
Position Paper: Challenges Towards Securing Hardware-assisted
Execution Environments

Zhenyu Ning, Fengwei Zhang, Weisong Shi
Department of Computer Science

Wayne State University
Detroit, Michigan, USA, 48098

{zhenyu.ning,fengwei,weisong}@wayne.edu

Weidong Shi
Department of Computer Science

University of Houston
Houston, Texas, USA, 77204

wshi3@uh.edu

ABSTRACT
A Trusted Execution Environment (TEE) provides an isolated envi-
ronment for sensitive workloads. However, the code running in the
TEE may contain vulnerabilities that could be exploited by attackers
and further leveraged to corrupt the TEE. The increasing buggy
code inside the TEE concerns the security of the entire TEE. In this
position paper, we present the challenges towards securing trusted
execution environments and potential mitigation.

ACM Reference format:
Zhenyu Ning, Fengwei Zhang, Weisong Shi and Weidong Shi. 2017. Position
Paper: Challenges Towards Securing Hardware-assisted Execution Environ-
ments. In Proceedings of HASP ’17, Toronto, ON, Canada, June 25, 2017,
8 pages.
https://doi.org/http://dx.doi.org/10.1145/3092627.3092633

1 INTRODUCTION
Recently, Trusted Execution Environments (TEEs) have been widely
adopted in commodity systems for enhancing the security of soft-
ware execution. This approach runs the security sensitive workloads
in a trusted environment and all the running states of the workloads
are guaranteed to be isolated from the potentially infected environ-
ment (e.g., the OS or hypervisor). The examples of TEE include but
not limited to: Intel Software Guard eXtensions (SGX) [6, 27, 46],
AMD Memory Encryption Technologies [21], ARM TrustZone Tech-
nology [7], x86 System Management Mode [30], AMD Platform
Secure Processor [5], and Intel Management Engine (ME) [53]. Al-
though these well-designed and hardware-assisted TEEs provide
secure execution environments, the code running in them could be
buggy, which leads that the "trusted" execution environments (TEEs)
are not trustworthy. While the argument is that the code base of a
workload in a TEE is small enough so that the risk of having vul-
nerable code is low; however, due to the increasing complexity of
the software and proliferation of using TEEs in commodity systems,
the developers keep increasing the size of the code in TEEs (e.g.,
OS running in TrustZone [8], hypervisor is deployed in SMM [12],
Linux containers running in SGX [9]). The large code base of work-
loads in a TEE inevitably creates vulnerabilities that can be exploited

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HASP ’17, June 25, 2017, Toronto, ON, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5266-6/17/06. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3092627.3092633

by attackers. Even the security design and implementation of TEEs
is flawless (e.g., perfect isolation and secure architectural design),
we cannot prevent attacks that are due to the deployed buggy code.
Even worse, the security features of TEEs might help the attackers.
Leveraging these security features, attackers can implement higher
level stealthy rootkits, which is extremely difficult to be detected
by the existing defense tools. For example, the anti-virus tools run-
ning in the OS are not able to detect malicious code in an Enclave
created by Intel SGX because the running memory in the Enclave
is encrypted. SMM-based rootkits [1] have been used by National
Security Agency as stealthy cyber weapons. Additionally, ring -3
rootkits [71] have been demonstrated by using Intel ME. Therefore,
running the untrusted code in trusted execution environments raises a
big security concern. Moreover, this can generate a series of research
challenges since existing defense mechanisms can not be applied
directly. The main objective of this paper is to present this problem,
discuss the research challenges, and provide potential directions to
address them.

Problem Statement: Trusted Execution Environments have been
introduced in different platforms for securing software execution,
but achieving security not only depends on technologies of execution
enthronements themselves (e.g., small TCB, strong isolation), but
also relies on the executed code. Current state-of-the-art trusted
execution environments research lacks of frameworks to verify the
executed code, defenses within the trusted environments, methods
detecting compromised TEEs, and mitigation plans for TEE-attack
responses.

We consider the following Research Challenges (RCs) for further
securing trusted execution environments.

• RC1: Hunting Bugs in TEE’s code.
The software running in a TEE can contain text-book

vulnerabilities such as buffer overflows since this software
can be written by careless programmers or third-party de-
velopers. If we have the source code of the software (e.g.,
SGX applications), we might be able to use existing static
analysis or bug checking tools to identify vulnerabilities
and minimize the number of bugs in the software. That
means, we need to modify these tools to make it work for
particular environment-specific applications (e.g., SMM or
TrustZone code). Additionally, in some cases, we might not
have the source code, instead of having a binary image of
a TEE (e.g., SMM code). Hunting bugs in binary images
is very difficult and time consuming. Furthermore, other
TEE’s image such as ME’s code might not be available due
to the hardware protections from vendors [66].

• RC2: Protecting Mechanisms within TEEs.

https://doi.org/http://dx.doi.org/10.1145/3092627.3092633
https://doi.org/http://dx.doi.org/10.1145/3092627.3092633

HASP ’17, June 25, 2017, Toronto, ON, Canada Z. Ning et al.

It is impractical for software to have perfect code with-
out any bug, and analysis systems (e.g., RC1) cannot guar-
antee that they identify all vulnerabilities. Therefore, there
is a need for us develop further defense mechanisms within
TEEs. In the normal environment (e.g., OS), we have a
series of defense mechanisms such as Data Execution Pre-
vention (DEP) and Address Space Layout Randomization
(ASLR). However, these defense mechanisms are missing
in the current TEEs, on the contrary, we consider these envi-
ronments are more secure than the OS environment. TEEs
are normally have dedicated resources, limited software
libraries, and they are hardware-specific, but recent efforts
show that more defense mechanisms have been adding into
TEEs (ASLR in Intel SGX [60]).

• RC3: Detecting a Compromised TEE.
As mentioned, a TEE might be compromised due to its

text-book vulnerabilities or other attacks. However, detect-
ing a compromised TEE is challenging because the memory
content of the TEE is either encrypted or inaccessible from
outside. For example, Intel SGX encrypts its code and data
in enclaves; SMM and TrustZone code is not accessible
by the system software (e.g., OS). On one hand, because
of these "protection" features, TEEs can achieve a strong
security guarantee. On the other hand, after compromis-
ing a TEE, attackers can implement undetectable stealthy
rootkits (e.g., SMM-based keyloggers [24]) in it. While
providing a TEE as a strong isolated environment, having
approaches to detect a compromised TEE is a challenging
task.

• RC4: Patching and Rejuvenation of TEEs.
After detecting a compromised TEE, it is critical to

mitigate the attack and restore to a healthy state in the
TEE. However, if the TEE is compromised, it is likely that
the system software is malicious, too. Thus the patching
process running in the system software cannot be trusted.
Moreover, the TEEs normally have a high-privilege and is
hardware-specific. It is challenging to develop methods to
quickly restore the compromised TEE from a clean copy
and patch the vulnerable images.

The rest of the paper organized as follows. Section 2 explains
explain different trusted execution environments. Section 3 surveys
existing TEE-based systems and attacks against each TEE. Section 4
presents the challenges towards securing trusted execution environ-
ments and their potential solutions. Lastly, Section 5 concludes the
position paper with our visions.

