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a b s t r a c t 

Crypto ransomware encrypts user files and then extorts a ransom for decryption, thus it brings a big 

threat to users. To address this problem, we propose RansomSpector , an introspection-based approach 

to detect crypto ransomware. Compared to previous solutions, our approach makes progress in two as- 

pects. First, RansomSpector is based on the virtual machine introspection technique, and it resides in 

the hypervisor layer under the operating system (OS) where ransomware runs. Thus it is capable of ana- 

lyzing OS-level ransomware and difficult to be bypassed by privilege escalation attacks. Second, Ransom- 

Spector monitors both the filesystem and network activities for ransomware detection, thus it achieves 

a higher precision and earlier warning than the approaches that only leverage the filesystem activities as 

the detecting basis. To validate our approach, we have implemented a prototype of RansomSpector , and 

collected 2,117 recent ransomware samples to evaluate it. The evaluation results indicate that our system 

effectively detects ransomware with a low performance overhead ( < 5% on average). 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

A class of malware called ransomware has drawn the world-

ide attention recently. The growing number of high-profile vari-

nts and increasing economic losses caused by ransomware have

ade it one of the most severe security threats to users. In May

017, a variant of ransomware called WannaCry infected more

han 230,0 0 0 computers in over 150 countries ( CNN, 2017 ), which

as the most striking ransomware attack that year. After drain-

ng an estimated $5 billion from the global economy last year, ran-

omware had retained its position at the top of the malware threat

ists in 2018, according to Europol’s fifth annual Internet Organized

rime Threat Assessment (IOCTA) ( for Law Enforcement Coopera-

ion, 2018 ). It is no doubt that ransomware has become a world-

ide concern. 

More recently, there are more ransomware attacks against en-

erprises. For instance, Malwarebytes has witnessed an almost

onstant increase in business detections of ransomware, rising a

hocking 365% from Q2 2018 to Q2 2019 ( Malwarebytes, 2019 ).

ccording to a new survey of senior executives ( MarketsInsider,

020 ), 46% of small businesses have been the targets of ran-

omware attack. And of those companies that have been hit with
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ansomware attack, almost three-quarters (73%) have paid a ran-

om. 43% of small businesses paid between $10,0 0 0 and $50,0 0 0 to

ansomware attackers, and 13% paid more than $10 0,0 0 0. Of those

ho paid, however, 17% recovered only some of the company’s

ata. On the other hand, cloud computing is gradually becoming

he preferred choice of businesses to streamline different business

rocesses. As per industry reports around 68% of the businesses

se cloud technology while 19% are planning to integrate cloud

omputing into their business operations ( Customerthink, 2020 ).

he volume of attacks on cloud services more than doubled in

019, in line with the trend of organizations increasingly moving

perations to the cloud, according to the 2020 Trustwave Global

ecurity Report ( Trustwave, 2020 ). Therefore, as cloud computing

ecomes widely used in enterprises, ransomware defense in cloud

nd virtualized environments is of great significance. 

Ransomware, whose behaviors are quite different from other

alware, mainly operates in two different ways. The first one is

creen lockers that maliciously lock the screen of an infected com-

uter, and the other is crypto ransomware that systematically en-

rypts the victim’s files with cryptographic algorithms. Then, the

ictims will be asked for a ransom to unlock their computers or

ecrypt their files. The victims can mitigate the threat of screen

ockers by reinstalling their operating systems (OSes). However, as

or crypto ransomware, it is nearly impossible for the victims to

ecrypt their encrypted files without a key considering that attack-

rs use strong encryption algorithms and long-enough keys, so this

https://doi.org/10.1016/j.cose.2020.101997
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2020.101997&domain=pdf
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type of ransomware is extremely harmful to users. Therefore, we

target crypto ransomware in this paper. 

To address the threat of crypto ransomware, researchers have

proposed a number of systems and most of them detect attacks

by monitoring the low-level filesystem activities ( Continella et al.,

2016; Kharraz et al., 2016; Kharraz and Kirda, 2017; Scaife et al.,

2016 ). For instance, UNVEIL ( Kharraz et al., 2016 ) presents a dy-

namic analysis system that is able to detect crypto ransomware

by modeling and monitoring its file-access behaviors. In particu-

lar, UNVEIL categorizes (crypto) ransomware into three classes of

attack based on the file I/O access requests, and then monitors

the low-level filesystem activities to identify ransomware attacks.

Redemption ( Kharraz and Kirda, 2017 ) monitors the file I/O re-

quest patterns for every process to observe possible ransomware

activities, and then terminates the offending processes. Note that

the file-access behaviours of ransomware are akin to some be-

nign applications, e.g., the encryption and compression applica-

tions. Moreover, ransomware can directly invoke the encryption-

related functions available in the victim’s system to accomplish

the corresponding tasks. Therefore, the limitation of such systems

is that they possibly generate false positives as they only con-

sider the characteristics of ransomware’s filesystem activities as

the detecting basis. Further, nearly all the existing ransomware

detecting systems run in the same environment (i.e., the same

OS) with ransomware applications, and thus they can be bypassed

if ransomware process elevates its privilege to kernel level. In-

deed, FlashGuard ( Huang et al., 2017 ) and our initial study on

2,117 recent ransomware samples both indicated that many ran-

somware families and samples attempt to elevate their privileges

(see Section 2.1 ). 

In this paper, we present RansomSpector , an introspection-

based approach to detect crypto ransomware. Compared to pre-

vious systems, RansomSpector makes progress in two aspects.

First, RansomSpector is based on the virtual machine introspec-

tion (VMI) technique ( Garfinkel and Rosenblum, 2003 ), and it re-

sides in the hypervisor layer under the OS where ransomware runs

(i.e., “out of the box”). It does not require to make any modifica-

tions to the OS and is transparent to ransomware. Thus, it is dif-

ficult, if not impossible, to be bypassed by ransomware which is

“in the box”. Second, RansomSpector monitors both the low-level

filesystem and network activities of ransomware, and models its

file I/O access and network activity patterns. After that, Ransom-

Spector detects attacks by enforcing policy to match the modeled

patterns; if the condition hits, then ransomware is identified or an

alert is raised. 

Our system is proposed based on two key observations.

First, each file or network operation (e.g., file open/create/read/

write/close/rename, or network connect/bind/send/receive/

disconnect) corresponds to a specific system call in the OS

kernel, which can be captured by the hypervisor and whose con-

text information (e.g., the caller process, the parameters, and the

return value of the system call) can be introspected in the hyper-

visor layer on modern processors (e.g., on x86 or x64). Second, we

observe that besides filesystem activities, most crypto ransomware

samples connect to the network and produce a large amount of

network activities with certain patterns (the evaluation results in

Section 4.2 indicate that 93.77% of identified ransomware samples

match at least one network activity pattern observed by us). For

instance, the destination IP address of ransomware continues to

vary in a short period. By monitoring the ransomware process’s

interactions with the filesystem and network, we achieve a higher

precision and earlier warning when detecting ransomware attacks. 

To validate our approach, we have developed a prototype with

the open-source KVM hypervisor ( KVM, 2018 ), and collected 2,117

recent ransomware samples in Microsoft Windows to evaluate it.

The evaluation results show that our system successfully identified
71 crypto ransomware samples from 31 families with zero false

ositives. Note that even if a sample is labelled as ransomware

y anti-virus vendors, it does not mean that the sample is crypto

ansomware which will encrypt user files. For example, the sam-

le may be screen locker ransomware, and many other reasons

ause the sample to perform no crypto ransomware behaviors (see

ection 4.1 ). On average, only 2.67 user files were lost before the

ansomware sample was detected by our system. To the best of our

nowledge, RansomSpector is the first to combine the filesystem

nd network activities for ransomware detection. The performance

valuation results indicate that the overhead introduced by Ran-

omSpector is small ( < 5% on overage). 

In summary, this paper makes the following contributions: 

• We present an approach to detect crypto ransomware. Our

technique is based on VMI and resides in the hypervisor layer

under the OS where ransomware runs. Thus, it is transparent

to ransomware and difficult to be bypassed. We believe that it

is helpful in cloud and virtualized environments because ser-

vice providers need to protect their customers while they can-

not trust virtual machines. 

• We implemented a prototype which monitors both the filesys-

tem and network activities of ransomware, and then leverages

these monitoring information to match certain file I/O access

and network activity patterns to identify ransomware attacks. 

