
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Building a Lightweight Trusted Execution
Environment for Arm GPUs

Chenxu Wang∗, Yunjie Deng∗, Zhenyu Ning, Kevin Leach, Jin Li, Shoumeng Yan, Zhengyu He,
Jiannong Cao, and Fengwei Zhang†

Abstract—A wide range of Arm endpoints leverage integrated and discrete GPUs to accelerate computation. However, Arm GPU
security has not been explored by the community. Existing work has used Trusted Execution Environments (TEEs) to address GPU
security concerns on Intel-based platforms, but there are numerous architectural differences that lead to novel technical challenges in
deploying TEEs for Arm GPUs. There is a need for generalizable and efficient Arm-based GPU security mechanisms.
To address these problems, we present STRONGBOX, the first GPU TEE for secured general computation on Arm endpoints.
STRONGBOX provides an isolated execution environment by ensuring exclusive access to GPU. Our approach is based in part on a
dynamic, fine-grained memory protection policy as Arm-based GPUs typically share a unified memory with the CPU. Furthermore,
STRONGBOX reduces runtime overhead from the redundant security introspection operations. We also design an effective defense
mechanism within secure world to protect the confidential GPU computation. Our design leverages the widely-deployed Arm TrustZone
and generic Arm features, without hardware modification or architectural changes. We prototype STRONGBOX using an off-the-shelf
Arm Mali GPU and perform an extensive evaluation. Results show that STRONGBOX successfully ensures GPU computation security
with a low (4.70% – 15.26%) overhead.

Index Terms—Arm endpoint GPU, Trusted Execution Environment, Secure Virtualization

✦

1 INTRODUCTION

GPUs are now widely used in general- and high-
performance applications such as 3D games [1], video pro-
cessing and compression [2], mobile Virtual Reality [3], and
neural network training and inference [4], [5], [6]. In addi-
tion, GPUs are used not only in server and cloud environ-
ments [7], [8], but also in small embedded systems [9], [10]
such as smartphones and autonomous vehicles to satisfy the
sharply-increasing performance demands.

As GPUs have enjoyed increased popularity and dis-
tribution, the associated security implications have not yet
seen a corresponding level of scrutiny from the community.
To access sensitive data processed by victim applications, an
attacker can exploit numerous vulnerabilities at the OS level

Chenxu Wang∗ and Yunjie Deng∗ are co-first authors. Fengwei Zhang† is the
corresponding author.
Chenxu Wang is with Research Institute of Trustworthy Autonomous Sys-
tems, Southern University of Science and Technology, China, and also with
Department of Computing, The Hong Kong Polytechnic University, China.
E-mail: 12150073@mail.sustech.edu.cn.
Yunjie Deng is with Research Institute of Trustworthy Autonomous Systems,
and Department of Computer Science and Engineering, Southern University
of Science and Technology, China. E-mail: 12032869@mail.sustech.edu.cn.
Zhenyu Ning is with Hunan University, China, and also with Department
of Computer Science and Engineering, Southern University of Science and
Technology, China. E-mail: zning@hnu.edu.cn.
Kevin Leach is with Institute for Software Integrated Systems, Vanderbilt
University, USA. E-mail: kevin.leach@vanderbilt.edu.
Jin Li is with School of Computer Science, Guangzhou University, China.
E-mail: Jinli71@gmail.com.
Shoumeng Yan and Zhengyu He are with Ant Group, China. E-mail:
shoumeng.ysm@antgroup.com, zhengyu.he@antgroup.com
Jiannong Cao is with Department of Computing, The Hong Kong Polytechnic
University, China E-mail: csjcao@comp.polyu.edu.hk
Fengwei Zhang is with Department of Computer Science and Engineering,
and Research Institute of Trustworthy Autonomous Systems, Southern Uni-
versity of Science and Technology, China. E-mail: zhangfw@sustech.edu.cn

to gain control of the GPU Driver, which in turn enables
access to the GPU’s memory through Memory-mapped
I/O (MMIO) interfaces. In addition, the attacker can break
isolation between GPU applications by tampering with the
GPU page table, leaking potentially sensitive data processed
on victim GPU applications. Combined with the increase in
the use of personally identifiable information [11], [12], [13]
and sensitive secrets computed with GPUs [14], [15], there is
an urgent need to address trusted computing requirements
for ubiquitous GPUs.

Researchers and commercial vendors have proposed a
number of approaches to defend against leaking sensitive
data [16], [17], [18], [19]. Recently, one such technology is
Trusted Execution Environments (TEEs) [19], [20], [21], [22].
By using specialized hardware and software, TEEs provide
an isolated runtime environment for executing security-
critical code. TEEs have recently been adapted to isolating
secure GPU computation [23] using modified Intel Software
Guard eXtensions (SGX) [21], Graviton [24] and HETEE [25]
with customized TEEs. However, none of these techniques
have been applied to Arm endpoint GPUs. One critical limi-
tation lies in architectural differences between Intel and Arm
GPU platforms. State-of-the-art GPUs on Intel-based devices
are naturally isolated because discrete GPU devices have
dedicated memory. In contrast, Arm-based devices often
employ Systems on Chip (SoCs) in which a unified memory
is shared between the GPU and CPU (and consequently,
with an untrusted OS). This major change in architectural
assumptions heavily influences the design of relevant pro-
tection mechanisms. In addition, several works [23], [24]
involve highly-coupled software stacks (e.g., GPU Driver
and runtime). This line of work requires porting heavy
software to the enclave, which executes on behalf of the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3334277

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

protected confidential GPU application. However, this may
increase vulnerabilities within the system. On one hand,
large software stacks increase the trusted code base of the
enclave/TEE. On the other hand, the implementation of
such ported software can be vulnerable [26], [27], [28], [29],
[30], which severely threatens data security during compu-
tation. Finally, GPU TEE mechanisms [23], [24], [25] on Intel-
based devices entail heavy hardware modification, which, if
adopted to Arm devices, would result in poor compatibility
with existing software systems. Existing secure computation
on Arm endpoint GPUs requires porting the entire GPU
driver into TrustZone and only focuses on specific appli-
cations (e.g., deep learning inference [31]). These defects
have yet to be properly addressed. As for the defense of
GPU chips, NVIDIA recently proposed the H100 GPU [32]
to establish a trusted execution environment on GPUs, but
this is not yet compatible with Arm endpoints.

We present STRONGBOX, the first GPU TEE for general
computation on Arm endpoints. STRONGBOX aims to en-
sure secure and isolated computation on GPUs in Arm end-
points, which contains a unified memory with the untrusted
OS and other peripherals. STRONGBOX achieves three key
goals. (1) Security: As a GPU TEE, STRONGBOX must isolate
each secure GPU task from both the vulnerable system
and malware. Thus, STRONGBOX prevents adversaries from
leaking data or tampering with critical code during the
life of confidential GPU applications. (2) Minimal TCB:
STRONGBOX must entail a minimal Trusted Computing
Base (TCB) to reduce the potential attack surface. To achieve
this goal, STRONGBOX delegates the heavy GPU Driver
and GPU runtime code to perform complex operations, in-
cluding memory allocation and deallocation, I/O, and task
scheduling, while accessing sensitive data is strictly con-
trolled by thin trusted components. (3) High Compatibility:
STRONGBOX maintains compatibility with ubiquitous Arm
endpoint devices. In particular, STRONGBOX neither relies
on the features of specific Arm endpoints, nor does it require
hardware modification to GPU or CPU chips.

We discuss our prototype implementation of STRONG-
BOX using an Arm Juno R2 development board with clusters
of Cortex-A53 and Cortex-A72 processors with a Mali-T624
GPU, both of which share a unified memory space. Our
prototype introduces a TCB which is orders of magnitude
smaller than the state-of-the-art approach [31] of porting a
30K LoC Arm Midgard GPU Driver to TEE. We measure
the performance of our prototype using a popular GPU
benchmark suite, called Rodinia [33], which has been widely
used to evaluate the performance on Arm devices [34], [35],
[36]. We also analyze and discuss the security of STRONG-
BOX under an assumed adversary. Our evaluation results
indicate that STRONGBOX successfully achieves its security
guarantees while introducing a reasonably low (4.70% –
15.26%) performance overhead. Moreover, we measure the
slowdown caused by TCB reduction with OP-TEE xtest [37].
Results indicate that our prototype introduce a negligible
overhead to secure world.

We claim the following contributions in this work:

• We present STRONGBOX, the first GPU TEE that runs
on Arm endpoints. STRONGBOX provides an isolated

execution environment for secure tasks and protects
sensitive data and code from a compromised kernel.

• We further minimize the TCB of our design by
considering the threat from secure world. We lever-
age a novel technique, called secure virtualization
extension, to defend against compromised Secure
OS’s and applications while introducing negligible
performance overhead.

• We implement a prototype of STRONGBOX on an
Arm development board without any hardware or
architecture modification. We further implement the
TCB reduction mechanism based on this prototype
and will share its source code.

• We perform a comprehensive evaluation of STRONG-
BOX and present a detailed security analysis of our
prototype. Results show that STRONGBOX effectively
protects the sensitive data with a comparable perfor-
mance overhead.

This paper is an extended version of our previous
work [38] accepted in ACM Conference on Computer and
Communications Security 2022. Based on that work, we
further reduce the TCB size by defending against vulnerable
implementations of secure world. To handle potential attacks
from this new threat model, we leverage a novel Arm
feature, called secure virtualization, to restrict illegal access
from the compromised secure OS and secure applications.
To verify the feasibility of our defense mechanism, we
prototype it on Arm Fixed Virtual Platforms (FVP) [39],
which provides the official software-simulated Arm features
and is widely used in other TEE works [40], [41], [42], [43].
We also measure the performance overhead of our prototype
on Arm Juno R2 development board. Our results show that
our approach introduces negligible performance overhead.
Comparison to Previous Work. We compare our new GPU
TEE design with previous work. First, the major difference
is that this improved GPU TEE design reduces the TCB by
removing the vulnerable secure world software. The previous
iteration of STRONGBOX trusts any component in secure
world, thus exposing a large attack surface. Second, we
design a lightweight approach to reduce TCB size by lever-
aging the new Secure Virtualization Extension proposed in
Armv8.4, which is compatible with future Arm devices.
However, since our native GPU TEE is designed for tradi-
tional Armv8 endpoints, it requires non-trivial modification
on secure world software to reduce TCB.