2 BACKGROUND
In this section, we explain different Trusted Execution Environments.
We category them into three types: 1) Ring 3 TEEs implemented
via memory encryption; 2) ring -2 TEEs implemented via memory
restriction; and 3) ring -3 TEEs implemented via co-processors.
Next, we describe these three types of TEEs using the real world
technologies.

2.1 Ring 3 TEEs via Memory Encryption
2.1.1 Intel Software Guard Extensions. In 2013, Intel presented

three introduction papers on Software Guard eXtensions (SGX) [6,
27, 46]. Intel SGX is a set of instructions and mechanisms for mem-
ory accesses added to Intel architecture processors. These extensions
allow an application to instantiate a protected container, referred
to as an enclave. An enclave could be used as a TEE, which pro-
vides confidentiality and integrity even without trusting the BIOS,
firmware, hypervisors, and OSes. Some of the researchers consider
SGX as a new generation of TXT [20, 54]. Intel SGX is the latest
iteration for trustworthy computing, and all future Intel processors
will have this feature and use it as a TEE for addressing security
problems. However, researchers raised security concerns about it.
Recently, Costan and Devadas [20] published an extensive study
on SGX. They analyzed the security features of SGX and raised
concerns such as cache timing attacks and software side-channel
attacks. Additionally, SGX tutorial slides from ISCA 2015 [31]
mentioned that SGX does not protect against software side-channel
attacks including using performance counters. Jain et al. [33] devel-
oped OpenSGX, an open-source platform that emulates Intel SGX
hardware components at the instruction level by modifying QEMU.

2.1.2 AMD Memory Encryption Technologies. Recently, AMD
introduced two new x86 features in ISCA 2016 and USENIX Secu-
rity 2016 tutorials [39, 40]. One feature is called Secure Memory
Encryption (SME), which defines a new approach for main mem-
ory encryption. The other is called Secure Encrypted Virtualization
(SEV), which integrates with existing AMD-V virtualization archi-
tecture to support encrypted virtual machines. These features provide
the ability to selectively encrypt some or all of system memory as
well as the ability to run encrypted virtual machines, isolated from
the hypervisor. AMD SME is a competitive technology with Intel
SGX, and they provide ring 3 TEEs via memory encryption. Besides
ring 3 TEEs, AMD memory encryption technologies can provide
other system-level TEEs (e.g., hypervisor-level, ring -1). The SEV
technology can encrypt a virtual machine, and the OS running in
the VM can be a TEE. AMD SME and SEV are upcoming coming
technologies that will be supported in near future AMD chipsets.

2.2 Ring -2 TEEs via Memory Restriction
x86 System Management Mode and ARM TrustZone Technology
create TEEs via memory restriction. Specifically, they use hard-
ware (e.g., memory management unit) to setup access permissions
of memory regions for the execution space, so the normal system
software cannot access the execution space. Note that TEEs via
memory restriction share the CPU with the normal system software
in a time-slice fashion.

2.2.1 X86 SystemManagementMode. System Management Mode
(SMM) [29] is a mode of execution similar to Real and Protected
modes available on x86 platforms (Intel started to use SMM in its
Pentium processors since the early 90s). It provides a hardware-
assisted isolated execution environment for implementing platform-
specific system control functions such as power management. It is
initialized by the Basic Input/Output System (BIOS). SMM is trig-
gered by asserting the System Management Interrupt (SMI) pin on
the CPU. This pin can be asserted in a variety of ways, which include

Position Paper: Challenges Towards Securing Hardware-assisted Execution Environments HASP ’17, June 25, 2017, Toronto, ON, Canada

Normal World Secure World

Non-secure
EL0

Non-secure
EL1

Secure
EL0

Secure
EL1

Secure
EL3

Trigger EL3 Exception
Exception Return

Figure 1: Processor Modes with ARM TrustZone

writing to a hardware port or generating Message Signaled Interrupts
with a PCI device. Next, the CPU saves its state to a special region
of memory called System Management RAM (SMRAM). Then, it
atomically executes the SMI handler stored in SMRAM. SMRAM
cannot be addressed by the other modes of execution. The requests
for addresses in SMRAM are instead forwarded to video memory by
default. This caveat, therefore, allows SMRAM to be used as a se-
cure storage. The SMI handler is loaded into SMRAM by the BIOS
at boot time. The SMI handler has unrestricted access to the physical
address space and can run privileged instructions (For this reason,
SMM is often referred to as ring -2.) The RSM instruction forces the
CPU to exit from SMM and resume execution in the previous mode.

2.2.2 ARMTrustZone Technology. ARM TrustZone technology [7]
is a hardware feature that creates an isolated execution environment
since ARMv6 around 2002 [14]. Similar to other hardware isolation
technologies, it provides two environments or worlds. The Trust
Execution Environment (TEE) is called the secure world, and the
Rich Execution Environment (REE) is called the normal world. To
ensure the complete isolation between the secure world and the
normal world, TrustZone provides security extensions for hardware
components including CPU, memory, and peripherals.

The CPU on a TrustZone-enabled ARM platform has two security
modes: Secure mode and normal mode. Figure 1 shows the processor
modes in a TrustZone-enabled ARM platform. Each processor mode
has its own memory access region and privilege. The code running
in the normal mode cannot access the memory in the secure mode,
while the program executed in the secure world can access the
memory in normal mode. The secure and normal modes can be
identified by reading the NS bit in the Secure Configuration Register
(SCR), which can only be modified in the secure mode. As shown in
Figure 1, ARM involves different Exception Levels (EL) to indicate
different privileges in ARMv8 architecture, and lower EL owns
lower privilege. The EL3, which is the highest EL, serves as a
gatekeeper managing the switches between the normal mode and
the secure mode. The normal mode can trigger an EL3 exception
by calling a Secure Monitor Call (SMC) instruction or triggering
secure interrupts, to switch to the secure mode, and the secure mode
uses the Exception Return (ERET) instruction to switch back to the
normal mode.

TrustZone uses Memory Management Unit mechanism to support
virtual memory address spaces in both the secure and normal worlds.
The same virtual address space in the two worlds is mapped to
different physical regions. There are two types of hardware interrupts:
Interrupt Request (IRQ) and Fast Interrupt Request (FIQ). Both of
them can be configured as secure interrupt by configuring the IRQ

Internal Bus

ME
Processor

Crypto
Engine

DMA
Engine

HECI
Engine

ROM Internal
SRAM

Interrupt
Controller Timer Clink I/O

Figure 2: Architecture of Intel ME

bit and FIQ bit in SCR, respectively. The secure interrupt is directly
routed to the secure EL3 ignoring the configuration of the normal
world. ARM recommend that the IRQ is used as the interrupt source
of the normal world and the FIQ is used as secure interrupt.

2.3 Ring -3 TEEs via Co-Processors
2.3.1 Intel Management Engine. The Intel Management Engine

(ME) is a micro-computer embedded inside of all recent Intel proces-
sors, and it exists on Intel products including servers, workstations,
desktops, tablets, and smart phones [53]. Intel introduced ME as
an embedded processor in 2007. At that time, its main function
was to support Intel Active Management Technology (AMT), and
Intel AMT is the first application running in the ME. Recently, Intel
started to use ME as a Trusted Execution Environmental (TEE) for
executing security-sensitive applications. According to the latest ME
book [53] written by an Intel Architect working on ME, a few secu-
rity applications have been or will be implemented in ME including
enhanced privacy identification, protected audio video path, identity
protection technology, and boot guard.