• We performed evaluation to show that our approach can ef-

fectively detect crypto ransomware attacks with a small per-

formance overhead. We successfully identified 771 ransomware

samples from a dataset of 2,117 recent malware with zero false

positives. 

The rest of the paper is structured as follows. First we describe

he threat model and assumptions, and present the overall design

s well as the key techniques in Section 2 . Then we show the im-

lementation details and evaluation results in Sections 3 and 4 , re-

pectively. After that, we discuss possible limitations of our current

rototype in Section 5 and describe related work in Section 6 . Fi-

ally, we conclude the paper in Section 7 . 

. System design 

.1. Threat model and assumptions 

In this work, our goal is to detect crypto ransomware. Our

hreat model assumes that ransomware leverages all techniques

hat other classes of malware use. For instance, ransomware can

everage zero-day attacks to compromise a victim machine and

hen install malware in it. In addition, we assume that a successful

ansomware attack performs one or more of the following activi-

ies. 

Greedy Encryption and Deletion (or Overwriting) of User

iles . To successfully extort a victim, ransomware tends to encrypt

ser files greedily. The function that an attacker uses to encrypt

les may be customizable, or provided by the OS. The potential

ay to delete victim’s files is to rename the file after the original

le is covered by ciphertext, or delete the original file after produc-

ng the corresponding encrypted file. And some ransomware sam-

les might simply overwrite the original file with ciphertext. 

Network Activity . Ransomware might conduct some network

ctivities when encrypting the victim’s files. For example, the key

sed during the encryption and taken to ask for a ransom, might

e obtained from a remote server or sent to a server after hav-

ng been generated on the victim machine. Although ransomware

an encrypt user files using symmetric encryption algorithms and

ardcode the encryption keys to ransomware itself, which avoids

he conduction of network activities, this approach is very rare
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ow as the encryption keys are easy to be reversed by mal-

are defenders ( Sevtsov, 2017 ). Therefore, there might be both

etwork and filesystem activities during the execution of a ran-

omware program. Moreover, doxware ( Instinct, 2017 ), a variant of

ansomware, steals and transmits user’s private data through the

etwork. 

Privilege Escalation . A number of ransomware samples try

o bypass the detecting system by privilege escalation, although

he detecting system usually runs in the kernel level. FlashGuard

 Huang et al., 2017 ) showed that eight ransomware families at-

empt to delete backup files, which is an indication for privilege es-

alation. Additionally, in Microsoft Windows, a process can elevate

ts privilege by calling OpenProcessToken() function to get the han-

ler to its access token that contains system-level privileges, then

t modifies this access token by invoking AdjustTokenPrivileges()

unction, one of whose parameters is Local Unique Identifier (LUID)

hat references target privilege. The invocation of these functions is

lso an indication of attempting for privilege escalation. Therefore,

e performed static analysis for ransomware to make an initial

tudy whether an ransomware sample attempts to elevate its privi-

eges in this way. Specifically, we leveraged IDA PRO ( IDAPro, 2019 )

o disassemble each sample and wrote a python script to automat-

cally check if OpenProcessToken() and AdjustTokenPrivileges() had

een called; if so, it was an indication of attempting for privilege

scalation. In the result, we found that 572 (27%) of 2,117 ran-

omware samples attempted to call OpenProcessToken() and Adjust-

okenPrivileges() . Our further study indicated that 61 samples re-

uested specific privileges, e.g., SeShutdownPrivilege, SeTcbPrivilege,

eDebugPrivilege , etc. Note that a request of privilege(s) does not

ndicate it always succeeds. The decision will eventually be made

y the operating system. We think an exploit might be required to

chieve that, e.g., a system configuration error, or a vulnerability to

reak the access control when requesting the privileges. However,

early all the existing solutions ignore this action and are likely to

e bypassed by ransomware through privilege escalation attacks. 

Finally, we assume that the guest OS is untrusted but the hy-

ervisor is trusted. Namely, the hypervisor is free of malicious code

nd ransomware running in the guest OS with kernel privilege can-

ot attack the hypervisor. 
Fig. 1. The overall design 
.2. Overall design 

Crypto ransomware needs to encrypt user files to ask for a ran-

om. Thus, ransomware performs multiple file-related operations,

.g., file open, read, write, rename, delete, close, etc. It is a natu-

al way to detect ransomware attacks by monitoring the low-level

lesystem activities. However, it possibly generates false positives

f we only consider the characteristics of ransomware’s file activ-

ties as the detecting basis. This is because the file behaviours of

ansomware are akin to some benign applications, e.g., the encryp-

ion and compression applications. To overcome this limitation, we

bserve that besides filesystem activities, a number of ransomware

amples may also perform network activities. For instance, they

ay need to transmit the key for file encryption through the net-

ork, or steal and send out user’s private data for further extor-

ion. Therefore, by monitoring the ransomware program’s inter-

ctions with both the filesystem and network, we can achieve a

igher precision and earlier warning when detecting ransomware

ttacks. 

Additionally, as mentioned earlier, nearly all the existing ran-

omware solutions run in the same OS with ransomware itself,

nd thus they can be bypassed if the ransomware program ele-

ates its privilege to kernel level (this possibility has been shown

n Section 2.1 ). To counter this threat, it is better to move the ran-

omware detecting system outside of the OS. Therefore, we can

everage the VMI technique to monitor the filesystem and network

ctivities of ransomware from the hypervisor layer. This is practical

s we observe that each file or network operation corresponds to a

pecific system call in the guest OS kernel, which can be captured

y the hypervisor and whose context information can be restored

n the hypervisor layer on modern processors. Compared to exist-

ng solutions, our approach does not make modifications to the OS

n which ransomware runs, and it is transparent to ransomware.

hus, it is difficult to bypass our system. 

Putting everything together, we propose RansomSpector , an

ntrospection-based approach to detect crypto ransomware. The

verall design of RansomSpector is shown in Fig. 1 . 

RansomSpector consists of two modules: Monitor and Detec-

or . When a process in the guest OS issues a file or network I/O
of RansomSpector . 
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Fig. 2. File I/O access patterns of ransomware. 

Fig. 3. Network activity patterns of ransomware. 
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request, the OS switches to kernel mode to execute the corre-

sponding system call handler. At this moment, we make the sys-

tem call trap to the hypervisor, and then the Monitor in the hyper-

visor captures it. The Monitor introspects the guest OS to obtain

the context information of the captured system call, e.g., the caller

process, the parameters, and the return value of the system call.

After that, the execution returns to the guest OS (which will return

to the caller in user space after the system call handler is finished).

At the same time, the Monitor sends the information (i.e., monitor-

ing information) to the Detector . When receiving the monitoring

information, the Detector enforces detecting policy (as shown in

Algorithm 1 in Section 2.4 ) to match certain file I/O access and net-

work activity patterns (as shown in Fig. 2 and Fig. 3 in Section 2.3 )

to identify ransomware attacks. If the condition hits, one or more

actions are performed, e.g., an alarm is raised, the log is recorded,

or the ransomware process is killed. 

2.3. The feature of ransomware behaviors 

Our system detects ransomware based on its file I/O access and

network activity patterns. So first we need to get ransomware’s

filesystem and network activities and model its patterns. To

achieve that, we leverage RansomSpector with only its Monitor en-

abled to run 302 recent active ransomware samples collected from

UNVEIL ( Kharraz et al., 2016 ) and VirusTotal ( VirusTotal, 2017 ),

and record each sample’s file and network activity information for
odeling. Specifically, 116 samples are from UNVEIL, and the rest

86 ones are collected from VirusTotal. Note that for the samples

rom UNVEIL, they have been identified as crypto ransomware by

esearchers. While for the samples from VirusTotal, we only select

hose samples that are labelled as ransomware by most of anti-

irus vendors on the VirusTotal site. Since it is rare for more than

alf of the anti-virus engines to label a sample as same family

 Sebastián et al., 2016 ), we adopt a plurality vote rather than a

ajority vote to select samples. And we further manually run each

ample to confirm that it is indeed ransomware. The list of ran-

omware families for modeling is shown in Table 1 . We believe

hat these samples cover most of the main families of the state-of-

he-art ransomware. In RansomSpector , the Monitor allows us to

et complete information of file- and network-related operations

or a process in the guest OS, including the operation type, pro-

ess ID, parent process ID, process name, and timestamp. In addi-

ion, for file operations, the monitoring information also includes

he name of accessed file, the new file name if renamed and the

ritten data; and for network operations, the monitoring informa-

ion also includes the type of network operation, IP address, and

ort number. 