We claim the new contributions in this paper below:

• We reduce the TCB of our previous work by remov-
ing vulnerable secure world components (i.e., secure
OS and secure applications). During the execution
of confidential GPU applications, we prevent illegal
accesses to sensitive data and to the STRONGBOX
runtime from an attacker who controls secure world.

• We design a practical defense mechanism of vulner-
able secure world OS/applications by leveraging the
novel secure Stage-2 translation. Our design effec-
tively reduces the TCB with no hardware modifica-
tion or changes to secure world components.

• We implement a prototype of our defense mecha-
nism using Arm FVP and measure the performance
overhead on an Arm Juno R2 development board.

2

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3334277

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Our evaluation shows that the new STRONGBOX
implementation effectively defends against the threat
of compromised secure world OS/applications while
introducing negligible performance overhead.

2 BACKGROUND

2.1 Arm TrustZone

Arm TrustZone [44] is a hardware-based security mecha-
nism that provides a number of isolation guarantees for
security-critical code on Arm devices. TrustZone isolates the
execution into two states: (1) secure world, which provides
a TEE for secure applications or secure OS, and (2) normal
world, which is used for untrusted applications or traditional
OS. To provide the strict resource and computing isolation
between the secure and normal world, TrustZone deploys its
firmware on a secure monitor. The secure monitor acts as the
gatekeeper during the switching of these worlds. Moreover,
it owns a higher privilege than the secure or non-secure
components to protect the configurations. Thus, confidential
computation within secure world is strictly protected by
TrustZone via hardware isolation in memory, and can be
requested in the normal world through several mechanisms,
such as a privileged smc instruction.

The isolation of the normal and secure worlds is ensured
by hardware components that are parts of the TrustZone
architecture. One such component is the TrustZone Ad-
dress Space Controller (TZASC). Embedded in the memory
bus, the TZASC sits between DRAM and CPU/peripherals,
monitoring access to secure and non-secure address spaces.
Moreover, the TZASC assigns a Non-Secure Access Iden-
tity (NSAID) to each untrusted peripheral device. When
a peripheral requires read/write access to an address, the
TZASC looks up the configuration (usually stored in a
register) of the corresponding memory region for the va-
lidity of the access. However, the TZASC only supports
configuring 8 regions, limiting flexibility of such a memory
protection mechanism. We present an assisted access control
mechanism in Section 2.2 to address this limitation.

TrustZone also isolates interrupts to varied groups in
response to device I/O by configuring a Generic Interrupt
Controller (GIC) [45], [46]. For instance, GICv3 [46] creates
two groups of interrupts: Group 0 is assigned to the secure
monitor, while Group 1 owns both secure and non-secure
interrupts, which are assigned to secure OS and non-secure
components, respectively. TrustZone identifies the interrupt
and its group when they occur, in turn dispatching the inter-
rupt to the CPU with the related security state. In this paper,
we control the switching of GPU interrupt state to efficiently
process sensitive data and restore the environment.

2.2 Arm Address Translation

Arm defines a two-stage (formally called Stage-1 and Stage-
2) translation mechanism to map the memory space of OS
and applications within physical memory. Stage-1 translates
the virtual address (VA) of kernel or user space into an
intermediate physical address (IPA), and Stage-2 maps the
IPA to the real physical address (PA). Stage-2 translation
is widely supported on Cortex-A series [47], [48], [49],
[50] chips, which is the mainstream processor for GPU-
equipped Arm endpoints. However, most Arm endpoints

disable this translation since they do not typically fit multi-
tenant hypervisors. In STRONGBOX, we enable this feature
for page-level access control on the GPU MMIO registers
and the GPU task memory.

2.3 Workflow of Arm Endpoint GPUs

To control endpoint GPUs at the software level, Arm pro-
vides two GPU software stacks: (1) the closed-source user
runtime in the user layer (e.g., OpenCL [51]), and (2) the
open-source GPU Driver in the kernel layer. The user-level
runtime provides various high-level APIs, built-in functions,
and specific data structures to support developing GPU
applications. The kernel-level GPU Driver mainly controls
memory allocation and task scheduling and submission via
Memory-Mapped Interfaces (MMIO).

A GPU application is composed of one or more GPU
tasks, which further contain several GPU threads. We
present the typical execution of a GPU application on an
Arm endpoint GPU as follows. First, the GPU software
stacks allocate memory for the essential components in
GPU tasks (i.e., GPU buffers, code segments, and non-
confidential metadata) and build the corresponding GPU
page table. Next, data are loaded into the allocated GPU
buffers through a Direct Memory Access (DMA) controller.
Then, the GPU software stack loads the binary code into
GPU memory. After that, the GPU task start command is
sent by configuring the GPU MMIO registers. After re-
ceiving the submission command, the GPU computes the
task based on the code and data, and stores the execution
result in specific memory. Once the GPU task is finished,
the GPU sends a hardware interrupt to notify the interrupt
handler in the GPU software stack. For multi-task GPU
applications, the GPU software stack repeatedly loads the
task code, submits the task, and waits for completed GPU
computation. After processing all tasks, results are directly
accessed or exported through DMA. Based on the general
workflow of Arm endpoint GPUs, STRONGBOX secures
the task execution and builds a secure data path for data
transfer.
2.4 Arm Secure Virtualization Extension

Since Armv8.4 [52], Arm provides a novel secure world fea-
ture, called secure virtualization extension. This architecture
extension introduces a secure hypervisor layer (i.e., S-EL2)
to manage multiple secure OSes and applications, which is
achieved by virtualizing the entire secure world (e.g., secure
memory and secure peripherals). Although current Arm
endpoints are not intended for deploying multiple secure
OSes, it still provides several features to manage the secure
OS. Similar to normal world virtualization, S-EL2 introduces
secure Stage-2 translation to manage the memory used by
secure OSes/applications. The secure Stage-2 translation is
fully controlled by the secure hypervisor and the secure
monitor, preventing low-privileged attackers from modify-
ing critical registers to disable it. In contrast to non-secure
Stage-2 translation, secure Stage-2 translation owns several
dedicated system registers to configure the base address
of translation page table (VSTTBR_EL2) and translation
control (VSTCR_EL2), though both secure and non-secure
Stage-2 translation share the same register (HCR_EL2) to
determine whether they are enabled.

3

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3334277

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

In STRONGBOX, we correctly configure the secure Stage-
2 translation to control the memory access from vulnerable
secure OSes/applications. To prevent unauthorized access,
we configure the page table of secure Stage-2 translation and
invalidate the mapping to the protected region. Thus, mem-
ory access from secure OSes/applications to the protected
region yields a translation fault instead of the sensitive data.
Moreover, the secure OSes/applications cannot disable the
Stage-2 translation due to the lack of privilege. We leverage
the secure virtualization feature to reduce STRONGBOX’s
TCB size.

3 THREAT MODEL AND ASSUMPTIONS

We assume a privileged attacker who seeks to leak or
tamper with sensitive data and execution results of GPU
applications. Specifically, the attacker can control the ker-
nel as well as the entire GPU software stacks, including
the GPU Driver, runtime, and other peripheral drivers. To
tamper with sensitive data and code in GPU applications,
the attacker can directly access a unified memory used
for GPU tasks, or control peripherals to subvert detection.
In addition to direct access, the attacker who controls the
GPU driver can compromise the memory management of
the GPU applications, mapping sensitive data to an un-
protected region. We also consider an adversary aiming
to break the isolated execution environment of the victim
GPU applications, such as submitting an arbitrary num-
ber of malicious tasks. By modifying the corresponding
GPU page table, the attacker can require malicious tasks
to access the memory of the victim task. Furthermore, we
consider threats from the secure world OS and applications.
The attacker who exploits vulnerabilities [26], [27], [28],
[29], [30] of secure OS and applications can control these
components to directly access our TEE. In addition, the
attacker can tamper with STRONGBOX runtime (e.g., mod-
ifying the configuration of TZASC) to bypass the access
control, which is shown in recent study [53]. Following
existing best practices for SGX-based GPU TEEs [23], we
assume the GPU, TrustZone, and their firmware are trusted
since they can be guaranteed by secure boot and attestation
from a trusted remote host. Thus, STRONGBOX firmware is
correctly loaded into Arm endpoints with verification. In
addition, we consider cryptographic-based attacks, physical
attacks, side-channel/spy attacks, and the Denial-of-Service
attacks to be beyond the scope of this paper.

4 DESIGN

4.1 Goals and Overview
The goal of STRONGBOX is to achieve an effective,
lightweight, and compatible GPU TEE on Arm endpoint
devices, in which the OS and applications are potentially
compromised. As a result, our design must achieve three
critical goals described below.

G1: Provide a Trusted Execution Environment for se-
cure GPU tasks. The primary goal is to secure sensitive data
for GPU applications. To achieve this goal, STRONGBOX
must protect two modes of data access from Host OS to
the execution environment: (1) from the OS to GPU and (2)
from the OS to the memory of GPU tasks. In the former case,
STRONGBOX diverts the control flow of the GPU from the
untrusted GPU Driver to TrustZone’s secure world, including

the interaction with GPU registers and GPU interrupts (see
Section 4.2). For the latter case, STRONGBOX manages the
access to the unified memory to restrict untrusted access to
the task execution environment (see Section 4.3).

G2: Reduce the size of trusted computing base. Next,
we must maintain a lightweight TEE. Several GPU TEEs and
secure computing systems [23], [24], [31] trust large software
stacks (e.g., libraries and drivers) for pre-processing sensi-
tive data, exposing a large attack surface within the TEE.
However, we observe that the software stack can perform
its critical functions (e.g., memory management of GPU
tasks and scheduling GPU tasks) without direct access to the
sensitive data. Thus, we instead preserve the GPU Driver in
normal world, while introducing a lightweight STRONGBOX
runtime that protects GPU memory even if the driver is
compromised. This design achieves a thin TCB without
undermining the security of the existing system. In addition,
considering the secure OS and applications can be totally
compromised, or curious about the sensitive data, we regard
them as untrusted and design a defense mechanism against
the secure world attacker (detailed in Section 4.4).