Figure 2 shows the hardware architecture of ME. From the figure
we can see that ME is like a computer; it contains a processor,
cryptography engine, Direct Memory Access (DMA) engine, Host-
Embedded Communication Interface (HECI) engine, Read-Only
Memory (ROM), internal Static Random-Access Memory (SRAM),
a timer, and other I/O devices. ME executes the instructions on the
processor, and it has code and data caches to reduce the number of
accesses to the internal SRAM. The internal SRAM is used to store
the firmware code and runtime data. Besides the internal SRAM, ME
also uses some Dynamic Random-Access Memory (DRAM) from
the main system’s memory (i.e., host memory). This DRAM serves a
role as the disk; the memory pages of code/data that are not currently
used by ME processor will be evicted from SRAM and swapped out
to DRAM in the host memory. The region of DRAM is reserved by
the BIOS when the system boots. This DRAM is dedicated for ME
use and the operating system cannot access it. However, the design
of ME does not trust the BIOS and it assumes the host can access
the reserved DRAM region.

2.3.2 AMD Platform Secure Processor. Although ME is for Intel
processors, we can find similar technologies on AMD platforms.
AMD Secure Processor [5] (also called Platform Security Processor
or PSP) is a dedicated processor embedded inside of the main AMD
CPU. It works with ARM TrustZone technology and ring -2 Trusted
Execution Environments (TEE) to enable running third-party trusted
applications. AMD Secure Processor is a hardware-based technology
which enables secure boot up from BIOS level into the TEE. Trusted

HASP ’17, June 25, 2017, Toronto, ON, Canada Z. Ning et al.

third-party applications are able to leverage industry-standard APIs
to take advantage of the TEE’s secure execution environment. An-
other example is System Management Unit (SMU) [45]. The SMU
is a subcomponent of the Northbridge that is responsible for a variety
of system and power management tasks during boot and runtime.
The SMU contains a processor to assist [4]. Since AMD integrated
Northbridge into the CPU, the SMU processor is an embedded pro-
cessor inside of the CPU, which is same as Intel ME.

3 TEE-BASED SYSTEMS
TEE-based solutions are introduced in a variety of modern systems
including cloud platforms (servers and clusters), endpoints (desktops
and mobile devices), and edge nodes [63] (routers and gateways). In
this section, we survey the applications and systems that leverage
TEEs in ARM and x86 architectures.

3.1 SGX-based Systems and Attacks
Previous SGX-based systems such as Haven [13] ported system
libraries and a library OS into an SGX enclave, which forms a
large TCB. Arnautov et al. [9] proposed SCONE, a secure container
mechanism for Docker that uses SGX to protect container processes
from external attacks. Hunt et al. [28] developed Ryoan, an SGX-
based distributed sandbox that enables users to keep their data secret
in data-processing services. Schuster et al. [58] developed VC3, an
SGX-based trusted execution environment to execute MapReduce
computation in clouds. Karande et al. [41] secures the system logs
with SGX. Shih et al. [64] leverages SGX to isolate the states of
Network Function Virtualization (NFV) applications.

Schwarz et al. [59] attacks the SGX enclave via cache side chan-
nels, and demonstrates that the private key in the RSA implemen-
tation of mbedTLS can be extracted within five minutes. Other than
RSA decryption, Ferdinand [16] also demonstrates a more efficient
attack on the human genome indexing via SGX cache-based infor-
mation leakage. AsyncShock [74] shows that the thread schedul-
ing can be controlled by the attack, and the thread manipulation
can be further used to exploit synchronization bugs inside SGX
enclaves. SGX-Shield [60] provides secure address space layout
randomization support for SGX programs. T-SGX [65] fight against
the controlled-channel attack and ensures that the page fault will not
be leaked.

3.2 SMM-based Systems
In recent years, SMM-based research has appeared in the security
literature. For instance, SMM can be used to check the integrity of
higher level software (e.g., hypervisor and OS). HyperGuard [55],
HyperCheck [82], and HyperSentry [11] are integrity monitoring
systems based on SMM. Moreover, National Science Foundation
funded a project about using SMM for runtime Integrity checking
last year [2]. SICE [12] presents a trusted execution environment for
executing sensitive workloads via SMM on AMD platforms. SPEC-
TRE [79] uses SMM to introspect the live memory of a system for
malware detection. Another use of SMM is to reliably acquire system
physical memory for forensic analysis [51, 73]. IOCheck [77, 81]
secures the configurations and firmware of I/O devices at runtime.
HRA [36] uses SMM for secure resource accounting in the cloud
environment even when the hypervisor is compromised. MalT [78]

progresses towards stealthy debugging by leveraging SMM to trans-
parently debug software on bare metal. TrustLogin [80] protects
user credentials especially passwords from theft in an untrusted
environment. HOPS [42] uses SMM to create low-artifact process
introspection techniques. As we can see that an array of SMM-based
systems have been presented, and there is a need for us to develop
novel techniques to secure the code of these systems.

Modern computers lock the SMRAM in the BIOS so that SM-
RAM is inaccessible from any other CPU modes after booting. Wo-
jtczuk and Rutkowska demonstrated bypassing the SMRAM lock
through memory reclaiming [55] or cache poisoning [76]. The mem-
ory reclaiming attack can be addressed by locking the remapping
registers and Top of Low Usable DRAM (TOLUD) register. The
cache poisoning attack forces the CPU to execute instructions from
the cache instead of SMRAM by manipulating the Memory Type
Range Register (MTRR). Duflot also independently discovered this
architectural vulnerability [23], but it has been fixed by Intel adding
SMRR [29]. Furthermore, Duflot et al. [22] listed some design is-
sues of SMM, but they can be fixed by correct configurations in
BIOS and careful implementation of the SMI handler. Wojtczuk and
Kallenberg [75] presented an SMM attack by manipulating UEFI
boot script that allows attackers to bypass the SMM lock and modify
the SMI handler with ring 0 privilege. The UEFI boot script is a data
structure interpreted by UEFI firmware during S3 resume. When
the boot script executes, system registers like BIOS_NTL (SPI flash
write protection) or TSEG (SMM protection from DMA) are not
set so that attackers can force an S3 sleep to take control of SMM.
Butterworth et al. [18] demonstrated a buffer overflow vulnerability
in the BIOS updating process in SMM, but this is not an architectural
vulnerability and is specific to that particular BIOS version.

