trusted code on processing different encrypted
data will produce roughly the same numbers of AEX/OCall. Han-
dling applications-level side-channels (e.g., the number of J0OCall)
is developers’ responsibility.

Java exceptions and dynamic checks. We tested the robustness
of UraNUS’s dynamic checks (§4.3) by writing buggy code that
writes enclave data to outside. URANUS threw an EnclaveException
with encrypted stack traces without revealing any plaintext. To
continue executions of the enclave, we wrote a handler in enclave
code for EnclaveException that logs the exception and contin-
ues handling user requests. The program then continued, wrote
encrypted exception logs and returned null to us without leaking
any sensitive data.

6.6 Limitation and Future Work

Our current implementation of URANUS supports Java and Scala,
and URANUS can be extended to run other dynamic languages such
as Python [7] and JavaScript [8] in the future, because JVM can inter-
pret these languages. More TEE implementations such as TrustZone
enclave [27, 32] and Sanctum [30] can also be integrated in URANUS
with proper engineering to gain cross-platform compatibility.

Since URANUSs implements an easy-to-verify JIT compiler based
on Hotspot’s interpreter. Spark-URANUS’s performance overhead
on large big-data dataset is not negligible (§6.3), because URANUS’s
JIT does not contain IR optimizations in order to maintain a small
TCB. Nevertheless, Spark-URaNUS is the first SGX work that has
shown to work with typical big-data dataset sizes, and ZooKeeper-
URANUS’s performance overheads is low. In future work, URANUS’s
JIT can incorporate easy-to-verify IR optimizations [52] to improve
efficiency, and type-safety formal verification [74] for correctness.

Our current evaluation focuses on Spark and Zookeeper, and
URANUS can be also used to protect other data-handling applications
(e.g., Storm [1]) and web servers (e.g., Tomcat [2]) in the future with
proper engineering work. For Spark and Zookeeper, the partition
of trusted and untrusted code is already clear in their relevant SGX
systems (e.g., SGX-Spark and SecureKeeper). Inferring a partition
between the trusted code and untrusted code automatically for an
arbitrary application is not the main task of this paper, and static
analysis (e.g., Glamdring [51] and [57]) can work as URANUS’s
orthogonal tools to achieve this task. URANUS’s boundary checking
protocol can completely enforce the trusted and untrusted code
partition at runtime, which can complement unsound assumptions
in Java static data flow analysis (§4.3). Differential privacy [35, 49]
and data shuffling [77] can also be integrated into Spark-UrRanus
to provide better data protections.

7 RELATED WORK

TEE. TEE provides a strong confidentiality and integrity guarantees
for applications with efficiency, as it effectively removes BIOS, hy-
pervisor, and OS out of TCB. There are diverse TEE implementations
such as Intel SGX [38], AMD SEV [42], ARM TrustZone [17], and



IBM SecureBlue [25]. Komodo [32] and Sanctum [30, 64] propose
verifiable TEEs on ARM and RISC-V respectively. Timber-V [73]
and and Ginseng [75] are two recent TEE implementations for mem-
ory efficiency and low-TCB. OpenSGX [39] is an SGX emulator for
research. TLR [58] proposes a .NET framework running on ARM
TrustZone. TLR is not designed for the client-server model, as it
needs a trusted third party to do attestations. Moreover, the secure
OS in TLR must be trusted while Uranus assumes an untrusted
0S8, so Uranus proposes OS-decoupled components to tackle IaGo
attacks and side-channel leakage.