G3: Ensure compatibility with Arm endpoints. Third,
we introduce a GPU TEE designed for Arm endpoints with
minimal changes to the underlying platform. State-of-the-
art GPU TEEs [23], [24], [25] adopt additional hardware
components to ensure secure computation. These special-
ized hardware requirements increase challenges associated
with migrating systems as well as the associated production
costs. Thus, we design our approach to rely neither on
specialized hardware components nor physical modification
of devices.

Figure 1 illustrates the design of STRONGBOX, which is
divided into software and hardware components. STRONG-
BOX reuses the GPU runtime and driver software in the OS
(EL1) to reduce the overall TCB size (G2), and additionally
provides two principal components: GPU Guard and Task
Protector. GPU Guard provides a protective layer that en-
sures the GPU can execute in isolation, and ensures that
secure tasks are completed before final computed results
are returned. Task Protector works in tandem with GPU
Guard to ensure that sensitive data are protected to provide
confidentiality. As a result, our approach ensures that GPU
can execute secure tasks in isolation while executing within
a potentially-compromised OS. Note that hypervisors in
both normal world and secure world are not deployed on
most Arm endpoints, and STRONGBOX requires no modi-
fication to secure applications and secure OS. For hardware
components, STRONGBOX leverages existing and software
configurable devices to ensure high compatibility (G3). We
split the system’s memory into four regions: Two untrusted
regions, which we call (1) Normal RAM and (2) Non-secure
Task RAM, which are respectively used for kernel and non-
secure tasks; and two trusted regions that we call (3) Trusted
RAM, which is reserved for the STRONGBOX runtime and
non-secure Stage-2 translation table, and (4) Secure Task
RAM, which is a fixed, non-secure memory region reserved
for the confidential GPU application to dynamically request
memory and create GPU page table mappings. To protect
the two trusted regions, STRONGBOX leverages the Mem-
ory Management Unit (MMU) and a specially-configured
TZASC. In the MMU, STRONGBOX performs non-secure

4

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3334277

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

User GPU Runtime

GPU Application

Software

MMU
S-1 & S-2 MMU

TZASC

APP

CPU

S
Task

NS
Task

GPU

Trusted
RAM

Normal
RAM

S Task
RAM

NS Task
RAM

MMIO

Host OS

Normal World Secure World

Hardware

EL0

EL1

EL2

DMA
Controller

GPU Driver

Secure Monitor

Trust
Modules

Strongbox Runtime

EL3
sm

c

Task
Scheduler

Memory
Manager

GPU Guard Task Protector

Trusted Untrusted CPU Access GPU Access

Secure App

Secure App

Secure OS

S-EL0

S-EL1

S-EL2

Added/Modified

Figure 1: STRONGBOX architecture overview

Stage-2 translation to control access from the Host OS to
GPU MMIO interfaces and to the two trusted regions.
Meanwhile, we leverage the TZASC to control access to the
two trusted regions from GPU and other peripherals.
Lifecycle of a Secure Task. Figure 2 illustrates the lifecycle
of processing a secure task using STRONGBOX. Initially, the
GPU software stack prepares the secure task and generates
an smc event, which the GPU Guard handles for further
protection. Next, the GPU Guard collaborates with the Task
Protector to secure GPU MMIO and GPU memory, then to
verify the GPU environment. Once the GPU environment
is protected, the GPU Guard submits the secure task to the
GPU device. Note that STRONGBOX does not block the CPU
core during GPU computation. When the GPU completes
computation, the GPU Guard handles the resulting GPU in-
terrupt, again working with the Task Protector to restore the
GPU environment. Finally, the GPU Guard routes control
flow to the GPU software stack to terminate the secure task.

4.2 GPU Exclusivity During Critical Execution

STRONGBOX’s primary security goal is to provide exclusive
execution of secure GPU tasks. That is, if any secure task is
executing on the GPU, no other task can be scheduled on the
GPU simultaneously. As shown in Section 3, attackers who
control the GPU MMIO can subvert the isolated execution
environment. To defend against such an attacker, we adapt
state-of-the-art GPU TEEs to Arm GPU devices, which
requires addressing two issues. First, while existing GPU
TEEs migrate heavy GPU driver code into an enclave or
TEE to control the GPU, we keep this code in the untrusted
kernel, and instead react to specific smc events that route
control to the STRONGBOX runtime. Second, we use existing
Arm features to control the access of GPU hardware —
specifically, the non-secure Stage-2 translation helps lock the
system mapping of GPU MMIO registers during computa-
tion. By leveraging custom smc event handlers and non-
secure Stage-2 translation, we can prevent highly-privileged
attackers from gaining control of the GPU or executing
malicious tasks.

STRONGBOX reuses the existing GPU driver in the
untrusted kernel, and instead secures execution using
lightweight software components. To achieve this, we must
work with the GPU driver to reroute control under several
cases related to the creation, management, and execution of
secure GPU tasks. First, we design a dedicated scheduling

rule for secure tasks. Once a secure task is ready to execute,
any non-secure computation, are forced to reschedule and
wait for the completion of the submitted secure task. For
the running tasks, the GPU driver repeatedly evaluates the
contents of GPU registers to determine if any tasks are
executing. Once we determine that the GPU is not executing
any task, the GPU driver uses a dedicated smc call which
signals for the protection and security check in STRONGBOX
runtime. In contrast, normal, non-secure tasks can submit as
usual.

Recall that the GPU driver is untrusted because it is part
of the untrusted OS — however, we can mitigate attacks
that compromise the GPU driver. When we receive an smc
call, we use our GPU Guard to detect and eliminate threats.
GPU Guard defends against these attacks by isolating and
securely introspecting the execution environment. Before
submitting secure tasks to the GPU, GPU Guard confines the
access to GPU MMIO via the non-secure Stage-2 translation
to prohibit unauthorized access from the untrusted OS.
Any malicious operations against the GPU MMIO inter-
faces (e.g., modifying GPU registers or submitting a task)
are captured by generating page-fault exceptions, while
trusted operations in STRONGBOX are not affected. After
locking the GPU MMIO, GPU Guard guarantees the GPU
environment security. First, GPU Guard checks the GPU
task state registers to ensure no hidden tasks. The checked
results are unable to be tampered with by TOCTTOU attacks
due to the locked GPU MMIO. Next, GPU Guard works
with Task Protector to further check the other critical GPU
registers (e.g., page table base register and GPU task code
register). Task Protector also checks the memory containing
the loaded task’s GPU page table, code, and data regions
described in Section 4.3. The page table memory is locked
and checked by STRONGBOX before the first secure task
executes and is unlocked after completing the last secure
task. The check prevents an attacker from mapping the
sensitive GPU buffer addresses into out-of-control memory.
In addition, we perform integrity checks for the code and
data regions before submitting each secure task to the GPU.
Meanwhile, to handle GPU interrupts in STRONGBOX, the
security state of GPU interrupts is switched from non-secure
to secure via GIC. Finally, GPU Guard submits the prepared
tasks to the GPU through writing tasks submission register.
Then, the GPU will carry out the prepared task as expected.

5

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3334277

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

GPU Task
PreparationGPU Software Stacks

GPU Guard

Task Protector

GPU

GPU MMIO
Protection

GPU Env.
Check

GPU Env.
Check

GPU Task
Submission

Host OS Scheduling

GPU Interrupt
Trapping

GPU Memory
Protection

GPU Memory
Restoration

GPU Computing

GPU MMIO
Restoration

GPU Task
Termination

smc

Submit

Return

Interrupt

Return

Figure 2: Lifecycle of a secure task in STRONGBOX

After submitting the secure task, STRONGBOX returns to the
GPU driver and releases the CPU. Therefore, STRONGBOX
does not block the CPU core during GPU computation. For
secure task synchronization, STRONGBOX requires the GPU
driver to schedule the GPU tasks to be submitted, while
it does not support the concurrent submission since main-
stream Arm endpoint GPUs [54] and related SDKs [55] have
yet to support the concurrent computation of GPU tasks
(as mentioned in Section 2.3). Moreover, when processing,
STRONGBOX does not block other smc calls that do not
interact with the GPU.
Secure Termination. When computation completes, the
GPU sends an interrupt (which is previously configured as
secure) to notify STRONGBOX. Thus, the STRONGBOX run-
time intercepts the GPU interrupt and performs secure ter-
mination, which consists of three steps: First, the Task Pro-
tector encrypts plaintext data that are ready to export. The
Task Protector also restores the corresponding non-secure
Stage-2 translation. Note that we preserve the translation
protection for the remaining data since they are computed in
the following secure tasks. Second, for the final secure task
of a confidential GPU application, STRONGBOX verifies the
entire Stage-2 translation to detect whether the protection
of any GPU task region has yet to be removed. If any
exist, STRONGBOX erases the plaintext in these regions and
restores the protection in Stage-2 translation and TZASC.
Third, to return control of the GPU to the GPU driver, the
GPU Guard configures the non-secure Stage-2 translation
to restore the GPU MMIO. It also configures the GIC and
switches the GPU interrupt back to non-secure state to allow
the GPU driver to handle the interrupt. After the secure
termination process, the GPU is allowed to process new
tasks.

4.3 Dynamic and Fine-grained Protection

STRONGBOX must ensure the confidentiality of sensitive
data and the integrity of secure GPU tasks that store data
in the Secure Task RAM. Thus, an attacker may try to access
the unified memory that stores sensitive data inside the GPU
buffer. Alternatively, an attacker may attempt to modify the
GPU page table entries (PTEs), exporting sensitive data to
unprotected regions. To guarantee the security, a straight-
forward method is to statically protect the entire task mem-
ory with one or more TZASC slots. However, this leads
to two challenging issues. First, such static protection can
severely undermine the functionality of the GPU driver. For
instance, it prevents the GPU driver from processing the
non-confidential metadata of the secure tasks. Second, the
layout of sensitive data and code are physically scattered
and dynamically-changed in Secure Task RAM for differ-
ent GPU applications. Thus, static TZASC partitions may
not work in our unified memory scenario where memory

management must be flexible. Another solution based on
existing Arm-based secure computing [31] is to port the
GPU software stacks into TrustZone; however, this incurs
large TCB and breaks our design principle of minimal
TCB. Thus, we need an alternative to using static TZASC
partitions.