3.3 TrustZone-based Systems and Attacks
Mobile devices have been increased dramatically in past few years,
security became one of the major concerns of the users. ARM in-
troduced TrustZone Technology and researchers used it to build
an array of systems for enhancing the security of mobile devices.
TrustDump [69] provides reliable memory acquisition by leveraging
TrustZone. It uses a non-maskable secure interrupt to switch to the
trust domain and introspects the memory of normal domain from
trust domain. TZ-RKP [10] runs in the secure world and protects
the normal OS kernel by event-driven monitoring. Sprobes [25] pro-
vides an instrumentation mechanism to introspect the normal OS
from the secure world and guarantees the kernel code integrity. Se-
CReT [35] is a framework that enables a secure communication chan-
nel between the normal world and the secure world. TrustICE [70]
provides a trusted and isolated computing environment for execut-
ing sensitive workloads. TrustOPT [68] presents a secure one-time
password tokens by using ARM TrustZone technology on mobile
devices. AdAttester [43] proposes a verifiable mobile ad framework
that secures online mobile advertisement attestation using Trust-
Zone. [15] suggest to use TrustZone to regulate the peripherals of
devices (e.g., cameras) in restricted spaces. fTPM [50] is a firmware
version of TPM 2.0 that implemented in ARM TrustZone. Private-
Zone [34] uses TrustZone to create a private execution environment
that is isolated from both the Rich Execution Environment and TEE.

Position Paper: Challenges Towards Securing Hardware-assisted Execution Environments HASP ’17, June 25, 2017, Toronto, ON, Canada

C-FLAT [3] fights against control-flow hijacking via runtime control-
flow verification in TrustZone.

Qualcomm’s use Secure Channel Manager (SCM) to interact
with Qualcomm’s Secure Execution Environment (QSEE) via SMC
instruction, and [52] leverages this interface and exploits an integer
overflow vulnerability to write arbitrary secure memory. Next, they
rewrite the SMC handler table with this approach and gain arbitrary
TrustZone code execution. [62] use ret2user to gain root privilege,
and also a vulnerability of unchecked bound to write one byte to
almost any physical address, which finally leads to arbitrary payloads
to be executed in TEE. ARMageddon [44] uses Prime+Probe cache
attack to leak the information from secure world to normal world,
and makes monitoring TrustZone code execution in normal world
feasible.

3.4 ME-based Systems and Attacks
Intel uses ME as a TEE to execute security sensitive operations [53].
In 2009, Tereshkin and Wojtczuk [71] demonstrated that they can im-
plement ring -3 rootkits in ME by injecting the malicious code into
the Intel Active Management Technology (AMT). DAGGER [67]
bypasses the ME isolation using a similar technique in [71], but
it hooks the ME firmware function memset because it is invoked
more often. Skochinsky [66] discovers that the ME firmware on the
SPI flash uses Huffman encoding to prevent reverse engineering for
implementing rootkits. Recently, Intel disclosed an AMT vulnera-
bility in ME (CVE-2017-5689 or INTEL-SA-00075 [32]). This bug
allows attackers to remotely gain administrative control over Intel
machines without entering a password [49], and this remote hacking
flaw resides in Intel chips for seven years [26].

4 CHALLENGES AND DIRECTIONS
In this section, we detail the challenges for securing the hardware
trusted execution environments. Moreover, we provide directions
that might be able to address these challenges.

4.1 Hunting Bugs in TEE’s code
The software running in a TEE might contain text-book vulnerabil-
ities that can be easily exploited by attackers. Kallenberg and Ko-
vah [37] found that "millions of BIOSes" are easy to be compromised
because the known vulnerabilities of SMM code are never patched
in the BIOS. Butterworth et al. [18] demonstrated a buffer overflow
vulnerability in the BIOS updating process in SMM. Di [62] found
vulnerabilities that are able to execute arbitrarily code in TrustZone
code. Additionally, an array of SGX-based systems have been devel-
oped [9, 13, 28, 41, 58, 64], these SGX-based applications inevitably
contain vulnerabilities due to their large code bases. There is a need
for us to develop effective and efficient frameworks to find the vul-
nerabilities in the code/images running in the TEEs and reduce the
chance of having vulnerable codes before attackers exploit it.

However, existing solutions of bug hunting can not be applied
directly because the TEE’s code requires particular environments
(e.g., SMM and TrustZone) for execution. If we have the source
code of the TEE software (e.g., SGX applications), we might be
able to modify existing static analysis or bug checking tools to
identity bugs and minimize the number of vulnerabilities. However,
if we do not have the source code but with a TEE’s image, hunting

bugs in binary images is very time consuming and require heavy
reverse-engineering efforts. Furthermore, other TEE’s image such
ME code might not be obtained due to hardware vendor’s protection
mechanism [66].

Therefore, there is a need to develop a framework to check the
TEE’s code before it runs in the high-privileged, isolated, and trusted
environment. For instance, we can use symbolic execution (e.g., S2E
platform) to analyze the SMI handler code and TrustZone firmware.
Symbolic execution can help explore the execution paths of SMI
handlers and TrustZone images, and discover the paths that lead
to known exploitation. Since S2E can directly work on binaries
on both x86 and ARM architectures, it can analyze commercial
SMI handlers and TrustZone code without knowing the source code.
Note that Bazhaniuk et al [47]. proposed using the similar way
for analyzing SMI handler for the BIOS security. However, they
only target on detecting the out-call functions (i.e., calling functions
outside of the protected memory, SMRAM, that is controlled by
attackers) in the SMI handler [56]. Moreover, not only targeting
on SMI handler code on x86, we can apply the approach to the
TrustZone firmware on ARM architecture. Furthermore, we can
modify S2E plugins to work with other vulnerabilities such as buffer
overflows and poisonous pointers [48] to help us validate the inputs
from the untrusted environment.

4.2 Protecting Mechanisms within TEEs
It is impractical to have perfect code running in the TEEs, and the
attackers will eventually find a vulnerability and exploit it at some
point. However, existing TEEs lack of defense mechanisms in the
execution environments. For instance, the code running in SMM
shares a single address space and paging is disabled [29]. Appli-
cations running in the SGX enclaves do not have basic protection
mechanisms such as ASLR. In the normal computing environment
(e.g., OS), we have an array of system-level defense mechanisms
such as non-executable stack, data execution prevention, and address
space randomization. However, these defense mechanisms are miss-
ing in the TEEs. Since we consider these environments are more
secure than the normal OS, these basic system defense mechanisms
are needed for securing the environment.

One of the defenses is to diversify TEE’s environment. This in-
creases the difficulty and cost for attackers to successfully exploit
the bugs. With this approach, we can create dynamic TEEs. Ac-
cording to the Intel manual [29], system management mode has
a very simple addressing mechanism. It disables the paging and
works directly on physical addresses. When the system boots up, the
BIOS initializes SMM and loads the SMI handler code to a physical
memory address at SMM_Base + 0x8000. SMM_Base represents
the beginning of the SMRAM. Typically, the BIOS vendors set the
SMM_base as 0xa0000 and this memory region overlaps with the
VGA memory. We can randomize the base address of SMRAM for
every boot or reboot by modifying the BIOS code. Specifically, we
can randomly setup the SMRAM address in the BIOS for every
reset signal. Note that the reset signal can be caused by a variety
of power state changes including cold boot, warm boot, wake up
from S3 (i.e., suspend to RAM), and so on. By randomizing the base
address of SMRAM, it increases the difficulty for attackers to dump
the SMRAM for exploitation or reverse engineering. Additionally,

HASP ’17, June 25, 2017, Toronto, ON, Canada Z. Ning et al.

we can randomize the saved states in SMRAM, instead of at the fix
location, SMM_base + 0xFC00. Then, SMM attacks such as [48]
would not work since it requires to overwrite the SMM_base register
at the save states area.