SGX-based Systems. SGX systems can be classified into two cate-
gories according to the code running in SGX. First, the shielding
category (e.g., Haven [21], SCONE [18], Graphene-SGX [67], Pe-
sos [47], and SGX-Kernel [66]) runs all application code in SGX en-
clave. Second, the customizing category (e.g., Opaque [77], VC3 [59],
SecureKeeper [28], S-NFV [61], SGX-Tor [45], Panoply [62], SGX-
BigMatrix [60], SGX-Log [43], MiniBox [50], ShieldStore [46], En-
claveDB [56], SGX-Spark [11], and Ryoan [37]) runs only the code
processing secret plaintext data in SGX. URANUS belongs to the
customizing category, as it annotates and protects sensitive func-
tions. Panoply [62] proposes the abstraction Micron, which provides
POSIX API such as multi-threading and multi-processing to run
parts of C/C++ applications in enclaves. SGX-BigMatrix [60] is a
Python-based secure and oblivious data analytic system for ma-
trix computation. SGXElide [20] loads encrypted code at runtime
to provide confidentiality of enclave code, but it does not tackle
dynamic loaded code as in URANUS. JIT-Guard [33] uses SGX to
protect a JIT compiler, not applications. Several recent systems
(e.g., RustSGX [71], GOTEE [34] and ScriptShield [70]) try to run
Rust, Go and script languages in enclaves. They focus on specific
security challenges in their own languages, including Rust memory
safety, secure GO channels and script code compatibility, respec-
tively. URANUS tackles specific security challenges in Java, including
dynamic code loading and GC. CordaSGX [4] is an industry project
developed for Java applications; currently it evaluates only key
management in enclaves. CordaSGX lacks an integrity attestation
protocol for dynamic loaded code, and URANUS can help.

Civet [16] is a recent system that automatically partitions and
executes Java code. URANUS and Civet are largely complementary
in three major aspects. First, Civet uses static analysis for infer-
ring the trusted code partition and requires manual annotation for
dynamically loaded code (e.g., reflection). UrRANUS can help Civet
reduce its manual annotation efforts for dynamically loaded code,
as URANUS supports loading dynamically loaded code automatically
using loadClass (§4.1). Second, to enforce a safe enclave bound-
ary, Civet uses dynamic flow tracking (Phosphor [23]) to prevent
sensitive data leaking out of the enclave, which has high memory
consumption for data-intensive applications and produces prohib-
ited performance and memory overhead when enabling the check-
ing of implicit control flows [40]. URANUS presents Read-integrity
and WriteConfidentiality (§4.1), an efficient approach to enforce a
safe enclave boundary. Third, Civet’s GC protocol optimizes the
performance of the traditional generational GC by proposing a
three-generation GC to reduce L3 cache misses and EPC page swap-
ping in doing GC. URANUS proposes a region-based GC optimized
for data-handling applications, enabling them to run efficiently with
typical big-data datasets. Moreover, URANUS tackles information

leakage from AEX and OCall, while Civet does not discuss these
leakage cases.

Regional GC. Regional-based JVM GC has been used for big-
data platforms (Yak [55]), or real-time applications(RTS]J [22, 26]).
Uranus’s GC differs from these works in two aspects. First, none
of these GC systems is fully-automated. For instance, Yak requires
developers to provide region hints in Java code. URANUS is fully-
automated by leveraging the enclave boundary. Second, and more
importantly, these GC protocols are all OS-assisted and not suitable
for managing enclave memory.

8 CONCLUSION

We have presented URANUS, an easy-to-use, efficient, and secure
SGX programming system for Java applications. URANUSs explores
a new high-level SGX programming method, which hides the de-
tails of low-level TEE implementations. We identified security and
efficiency challenges during designing URANUS; we presented two
new secure and efficient protocols for dynamic code loading and
GC. Extensive evaluations show that URANUS is practical for data-
handling applications. URANUS source code and evaluation results
are released on https://github.com/hku-systems/uranus.
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9 APPENDIX
A JAVA BYTECODE SIZE

Package Name Dependent Classes Size | Jar Size
LinearRegr (UDF) 1.1KB 1.1KB
Spark + Scala 2.3 MB 17.4 MB
Java RT 5.0 MB 65.0 MB
Total 7.3 MB 82.4 MB

Table 4: Enclave memory usage of Java bytecode.

B SAMPLE JIT CODE

Compiled Code

Verified
Java Bytecode

mov rax, [r14, oxf]

1
Java Source Code 2 mov rcx, [rsp, 0x0]

void udf_process(
/* parameters */) { Javac
i

} Enclave L1: call throw_error

7 “mov rax, [rcx + 0xf]

Figure 9: Uranus’s JIT Compilation.