Instead, we develop a dynamic and fine-grained mem-
ory protection mechanism by combining the non-secure
Stage-2 translation and TZASC. We explicitly divide the
Secure Task RAM into two physically continuous regions:
Task region and GPU page table region. For the Task region,
the non-secure Stage-2 translation dynamically performs
page-level protection to critical memory containing data
and code in different stages, and we use a TZASC slot
to manage access from DMA, GPU, and other peripherals.
As for the GPU page table region, STRONGBOX employs
the non-secure Stage-2 translation to monitor modification
requests. To avoid potential peripheral attacks, we further
leverage TZASC to prohibit write access from peripherals to
the GPU page table region. We categorize access permission
of these two regions into six types:

• Full Accessible: Allow any read/write operations.
• Write Protected: Allow the read operations from any

component, but monitor the write operations.
• DMA Prohibited: Disallow the read/write operations

from peripherals through DMA.
• OS-DMA Prohibited: Disallow the read/write opera-

tions from both OS and peripherals through DMA.
• GPU-DMA Prohibited: Disallow the read/write oper-

ations from GPU and peripherals through DMA.
• OS-GPU-DMA Prohibited: Disallow the read/write

operations from OS, GPU, and peripherals through
DMA.

Figure 3 illustrates the evolution of access permission
during the life-cycle of a confidential GPU application.
The initial access permission of the Secure Task RAM is
configured as Full Accessible to allow preparing an appli-
cation for submission via the GPU software stack. During
task execution and switching, the GPU page table region
is configured as Write Protected to avoid potential leakage
of sensitive data. Task Protector traps modifications to the
GPU page table and introspects any malicious memory
mappings, (e.g., double mapping and mapping to untrusted
regions). Moreover, since the GPU page table is initially
prepared by the GPU driver, Task Protector verifies the
entire page table before running the first secure task. As for
the task region, access permissions for each GPU buffer and
code region can vary. Upon execution of a secure task, we
configure the entire task region as DMA Prohibited except the
memory of the executed task, which is OS-DMA Prohibited to
secure the subsequent encryption and integrity verification
of code and data regions. During the task switching, the

6

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3334277

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Application
Preparation

GPU Page Table Region

Buf. 1

Buf. 1
Buf. 2

IN

Task 1

Buf. 2

OUT

C1

Code

Buf. 2
Buf. 3

IN
Task 2

Buf. 4

OUT

C2

Code

Task 1
Execution

Task 1
Switch Out

Task 2
Execution

Task 2
Switch Out

...

All Tasks
Finished

Full Accessible

PTEs

Write Protected DMA Prohibited GPU-DMA ProhibitedOS-DMA Prohibited OS-GPU-DMA Prohibited

Ciphertext Ciphertext Code Ciphertext Ciphertext Code

Task Region

Buf. 2 C1 Buf. 3 Buf. 4 C2

PTEs Ciphertext Ciphertext Code Ciphertext Ciphertext Code

PTEs Ciphertext Ciphertext Code Ciphertext Ciphertext Code

PTEs Ciphertext Plaintext PlaintextPlaintextCode Code

PTEs Ciphertext Plaintext Code Ciphertext Ciphertext Code

PTEs Plaintext Plaintext CiphertextCiphertextCode Code

...

Figure 3: The changes of access permissions on Secure Task RAM when a confidential GPU application is executed. Task 1
and Task 2 are two example tasks inside the application. Task 1 contains input Buf. 1 and Buf. 2, output Buf. 2, and code
segment C1. Task 2 contains input Buf. 2 and Buf. 3, output Buf. 4, and code segment C2.
GPU buffers are encrypted by default (e.g., Buffer 1 in Task
1, and Buffer 2, 3, and 4 in Task 2). For any buffer that
is used in subsequent secure tasks (e.g., Buffer 2 in Task
1), STRONGBOX supports retaining plaintext and configures
the plaintext memory as OS-GPU-DMA Prohibited, and all
memory except the plaintext data memory is configured
as GPU-DMA Prohibited until the submission of next secure
task. After all tasks are finished, all sensitive plaintext data
are encrypted, and the entire Secure Task RAM is config-
ured as Full Accessible to allow the user to load the result.
Furthermore, for security purposes, STRONGBOX prevents
secure tasks in different confidential GPU applications from
sharing the Secure Task RAM. Any task in other confidential
GPU applications cannot start until the previous confiden-
tial GPU application finishes all secure tasks and safely
terminates. This organization of memory provides strong
isolation guarantees for any sensitive data that is used by a
secure GPU task.

Next, we design a secure data path to avoid data leakage.
Any sensitive data transferred via DMA requires encryp-
tion and integrity checks using Hash-based Message Au-
thentication Code (HMAC). Task Protector performs secure
introspection to decrypt or encrypt the sensitive data with
the shared keys, and calculates each HMAC according to
the plaintext data or code. Since the memory of secret keys,
intermediate or plaintext data, and the corresponding task
page table are protected by our non-secure Stage-2 trans-
lation and TZASC mechanism, TOCTTOU attacks against
computed hash values are infeasible. Next, Task Protector
notifies GPU Guard to continue with task submission, or
abort it due to verification failures. When a secure GPU task
is finished, Task Protector restores the execution environ-
ment. The executed results are encrypted and hashed before
reverting to a non-secure state, while plaintext data exist
only during secure task execution.

Key Management. We further discuss the key management
process in STRONGBOX. STRONGBOX requires the sensitive
data and execution results to be encrypted during data
transfer and storage because they are trivially accessed by
an adversary who controls the untrusted OS. To guarantee
data security, STRONGBOX does not provide a fixed pre-
shared key to the endpoint user. Instead, we follow a key
exchange approach (e.g., Diffie-Hellman key exchange [56])
with the user to obtain the shared keys, which are further
used to encrypt the data and calculate the HMAC. To

complete the key exchange process, we assume a public
key infrastructure, including a public/private key pair and
certificate, is installed into the secure monitor by the vendor.
With this infrastructure, the user encrypts an AES key with
the certified public key. Next, STRONGBOX runtime in the
secure monitor receives the encrypted AES key and decrypts
it with the private key. We allow the GPU tasks within one
confidential GPU application to share the same AES key,
but we must establish a new AES key for each subsequent
confidential GPU application. Based on this, the key man-
agement modules ensure data confidentiality during data
transfer and storage.

4.4 TCB Reduction
Besides maintaining a thin TCB by reserving the GPU
software stacks in normal world, we further reduce the TCB
by focusing on the secure OS and secure applications. Our
insight is that the size of secure world has largely increased
in the past decade. For instance, the size of the widely-used
secure OS, OP-TEE [57], has extended from 60K to 300K
LoC. Although such increment satisfies various architecture
features and user requirements, it also exposes a large attack
surface. The increasing records of vulnerabilities [58], [59],
[60] further demonstrates that secure OSes and applications
cannot be completely trusted. Moreover, recent work [53]
shows that the secure OS has excessive privilege to access
unauthorized regions such as the non-secure memory and
the firmware of the secure monitor. To that end, secure world
can potentially be compromised by secure world attackers,
compromsing integrity and security, including the GPU
computation from our previous STRONGBOX model. Unfor-
tunately, our previous STRONGBOX prototype and most TEE
designs are vulnerable to such attacks since they impliclty
trust secure world. In addition, TZASC and the non-secure
Stage-2 translation are unable to defend against the vul-
nerable secure OSes and secure applications. One possible
solution is to interfere with the memory management in a
secure OS (e.g., removing the mapping to sensitive data).
However, this partially influences the functionality of secure
OSes and generates moderate overhead.

The Armv8.4 architecture contains a novel secure vir-
tualization feature, which provides a potential solution to
defend against such attacks. Although virtualizing secure
world may not be intended for Arm endpoints, we leverage
the access control mechanism, called secure Stage-2 trans-
lation, to restrict unprivileged access from secure OS and

7

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3334277

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

secure applications. This mechanism is initially provided on
Armv8.4 or later, but can be disabled due to the lack of a
secure hypervisor. Thus, in our design, we enable secure
Stage-2 translation and create a translation table to protect
the sensitive data and the STRONGBOX runtime against
such a secure world attacker. Compared with establishing a
heavy hypervisor, our mechanism is lightweight with low
performance overhead.

To leverage the secure Stage-2 translation, we first re-
serve a memory region for the translation table and allocate
it with a TZASC slot. The TZASC mainly confines the
access from the peripherals and non-secure CPU. How-
ever, it is infeasible to confine the secure world components.
Thus, we further create a translation table to protect these
components. Specifically, we invalidate the mapping to the
physical address of the secure Stage-2 translation table. If the
attacker intends to bypass such translation by modifying the
translation table itself, secure Stage-2 translation traverses
the existing table and obtains an invalid entry. Thus, the
modification is terminated by a translation fault.

Once protecting the translation table, we next secure
GPU computation. Specifically, we must secure (1) the exclu-
sive execution environment and (2) the sensitive data from
the secure world attacker. For the first aspect, we leverage the
secure Stage-2 translation to invalidate the access to GPU
MMIO, STRONGBOX runtime and the MMIO to TrustZone
components (e.g., TZASC). Thus, the attacker cannot leak
sensitive data by tampering with the runtime configuration.
For the second aspect, we secure the sensitive code, data,
and page table entries in Secure Task RAM. Since the Secure
Task RAM is reserved for GPU computation without interac-
tion with secure world, we statically invalidate the mapping
of the entire region. Note that we also secure the shared keys
and the temporary data in cryptographic operations.