The execution environment of TrustZone is more complex than
that of SMM. TrustZone has its own page tables and operates with
memory management unit enabled. To diversify the execution en-
vironment of TrustZone, we can first randomize the location of the
TrustZone firmware code. Within the TrustZone, it can support and
run a Secure OS. We can implement the Address Space Layout
Randomize (ASLR) technique on the Secure OS of the ARM trusted
firmware. This addition can reduce the success rate of exploitation
on attacks that leverage buffer overflows or return-oriented program-
ming [61]. We may start this research direction with Coreboot [19]
for the TEE like SMM, and Trusted Firmware [8] for the TrustZone.

Additionally, the randomization is needed in ring 3 TEEs (e.g.,
Intel SGX) as well. SGX-Shield [60] provides secure address space
layout randomization support for SGX programs. Moreover, we can
periodically or randomly instantiate an SGX enclave, and move the
security sensitive workloads from one enclave to another. In this
case, the associated states of the enclave are on the move so attacks
depending on static information (e.g., memory addresses) might not
work anymore.

4.3 Detecting a Compromised TEE
In practice, a TEE might be compromised due to the vulnerabili-
ties in the code. However, detecting a compromised TEE is a very
challenging problem because TEEs run at a high-privilege memory
space that inaccessible from the system software (ring -2 TEEs) or
use encrypted memory that their contents are mysterious without the
key (ring 3 TEEs). For example, Intel SGX encrypts its code and
data in enclaves; SMM and TrustZone code is not accessible by the
system software (e.g., OS). Because of these "security protection"
features, a TEE can achieve a strong security guarantee. However,
after compromising a TEE, attackers can implement undetectable
advanced rootkits in it.

Embleton et al. [24] use SMM to implement a chipset-level key-
logger and a network backdoor capable of directly interacting with
the network card to send logged keystrokes to a remote machine via
network packets. Schiffman and Kaplana [57] further demonstrated
that with USB keyboards instead of PS/2 ones. Other SMM-based
attacks focus on achieving stealthy rootkits [1, 17]. For instance, the
National Security Agency (NSA) uses SMM to build an array of
rootkits including DEITYBOUNCE for Dell and IRONCHEF for HP
Proliant servers [1]. Several attacks [67, 71] have been demonstrated
using ME to implement advanced stealthy rootkits. Tereshkin and
Wojtczuk [71] injects malicious code into the Intel Active Manage-
ment Technology (AMT) to implement ME ring -3 rootkits. DAG-
GER [67] is a DMA-based keylogger implemented in ME, and it
captures keystrokes very early in the platform boot process, which
enables DAGGER to capture harddisk encryption passwords. While
proving a TEE as a strong isolated computing environment, having
a method to detect a compromised TEE is a challenging task.

One potential approach to detect a compromised TEE is to use the
performance implications, timing, or other side-channel information.
For instance, we might be able to detect compromised SMM or

TrustZone via the timing side-channel information. The intuition is
that ring -2 TEEs share the main CPU with the system software in a
time-slice fashion. This approach would not work for ring -3 TEEs
since they run on separated processors, not the main CPU. Normally,
SMM or TrustZone is invoked very few times or the execution times
of them have some specific patterns for normal system operations.
If we see a system that dramatically changes its execution pattern
(staying in SMM or TrustZone too long for sending out the sensitive
memory pages via network packets) or invokes ring -2 TEEs very fre-
quently (e.g., SMM-based keyloggers [24] generating SMIs for each
keystroke), the system is more likely compromised. To detect the
SMI invocation and its execution time, [72, 82] have implemented a
tool called SMI Detector. The idea behind this tool is that the SMI
invocations suspend all cores in the CPU, the SMI Detector can
measure the missing time. A similar tool can work on TrustZone
since it also shares the CPU in a time-slice fashion. Note that using
the side-channels based approach for detecting compromised TEEs
might not work for all the cases (e.g., timing side channel does
not work for ring -3 TEEs). Other side channels including power
consumption, cache access patterns, network traffic patterns can be
considered for other cases.

4.4 Patching and Rejuvenation of TEEs
This subsection talks about the challenges on how to mitigate at-
tackers from a compromised TEE and patch it to a good state. One
simple approach is to use the system software to update the compro-
mised TEE. However, if the TEE is compromised, it is likely that the
system software is malicious, too. Thus the patching process running
in the system software cannot be trusted. To ensure the restoring
process is not tampered, we have to rely on a Trust Base. However,
having such as a Trust Base is a challenging task.

For ring -2 TEEs, we might be able to use firmware as the Trust
Base. This updating process works for some real world attacks such
as Incursions (CERT VU#631788) [37]. In this attack, adversaries
are able to bypass the isolation and get into SMM to run arbitrary
code, the BIOS firmware is still protected by the Write Enable bit
in the BIOS Control register (BIOS_CNTL) [29]. As long as the attack-
ers cannot flash the BIOS firmware, the system can perform a quick
restart to destruct the SMRAM and re-initialize the compromised
SMI handler. In this case, the update process of the compromised
TEE from the firmware works. However, it is possible that attack-
ers can bypass the write protection and reflash the firmware. For
instance, Wojtczuk and Kallenberg [75] presented an SMM attack
by manipulating UEFI boot script that allows attackers to bypass
the BIOS write protection lock and modify the SMI handler with
ring 0 privilege (CERT VU#976132). Moreover, Speed Racer [38]
described a race condition that allows an attacker to subvert the
firmware flash protection mechanism. In these attacking scenarios,
how can we restore the SMI handler to a clean state if the firmware
can not be trusted? If we assume the BIOS, SMM, and system soft-
ware are all compromised, we need to rely on a component that
does not have them in the Trusted Computing Base (TCB). One
potential solution is the ring -3 TEEs such as Intel ME and AMD
PSP. However, how to update ring -3 TEEs is another challenging
task.

Position Paper: Challenges Towards Securing Hardware-assisted Execution Environments HASP ’17, June 25, 2017, Toronto, ON, Canada

5 CONCLUSIONS
Existing trusted execution environments focus on reducing TCB and
achieving strong isolation by leveraging hardware support. However,
other threats such as buggy code running in a TEE raise security
concerns. The goal of this position paper is to draw the attention to
the system security community about the challenges for achieving
a more secure execution environment. We also provide our visions
and potential directions for addressing the challenges.

6 ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their insightful
comments that improved the paper. This work is partly supported by
the National Science Foundation grant DGE-1433817 and the North
Atlantic Treaty Organization grant G110696. Opinions, findings,
conclusions and recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
US Government.

REFERENCES
[1] 2014. NSA’s ANT Division Catalog of Exploits for Nearly Every Major Soft-

ware/Hardware/Firmware. http://Leaksource.wordpress.com. (2014).
[2] 2015. TWC: Small: System Infrastructure for SMM-based Runtime Integrity Mea-

surement. https://nsf.gov/awardsearch/showAward?AWD_ID=1528185. (August
2015).