Figure 9 shows that verified Java bytecode sequences are compiled
into native code. aload_0 and getfield are compiled as instruc-
tion 1 and instruction 2 ~ 7, respectively. Figure 9 shows the native
code with runtime checks (in dash box, line 3 ~ 6).

C URANUS’S MULTI-THREADING AND
EXCEPTION HANDLING

UraNUS supports multi-threading executions and in-enclave syn-
chronization. UrRANUS does not support thread creation within an
enclave, so URANUS is a one-to-one mapping between an enclave
thread and an external thread. URANUS re-implements Java’s lock-
ing mechanism with spinlocks, as these locks do not require going

across enclave boundary. We does not choose to block threads in
locks, as blocking requires help from OS and leaving the enclave,
which makes synchronization bugs easier to exploit [65, 69, 72]. An
EnclaveException is thrown when synchronization (e.g., Lock
and wait) is invoked on non-enclave objects. URANUS’s current
multi-threading support is sufficient for our evaluation.

To handle exceptions, URANUSs adopts a similar design of Hotspot’s
exception capture and dispatch mechanism. Hotspot makes use
of OS signals and dynamic checks to capture exceptions. For ex-
ample, Hotspot does not explicitly check if an object is null for
NullPointerException. Instead, it proceeds such memory ac-
cesses, which incurs segfault for a Hotspot-defined handler to
capture the faults. UraNUs did not adopt this exception capturing
mechanism using OS signals for two reasons. First, SGX cannot
safely handle memory faults in enclaves. Specifically, although cur-
rent SGX hardware can handle some hardware faults (e.g., sigfpe)
by using AEX, the SGX hardware does not provide sufficient in-
formation (e.g., segfault memory address) for memory faults
within an enclave [15]. Therefore, handling memory faults can re-
lay on only the exception information provided by OS, insecure for
URANUS: an attacker outside an enclave can manipulate the excep-
tion information to tamper with the control flow of the trusted Java
code running within the enclave. Second, it may result in informa-
tion leakage, since handling OS signals requires leaving enclaves,
and attackers can infer control flows or plaintext data by observing
if there are exceptions.

UrANUS supports handling memory exceptions in enclaves, in-
cluding NullPointerException, ArrayOut0f BoundException
and ArithmeticException, by using runtime checks. Some of
these checks (e.g., array bound checks) are already in JVM, and
URANUSs adds only NullPointer checks and DividedByZero checks.
When an exception is captured by URANUSs, URANUSs searches for
a handler of the exception in the current function, and searches
in the caller if such one does not exit, recursively. When Uranus
cannot find a corresponding handler for an exception in enclaves,
UraNus throws an EnclaveException outside enclaves with ex-
ception information (e.g., exception location) encrypted. This set
of exception support is sufficient to run the trusted code of the
real-world applications in our evaluation.

D EVALUATED APPLICATION

Framework LoC Modifications
Distributed Data Analytics:

Opaque (encryption mode) 4k (C++), 2.6k (Scala)
VC3 7k (C/C++)

Spark-UraNus

4 annotated functions
and encryption/decryption [250 LoC]

Privacy-preserving ZooKeeper
SecureKeeper 3.4k (C), 154 (Java)
ZooKeeper-URANUS 2 annotated functions

and encryption/decryption [87 LoC]

Table 5: Code modified by URANUS and code rewriting systems.

Table 5 shows the number of LoC added to Spark-Uranus and
ZooKeeper-Uranus. For Spark-Uranus, we add three wrapper
functions, annotate them with JECall, and use these functions to
call Spark UDF in ResultTask.run(), ShuffleMapTask.run()



and SortShuffleWritter of Spark. The first two wrappers call
URraNus’s loadClass API to load and verify UDF’s dependent
classes. Specifically, ResultTask and ShuffleMapTask execute
map and reduce functions, respectively; SortShuffleWritter
merges reduced data before shuffling data. To preserve the execu-
tion integrity of Spark DAG (Direct Acyclic Graph), a sequence of
UDF, we adopt the self-verification protocol in Opaque [77]. The
driver program of Spark-URANUS computes an authentication mes-
sage Auth < Encrypty(id,DAG,P1,...,Pp), where id is the stage
id, P; is the partition id. A task execution function verifies Spark
DAG'’s integrity by checking the authenticity of Auth. On the other
hand, the JECall-annotated functions encrypt processed results
along with the authentication message Auth. Spark-URANUS clients
verify Auth within encrypted results.