5 IMPLEMENTATION

We implement a 64-bit STRONGBOX prototype on an
Arm Juno R2 development board [61] with 8GB DRAM,
an official Mali-T624 GPU, and the Arm TrustZone ex-
tension. We use Linux v4.14.59 with an open-source
Midgard GPU Driver [62] in normal world, and run
Arm Trusted Firmware (ATF) v2.1 in secure monitor.
To create an isolated execution environment, we reserve
264MB as Secure Task RAM, including a 256MB region
(0xB0000000–0xBFFFFFFF) to hold secure tasks and a
8MB region (0xAF800000–0xAFFFFFFF) for GPU page
table. The Trusted RAM contains the memory space for ATF
and an additional 4MB region (0xA0000000–0xA03FFFFF)
for the non-secure Stage-2 translation table. In ATF, we de-
ploy STRONGBOX runtime to configure two hardware com-
ponents: TZC-400, which is an implementation of TZASC,
and GIC-400, which handles the GPU interrupts. To setup
the non-secure Stage-2 translation, we create a flat mapping
for the entire memory region except the Trusted RAM. In
addition, three major registers (HCR_EL2, VTTBR_EL2, and
VTCR_EL2) are configured to enable the translation, thus
providing an important mechanism for securing sensitive
data used in sensitive applications. We also secure GPU
tasks using cryptographic and integrity checking opera-
tions. We assume that TrustZone has established a key

management system and a communication channel with
the user. These steps can be achieved following previous
work [63], [64] and we do not claim this as a contribution
of our work. We use Advanced Encryption Standard (AES)
encryption with a pre-shared 128-bit key for cryptographic
operations on the sensitive data. For integrity verification,
we use the SHA-256 algorithm to compute hashes of various
data. These operations can be accelerated using hardware-
assisted instructions and SIMD extensions in Armv8.

The TCB reduction is implemented on the prototype
above running OP-TEE v3.6.0 [57] in secure world. Since
no off-the-shelf development board supports the S-EL2 fea-
ture, we prototype it using Arm FVP [39] with Armv8.4
extensions enabled. The implementation consists of two
parts: (1) preparing the defense against secure OS and
applications, and (2) enabling the defense mechanism when
entering secure world. To prepare the defense, we first reserve
a 2MB memory region for the secure Stage-2 translation
table. Since the available TZASC slots are limited, we
reuse an existing TZASC slot to protect our secure Stage-
2 translation table against untrusted peripherals. Specifi-
cally, we allocate the secure Stage-2 translation table in
0xA0400000–0xA05FFFFF, which is adjacent to the non-
secure Stage-2 translation table. Next, we extend the slot
to cover both the secure and non-secure tables. As this slot
still allows CPU access from arbitrary exception levels and
security states, we further restrict both the secure and non-
secure OS/applications to access each translation table. In
addition, during the setup of the secure Stage-2 translation,
we also invalidate the access to (1) Trusted RAM (2) Secure
Task RAM, and (3) MMIO to GPU/TZASC/GIC, while
creating a flat mapping to the remaining regions. As for
enabling the defense mechanism, we configure the essential
system registers (HCR_EL2, VSTTBR_EL2, and VSTCR_EL2)
to enable the secure Stage-2 translation. We implement the
context switching for hypervisor-layer (including the S-EL2)
registers since ATF has yet to support it on OP-TEE.

5.1 GPU Driver

To fulfill the protection policy for secure GPU tasks,
we modify the kbase_mem_alloc_page function in the
Midgard Driver to allocate pages of secure tasks in the afore-
mentioned 256MB region of Secure Task RAM, while the
non-secure tasks take the remaining non-reserved DRAM
space. Moreover, we find that the original Memory Manager
in Midgard GPU Driver maintains a memory pool for GPU
tasks, and requests additional pages from the kernel once
the pool is exhausted. Therefore, we explicitly create an
extra secure memory pool in the GPU driver to assign the
reserved memory for secure tasks. We manage this pool
with Contiguous Memory Allocation [65] (CMA) and use
the cma_alloc function to allocate the page in reserved
memory. In addition, we must guarantee that any two
GPU buffers cannot share the same page. Otherwise, the
protection restoration of one GPU buffer can lead to unin-
tentional leakage to other GPU buffers on the same page.
Unfortunately, this guarantee can be violated during buffer
creation in the closed-source OpenCL library. To address this
concern, we allocate an additional page for each GPU buffer
and redirect the non-aligned buffer pointer to the next page-
aligned address. In this way, we force the start address of

8

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3334277

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

all GPU buffers to be page-aligned, which ensures differ-
ent GPU buffers do not share the same page. We further
confirm page-alignment requirements are fulfilled with an
additional check in our security modules.

Besides the Memory Manager, we modify the original
scheduler in the GPU driver to assist to create the isolated
execution environment of secure tasks. Upon the arrival
of a submitted secure task, the Task Scheduler blocks and
reschedules the submission of any other tasks via a lock.
Next, the scheduler in STRONGBOX checks the GPU state
registers and waits until all running GPU tasks are finished.
Once the GPU is idle, the scheduler submits the secure task
to GPU Guard and Task Protector for further protection.

5.2 GPU Guard
During the process of critical GPU applications, GPU Guard
prevents unauthorized access to the GPU. Once it receives
the specific smc call, it first configures the non-secure Stage-
2 translation table entries to prevent any unauthorized ac-
cess to GPU MMIO. Specifically, it sets the last bit of the cor-
responding non-secure Stage-2 PTEs as 0 to invalidate the
mapping of GPU MMIO regions, then invalidates the TLB
entries for each CPU core. For secure Stage-2 translation,
we also configure the corresponding PTEs as 0 to invalidate
the access from secure OS and secure applications. Thus,
the attacker who attempts to access GPU registers through
the GPU MMIO will fail in a translation fault. To switch to
secure execution, STRONGBOX leverages the GPU driver to
set the control and critical state register, then safely verifies
critical registers. We follow the source code of the GPU
driver [62] to sanitize critical registers, such as JS_STATUS
(which shows the GPU state), JS_HEAD_NEXT (which stores
the location of secure task code), and AS_TRANSTAB (which
stores the GPU page table base) in STRONGBOX runtime. To
submit a task, GPU Guard writes a start command (0x1) to
the JS_COMMAND_NEXT register. To intercept the GPU inter-
rupt, we use the GIC [45] to mark it as a secure interrupt.
On our Juno board, the ID of the task complete interrupt is
65. Thus, we configure the GICD_IGROUPR register of this
interrupt to the secure state (0x0). Once the secure task is
complete, GPU Guard receives the interrupt, waits for the
data process in Task Protector, and resets the interrupt to
non-secure state (0x1) before returning to the OS.

5.3 Task Protector
Task Protector leverages both TZASC and the Stage-2 trans-
lation to restrict the access of Secure Task RAM, which
contains the GPU page table and task regions. In the
GPU page table slot, we reject writing operations from all
peripherals and DMA by disabling most bits in TZASC
NSAIDW registers except the bits CPU (AP). As for writing
operations from the untrusted OS, we monitor modification
through exceptions, and verify whether the writing opera-
tion is illegal in the exception handler. Besides protecting
the GPU page table, we check the GPU page table base
register AS_TRANSTAB for each secure task. In the task slot,
we leverage the TZASC to manage read and write access
from DMA, GPU, and other peripherals by configuring
the corresponding bits in both the NSAIDW and NSAIDR
registers. Moreover, random access to data and code from
the untrusted OS is limited by dynamically changing the

Table 1: Code size of STRONGBOX.
Component Function Lines of Code

GPU Driver
Non-secure S-2 Initialization 170
GPU Driver 179

ATF

TZASC Initialization 8
Cryptographic Operation 530
Integrity Verification 148
GPU Access Control 344
Secure S-2 Initialization 170
Hypervisor-layer Context Switching 147
Other Configuration 175

Total 1,871

non-secure Stage-2 mapping with TLB invalidation. Any
illegal read or write access to the code and data is prohibited
by triggering the non-secure Stage-2 translation fault. As for
secure Stage-2 translation, we invalidate the access to the
entire Secure Task RAM including the task memory and the
corresponding GPU page table.

As part of implementing access control, Task Protector
performs cryptographic and integrity-checking operations
for each secure task. Our prototype supports using the
agreed-upon algorithm to perform this functionality, such as
AES-128 algorithm for cryptographic operation and SHA-
256 in integrity verification. However, we encounter two
technical issues in verifying the code integrity of secure
GPU tasks: (1) the task pointer does not simply point to the
code segment, and (2) the code length is not given. For the
former problem, we analyze the content pointed to by the
task pointer via reverse engineering. We eliminate the flag
bits in JS_HEAD_NEXT register and find the start address of
the secure GPU task. Thus, we obtain the code pointer at
the offset 0x138 of the start address. To calculate the code
length, we leverage an unofficial study [66], [67] describing
the instruction format. To further guarantee the execution
order integrity of GPU tasks, we combine the task code
contents with the task index to generate the code signature.
Moreover, we generate the signature of output GPU buffers
and provide the total number of executed secure tasks. This
way, we verify the integrity of secure tasks code, execution
order, and execution result.

6 EVALUATION

In this section, we evaluate our prototype of STRONGBOX
based on our implementation (Section 5). We consider four
research questions in our evaluation:
RQ1. How large is the TCB required for STRONGBOX?
RQ2. How much overhead is incurred on GPU benchmarks?
RQ3. How much overhead is incurred on system perfor-
mance?
RQ4. How much overhead is incurred by the defense mech-
anism against the secure world adversary?

6.1 RQ1: TCB Size of STRONGBOX

Table 1 shows the code size of STRONGBOX reported by
cloc [68], a utility that reports standard lines of code. Re-
call that the Trusted Code Base (TCB) consists of code
that initializes and configures system registers and address
translation, as well as cryptographic operations and access
control. The code in the TCB implements our software
modules as described in Section 4. STRONGBOX relies on
Arm Trusted Firmware (ATF) to securely boot the device,
perform remote attestation, and conduct other trust estab-
lishment operations. To reduce the attack surface, STRONG-
BOX’s TCB does not include the large Arm Midgard GPU

9

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3334277

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

driver (approximately 30K LoC), the OP-TEE secure OS
(approximately 340K LoC) with secure applications, and the
OpenCL driver (32MB). As a result, our TCB is orders of
magnitude smaller than state-of-the-art GPU TEE systems
that assume these are trusted. In contrast, in STRONGBOX,
even if the driver and the secure OS become compromised,
our security mechanism can still secure the sensitive data
computed on the GPU.