When we run a ransomware sample, a process with the same

ame as the sample is created in the guest OS, and this process

ay create one or more child processes during a sample runs. In

he log, we can find the process ID by the name of the process that

s created at the moment we run the sample, and then we are able
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Table 1 

The list of ransomware families for modeling. 

Family Samples 

cerber 115(38.08%) 

cryptolocker 12(3.97%) 

cryptowall 11(3.64%) 

filecoder 26(8.61%) 

generic!bt 1(0.33%) 

generickd 13(4.30%) 

injector 6(1.99%) 

kazy 4(1.32%) 

kovter 4(1.32%) 

kryptik 10(3.31%) 

locky 8(2.65%) 

razy 63(20.86%) 

symmi 1(0.33%) 

teslacrypt 25(8.28%) 

yakes 1(0.33%) 

zusy 2(0.66%) 

Total Samples 302 
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o find all descendants of this process using the parent process ID.

or each process, we sort the file I/O access requests based on file

ames and timestamps, and sort the network activities based only

n timestamps. By doing so, we get ransomware’s file I/O access

nd network activity patterns, which reveal how ransomware oper-

tes. We leverage a python script to automatically search the logs

f these 302 ransomware samples and derive the patterns. After

hat, we find that a ransomware sample might have the same file

/O access pattern for different types of file, and the samples from

ifferent families might have a same file I/O access pattern. The

ame thing happens to the network activities. Finally, we identify

hree file I/O access patterns and two network activity patterns. 

Fig. 2 shows the identified file I/O access patterns, i.e., file pat-

ern a, b , and c . Note that in Fig. 2 , File A stands for a user file that

ansomware will encrypt. (1) For file pattern a , it first opens File

 , reads some data (marked as data R ) from the file, and closes it.

hen it opens File A again, writes some data (marked as data W ) to

he file, and closes it. We believe that data W is the encrypted ver-

ion of data R , which is done by ransomware. Note that for file pat-

ern a , ransomware only reads and writes each file once regardless

f its size. So for file pattern a , ransomware might only encrypt a

art of the user file. (2) For file pattern b , it first opens File A , reads

ata (marked as data R ) from and writes data (marked as data W )

o the file repeatedly, and closes it. Then it opens File A again, re-

ames the file, and closes it. Similarly, we believe that data W is

he encrypted version of data R . So for file pattern b , ransomware

epeatedly overwrites the original file with the encrypted data, and

hen renames the file. (3) For file pattern c , it first opens File A ,

reates a new file called File B , then reads data (marked as data R )

rom File A and writes data (marked as data W ) to File B repeat-

dly, and closes the two files. Then it opens File A again, deletes

he file, and closes it. Similarly, we believe that data W is the en-

rypted version of data R . So for file pattern c , ransomware creates

 new file that is the encrypted version of the original file and then

eletes the original file. 

Fig. 3 shows the identified network activity patterns, i.e., net-

ork pattern a , and b . (1) For network pattern a , it first binds

P address 0.0.0.0 and port number 0 , then repeatedly sends UDP

ackets to a large number of different hosts (with the same port

umber, e.g., port 6892) in a short period, and finally it discon-

ects. Note that after infecting a computer, ransomware might

ommunicate with its C&C (command and control) servers. For ex-

mple, it might collect various information of the infected com-

uter, such as the OS version, the installed service pack list, the

ser name, the computer name, and the type of CPU for launch-

ng a further attack; or it might steal and transmit user’s private
ata to its servers. Note that ransomware may use domain gener-

tion algorithm (DGA) to hide the real address of its C&C server

 Wikipedia, 2020 ). Therefore, the data is sent over UDP (which

oes not require server’s response) to a wide range of IP addresses

nd thus minimizes the ability for security products to pinpoint

he real location of C&C servers ( Sevtsov, 2017 ). (2) For network

attern b , it first binds IP address 0.0.0.0 and port number 0 , then

onnects to multiple remote hosts’ 80 or 443 port with TCP pro-

ocol in a short period; after that, it repeatedly sends and receives

ackets with the established connection, finally it disconnects. We

hink one possible reason for ransomware to connect to multiple

emote hosts is to improve the success rate of attack. In our ex-

eriment, we observed that a large amount of samples have both

etwork activity patterns. 

.4. Detection approach 

Our detection approach is based on the file I/O access and

etwork activity patterns that we observed in Section 2.3 . When

eceiving monitoring information, the Detector enforces detection

olicy to determine if the process that generates the file or net-

ork activity is malicious. Algorithm 1 shows the detection policy

nforced by the Detector . 

lgorithm 1 Detection Policy. 

1: while True do 

2: receive monitoring information; 

3: if operation type is file-related then 

4: if accessed file is a user file then 

5: add received information into a file operation queue

based on file name; 

6: if a file I/O access pattern is matched then 

7: f ile _ pattern _ match ← T rue ; 

8: else 

9: add received information into network operation queue; 

10: if a network activity pattern is matched then 

11: net work _ pat tern _ mat ch ← T rue ; 

12: if f ile _ pattern _ match and networ k _ patter n _ match then 

13: ransomware is identified; 

14: else if f ile _ pattern _ match then 

15: calculate average entropy of the written data received so

far; 

16: if a v erage _ entropy > α then 

17: alert user; 

For each received monitoring information (line 2),

lgorithm 1 first determines if the operation type of the in-

ormation is file-related (line 3); if yes, it then determines if

he accessed file is a user file (line 4); if yes, it adds the received

nformation into a file operation queue based on file name (line 5).

fter that, it determines if a file I/O access pattern is matched (line

); if yes, it sets variable file_pattern_match to True (line 7). If the

peration type of the information is not file-related, which means

t is network-related (line 8) as the Monitor in Fig. 1 only sends file

r network monitoring information to the Detector , then it adds

he received information into the network operation queue (line

); further, it determines if a network activity pattern is matched

line 10); if yes, it sets variable network_pattern_match to True (line

1). Next, the algorithm determines if both file_pattern_match and

etwork_pattern_match are true (line 12); if yes, ransomware is

dentified (line 13); otherwise, it determines if file_pattern_match

s true (line 14); if yes, it calculates the average entropy of the

eceived written data so far (line 15); if the average entropy is

igger than α, which is a threshold set by us (line 16), it alerts

he user that a potential ransomware is detected (line 17), which
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Fig. 4. The path to reach EPROCESS from KPCR in 64-bit Windows 7. 
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needs the user to confirm whether an attack happened. This

is a necessary step to avoid false positives, as in some special

cases, the file behaviors of benign compression or encryption

applications match one pattern in Fig. 2 while the data written by

them also has a high value of entropy. Fortunately, our evaluation

indicates that only a very small ratio (i.e., 2.27%, see Section 4.2 )

of ransomware need such confirmation by users, as the behaviors

of most crypto ransomware match both the file I/O access and

network activity patterns. 

3. Implementation 

To validate our approach, we have developed a proof-of-concept

prototype of RansomSpector . Our prototype is implemented on top

of the open-source KVM hypervisor (version 3.13.0) ( KVM, 2018 ),

which runs on a Ubuntu 16.04/x86-amd64 system, and the ran-

somware sample runs in the virtual machine (VM) on top of the

KVM hypervisor. The operating system of the VM is 64-bit Mi-

crosoft Windows 7. To introspect the file and network activities

in the VM, we need to extend the KVM hypervisor to capture the

system calls invoked by ransomware and get the context informa-

tion of the system calls. Later, the context information will be sent

to the Detector of RansomSpector for ransomware detection. To

achieve that, our prototype has added about 2,100 lines of C code

to KVM. 

3.1. Monitor 

Capturing System Calls . In RansomSpector , the file and net-

work operations are monitored by capturing system calls and get-

ting the context information using VMI. A key technical problem to

leverage VMI is the semantic gap ( Jain et al., 2014 ), which means

the difference between the high-level OS abstractions from inter-

nal guest OS and the hardware-level abstractions from the hyper-

visor. For instance, in the guest OS we can see semantic-level ob-

jects such as processes and files, while we only see memory pages

and disk blocks from the hypervisor (which is outside the guest

OS). One way to bridge the semantic gap is that the hypervisor in-

corporates knowledge of the hardware architecture and the guest

OS to interpret the low-level state information about the guest OS,

which can avoid attacks that result from changing the guest OS ar-

chitecture ( Pfoh et al., 2011 ). To capture the system calls by the hy-

pervisor, it requires to make the system call trap to the hypervisor.

