
Tatoo: A Flexible Hardware 
Platform for Binary-Only Fuzzing
Jinting Wu, Haodong Zheng, Yu Wang, Tai Yue, Fengwei Zhang
Southern University of Science and Technology, China



Backgroud

• Fuzzing is one of the most effective vulnerability discovery techniques. 
• ClusterFuzz has found around 27,000 bugs in Google.

• Code coverage is an effective way to collect feedback.
• Collecting coverage is challenging in binary-only fuzzing. Traditional methods include:
• Software Instrumentation

• Dynamic Binary Translation
• Static Binary Rewriting

• Hardware Tracing

Figure 1: Coverage-guided greybox fuzzing process



Backgroud

• Existing information flow tracking technology:

Figure 2: Software-based techniques Figure 3: The overview of ARM ETM



Motivation

• The shortcomings of traditional hardware (e.g., ARM Coresight).

• Hardware tracing tool should trace the necessary basic block and dataflow for fuzzing.

Figure 4: Trace irrelavant data Figure 5: Trace dataflow may overwhelm trace buffer



Main idea

• We design Tatoo to achieve flexible tracing.
• Instruction tagging - flexibly gather data.
• Taint inference - efficiently assist dataflow fuzzing.



Instruction tagging

Figure 6: The architecture of Tatoo

• Tatoo differentiates and filters the instructions 
by tagging them.
• Reduce the volume of traced data.
• Achieve efficient tracing.

• Add memory tagging and a programmable 
coprocessor.

• Send the instruction log to the coprocessor 
when the instruction is in the write-back stage.



Taint inference for dataflow-assisted fuzzing

• Tatoo uses Taint Inference rather than 
Dynamic Taint Analysis (DTA).

Figure 7: DTA and taint inference

Overhead Effectiveness Manual effort

Dynamic Taint 
Analysis

High Suffer from 
implicit flow 

issues

Substantial

Taint Inference Low Can tackle 
implicit flow 

issues

Minimal

Table 1: The difference between DTA and taint inference

(a) code sample (b) DTA (c) Taint Inference



The workflow of Tatoo
Preparation Stage:
① Perform static analysis. 
② Create a tagged program.

Figure 8: The workflow of Tatoo Figure 9: The hardware detail of Tatoo



The workflow of Tatoo
Preparation Stage:
③ Configure coprocessor. 
④ Assign shared memory.

Figure 8: The workflow of Tatoo Figure 10: The hardware detail of Tatoo



The workflow of Tatoo
Fuzzing Stage:
⑤ Monitor tagged program.
⑥ Execute program.

Figure 8: The workflow of Tatoo Figure 11: The hardware detail of Tatoo



The workflow of Tatoo
Fuzzing Stage:
⑤ Monitor tagged program. 
⑥ Execute program.

Figure 8: The workflow of Tatoo Figure 12: The hardware detail of Tatoo



The workflow of Tatoo
Fuzzing Stage:
⑦ Collect runtime data.
⑧ Analyze the data.

Figure 8: The workflow of Tatoo Figure 12: The hardware detail of Tatoo



Evaluation

• Deployed on the Xilinx Kintex-7 FPGA KC705 evaluation board.
• Evaluated by 7 real-world applications.
• 1. Performance Overhead
• 2. Throughput
• 3. Edge Coverage
• 4. Area Overhead

Table 2: Target binaries evaluated in our evaluation



Evaluation

• 1. Performance Overhead
• Baseline: The original program
• 2,000 seeds for each program
• Around 5% to 12%, average 8.7%
• > AFL(60%), PHMon(11.55%)

• 2. Throughput
• 3. Edge Coverage
• 4. Area Overhead

Figure 13: The overall performance measured by 
real-world programs



Evaluation

• 1. Performance Overhead
• 2. Throughput
• 24-hour experiment
• > PHMon(4.10%), AFL(29.03%), AFL_QEMU(769.88%)

• 3. Edge Coverage
• 4. Area Overhead

Table 3: Throughput in our evaluation



Evaluation

• 1. Performance Overhead
• 2. Throughput
• 3. Edge Coverage
• > AFL(8.2%), PHMon(8.6%), AFL-QEMU(24%) except tiff2bw

• 4. Area Overhead

Figure 14: Edge coverage in our evaluation



Evaluation

• 1. Performance Overhead
• 2. Throughput
• 3. Edge Coverage
• 4. Area Overhead
• Memory Tagging (15%) 
• Hardware Tracing (18%)

Table 4: Hardware resource cost of Tatoo



Summary

• A flexible hardware tracing platform.

• Solution: Utilizing memory tagging architecture and hardware tracing to 
achieve flexible tracing.

• Scenario: Binary-only fuzzing.

• Code: https://github.com/Compass-All/TATOO

• Mail: zhangfw@sustech.edu.cn



Thank you！
Any Question？