[3] Tigist Abera, N Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew
Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. 2016. C-FLAT: Control-flow
attestation for embedded systems software. In Proceedings of the 23rd ACM
SIGSAC Conference on Computer and Communications Security (CCS’16).

[4] Advanced Micro Devices, Inc. 2015. BIOS and Kernel Developer’s Guide
(BKDG) for AMD Family 16h Models 30h-3Fh Processors. http://support.amd.
com/TechDocs/52740_16h_Models_30h-3Fh_BKDG.pdf. (March 2015).

[5] AMD TATS BIOS Development Group. 2013. AMD Security and Server Inno-
vation. http://www.uefi.org/sites/default/files/resources/UEFI_PlugFest_AMD_
Security_and_Server_innovation_AMD_March_2013.pdf. (2013).

[6] Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. 2013. Inno-
vative Technology for CPU Based Attestation and Sealing. In Proceedings of the
2nd Workshop on Hardware and Architectural Support for Security and Privacy
(HASP’13).

[7] ARM. 2009. ARM Security Technology - Building a Secure System using
TrustZone Technology. http://infocenter.arm.com/help/topic/com.arm.doc.
prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.
pdf. (2009).

[8] ARM. 2016. ARM Trusted Firmware. https://github.com/ARM-software/
arm-trusted-firmware. (2016).

[9] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Daniel O’Keeffe, Mark L
Stillwell, David Goltzsche, Dave Eyers, Rudiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In
Proceedings of The 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’16).

[10] Ahmed M. Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision Across Worlds: Real-time
Kernel Protection from the ARM TrustZone Secure World. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security
(CCS’14).

[11] Ahmed M. Azab, Peng Ning, Zhi Wang, Xuxian Jiang, Xiaolan Zhang, and
Nathan C. Skalsky. 2010. HyperSentry: Enabling Stealthy In-Context Measure-
ment of Hypervisor Integrity. In Proceedings of the 17th ACM Conference on
Computer and Communications Security (CCS’10). 12.

[12] Ahmed M. Azab, Peng Ning, and Xiaolan Zhang. 2011. SICE: A Hardware-
level Strongly Isolated Computing Environment for x86 Multi-core Platforms.
In Proceedings of the 18th ACM Conference on Computer and Communications
Security (CCS’11). 14.

[13] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014. Shielding Applica-
tions from an Untrusted Cloud with Haven. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI’14).

[14] David Brash. 2002. ARM White Paper, The ARM Architecture Version 6
(ARMv6). http://lars.nocrew.org/computers/processors/ARM/ARMv6.pdf. (Janu-
ary 2002).

[15] Ferdinand Brasser, Daeyoung Kim, Christopher Liebchen, Vinod Ganapathy,
Liviu Iftode, and Ahmad-Reza Sadeghi. 2016. Regulating ARM TrustZone

Devices in Restricted Spaces. In Proceedings of The 14th ACM International
Conference on Mobile Systems, Applications and Services (MobiSys’16).

[16] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. (2017). http://arxiv.org/abs/1702.07521

[17] BSDaemon, coideloko, and D0nAnd0n. 2008. System Management Mode Hack:
Using SMM for ‘Other Purposes’. Phrack Magazine (2008). Issue 65.

[18] John Butterworth, Corey Kallenberg, and Xeno Kovah. 2013. BIOS Chronomancy:
Fixing the Core Root of Trust for Measurement. In Proceedings of the 20th ACM
Conference on Computer and Communications Security (CCS’13).

[19] Coreboot. 2011. Open-Source BIOS. http://www.coreboot.org/. (2011).
[20] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. https://eprint.

iacr.org/2016/086.pdf. (2016).
[21] Jeremy Powell David Kaplan and Tom Woller. 2016. AMD Memory Encryption,

White Paper. http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/
12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf. (April 2016).

[22] Loic Duflot, Olivier Levillain, Benjamin Morin, and Olivier Grumelard. System
Management Mode Design and Security Issues. http://www.ssi.gouv.fr/IMG/pdf/
IT_Defense_2010_final.pdf. (????).

[23] Loic Duflot, Olivier Levillain, Benjamin Morin, and Olivier Grumelard. 2009. Get-
ting into the SMRAM: SMM Reloaded, In Proceedings of the 12th CanSecWest
Conference (CanSecWest’09). CanSecWest, Vancouver, Canada (2009).

[24] Shawn Embleton, Sherri Sparks, and Cliff Zou. 2008. SMM rootkits: A New Breed
of OS Independent Malware. In Proceedings of the 4th International Conference
on Security and Privacy in Communication Networks (SecureComm’08).

[25] Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. 2014. SPROBES: En-
forcing Kernel Code Integrity on the TrustZone Architecture. In Proceedings of
The 3rd IEEE Mobile Security Technologies Workshop (MoST).

[26] Dan Goodin. 2017. The hijacking flaw that lurked in Intel chips is
worse than anyone thought. https://arstechnica.com/security/2017/05/
the-hijacking-flaw-that-lurked-in-intel-chips-is-worse-than-anyone-thought/.
(May 2017). Accessed 05/10/2017.

[27] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Carlos Rozas, Vinay Phe-
gade, and Juan del Cuvillo. 2013. Using Innovative Instructions to Create Trust-
worthy Software Solutions. In Proceedings of the 2nd Workshop on Hardware
and Architectural Support for Security and Privacy (HASP’13).

[28] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel.
2016. Ryoan: A distributed sandbox for untrusted computation on secret data.
In Proceedings of 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI).

[29] Intel. 2009. 64 and IA-32 Architectures Software Developer’s
Manual. http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html. (2009). http://www.intel.com/
content/www/us/en/processors/architectures-software-developer-manuals.html

[30] Intel. 2014. 64 and IA-32 Architectures Software Developer’s Manual: Chapter
34. (2014).

[31] Intel. 2015. ISCA 2015 SGX Tutorial. https://software.intel.com/sites/default/
files/332680-002.pdf. (2015).

[32] Intel Security Group. 2017. INTEL-SA-00075. https://security-center.intel.
com/advisory.aspx?intelid=INTEL-SA-00075&languageid=en-fr. (May 2017).
Accessed 05/10/2017.

[33] Prerit Jain, Soham Desai, Seongmin Kim, Ming-Wei Shih, JaeHyuk Lee, Changho
Choi, Youjung Shin, Taesoo Kim, Brent B. Kang, and Dongsu Han. 2016.
OpenSGX: An Open Platform for SGX Research. In Proceedings of the 2016
Annual Network and Distributed System Security Symposium (NDSS’16). San
Diego, CA.

[34] Jinsoo Jang, Changho Choi, Jaehyuk Lee, Nohyun Kwak, Seongman Lee, Yeseul
Choi, and Brent Byunghoon Kang. 2016. PrivateZone: Providing a Private Execu-
tion Environment using ARM TrustZone. IEEE Transactions on Dependable and
Secure Computing (2016).

[35] Jin Soo Jang, Sunjune Kong, Minsu Kim, Daegyeong Kim, and Brent Byunghoon
Kang. 2015. SeCReT: Secure Channel between Rich Execution Environment and
Trusted Execution Environment. In Proceedings of 22nd Network and Distributed
System Security Symposium (NDSSÂŠ15).