Note that system call does not own such a capability but system

interrupt (e.g., page faults, exceptions, etc.) is able to achieve that,

with the support of hardware extensions on modern CPUs, e.g., In-

tel Virtualization Extensions (VT-x) ( Corporation, 2018 ). Therefore,

we force the OS to enter system interrupt when a system call oc-

curs. On x64 platform, systems calls are implemented with SYSCALL

and its counterpart SYSRET instructions to construct a mechanism

that can fast call system service routines. And this mechanism can

be turned off by clearing the SCE flag in the Extended Feature En-

able Register ( EFER ). It will lead to an invalid opcode exception if

the SCE flag is cleared, which would trap to the hypervisor when

a system call occurs. By doing so, we can capture the system call

in the hypervisor, and then determine whether current instruction

is SYSCALL or SYSRET ; if so, we get context information of current

system call, emulate the instruction and return to the guest OS. 

Getting Context Information of System Calls . When we cap-

ture a system call in the hypervisor, we first need to determine if

it is file- or network-related with the number of the system call.

Note that on x64 platform, it is straightforward to get the number

of system call as the number will be put into RAX register when

the system call occurs, while the parameters may be an integer

or a pointer to a data structure. Thus the key is to get the ad-

dresses of the system call’s parameters. Before that, we need to
nderstand the structure of the stack frame when a function (or

 system call) is invoked in x64 Windows ( Corporation, 2012 ). For

64 Windows, all the stack operations are performed by RSP reg-

ster, which is the top pointer of the stack. When a system call

s invoked, its first four parameters (if needed) are put into RCX,

DX, R8 , and R9 registers from left to right, respectively, and the

emaining parameters (if needed) are pushed on the stack from

eft to right. Note that the call instruction which invokes the sys-

em call pushes an 8-byte return address before the system call

s invoked, which subtracts RSP by 8. Therefore, when we cap-

ure a system call, its first four parameters are stored in RCX, RDX,

8 , and R9 registers, respectively. And the address of the fifth pa-

ameter is RSP +5 ∗8, and so on. In this way, we can get the ad-

ress of each parameter of the system call. As for the integer re-

urn value of the system call, it is stored in RAX register in x64

indows. 

Further, we obtain information of the caller process that in-

okes the system call, e.g., the process name, process ID, etc. Note

hat in Windows, the attributes relating to a process are stored in

he executive process ( EPROCESS ) structure, which is a Windows

ernel-mode data structure that contains information about cur-

ent process. In Windows, the address of the EPROCESS can be ob-

ained in Kernel Processor Control Region ( KPCR ). In KPCR , there

s a substructure called Kernel Processor Control Block ( KPRCB ),

hich contains a pointer to the thread object of current thread

hat contains the EPROCESS of current process. Following this path,

e can get the information of caller process that invokes the sys-

em call. Fig. 4 shows the path of the data structures to reach

PROCESS from KPCR in 64-bit Windows 7. Then the key is to get

he address of KPCR . Note that in x64 Windows, when a SYSCALL

nstruction is executed, in order to make kernel to use the GS pre-

x on normal memory references to access kernel data structures,

WAPGS instruction ( Corporation, 2018 ) is used to swap current GS

ase register with the value stored in MSR register, which contains

he pointer to KPCR . Thus we can get the address of KPCR in MSR

egister when a system call is captured. 

Note that all the above addresses of the context information are

n the address space of the VM instead of the hypervisor. To get the

alues in the hypervisor, we integrate LibVMI ( community, 2017 )

nto our prototype to map the addresses of VM into the address

pace of hypervisor, and then we can read the values in the hyper-

isor accordingly. 

.2. Detector 

When receiving the monitoring information from the Mon-

tor , the Detector enforces the detection policy (as shown in

lgorithm 1 ) to identify ransomware attacks. At this moment, if

oth the file and network patterns are matched (for network pat-

ern, we think it is matched if current process has connected more

han 3 different IP addresses within three seconds, which is de-

ived by us with the samples in Table 1 ), we deem the program

s ransomware. However, if only the file I/O access pattern is

atched, we further calculate the average entropy of written data

o far and compare the result to the threshold (i.e., α) set by us

o identify attacks. Note that entropy is used to measure data un-

ertainty, and the encrypted data has a high value of entropy. We
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Table 2 

The list of ransomware families for evaluation. 

Family Number Rate 

cerber 312 14.74% 

sodinokibi 226 10.68% 

gandcrab 195 9.21% 

urausy 135 6.38% 

lockscreen 127 6.00% 

teslacrypt 125 5.90% 

yakes 118 5.57% 

filecoder 97 4.58% 

razy 91 4.30% 

cryptowall 90 4.25% 

kovter 79 3.73% 

reveton 67 3.16% 

cryptolocker 56 2.65% 

bitman 46 2.17% 

crilock 43 2.03% 

locky 40 1.89% 

symmi 37 1.75% 

winlock 35 1.65% 

injector 30 1.42% 

genasom 18 0.85% 

satan 17 0.80% 

wannacry 16 0.76% 

dmalocker 15 0.71% 

cryptxxx 15 0.71% 

ctblocker 13 0.61% 

sagecrypt 13 0.61% 

tobfy 12 0.57% 

globeimposter 9 0.43% 

tescrypt 8 0.38% 

ryuk 5 0.24% 

antix 5 0.24% 

others (5 families) 22 1.03% 

Total (36 families) 2117 - 
alculate the Shannon entropy ( Lin, 1991 ) of an array of bytes con-

ained in the monitoring information with Eq. 1 . 

 = 

∑ 

i 

−p i log 2 p i (1) 

In Eq. 1 , p i is the frequency of the value of the i -th byte in the

rray. The entropy of the data in an encrypted file is commonly

igher than that of normal data, as each byte of the encrypted

le should have a uniform probability of occurrence. Detector cal-

ulates the entropy of the data written to user files by current pro-

ess every time, and then calculates the mean value of these en-

ropy. 

To get a reasonable threshold to distinguish ransomware from

enign applications, we calculated the average entropy of the data

ritten by each ransomware sample in Table 1 . Meanwhile, we

an some benign applications (such as Microsoft Word, Notepad,

dobe Reader, etc.) to perform operations on user documents, and

alculated the entropy of the data written by them. As a result,

e found that the maximum/minimum values of average entropy

or ransomware samples are 7.34/6.08 respectively. While for the

enign applications, the average entropy is less than 4. Therefore,

e set the threshold of entropy to 6. If the average entropy of the

ritten data by the sample is greater than 6, then we display an

larm message at the top of the screen to alert the user. Compared

o existing solutions that need to calculate the entropy of the writ-

en data for all the samples (e.g., UNVEIL ( Kharraz et al., 2016 ), Re-

emption ( Kharraz and Kirda, 2017 )), our approach makes progress

s it performs computation only for those samples with only file

/O access patterns matched, which is a small ratio in our evalu-

tion (only 2.27%, see details in Section 4.2 ). Further, our system

an automatically terminate the malicious process in the guest OS

o prevent its malicious behaviors. This can be achieved by clear-

ng the memory page where the target process code is stored with

MI. 

. Evaluation 

In this section, we conduct a series of experiments to evaluate

hat RansomSpector is able to effectively detect ransomware with

 low overhead. 

.1. Experimental setup 

In our experiments, the OS of the VM where the samples

un is 64-bit Microsoft Windows 7, as Windows is the main

arget for most ransomware attacks ( Continella et al., 2016;

harraz and Kirda, 2017 ). Since ransomware encrypts user files,

e first built a user document directory consisting of a large

umber of different types of files. These files were from five

eal-world users’ workstations in the lab. They included doc-

ments such as .docx.pptx.xlsx.pdf.txt , and media files such as

jpg.png.bmp.gif.mkv.mp4.mp3.rmvb , as well as archive files such as

zip.rar . In addition, there were also some program source files like

cpp.py.java . In particular, these files contained some images and

egular documents, however, they did not contain user’s sensitive

ata, e.g., personal account information, password, personal pho-

os, etc. After filtering user’s sensitive data, to maintain the struc-

ure of the directory in real-world users, we copied the directories

nd files from each source workstation to the experimental en-

ironment. To remove the factors that prevent ransomware from

unning successfully, we shut down the firewall, anti-virus soft-

are, and user access control in the VM. Furthermore, the VM had

ccess to the Internet so that the samples could communicate with

heir C&C servers. We ran each sample with administrator privilege

or 30 minutes to ensure that the sample could complete the at-

ack on user files. We reverted the VM to the snapshot before the
ample ran in order to ensure that the execution of the sample was

ot affected by previous samples. 