6.2 RQ2: Evaluation on Rodinia Benchmarks
To demonstrate the runtime performance of STRONGBOX,
we consider the Rodinia benchmark suite [33], which of-
fers realistic workload scenarios to measure the perfor-
mance of GPU computing. In total, we select six applica-
tions from the Rodinia suite: one lightweight application
(K-Nearest Neighbor), three medium-weight applications
(LU Decomposition, Pathfinder, and Hotspot 3D), and two
heavy-weight applications (Gaussian and LavaMD). To-
gether, these six applications cover a swath of use cases
for Arm-based GPU devices that consume sensitive input,
temporary, and output data that we can use our system to
protect. In our evaluation, we directly load the encrypted
input data into the GPU buffer and receive the encrypted
output results. Thus, we apply the corresponding protection
policy to allow the GPU securely process the plaintext data.
Moreover, we slightly modify the Rodinia GPU application
code by replacing a part of the original OpenCL APIs with
our wrapped API to suit STRONGBOX (e.g., adhering to our
page-alignment requirement and creating a shared buffer to
receive protection policies). Furthermore, we have checked
that the GPU tasks inside the applications are executed
sequentially, which is consistent with the GPU task exe-
cution flow in Section 2.3. Figure 4 shows a comparison
between a system with and without STRONGBOX enabled
across both execution time and memory consumption. It
shows that STRONGBOX introduces low (4.70% – 15.26%)
overhead in across applications of varied sizes. As expected
from Section 5.1, the additional memory consumption from
our page-alignment requirement is insubstantial since it is
primarily attributable to the number of GPU buffers.

100

102

104

Ti
m

e:
 (m

s)

55

2914 3871 5046
13643

49431

61

3326 4462 5692
14626

51753Vanilla StrongBox

KNN PF LUD H3D LMD GS

100

102

104

M
em

or
y:

(K
B)

501

39517
16384 24576

64941 32776

509

39533
16388 24588

64957 32788

Figure 4: Runtime performance on six Rodinia benchmarks.

6.3 RQ3: Evaluation of System Performance
We select Nbench [69] to measure the system slowdown
caused by STRONGBOX, which is widely used to measure
the performance of CPU computation and memory inten-
sive operations [43], [70], [71]. To demonstrate the system
overhead, we select a long-running application LMD from
the Rodinia benchmark [33] to concurrently execute each
Nbench application. The time elapsed during the LMD ap-
plication is approximately half of each Nbench application

but is mainly composed of GPU computation. We measure
the performance degradation of Nbench applications when
concurrently running the non-confidential and confidential
LMD application.

Numeric sort

String sort
Bitfield

FP emulation
Fourier

Assignment
IDEA

Huffman

Neural net

LU decomposition
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Re
lat

ive
 P

er
fo

rm
an

ce

Non-confidential GPU App Confidential GPU App

Figure 5: Relative performance of Nbench applications
when concurrently running a non-confidential/confidential
GPU application.

Figure 5 shows the normalized results of the Nbench
applications, whose performance degradation are slight
when running with both non-confidential (average 1.28%)
and confidential GPU application (average 1.91%). Thus,
STRONGBOX incurs a small performance degradation on
system-wide computation, which is mainly explained by
two reasons: first, STRONGBOX releases the CPU resource
during the GPU computation, which is the primary time
cost in most GPU applications; second, STRONGBOX does
not block other CPU resources when processing the secure
GPU tasks. Overall, the security benefits of STRONGBOX
incur a small overhead to system-wide performance.

6.4 RQ4: Evaluation of the Defense Mechanism
Setup. Based on the design and implementation, our de-
fense mechanism’s performance overhead is composed of
two parts: (1) the save and restore time of the hypervisor-
layer registers when context switching, and (2) the runtime
overhead in secure world when enabling the secure Stage-2
translation. Considering that the existing off-the-shelf de-
velopment boards have yet to support the S-EL2 feature, we
emulate its performance with non-secure hypervisor layer:
to emulate the context switching of S-EL2 registers, we save
and restore the corresponding non-secure registers (e.g.,
writing the VTTBR_EL2 register to emulate restoring the
VSTTBR_EL2 register). As for the performance overhead in-
troduced by secure Stage-2 translation, we port our defense
mechanism to normal world and measure the time taken by
non-secure Stage-2 translation. We measure the performance
overhead on our Arm Juno R2 development board, and the
results are detailed as follows.

128-ECB
192-ECB

256-ECB
128-CBC

192-CBC
256-CBC

128-GCM
192-GCM

256-GCM
0

2500

5000

7500

10000

Ti
m

e
co

st
 (

s)

+1.14 +1.28 +1.23 +1.17 +1.23 +1.27
+1.31 +1.45 +1.42

Native TCB Reducted

Figure 6: Performance on AES benchmarks. Numbers are
the overhead (in microsecond) introduced by the TCB re-
duction.
Context Switching. We measure the performance overhead
with an AES application from OPTEE xtest [37], which is
widely used in other TEE works [53], [72], [73]. Specifically,
we run three types of encryption (ECB, CBC, GCM), each of

10

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3334277

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

which is processed with three key sizes (e.g., the 128-ECB
indicates AES-ECB cryptographic operations with 128-bit
key), while the other parameters (e.g., buffer size) are de-
fault. Figure 6 shows the execution results. The overhead is
relatively negligible (less than 0.1%) on the selected bench-
marks. The major reason is that the context switching in each
AES process is not frequent and takes a small proportion
of the time in the entire AES application. In addition, the
overhead is relatively stable (1.17 – 1.45 microseconds) when
running benchmarks with different key lengths and crypto-
graphic algorithms. This is because the execution times of
context switching are fixed in each AES application.

Numeric s
ort

Strin
g sort

Bitfie
ld

FP emulation
Fourier

Assig
nment

IDEA
Huffman

Neural net

LU decompositio
n

90.00%

95.00%

100.00%

105.00%

110.00%

Re
la

tiv
e

Pe
rfo

rm
an

ce

Native StrongBox

Figure 7: Relative performance on Nbench applications.
Note that we leverage the non-secure Stage-2 translation
to emulate the performance overhead of the secure Stage-
2 translation.
Secure Stage-2 Translation. We next select Nbench appli-
cation to measure the performance overhead incurred by
the Stage-2 translation. Figure 7 shows a normalized per-
formance when enabling and disabling the defense mech-
anism. In total, our defense mechanism introduces a neg-
ligible overhead (on average 0.14%) when it is ported into
normal world. Since the secure Stage-2 translation mirrors the
features in non-secure Stage-2 translation, the results indi-
cate that our defense mechanism incurs negligible overhead
to secure world.
7 SECURITY ANALYSIS

②

S
Task

GPU

Secure Task RAM

GPU
PTEs Data Code Trusted

RAM

Malicious
Task

①

③
StrongBox

GPU
Software

Normal World

④

Secure
OS/Apps

Secure World

Fake
GPU

⑤

⑥

Figure 8: Six attack scenarios against the confidential GPU
application. 1⃝ indicates an attack on code, sensitive data,
and GPU page tables in Secure Task RAM. 2⃝ represents an
attack from malicious tasks. 3⃝ represents an attack with a
fake GPU. 4⃝ shows Iago [74] attacks. 5⃝ indicates the attack
from the compromised secure world OS and applications. 6⃝
indicates the misuse of secure tasks.
7.1 Attack on Secure Task RAM
Sensitive Data and Code. As shown in Figure 8- 1⃝, a
privileged attacker may attempt to directly access the sen-
sitive data inside the GPU buffer during the execution
of the confidential GPU applications. To defend against
such data leakage, STRONGBOX designs a trusted data path
between the user application and the GPU execution en-
vironment via both cryptographic algorithms and access

control. The sensitive data are encrypted with the secret
key exchanged between the users and STRONGBOX. Thus,
an attacker without the secret key cannot leak sensitive
data. For the subsequent decryption and verification in
STRONGBOX, the plaintext regions are strictly protected by
the TZASC and the non-secure Stage-2 translation, with
which unauthorized access from the compromised OS or
peripherals is restricted. Furthermore, she may terminate
the GPU application early, temporarily leaving the plaintext
data inside memory. However, these data are still protected.
Next, she may attempt to create a malicious secure GPU
task to steal the vestigial plaintext inside the latest victim
GPU application that terminates unexpectedly. However,
the secure termination check, which enforces cleanup of
protected memory, is always performed before creating a
new GPU application. Consequently, the confidentiality of
sensitive data is fully maintained by the STRONGBOX. In
addition, she may tamper with task integrity by injecting
malicious code or modifying provided data. To address this,
STRONGBOX verifies the HMAC for the content in the secure
task. If the provided signature fails to match the HMAC
value, STRONGBOX terminates the application and clears the
memory.
GPU Page Table. Figure 8- 1⃝ also shows that the attacker
may subvert the GPU page table by double mapping or
mapping the critical GPU address (e.g., GPU buffer) to an
unprotected region. However, since the page table is strictly
protected when processing secure tasks, the malicious map-
pings are detected before computing secure tasks. Note that
TOCTTOU attacks here are infeasible as the regions have
been protected before checking. In addition, she may change
the base address of the page table during the process of
multi-task applications, while such an attack is detected by
comparing the value of corresponding registers between
the secure introspection of adjacent tasks. For peripheral
attacks, STRONGBOX configures the TZASC to deny illegal
access to the GPU page table region from other peripherals
except for the GPU.