[36] Seongwook Jin, Jinho Seol, Jaehyuk Huh, and Seungryoul Maeng. 2015.
Hardware-Assisted Secure Resource Accounting under a Vulnerable Hypervisor.
In Proceedings of 11th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environment (VEE’15).

[37] Corey Kallenberg and Xeno Kovah. 2015. How Many Million BIOSes
Would you Like to Infect? http://conference.hitb.org/hitbsecconf2015ams/wp-
content/uploads/2015/02/D1T1-Xeno-Kovah-and-Corey-Kallenberg-How-
Many-Million-BIOSes-Would-You-Like-to-Infect.pdf. (2015).

[38] Corey Kallenberg and Rafal Wojtczuk. 2014. Speed Racer: Exploiting an Intel
Flash Protection Race Condition. https://events.ccc.de/congress/2014/Fahrplan/
system/attachments/2565/original/speed_racer_whitepaper.pdf. (2014).

[39] David Kaplan. 2016. AMD x86 Memory Encryption Technologies, USENIX
Security Tutorial 2016. https://www.usenix.org/conference/usenixsecurity16/

http://Leaksource.wordpress.com
https://nsf.gov/awardsearch/showAward?AWD_ID=1528185
http://support.amd.com/TechDocs/52740_16h_Models_30h-3Fh_BKDG.pdf
http://support.amd.com/TechDocs/52740_16h_Models_30h-3Fh_BKDG.pdf
http://www.uefi.org/sites/default/files/resources/UEFI_PlugFest_AMD_Security_and_Server_innovation_AMD_March_2013.pdf
http://www.uefi.org/sites/default/files/resources/UEFI_PlugFest_AMD_Security_and_Server_innovation_AMD_March_2013.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
http://lars.nocrew.org/computers/processors/ARM/ARMv6.pdf
http://arxiv.org/abs/1702.07521
http://www.coreboot.org/
https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://www.ssi.gouv.fr/IMG/pdf/IT_Defense_2010_final.pdf
http://www.ssi.gouv.fr/IMG/pdf/IT_Defense_2010_final.pdf
https://arstechnica.com/security/2017/05/the-hijacking-flaw-that-lurked-in-intel-chips-is-worse-than-anyone-thought/
https://arstechnica.com/security/2017/05/the-hijacking-flaw-that-lurked-in-intel-chips-is-worse-than-anyone-thought/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00075&languageid=en-fr
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00075&languageid=en-fr
https://events.ccc.de/congress/2014/Fahrplan/system/attachments/2565/original/speed_racer_whitepaper.pdf
https://events.ccc.de/congress/2014/Fahrplan/system/attachments/2565/original/speed_racer_whitepaper.pdf
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kaplan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kaplan

HASP ’17, June 25, 2017, Toronto, ON, Canada Z. Ning et al.

technical-sessions/presentation/kaplan. (2016).
[40] David Kaplan, Tom Woller, and Jeremy Powell. 2016. AMD Memory Encryption

Tutorial, ISCA 2016. https://sites.google.com/site/metisca2016/. (2016).
[41] Vishal Karande, Erick Buaman, Zhiqiang Lin, and Latifur Khan. 2017. SGX-Log

: Securing System Logs With SGX. In Proceedings of the 12th ACM on Asia
Conference on Computer and Communications Security (AsiaCCS’17).

[42] Kevin Leach, Chad Spensky, Westley Weimer, and Fengwei Zhang. 2016. Towards
Transparent Introspection. In Proceedings of 23rd IEEE Conference on Software
Analysis, Evolution, and Reengineering (SANER’16).

[43] Wenhao Li, Haibo Li, Haibo Chen, and Yubin Xia. 2015. AdAttester: Secure
Online Mobile Advertisement Attestation Using TrustZone. In Proceedings of
The 13th ACM International Conference on Mobile Systems, Applications, and
Services (MobiSys’15).

[44] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache attacks on mobile devices. In Proceedings
of 25th USENIX Security Symposium (USENIX Security’16).

[45] Rudolf Marek. 2014. AMD x86 SMU firmware analysis - Do you care about
Matroshka processors? https://events.ccc.de/congress/2014/Fahrplan/system/
attachments/2503/original/ccc-final.pdf. (2014).

[46] Frank Mckeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday Savagaonkar. 2013. Innovative Instructions and
Software Model for Isolated Execution. In Proceedings of the 2nd Workshop on
Hardware and Architectural Support for Security and Privacy (HASP’13).

[47] Oleksandr Bazhaniuk and John Loucaides and Lee Rosenbaum and Mark R.
Tuttle and Vincent Zimmer. 2015. Symbolic Execution for BIOS Security. In
Proceedings of 9th USENIX Workshop on Offensive Technologies (WOOT’15).

[48] Oleksandr Bazhaniuk, Yuriy Bulygin, Andrew Furtak, Mikhail Gorobets,
John Loucaides, Alexander Matrosov, Mickey Shkatov. 2015. A New
Class of Vulnerabilities in SMI Handlers. http://www.c7zero.info/stuff/
ANewClassOfVulnInSMIHandlers_csw2015.pdf. (2015).

[49] Carlos Perez. 2017. Tenable Blog: Rediscovering the Intel AMT Vulnerability.
https://www.tenable.com/blog/rediscovering-the-intel-amt-vulnerability. (May
2017). Accessed 05/10/2017.

[50] Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah Cox, Paul
England, Chris Fenner, Kinshuman Kinshumann, Jork Loeser, Dennis Mattoon,
Magnus Nystrom, David Robinson, Rob Spiger, Stefan Thom, and David Wooten.
2016. fTPM: A Software-only Implementation of a TPM Chip. In Proceedings of
The 25th USENIX Security Symposium (UsenixSecurity’16).

[51] Alessandro Reina, Aristide Fattori, Fabio Pagani, Lorenzo Cavallaro, and Danilo
Bruschi. 2012. When Hardware Meets Software: A Bulletproof Solution to
Forensic Memory Acquisition. In Proceedings of the Annual Computer Security
Applications Conference (ACSAC’12).

[52] Dan Rosenberg. 2014. Reflections on trusting trustzone. BlackHat USA (2014).
[53] Xiaoyu Ruan. 2014. Platform Embedded Security Technology Revealed: Safe-

guarding the Future of Computing with Intel Embedded Security and Management
Engine. Apress.

[54] Joanna Rutkowska. 2015. Intel x86 Considered Harmful. http://blog.
invisiblethings.org/papers/2015/x86_harmful.pdf. (October 2015).

[55] Joanna Rutkowska and Rafal Wojtczuk. 2008. Preventing and Detecting Xen
Hypervisor Subversions. http://www.invisiblethingslab.com/resources/bh08/
part2-full.pdf. (2008).

[56] Ilia Safonov and Alex Matrosov. 2016. Excite project: all the truth about symbolic
execution for BIOS security. http://2016.zeronights.org/program/9. (2016).

[57] Joshua Schiffman and David Kaplan. 2014. The SMM Rootkit Revisited: Fun with
USB. In Proceedings of 9th International Conference on Availability, Reliability
and Security (ARES’14).