In order to evaluate that RansomSpector can detect ran-

omware from malware samples in the real world, we ob-

ained 2,117 recent samples from VirusTotal (2017) and

irusShare (2017) using ransomware-related search terms (e.g.,

ansomware, ransom, etc.) or known variant names, and then put

hem into the dataset for evaluation. Further, we leveraged AVClass

 Sebastián et al., 2016 ) for family name labelling. The families of

amples used in our experiment are shown in Table 2 , and these

amples cover most families of popular ransomware. 

It is worth pointing out that the samples for evaluation in

able 2 do not overlap with those samples used to find the fea-

ure of ransomware behaviors in Table 1 in Section 2.3 . Note that

ven if a sample is labelled as ransomware by one or more anti-

irus vendors, it does not mean that the sample will attack user

les. For example, the sample may be a screen locker that only

ocks the user’s system maliciously. And many other reasons also

ause the sample to perform no ransomware behaviors. For in-

tance, the sample may need to receive a key from a remote server

efore encrypting the user files, but the remote server may be shut

own or unavailable anymore. Additionally, some advanced sam-

les will stop attacking user files if they detect that they are run-

ing in a VM (i.e., evasive malware) ( Kirat and Vigna, 2015; Zhang

t al., 2015 ). Moreover, we collected a number of benign applica-

ions with ransomware-like behaviors (e.g., file encryption or com-

ression), and analyzed how their network or file behaviors differ

rom ransomware to reduce false alarms. 

.2. Detection results 

In the experiments, we found that RansomSpector successfully

dentified 771 crypto ransomware from 2,117 malware samples
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Table 3 

The list of detected ransomware families. 

Family Number Rate 

cerber 235 30.47% 

sodinokibi 128 16.60% 

filecoder 60 7.77% 

razy 53 6.87% 

teslacrypt 38 4.93% 

gandcrab 34 4.40% 

cryptowall 32 4.15% 

yakes 29 3.76% 

urausy 21 2.72% 

crilock 16 2.08% 

reveton 14 1.82% 

cryptolocker 12 1.56% 

kovter 11 1.43% 

wannacry 11 1.43% 

cryptxxx 10 1.30% 

symmi 8 1.04% 

ryuk 5 0.65% 

expiro 5 0.65% 

winlock 5 0.65% 

satan 5 0.65% 

locky 5 0.65% 

tobfy 5 0.65% 

sagecrypt 4 0.52% 

globeimposter 4 0.52% 

tescrypt 4 0.52% 

bitman 4 0.52% 

ctblocker 3 0.39% 

others (4 families) 10 1.30% 

Total (31 families) 771 - 

Table 4 

Statistics of ransomware behavior patterns. 

Pattern File I/O Access Network Activity 

a b c a b a & b none 

number 24 709 38 41 199 483 48 

rate 3.11% 91.96% 4.93% 5.32% 25.81% 62.64% 6.23% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

The confusion matrix of experimental results. 

Actual Results 

Crypto ransomware Non-crypto ransomware 

Detected 

Results 

Crypto ransomware 771 (TP) 0 (FP) 

Non-crypto ransomware 0 (FN) 1346 (TN) 
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listed in Table 2 . Further, the 771 detected samples belonged to

31 different families (as shown in Table 3 ), among which 10 fami-

lies overlapped with those of the training set, i.e., cerber, filecoder,

razy, teslacrypt, cryptowall, yakes, cryptolocker, kovter, symmi, and

locky. Thus we detected 21 new families other than the training

set, which indicated that the identified file I/O access and network

activity patterns generalized across other families. Then we ana-

lyzed the file I/O access and network activity patterns of these 771

ransomware samples. The results are shown in Table 4 . 

As shown in Table 4 , for 91.96% (709/771) of the ransomware

samples, their file behaviors matched file I/O access pattern b in

Fig. 2 . When these samples attacked user files, they repeatedly

overwrote the original file with encrypted data, and then renamed

the original file. Only 8.04% (62/771) of the ransomware samples

produced other file I/O access patterns, but RansomSpector suc-

cessfully identified them, which indicates the effectiveness of our

prototype. 

As depicted in Table 4 , only 6.23% (48/771) of the detected

ransomware samples do not match any network activity patterns,

which verifies that the network behaviors can be used as an

important basis for detecting ransomware. 62.64% (483/771) of

the ransomware samples produced both network activity patterns

in Fig. 3 ; 5.32% (41/771) of the ransomware samples only pro-

duced network activity pattern a , and 25.81% (199/771) of the ran-

somware samples only produced network activity pattern b , which

indicates that these two network activity patterns are ubiquitous

in our tested samples. 
Combining with file I/O access and network activity patterns,

ansomSpector successfully identified 723 ransomware samples

utomatically. For the samples with only file I/O access patterns

atched, we then calculate the average entropy of the data that

he sample writes to user files. If the average entropy is larger than

he threshold set by us, in order to avoid false positives, we alert

he user that a potential ransomware is found, which needs the

ser to confirm whether the sample is malicious. Note that the ra-

io needed to be confirmed by users is very small, which is only

.27% (48/2,117) in our experiments. 

Next, we will discuss the detection accuracy, early warning, and

ehaviors of the ransomware-like benign applications. The experi-

ents are conducted by setting the entropy threshold α to 6. We

alculate the false positive and false negative rates based on the

verall number of ransomware samples shown in Table 2 . 

False Positives . To evaluate the false positive rate of Ransom-

pector , we manually ran each sample that was detected as ran-

omware by RansomSpector in a clean VM, and checked whether

he user files were encrypted. As a result, we found that at least

ne user file was encrypted and generated high entropy data in the

rocess of encryption. So it has no false positives in our results. 

False Negatives . Due to the large number of samples detected

s non-crypto ransomware, to evaluate the false negative rate of

ansomSpector , we wrote a python script to search the logs for

le-related operations of the rest 1,346 samples, as it is necessary

or an crypto ransomware sample to operate on files (e.g., file open,

ead, write, etc.) for file encryption. As a result, we found no file-

elated operations to the user files provided by us in Section 4.1 ,

o the approximate false negative rate of RansomSpector is zero.

he term “approximate ” indicates that there may be ransomware

amples in our dataset labelled as non-crypto ransomware by Ran-

omSpector , but they did not perform any ransomware behaviors

n this experiment for some reasons. For example, some samples

ay need to run for more than 30 minutes to start attacking user

les, which results in the fact that they were not detected by our

ystem. However, RansomSpector is a system that can dynamically

etect ransomware, and is able to identify it as long as the sample

erforms crypto ransomware behaviors. 

Precision and Recall Rates . We leveraged a confusion matrix to

urther present the experimental results in terms of precision and

ecall, as shown in Table 5 . Of the 771 detected crypto ransomware

amples, as we manually confirmed that all of them showed crypto

ansomware behaviors, so the value of true positive (TP) was 771

nd the value of false positive (FP) was zero. And of the remaining

,346 samples, we found no file-related operations to the user files,

hich indicated that the value of true negative (TN) was 1,346 and

he value of false negative (FN) was zero. We further calculated

he precision and recall rates with Eq. 2 and 3 . In the result, the

recision and recall rates were both 100%. 

 recision = 

T P 

T P + F P 
(2)

ecall = 

T P 

T P + F N 

(3)

Early Warning . We have shown that RansomSpector accurately

etects ransomware samples. Furthermore, if RansomSpector can
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Table 6 

File I/O performance overhead. 

Mode Original RS Overhead 

write 132.7MB/s 129.8MB/s 2.19% 

rewrite 145.3MB/s 138.9MB/s 4.40% 

read 701.1MB/s 654.9MB/s 6.59% 

reread 726.9MB/s 678.4MB/s 6.67% 

average - - 4.96% 

Table 7 

Network performance overhead. 