7.2 Attack with Malicious Tasks
We consider the attacker who attempts to execute an ar-
bitrary number of malicious tasks with malicious code. As
shown in Figure 8- 2⃝, she may perform two types of attacks.
First, she directly launches a malicious confidential GPU
application and uses the malicious secure tasks to subvert
the STRONGBOX runtime and critical configurations (e.g.,
non-secure Stage-2 translation table) in the Trusted RAM.
Second, she crafts malicious GPU tasks and attacks the
confidential GPU applications (i.e., access sensitive data,
code, and GPU page table inside Secure Task RAM). Thus,
we propose corresponding defenses against these attacks:
(1) To secure the runtime and configuration, STRONGBOX
tightly restricts the access to the Trusted RAM from the
peripherals, including the GPU. (2) As for protecting Secure
Task RAM, STRONGBOX ensures that only secure GPU tasks
can access the Secure Task RAM, and disallows the GPU to
access the Secure Task RAM after secure tasks are switched
out. Note that she may fake a malicious task as a secure
task in the current confidential GPU application, while it
fails the code HMAC check. Moreover, to tamper with the
isolated execution environment, she may submit malicious

11

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3334277

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

tasks during the secure computation or hide these tasks
before switching to the secure tasks. Thus, STRONGBOX first
deprives access to GPU MMIO from the untrusted OS via
the non-secure Stage-2 translation, invalidating any mali-
cious tasks submission from the GPU driver. Furthermore,
to preclude hidden malicious tasks, STRONGBOX requires
an additional check on GPU status via the protected GPU
MMIO interfaces. When detecting a hidden task, STRONG-
BOX safely terminates the GPU application.

7.3 Attack with Fake GPU Device

The attacker may attempt to impersonate a GPU device
to spoof GPU state or submission of secure tasks (shown
in Figure 8- 3⃝). Since the fake GPU can be emulated by
secure world components, it can bypass the access control
in TZASC to process GPU data. However, we guarantee
that STRONGBOX always interacts with an authentic GPU.
To defend against this type of attack, STRONGBOX checks
the GPU state registers and writes the task submission
command by accessing the GPU MMIO registers. Based on
available manuals [61], [75], [76], [77], the physical address
of embedded GPU MMIO registers is fixed and unmod-
ifiable. Therefore, an attacker can only physically change
the MMIO physical address of the SoC peripherals with
physical access to the AXI bus.

Nevertheless, we find that the Arm official implementa-
tion of the secure monitor [78] performs address translation
(called EL3 Stage-1 translation) instead of directly accessing
the physical address of GPU MMIO. Thus, a secure world
attacker may subvert the EL3 Stage-1 translation table, mis-
leading the secure monitor to access a fake GPU. To defend
against this attack, we carefully protect the translation table
and the secure monitor firmware in the secure Stage-2
translation. The attacker may attempt to replace the entire
EL3 Stage-1 translation table with a malicious one. However,
the attacker cannot modify the table base register (i.e.,
TTBR0_EL3) that is only accessible to the secure monitor,
thus the malicious table would never be used in place of a
legitimate one.

7.4 Attack with Compromised GPU Software

Figure 8- 4⃝ shows that the attacker may manipulate the
untrusted GPU software stacks (i.e., GPU driver and GPU
runtime) to launch an Iago-style attack [74], which can be
achieved in three possible ways: (1) manipulating the return
values of memory allocation to the unprotected regions,
(2) providing the incorrect values of GPU registers to tam-
per with the critical GPU configurations, and (3) provid-
ing incorrect order to execute the secure tasks or simply
dropping/replying result. For memory-based Iago attacks,
STRONGBOX verifies the validity of the allocated memory.
We ensure that the allocated memory for secure GPU buffers
is inside the Secure Task RAM and does not overlap with
other GPU buffers. As for GPU register configurations,
STRONGBOX protects the GPU MMIO registers and checks
the critical GPU register states. Furthermore, we verify both
the task code contents and the task index to guarantee both
the code integrity and execution order. Besides, we provide
the signature of output GPU buffers and the number of
executed secure tasks. In this way, we can detect changes
to execution order or the result dropping/replying.

7.5 Attack from Secure OS and Applications
The attacker who controls the secure OS and applications
can reproduce and strengthen most of the attacks above
from secure world. One exception is the Iago-style attack
since STRONGBOX is not designed to rely on a secure OS
for functionality and security. Therefore, we detail them as
follows and analyze the security of our defense mechanism.
Secure Task RAM and Trusted RAM. As shown in Figure 8-
5⃝, the attacker may tamper with the sensitive data and code

of the confidential GPU applications from the compromised
secure OS or secure application. In addition, she may mod-
ify the GPU page table to map the sensitive data into an
unprotected secure world memory. To achieve this, she can
create the unauthorized mapping of the Secure Task RAM
by modifying the translation table of the secure OS. Al-
though such read or write operations are allowed in TZASC,
they are prohibited when performing the secure Stage-2
translation. Alternatively, she may assist in bypassing the
access control of one world from another world. Specifically,
she may tamper with the Stage-2 translation table of another
world to validate its mapping to the physical address of the
protected region (e.g., Secure Task RAM). To defend against
the attacks, we cancel the mapping of the secure/non-
secure Stage-2 translation table in both translation tables.
Moreover, she cannot modify the corresponding registers to
subvert the non-secure/secure Stage-2 translation (e.g., the
translation table base register or control register) since she
lacks the hypervisor-layer privilege. As for TZASC protec-
tion, we also disable access from secure OS/applications in
secure Stage-2 translation.

In addition to access control, she can threaten the cryp-
tographic and integrity verification process (i.e., attack on
Trusted RAM). Specifically, she may access the keys, signa-
tures, and temporary data generated in the cryptographic
and integrity verification process. With these data, she
may easily decrypt the ciphertext data and tamper with
the integrity. To bypass this process, she can compromise
STRONGBOX runtime (e.g., injecting malicious codes into the
Task Protector module). Therefore, to guarantee its security,
we prohibit the mapping of the secure monitor (including
STRONGBOX runtime, Trust modules, the memory of shared
keys, etc.) in our secure Stage-2 translation.
Malicious Tasks. Besides directly accessing the confidential
GPU application and its page table, Figure 8- 5⃝ also shows
that she may submit the malicious GPU tasks or modify
the GPU configurations to hide the running tasks. However,
since the secure Stage-2 deprives access to GPU MMIO, she
still fails to hide and execute the malicious tasks. As for
faking the malicious tasks as secure tasks to be executed,
this attack is challenging to bypass the HMAC check due to
the lack of essential signatures.

7.6 Attack from Abusing Secure Tasks
Figure 8- 6⃝ shows that the attacker may abuse secure tasks
to access sensitive data from the other confidential GPU
applications. Since the attacker creates an entire confidential
GPU application consisting of one or more attack tasks,
these tasks do not fail the HMAC check and are successfully
submitted to the GPU hardware. However, since STRONG-
BOX forbids running any other secure tasks before process-
ing the attack tasks, the attacker cannot leak the encrypted

12

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3334277

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

data from the other secure tasks. Moreover, Figure 8- 6⃝ also
shows that the attacker may compromise the STRONGBOX
runtime via the attack tasks (e.g., mapping the Trusted RAM
in the GPU page table and accessing it via GPU). However,
such an attack fails the TZASC check and thus cannot
leverage the GPU to access the Trusted RAM. Note that the
attack may abuse the exclusive access of the GPU to block
the submission of other GPU tasks, which would result in
a Denial-of-Service that is beyond the scope of this paper.
Nevertheless, the user can require STRONGBOX to perform
the secure termination process, terminating the attack tasks
and execute other secure tasks.

8 DISCUSSION

Hypervisor-enabled Arm Devices. STRONGBOX is not suit-
able for Arm cloud platforms. The primary reason is that
cloud GPUs generally own dedicated memory and are
connected through PCIe. Moreover, our current prototype
cannot directly work in Arm endpoints with a non-secure
or secure hypervisor. Although STRONGBOX does not block
the functionality of the hypervisor, it requires non-trivial
restriction (e.g., secure the hypervisor firmware and remove
the code to access Stage-2 registers) on the untrusted hyper-
visor to guarantee STRONGBOX security, introducing a large
TCB. However, in future Armv9 endpoints, STRONGBOX
can leverage the new feature, called Granule Protection
Table (GPT) [79], to prevent the secure GPU computation
from untrusted accessing. By configuring the GPT entries
for Secure Task RAM, STRONGBOX preserves dynamic and
fine-grained memory protection without needing Stage-2
translation. Meanwhile, the access control of GPU MMIO
can be achieved with similar configurations on GPT entries.
Temporary Exclusivity of GPU. STRONGBOX requires a
temporary exclusivity of the GPU for secure task computa-
tion, while it only causes minimal influence on system per-
formance due to four reasons. First, recall from Section 2.3
that the current Arm endpoints GPU and related SDKs have
yet to support concurrent task execution. Thus, parallel
executing secure GPU tasks belonging to the same appli-
cation is natively unsupported. Second, the secure tasks in
practical are lightweight, and hence the exclusivity of GPU
is transient. For instance, face recognition on mobile devices
typically takes less than one second [80]. Third, it is possible
to mitigate the impact on GPU rendering by temporarily
switching to software-based renderers [81]. Lastly, for the
secure GPU applications with dependency on normal GPU
tasks, STRONGBOX allows to process these normal GPU
tasks during the switch of secure tasks since the access to
the plaintext data is carefully controlled.
Mitigating Performance Overhead. STRONGBOX achieves
a reasonably low performance overhead with compatibility.
However, such overhead can be reduced on specific devices.
For the cryptographic and integrity-check operations, we
can accelerate them with the equipped hardware. Another
choice is to build a trusted channel between the user and
STRONGBOX runtime. User leverages a trusted camera to
directly transfer the plaintext biometric information into
protected GPU buffers without additional encryption.