[58] Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustwor-
thy Data Analytics in the Cloud. In Proceedings of the 36th IEEE Symposium on
Security and Privacy (S&P’15).

[59] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware Guard Extension: Using SGX to Conceal Cache Attacks.
In Proceedings of 14th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA’17).

[60] Jaebaek Seo, Byounyoung Lee, Seongmin Kim, Ming-Wei Shih, Insik Shin,
Dongsu Han, and Taesoo Kim. 2017. SGX-Shield: Enabling address space layout
randomization for SGX programs. In Proceedings of 24th Network and Distributed
System Security Symposium (NDSS’17).

[61] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86). In Proceedings of the 14th ACM

conference on Computer and Communications Security (CCS’07).
[62] D Shen. 2015. Attacking your trusted core: Exploiting trustzone on android. Black

Hat USA (2015).
[63] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge

Computing: Vision and Challenges. IEEE Internet of Things Journal 3, 5 (Oct
2016), 637–646. https://doi.org/10.1109/JIOT.2016.2579198

[64] Ming-Wei Shih, Mohan Kumar, Taesoo Kim, and Ada Gavrilovska. 2016. S-
NFV: Securing NFV states by using SGX. In Proceedings of the 2016 ACM
International Workshop on Security in Software Defined Networks & Network
Function Virtualization.

[65] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-SGX:
Eradicating controlled-channel attacks against enclave programs. In Proceedings
of 24th Network and Distributed System Security Symposium (NDSS’17).

[66] Igor Skochinsky. 2014. Intel ME Secrets: Hidden code in your chipset and how
to discover what exactly it does. https://recon.cx/2014/slides/Recon%202014%
20Skochinsky.pdf. (2014).

[67] Patrick Stewin and Iurii Bystrov. 2012. Understanding DMA Malware. In
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA’12).

[68] He Sun, Kun Sun, Yuewu Wang, and Jiwu Jing. 2015. TrustOTP: Transforming
Smartphones into Secure One-Time Password Tokens. In Proceedings of the 22nd
ACM Conference on Computer and Communications Security (CCS’15).

[69] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Sushil Jajodia. 2014. Trust-
Dump: Reliable Memory Acquisition on Smartphones. In Proceedings of The
18th European Symposium on Research in Computer Security (ESORICS’14).

[70] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Haining Wang. 2015. TrustICE:
Hardware-assisted Isolated Computing Environments on Mobile Devices. In Pro-
ceedings of The 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’15).

[71] Alexander Tereshkin and Rafal Wojtczuk. 2009. Introducing Ring -3 Rootkits.
http://invisiblethingslab.com/itl/Resources.html. (2009).

[72] J. Wang, K Sun, and A. Stavrou. 2012. A Dependability Analysis of Hardware-
Assisted Polling Integrity Checking Systems. In Proceedings of the 42nd An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN’12).

[73] Jiang Wang, Fengwei Zhang, Kun Sun, and Angelos Stavrou. 2011. Firmware-
assisted Memory Acquisition and Analysis Tools for Digital Forensic. In Pro-
ceedings of the 6th International Workshop on Systematic Approaches to Digital
Forensic Engineering (SADFE ’11).

[74] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. 2016.
AsyncShock: Exploiting synchronisation bugs in Intel SGX enclaves. In Pro-
ceedings of The 21st European Symposium on Research in Computer Security
(ESORICS’16).

[75] Rafal Wojtczuk and Corey Kallenberg. 2014. Attacking UEFI Boot Script.
31st Chaos Communication Congress (31C3), http://events.ccc.de/congress/2014/
Fahrplan/system/attachments/2566/original/venamis_whitepaper.pdf. (2014).

[76] Rafal Wojtczuk and Joanna Rutkowska. 2009. Attacking SMM Memory via Intel
CPU Cache Poisoning. (2009). http://invisiblethingslab.com/resources/misc09/
smm_cache_fun.pdf

[77] Fengwei Zhang. 2013. IOCheck: A Framework to Enhance the Security of I/O
Devices at Runtime. In Proceedings of the 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN’13).

[78] Fengwei Zhang, Kevin Leach, Angelos Stavrou, Haining Wang, and Kun Sun.
2015. Using Hardware Features for Increased Debugging Transparency. In Pro-
ceedings of the 36th IEEE Symposium on Security and Privacy (S&P’15).

[79] Fengwei Zhang, Kevin Leach, Kun Sun, and Angelos Stavrou. 2013. SPECTRE:
A Dependable Introspection Framework via System Management Mode. In Pro-
ceedings of the 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’13).

[80] Fengwei Zhang, Kevin Leach, Haining Wang, and Angelos Stavrou. 2015. Trust-
Login: Securing Password-Login on Commodity Operating Systems. In Proceed-
ings of the 10th ACM Symposium on Information, Computer and Communications
Security (AsiaCCS’15).

[81] Fengwei Zhang, Haining Wang, Kevin Leach, and Angelos Stavrou. 2014. A
Framework to Secure Peripherals at Runtime. In Proceedings of the 19th European
Symposium on Research in Computer Security (ESORICS’14).

[82] Fengwei Zhang, Jiang Wang, Kun Sun, and Angelos Stavrou. 2014. HyperCheck:
A Hardware-assisted Integrity Monitor. In IEEE Transactions on Dependable and
Secure Computing (TDSC’14).

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kaplan
https://sites.google.com/site/metisca2016/
https://events.ccc.de/congress/2014/Fahrplan/system/attachments/2503/original/ccc-final.pdf
https://events.ccc.de/congress/2014/Fahrplan/system/attachments/2503/original/ccc-final.pdf
http://www.c7zero.info/stuff/ANewClassOfVulnInSMIHandlers_csw2015.pdf
http://www.c7zero.info/stuff/ANewClassOfVulnInSMIHandlers_csw2015.pdf
https://www.tenable.com/blog/rediscovering-the-intel-amt-vulnerability
http://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
http://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://2016.zeronights.org/program/9
https://doi.org/10.1109/JIOT.2016.2579198
https://recon.cx/2014/slides/Recon%202014%20Skochinsky.pdf
https://recon.cx/2014/slides/Recon%202014%20Skochinsky.pdf
http://invisiblethingslab.com/itl/Resources.html
http://events.ccc.de/congress/2014/Fahrplan/system/attachments/2566/original/venamis_whitepaper.pdf
http://events.ccc.de/congress/2014/Fahrplan/system/attachments/2566/original/venamis_whitepaper.pdf
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Ring 3 TEEs via Memory Encryption
	2.2 Ring -2 TEEs via Memory Restriction
	2.3 Ring -3 TEEs via Co-Processors

	3 TEE-based Systems
	3.1 SGX-based Systems and Attacks
	3.2 SMM-based Systems
	3.3 TrustZone-based Systems and Attacks
	3.4 ME-based Systems and Attacks

	4 Challenges and Directions
	4.1 Hunting Bugs in TEE's code
	4.2 Protecting Mechanisms within TEEs
	4.3 Detecting a Compromised TEE
	4.4 Patching and Rejuvenation of TEEs

	5 Conclusions
	6 Acknowledgments
	References