Mode Original RS Overhead 

tcp_s 123.0MB/s 120.5MB/s 2.03% 

udp_s 125.3MB/s 122.9MB/s 1.92% 

tcp_rr 1,872.2/s 1,811.7/s 3.23% 

udp_rr 9,748.7/s 9,477.5/s 2.78% 

average - - 2.49% 
etect ransomware and prevent it from attacking user files as early

s possible, it will reduce the loss of user files. In our evalua-

ion, 86.51% (667/771) of ransomware samples were detected when

hey were encrypting the second user file, and most of these ran-

omware samples were detected by combining file I/O access and

etwork activity patterns, which indicates the effectiveness of our

pproach that combines the filesystem and network activities for

ansomware detection. On average, 2.67 user files were lost before

he ransomware sample was detected by our system. Compared to

ryptoDrop ( Scaife et al., 2016 ) with a median loss of 10 files, our

ystem makes a further step. 

Ransomware-like Benign Applications . To further demonstrate

he impact of RansomSpector on ransomware-like benign ap-

lications, we collected 100 popular applications from Softonic

 Softonic, 2019 ) for evaluation. In particular, we selected five re-

ated categories on the website, i.e., compression, encryption, pro-

uctivity, network, and data deletion, and downloaded the top 20

pplications of each. We first obtained the File I/O access and net-

ork activity patterns of each benign application using Ransom-

pector (with only its Monitor enabled). Then, we compared the

ehavioral features of ransomware and these benign applications.

s shown in Table 4 , most crypto ransomware samples detected by

s perform both file and network activities, while we found that

o network activity patterns were matched for the benign appli-

ations at runtime. So the key is to compare the file I/O access

atterns to distinguish them. 

For the compression applications such as WinRAR (2017) and

zip , they first open and read the files that the user wants to

ompress, then create a temporary file and continuously write the

ompressed data to it, finally rename it with an extension name

rar or .zip . Note that usually the original files are not overwritten,

eleted, or renamed, which is different from ransomware. How-

ver, if the user chooses the option to delete the original files after

he compression is finished, the file I/O access pattern c (in Fig. 2 )

s matched, and then the Detector of RansomSpector calculates the

verage entropy of the written data to judge if the entropy is big-

er than 6. Note that the compression applications such as Win-

AR and 7-Zip produce high entropy output, which is bigger than

, so the Detector alerts the user that a potential attack is found

nd requests the user to make a decision. This is a necessary step

o avoid false positives, and such cases that need to be confirmed

y users is very rare, which is only 2.27% (48/2,117) in our ex-

eriments. The same thing happens to the encryption applications

uch as FlashCrypt ( Labs, 2018 ). 

.3. Case study 

The Role of Network Activity in Ransomware Execution . We

sed Reflector ( Redgate, 2017 ) to decompime ransomware samples,

nd generated the source code of these samples. With that, we

ould have a deeper understanding on how ransomware attacks

ser files and what data is transmitted by ransomware over the

etwork. 

Next, we conduct a case study with a specific ransomware

ample to illustrate that. The MD5 value of the sample is 0 xc-

ae 2400 a 50 a 3 f 2435 d 7 ef 1 b 11 e 7497 c , and it belongs to CryptoLocker

amily. 

Before attacking the user files, the sample sends the user’s host

ardware information (including its CPU ID, BIOS ID, disk ID), host

ame, user name, etc. to a remote server through the HTTP pro-

ocol, and the sample receives a response with a key for encryp-

ion from the server. We believe that the attacker can leverage the

ser’s information to generate the key, or record user’s informa-

ion to decrypt the victim’s files later. Then the ransomware sam-

le checks if a file named filelist.txt (which contains the file names

hat the attacker wants to encrypt) exists. If filelist.txt does not ex-
st, the sample creates it, and then it searches for files with spe-

ific extensions and add the paths of these files to filelist.txt . Next,

f the sample can not successfully receive the key from the server,

t would directly generate a key on the victim’s machine. Finally,

he sample encrypts all files recorded in filelist.txt , clears the key,

nd deletes all the original files. 

Therefore, it shows that while attacking user files, ransomware

sually transmits user information and keys used for encryption

ver the network. Additionally, we found that some other ran-

omware samples generate encryption keys locally and then send

he keys to their C&C servers. 

Doxware Detection . In our experiments, RansomSpector suc-

essfully detected doxware ( Instinct, 2017 ), which not only en-

rypts user files, but also steals user’s sensitive information and

eleases the information unless the victim pays for a ransom. By

nalyzing the behaviors of doxware, we found that doxware per-

orms both file and network activities. The file activities of doxware

atch the file I/O access pattern c in Fig. 2 . Namely, doxware cre-

tes a new file, repeatedly reads data from the user file and writes

ncrypted data to the new file, finally deletes the original user file.

n addition, doxware performs a large number of network activ-

ties that match network activity pattern b in Fig. 3 . We believe

hat doxware sends sensitive data collected from victims to attack-

rs over the network. Based on the characteristics of ransomware’s

le and network behaviors, RansomSpector successfully detected

t from our dataset. 

.4. Performance overhead 

To evaluate the performance overhead introduced by our ap-

roach, first we used IOzone ( IOzone, 2018 ) to evaluate the file I/O

erformance of RansomSpector , including write, rewrite, read, and

eread operations. Then we used NetPerf ( Enterprise, 2018 ) to eval-

ate the network performance of RansomSpector , including tcp_s

TCP bulk transfer), udp_s (UDP bulk transfer), tcp_rr (TCP request

nd response), and udp_rr (UDP request and response). We ran

ach test 10 times in a standard 64-bit Windows 7 system on top

f an original KVM (Original) and RansomSpector ( RS ) respectively,

nd then calculated the average. As shown in Table 6 and Table 7 ,

he results indicate that the average file I/O performance overhead

ntroduced by RansomSpector is 4.96%, and the average network

erformance overhead introduced by RansomSpector is 2.49%. 

Finally, we evaluated the impact of RansomSpector on some

opular user applications, including AESCrypt, Chrome, IE, MS

ord, NotePad, WinRAR, and Media Player. We wrote scripts with

utoIt ( Team, 2018 ) to make each application execute the same

asks with and without RansomSpector deployed, and obtained
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Table 8 

Runtime overhead on user applications. 

Application Original RS Overhead 

AESCrypt 131.73s 137.25s 4.19% 

Chrome 106.87s 109.31s 2.28% 

IE 95.88s 98.36s 2.59% 

MS Word 142.06s 146.92s 3.42% 

NotePad 123.84s 128.33s 3.63% 

WinRAR 83.61s 85.46s 2.21% 

Media Player 123.18s 123.56s 0.31% 

Average - - 2.66% 
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their running times. Similarly, we ran each application 10 times

and calculated the average. As shown in Table 8 , the average over-

head on user applications introduced by RansomSpector is only

2.66%. 

Note that our performance evaluation assumed that Ransom-

Spector ran in a KVM hypervisor, and it did not count in the over-

head introduced by KVM. This is reasonable as RansomSpector is

an introspection-based approach, and it can be readily deployed

in cloud and virtualized environments, which our approach mainly

targets. In summary, the evaluation results indicate that Ransom-

Spector introduces only a low performance overhead ( < 5% on

average). 

4.5. Comparison with research systems 

We compared RansomSpector with four state-of-the-art re-

search systems, i.e., ShieldFS ( Continella et al., 2016) , Redemp-

tion ( Kharraz and Kirda, 2017 ), PayBreak ( Kolodenker et al., 2017 ),

and CryptoDrop ( Scaife et al., 2016 ). The comparison results were

shown in Table 9 . Note that as the state-of-the-art research sys-

tems were not public, we could not evaluate them in a real experi-

mental environment. Therefore, we collected public evaluation data

of the research systems from their publications and then made

comparison. 

Dataset Size . As shown in the 2 nd line of Table 9 , RansomSpec-

tor held the maximum number of evaluation ransomware samples

in the five systems, i.e., 2,117, while PayBreak held the minimum

number of samples, which was only 107. Note that although Re-

demption collected 1,174 active ransomware samples in total, only

677 ones were used for evaluation and others were for training. 