ZooKeeper-URANUS annotates two functions which process user
data: FinalRequestProcessor.processRequest() and PrepReq-
uestProcessor.pProcess(). These functions decrypt data received
from client requests and encrypt data after parsing it. ZooKeeper’s
file path names are encrypted using a deterministic encryption
approach, and payloads are encrypted with path names to prevent
attackers replacing a path’s data.

E COMPARISON OF LOC

System Component LoC
JIT compiler 14,411

Garbage Collector 6,600

Code Verifier 1,281

URANUS Exception Handler 310
Native Libraries™ 6,837

Bytecode and Class* 22,494

SGX SDK 171,606

VM 913,951

JVM on SGX-LKL [10] SGX-LKL 38, 870
SGX-MUSL 99,222

Civet’s components 38,481

. Modified JVM 422,199
Civet [16] Graphene-SGX 49, 689
GNU libc* 1,008,773

Table 6: Comparisons of Loc between Uranus, SGX-LKL-JVM and
Civet. Components with * are ported from the codebase of GNU libc
or JVM and are not modified.

Table 6 shows the comparisons of LoC between UraNus, JVM
running on SGX-LKL and Civet. For Civet, we use the LoC reported
in Civet’s paper [16]. For JVM on SGX-LKL, we measured its LoC in
its repository [10]. Overall, UrRaNUS has much fewer LoC than the
other two systems. Moreover, most of URANUS’s LoC is from SGX
SDK, and URANUS’s codebase can be further reduced by removing
some SGX SDK’s components that are not used by URANUS.

F MORE BENCHMARKS OF URANUS’S GC

Except for the stress test of UraNUs’s GC in Figure 7b, both Spark-
Uranus and ZooKeeper-URANUSs take the fast path of URANUS’s
GC because their threads running enclaves conduct computation
individually and do not share objects. To analyze UrRaNUS’s GC
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Figure 10: KV-UrRANUS’s multi-threading scalability.

efficiency in slow path (§4.4), we used the key-value store pro-
gram in Figure 1 and the ChronicleMap [3] library to implement
KV-URraNUS, a secure key-value store server that parses the plain-
text of key-value pairs only in enclaves. To reduce the time cost
of encryption and decryption for every request, we implemented
a plaintext key-value pair cache shared by all threads within the
enclave. Each key and value is 16 byte respectively, and the cache
is 10MB, including key-value pairs and metadata. Outside an en-
clave, the value and key are encrypted together to avoid attackers
replacing a key’s value with another’s. KV-UrRaNuUs takes the same
partition as SecureKeeper and ZooKeeper-URANUs, and thus has
the same security guarantees.

In Figure 10, we ran KV-URANUS with the same ZK-Smoketest [14]
benchmark and same workload as for ZooKeeper-UraNus. We
measured the median processing time on the KV-URANUS server
program (i.e., network round-trip time was excluded in order to pre-
cisely analyze URaNUs GC’s effect) in three settings: KV-URaNUS;
KV-Native, the native and insecure key-value server program; and
KV-Uranus with URANUS’s region-based GC mechanism disabled
(all threads share a global enclave heap). We varied the number of
threads in the key-value server program. When the same number
of threads are run on the server, KV-URANUS’s per-request process-
ing time was 10us ~ 22us, faster than KV-UraNus-disable-region’s.
We found that the total GC time for all threads of KV-Uranus
and KV-UranNus-disable-region were 12.5s and 21.4s, respectively.
Therefore, we believe Uranus’s GC is efficient for diverse applica-
tions.
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