Detection Capabilities . The 3 rd − 6 th lines of Table 9 showed

the detection capabilities of the five systems, including the number

of detected ransomware samples ( Detected ransomware ), the false

positive rate ( False Positives ), the false negative rate ( False Nega-

tives ), and the number of the lost files before ransomware was

determined ( Lost files ). Specifically, RansomSpector detected the

maximum number of ransomware samples in the five systems, i.e.,

771. In terms of false positive and false negative rates, the values
Table 9 

Comparison results of RansomSpector with research systems. 

- ShieldFS ( Continella 

et al., 2016 ) 

Redemption ( Kharraz 

and Kirda, 2017 ) 

Dataset size 305 677 

Detected ransomware 298 677 

False Positives 0.0% 0.8% 

False Negatives 2% 0.0% 

Lost files 0 0 

OS modification Yes Yes 

Kernel-level detection No No 

Bypass possibility Easy Easy 

Detection indicators File activities File activities 

Recovery capability Yes Yes 

Performance overhead 30%-380% (I/O) 5.6% (I/O) 
f RansomSpector were both zero. However, ShiledFS, Redemption,

nd CrytoDrop introduced a non-zero false positive or false nega-

ive rate. In addition, RansomSpector lost only 2.67 files on aver-

ge before ransomware was detected, which was less than Cryp-

oDrop (10 lost files). It is worth pointing out that as the detec-

ion results for comparison in Table 9 were obtained from differ-

nt datasets, thus the comparison of these results is not rigorous

nd only serves as an indicator to show the detection capabilities

f these research systems. 

Other Features . We further compared RansomSpector with

he research systems in other aspects. As shown in the 7 th line

f Table 9 , compared to other four systems, RansomSpector did

ot require to modify the operating system, which was transpar-

nt to users. Further, since RansomSpector resided in the hyper-

isor layer while other four systems ran inside the OS, thus it

ad kernel-level detection capability and was difficult to be by-

assed by ransomware (as shown in the 8 th − 9 th lines of Table 9 ).

he 10 th line of Table 9 indicated that RansomSpector introduced

 new indication (i.e., network activity) as the detecting basis,

nd thus it achieved a higher precision and earlier warning than

ther systems. As shown in the 11 th line of Table 9 , compared to

hieldFS and Redemption, RansomSpector and CryptoDrop had no

le recovery capability, while PayBreak could recovery partial files.

Performance Overhead . As shown in the 12 th line of Table 9 ,

esides CryptoDrop which provided the performance overhead

ith latencies, the overhead introduced by RansomSpector was

ess than that of other systems, which was only 4.96% for I/O op-

rations. 

Overall, the comparison results indicate that RansomSpector

as advantages in some aspects. First, RansomSpector resides in

he hypervisor layer and does not require modification of the op-

rating system, thus it has kernel-level detection capability and is

ifficult to be bypassed by ransomware. Second, RansomSpector

ntroduces a new indication (i.e., network activity) as the detect-

ng basis, thus it achieves a higher precision and earlier warning

han other systems. Third, the performance overhead introduced

y RansomSpector is small, which is less than 5% on average.

eanwhile, RansomSpector also has disadvantages compared to

ther systems. For instance, RansomSpector does not hold file re-

overy capability. We believe that compared to existing research

ystems, RansomSpector is a different approach that targets dif-

erent environments, i.e, cloud and virtualized environments, and

t could complement existing systems. 

.6. Comparison with commercial tools 

To further demonstrate the effectiveness of RansomSpec-

or , we compared it with four popular commercial ran-

omware detection tools, i.e., RansomDefender ( Clonix, 2019 ), Ran-

omStopper ( Cybersight, 2019 ), Malwarebytes Anti-Ransomware
PayBreak ( Kolodenker 

et al., 2017 ) 

CryptoDrop ( Scaife 

et al., 2016 ) 

RansomSpector 

107 492 2117 

85 492 771 

N/A 3% 0.0% 

N/A 0.0% 0.0% 

N/A 10 2.67 

Yes Yes No 

No No Yes 

Easy Easy Difficult 

File activities File activities File&network activities 

Partial No No 

150% (I/O) < 16ms (latencies) 4.96% (I/O) 
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Table 10 

Comparison results of RansomSpector with popular ransomware detection tools. 

- RansomDefender 

( Clonix, 2019 ) 

RansomStopper 

( Cybersight, 2019 ) 

Malwarebytes 

( Malwarebytes, 2019 ) 

RansomBuster 

( Trendmicro, 2019 ) 

RansomSpector 

Detected ransomware 614 132 758 473 771 

False Positives 0% 0% 0% 0% 0% 

False Negatives 20.36%(157/771) 82.88%(639/771) 1.69%(13/771) 38.65%(298/771) 0%(0/771) 

Lost files 12.20 39.00 27.91 15.61 2.67 

Kernel-level detection No No No No Yes 

Bypass possibility Easy Easy Easy Easy Difficult 

Detection indicators File activities File activities File activities File activities File&network activities 
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 Malwarebytes, 2019 ), and RansomBuster ( Trendmicro, 2019 ). The

omparison results were shown in Table 10 . 

First, we tested each of the commercial ransomware detection

ools with the same ransomware samples as RansomSpector listed

n Table 2 . To do that, we leveraged a similar experimental envi-

onment of RansomSpector in Section 4.1 for the commercial tools.

ote that the difference was that the commercial tools were in-

talled inside the OS image of the VM, while RansomSpector ran

utside of the VM, i.e., in the hypervisor layer. For each commer-

ial ransomware detection tool, we tested the 2,117 samples listed

n Table 2 one by one, and each sample ran for 30 minutes. We

everted the VM to the snapshot before the sample ran in order to

nsure that the execution of the sample was not affected by previ-

us samples. We did the test for each commercial tool with 8 VMs

imultaneously, and each VM ran a subset of the ransomware sam-

les. In total, it took almost 26 days to complete the whole test for

he four commercial tools. 

After the test, we calculated the number of the detected ran-

omware samples ( Detected ransomware ), the false positive rate

 False positives ), the false negative rate ( False negatives ), and the

umber of the lost files before ransomware was determined ( Lost

les ) for each commercial ransomware detection tool, as shown in

he 2 nd − 5 th lines of Table 10 . 

Number of Detected Ransomware Samples . As shown in the

 nd line of Table 10 , our system detected the maximum number

f ransomware samples, i.e., 771, while RansomStopper detected

he minimum number of ransomware samples, i.e., 132. Further,

e found that all ransomware detected by four commercial tools

ere within the set detected by RansomSpector . In other words,

hese four commercial tools only detected a subset of ransomware

hat were detected by RansomSpector . 

False Positives and False Negatives . Note that we manually

onfirmed that the 771 samples detected as ransomware by Ran-

omSpector were active crypto ransomware in Section 4.2 , and

ll the samples detected as ransomware by four commercial ran-

omware detection tools are within the 771 sample dataset, so the

alse positive rates for the commercial tools are all zero, as shown

n the 3 rd line of Table 10 . While for the false negative rates, it

s different for our system and the commercial tools. Similar to

ansomSpector , we computed the approximate false negative rate

f each commercial tool. As a result, the minimum false negative

ate is zero from RansomSpector , and the maximum false nega-

ive rate is 82.88% from RansomStopper, as shown in the 4 th line

f Table 10 . 

Number of Lost Files . As mentioned before, if a ransomware

etection tool can detect ransomware and prevent it from attack-

ng user files as early as possible, it will reduce the loss of user

les. So the number of lost files is an important vector for the ran-

omware detection systems. In order to get the number of lost files

or each commercial tool, we traversed the log files and counted

ow many user files had been altered by the ransomware samples

ne by one. After that, we calculated the average number of lost

les when the detection tool successfully blocked ransomware. As

hown in the 5 th line of Table 10 , RansomSpector has the mini-
um number of lost files before ransomware was determined, i.e.,

.67 on average, while RansomStopper has the maximum number

f lost files, i.e., 39.00 on average. 

Additionally, we compared RansomSpector with the commer-

ial ransomware detection tools from three other aspects, i.e., the

bility of kernel-level ransomware detection ( Kernel-level detection ),

he possibility to be bypassed by attacks ( Bypass possibility ), and

he indicators for ransomware detection ( Detection indicators ). The

esults are shown in the 6 th − 8 th lines of Table 10 . 

As the commercial ransomware detection tools run in the same

nvironment (i.e., the same OS) with the ransomware applica-

ions, thus they are not able to detect kernel-level ransomware and

asy to be bypassed by privilege escalation attacks. In compari-

on, RansomSpector runs outside of the OS, i.e., in the hypervi-

or layer, thus it is capable of analyzing and detecting kernel-level

ansomware and difficult to be bypassed by privilege escalation at-

acks. Furthermore, RansomSpector leverages both the filesystem

nd network activities as ransomware detection indicators, thus it

chieves a higher precision and earlier warning than the commer-

ial tools that only leverage the filesystem activities as ransomware

etection indicator. 

In summary, compared to four popular commercial ransomware

etection tools, RansomSpector makes a further step in almost all

he items listed in Table 10 . 

. Discussion 

In this section, we discuss possible limitations of RansomSpec-

or and suggest potential improvements. 

First, it is worth pointing out that although the guest OS in our

rototype of RansomSpector is 64-bit Windows 7 on x64 plat-

orm, we believe that the techniques presented in this paper are

eneric and can be applied to other commodity guest OSes as well.

n fact, we have successfully introspected the file- and network-

elated system calls for Ubuntu 16.04/x86-amd64 guest OS with

VM hypervisor ( KVM, 2018 ). It is promising to extend our sys-

em to other guest OSes with moderate engineering effort s, e.g.,

reeBSD, Solaris, etc. 

Second, RansomSpector is based on the VMI technique, and our

urrent prototype requires to manually reconstruct the context in-

ormation of file- and network-related system calls once captured

y the hypervisor. In other words, it requires to develop a cer-

ain piece of reconstruction code for each type of guest OS, as the

ata structures to construct is not same in different OSes. How-

ver, all the construction code is developed in the hypervisor layer

nstead of the guest OS, and there is no need to modify (and re-

ompile) the guest OS. Therefore, in a cloud or virtualized envi-

onment that our approach mainly targets, it is the responsibil-

ty of service providers to extend the hypervisor for detecting ran-

omware, which is transparent to average users. Moreover, one key

dea of our approach is to leverage the VMI technique for detect-

ng ransomware in the hypervisor layer, and we are not targeting

o advance the VMI technique itself. However, any progress in the

eld of VMI could be borrowed by our system, as the ransomware
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detection policy (i.e., Algorithm 1 in Section 2.4 ) enforced in our

system is orthogonal to the VMI technique. Indeed, some promis-

ing solutions ( Dolan-Gavitt et al., 2011; Fu and Lin, 2013 ) in the

area of VMI have been proposed to automatically obtain the re-

construction code. Thus, our work can readily benefit from the ad-

vance in this direction. 

Third, although the main task of RansomSpector is to detect

ransomware attacks, and our evaluation results indicate that only

2.67 user files were lost before ransomware was detected by our

system on average (see details in Section 4.2 ), it is better if Ran-

somSpector could successfully recover the original files once en-

crypted. Note that it is almost impossible for victims to decrypt the

encrypted files without a key, due to the high-intensity encryption

algorithms and long-enough keys used by attackers. To address this

challenge, our initial thought is to intercept the data in file read

and write operations of ransomware with VMI, and record the data

as well as its offset in the file. Once the user file is encrypted, we

can leverage these data for file recovery. We leave it as our future

work. 

Fourth, although we believe that the samples leveraged to

summarize the network and file patterns of ransomware (in

Section 2.3 ) cover most families of state-of-the-art ransomware,

and our evaluation results further indicate its effectiveness, it is

possible to adopt a new network or file pattern for a new variant

of crypto ransomware. Once such case is found, it is easy for us to

add the new pattern into our system. 

6. Related work 

Ransomware Detection and Prevention . A number of sys-

tems have been proposed by researchers to detect or prevent ran-

somware for Windows ( Continella et al., 2016; Huang et al., 2018;

2017; Kharraz et al., 2016; Kharraz and Kirda, 2017; Kharraz et al.,

2015; Kolodenker et al., 2017; Mehnaz et al., 2018; Scaife et al.,

2016 ) and Android ( Andronio et al., 2015; Chen et al., 2018 ). We fo-

cus our discussion on the systems for Windows. For example, Khar-

raz et al. made a long-term study on the behaviors and evolution

of ransomware and proposed an approach to detect ransomware

by monitoring its filesystem activities ( Kharraz et al., 2015 ), but

they did not evaluate it. UNVEIL ( Kharraz et al., 2016 ) can ana-

lyze and detect both the screen lockers and crypto ransomware.

In particular, for crypto ransomware, UNVEIL monitors the low-

level filesystem activities to match certain file I/O access patterns

for ransomware identification. PAYBREAK ( Kolodenker et al., 2017 )

restores encrypted files by hooking calls to cryptographic func-

tions and gets the symmetric keys used to encrypt files. Crypto-

Drop ( Scaife et al., 2016 ) detects ransomware by monitoring certain

changes of user data, including the file type, file similarity, Shan-

non entropy, etc. ShieldFS ( Continella et al., 2016 ) leverages a huge

number of I/O requests generated by benign applications to train

some models, and then uses the models to determine whether a

process is malicious. Redemption ( Kharraz and Kirda, 2017 ) redi-

rects each write access request of user files to a protected area and

evaluates the malicious degree of a process based on the changes

of the target files and the behavioral characteristics of the process.

RWGuard ( Mehnaz et al., 2018 ) employs three techniques (i.e., de-

coy monitoring, process monitoring, and file change monitoring)

to monitor file-related operations or changes for ransomware de-

tection. As mentioned in Section 1 , the above systems have two

limitations, i.e., they work in the same OS with ransomware and

they detect attacks only based on the filesystem activities. In con-

trast, RansomSpector moves the detection system out of the guest

OS, and monitors both the file and network activities using VMI for

attack identification. Thus, our system is immune to privilege esca-

lation attacks and achieves a higher precision and earlier warning

when detecting ransomware attacks. 
Additionally, some approaches ( Baek et al., 2018; Huang et al.,

017; Park et al., 2019 ) were proposed to provide firmware-level

ansomware detection and file recovery by taking advantage of

he inherent features of SSD, so they cannot be bypassed by

ansomware with kernel privilege. But they only target for SSD-

ased file systems. In contrast, our system targets for the filesys-

em on common hard disks. Huang et al. established a mea-

urement framework to perform a large-scale end-to-end analy-

is of ransomware revenue, affiliate schemes, and infrastructure

 Huang et al., 2018 ), which has a different goal compared to our

ystem. 

Virtual Machine Introspection . As a new technique for intru-

ion detection, VMI combines high visibility of host-based intru-

ion detection system and strong isolation of network-based in-

rusion detection system. A variety of VMI systems have been

roposed since its introduction in 2003 ( Garfinkel and Rosen-

lum, 2003 ). For instance, Strider GhostBuster ( Wang et al., 2005 )

nd VMwatcher ( Jiang et al., 2007 ) detect attacks by comparing the

igh-level view from the internal VM and the low-level view from

he hypervisor with VMI. XenAccess ( Payne et al., 2007 ) presents a

onitoring library for VMs running on Xen ( Barham et al., 2003 ).

rocess out-grafting ( Srinivasan et al., 2011 ) reconstructs semantics

or the key processes in the VM, and then monitors their behaviors

o detect attacks. Compared to the systems that need to manu-

lly reconstruct semantics, recent systems mainly focus on how to

utomatically obtain the reconstruction code ( Dolan-Gavitt et al.,

011; Fu and Lin, 2013; Saberi et al., 2014 ), e.g., Virtuoso ( Dolan-

avitt et al., 2011 ) and VMST ( Fu and Lin, 2013 ). We believe that

he research progress in the field of VMI can be borrowed by our

ystem in the future. 

. Conclusion 

In this paper, we propose RansomSpector , an introspection-

ased approach to analyze and detect crypto ransomware. In par-

icular, RansomSpector resides in the hypervisor layer, and it in-

rospects both the file and network activities of ransomware which

uns in the VM to identify attacks. Thus, it is transparent to ran-

omware and difficult to be bypassed. Additionally, it achieves a

igher precision and earlier warning compared to those systems

hat only use file behaviors as the detecting basis. We have de-

eloped a prototype of RansomSpector with KVM, and collected

,117 ransomware samples to evaluate it. The evaluation results in-

icate that RansomSpector can effectively detect ransomware at-

acks with a small performance overhead. 
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