9 RELATED WORK

GPU TEEs and Secure Computation. Studies have ex-
ploited the isolation features of GPUs for secure com-
putation. Graviton [24] and HETEE [25] leverage the ex-
tensive hardware modification (i.e., modifying GPU chip
and adding a FPGA for secure purpose) to implement the
trusted computation, while HIX [23] extends SGX-based
support on GPU enclaves. Such modification severely re-
duce the compatibility and may not adapt to endpoints.
LITE [82] proposes a co-design framework between CPU
TEE and its GPU TEE though it is not adapted to end-
point GPUs. Existing Arm TEEs (e.g., SANCTUARY [72],
TrustICE [83], Inktag [84], Trustshadow [85] and vTZ [73])
leverage the non-secure [73] and secure [40] Stage-2 trans-
lation to achieve access control, or protect the untrusted
applications with traditional TrustZone techniques [84], [85].
However, they are yet to consider the confidential compu-
tation on endpoint GPU. Cronus [41] leverages the secure
Stage-2 translation to guarantee the server-side GPU com-
putation but it is not adapted on endpoint GPUs. In con-
trast, STRONGBOX achieves dynamic and complex memory
protection on endpoint GPU computation, and prevents the
malicious access from the secure OS and secure applications
by leveraging this translation.
Defense against Secure World. Most works [72], [73], [83],
[86] defend against the threat from the non-secure compo-
nents but consider Secure OS and secure applications as
trusted. Recent studies [40], [53], [87], [88] start to confine
and isolate the integrated and potentially vulnerable Secure
OS. TEEv [88] implements a minimal controller on the same
privilege of Secure OS (i.e., S-EL1), while PrOS [87] monitors
them in EL3. They require a non-trivial modification on
TEE firmware to remove the mapping of critical regions,
while STRONGBOX confines them via the secure Stage-2
translation without severe modifications on Secure OS or
applications. Our defense mechanism against the secure OS
is similar to Twinvisor [40] and Hafnium [89] but introduce
a smaller TCB (i.e., no hypervisor). Rezone [53] partitions
the integrated TEE with two additional peripherals: Plat-
form Partition Controller (PPC) and Auxiliary Control Unit
(ACU), while STRONGBOX is compatible to Arm endpoints
with S-EL2 extension.

10 CONCLUSION

In this paper, we propose a novel GPU TEE on Arm-based
devices called STRONGBOX. Our approach provides three
key outcomes: Ensuring data confidentiality, protecting task
integrity, and providing an isolated computing environ-
ment. To fulfill our goals, we leverage TrustZone and non-
secure Stage-2 translation to flexibly manage access to GPU
task RAM and GPU MMIO interfaces. Moreover, the core
components of STRONGBOX are protected from malicious
access from both the untrusted kernel and other peripherals.
In addition, we further reduce the TCB of secure world OS
and applications by leveraging the novel secure virtualiza-
tion feature. Our design requires no modification to the
Arm architecture or any hardware components, providing
a higher degree of compatibility than previous GPU TEEs.
We also address the threats from the compromised secure

13

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3334277

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

OS and secure applications. To better understand STRONG-
BOX, we measure the performance of a prototype imple-
mented on an off-the-shelf development board, and analyze
the security guarantees provided by STRONGBOX across a
wide range of attack scenarios. Our evaluation shows that
STRONGBOX successfully defends against potential attacks
while introducing a low (4.70% – 15.26%) overhead across
several indicative benchmarks.

REFERENCES

[1] ARM, “Game engine guides,” https://developer.arm.com/solu
tions/graphics-and-gaming/developer-guides/game-engine-gui
des, 2022.

[2] ——, “Mali Texture Compression Tool,” https://developer.arm.
com/tools-and-software/graphics-and-gaming/mali-texture-co
mpression-tool, 2022.

[3] ——, “VR best practice,” https://developer.arm.com/solutions/
graphics-and-gaming/developer-guides/vr-best-practice, 2022.

[4] S. S. Latifi Oskouei, H. Golestani, M. Hashemi, and S. Ghiasi,
“CNNdroid: GPU-Accelerated Execution of Trained Deep Convo-
lutional Neural Networks on Android,” in Proceedings of the 24th
ACM international conference on Multimedia, 2016, pp. 1201–1205.

[5] Q. Cao, N. Balasubramanian, and A. Balasubramanian, “Mo-
biRNN: Efficient Recurrent Neural Network Execution on Mobile
GPU,” in Proceedings of the 1st International Workshop on Deep
Learning for Mobile Systems and Applications, 2017, pp. 1–6.

[6] C. Holmes, D. Mawhirter, Y. He, F. Yan, and B. Wu, “GRNN: Low-
Latency and Scalable RNN Inference on GPUs,” in Proceedings of
the Fourteenth EuroSys Conference 2019, 2019, pp. 1–16.

[7] NVIDIA, “NVIDIA DATA CENTER GPUs,” https://www.nvidia
.com/en-us/data-center/data-center-gpus/, 2022.

[8] Google, “GPUs on Compute Engine,” https://cloud.google.com
/compute/docs/gpus/, 2022.

[9] Apple, “Discover Metal enhancements for A14 Bionic,” https://
developer.apple.com/videos/play/tech-talks/10858/, 2022.

[10] Qualcomm, “Adreno Graphics Processing Units,” https://develo
per.qualcomm.com/software/adreno-gpu-sdk/gpu/, 2022.

[11] V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, and
M. Grundmann, “BlazeFace: Sub-millisecond Neural Face Detec-
tion on Mobile GPUs,” arXiv preprint arXiv:1907.05047, 2019.

[12] ASUS IoT, “ASUS IoT Face Recognition Edge AI Dev Kit,” https:
//iot.asus.com/solutions/facerecognition/, 2022.

[13] STMicroelectronics, “Artificial Intelligence (AI) face recognition
function pack for STM32Cube,” https://www.st.com/en/embe
dded-software/fp-ai-facerec.html, 2022.

[14] S. Tan, B. Knott, Y. Tian, and D. J. Wu, “CRYPTGPU: Fast
Privacy-Preserving Machine Learning on the GPU,” arXiv preprint
arXiv:2104.10949, 2021.

[15] C.-C. Chang, W.-K. Lee, Y. Liu, B.-M. Goi, and R. C.-W. Phan, “Sig-
nature Gateway: Offloading Signature Generation to IoT Gateway
Accelerated by GPU,” IEEE Internet of Things Journal, vol. 6, no. 3,
pp. 4448–4461, 2018.

[16] R. Shokri and V. Shmatikov, “Privacy-Preserving Deep Learning,”
in Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1310–1321.

[17] T. Hunt, Z. Jia, V. Miller, A. Szekely, Y. Hu, C. J. Rossbach, and
E. Witchel, “Telekine: Secure Computing with Cloud GPUs,” in
17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), 2020, pp. 817–833.

[18] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang,
and Y. Zhou, “A Hybrid Approach to Privacy-Preserving Feder-
ated Learning,” in Proceedings of the 12th ACM workshop on artificial
intelligence and security, 2019, pp. 1–11.

[19] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted Execution
Environment: What It is, and What It is Not,” in 2015 IEEE
Trustcom/BigDataSE/ISPA, vol. 1. IEEE, 2015, pp. 57–64.

[20] ARM, “ARM Security Technology Building a Secure System using
TrustZone Technology,” https://developer.arm.com/documentat
ion/PRD29-GENC-009492/latest/, 2009.

[21] V. Costan and S. Devadas, “Intel SGX Explained,” IACR Cryptol.
ePrint Arch., vol. 2016, no. 86, pp. 1–118, 2016.

[22] AMD, “AMD Secure Encrypted Virtualization (SEV),” https://de
veloper.amd.com/sev/, 2022.

[23] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh, “Hetero-
geneous Isolated Execution for Commodity GPUs,” in Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2019, pp. 455–
468.

[24] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted Execution
Environments on GPUs,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), 2018, pp. 681–696.

[25] J. Zhu, R. Hou, X. Wang, W. Wang, J. Cao, B. Zhao, Z. Wang,
Y. Zhang, J. Ying, L. Zhang et al., “Enabling Rack-scale Confiden-
tial Computing using Heterogeneous Trusted Execution Environ-
ment,” in 2020 IEEE Symposium on Security and Privacy (SP). IEEE,
2020, pp. 1450–1465.

[26] CVE, “CVE-2022-21815,” https://cve.mitre.org/cgi-bin/cvenam
e.cgi?name=CVE-2022-21815, 2022.

[27] ——, “CVE-2021-1121,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2021-1121, 2021.

[28] ——, “CVE-2021-1093,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2021-1093, 2021.

[29] ——, “CVE-2022-21821,” https://cve.mitre.org/cgi-bin/cvenam
e.cgi?name=CVE-2022-21821, 2022.

[30] ——, “CVE-2020-5991,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2020-5991, 2020.

[31] R. Liu, L. Garcia, Z. Liu, B. Ou, and M. Srivastava, “SecDeep: Se-
cure and Performant On-device Deep Learning Inference Frame-
work for Mobile and IoT Devices,” in Proceedings of the International
Conference on Internet-of-Things Design and Implementation, 2021, pp.
67–79.

[32] NVIDIA, “NVIDIA CONFIDENTIAL COMPUTING,”
https://www.nvidia.com/en-us/data-center/solutions/con
fidential-computing/, 2022.

[33] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in 2009 IEEE international symposium on workload
characterization (IISWC). Ieee, 2009, pp. 44–54.

[34] H. Lee, H. Kim, C. Kim, H. Han, and E. Seo, “Idempotence-Based
Preemptive GPU Kernel Scheduling for Embedded Systems,”
IEEE Transactions on Computers, vol. 70, no. 3, pp. 332–346, 2020.

[35] R. Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Kruse,
C. Reddy, S. Verdoolaege, A. Betts, A. F. Donaldson, J. Ketema
et al., “PENCIL: A Platform-Neutral Compute Intermediate Lan-
guage for Accelerator Programming,” in 2015 International Confer-
ence on Parallel Architecture and Compilation (PACT). IEEE, 2015,
pp. 138–149.

[36] H. Lee, J. Roh, and E. Seo, “A GPU Kernel Transactionization
Scheme for Preemptive Priority Scheduling,” in 2018 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 2018, pp. 202–213.

[37] ARM, “OP-TEE Test,” https://github.com/OP-TEE/optee_test.
[38] Y. Deng, C. Wang, S. Yu, S. Liu, Z. Ning, K. Leach, J. Li, S. Yan,

Z. He, J. Cao, and F. Zhang, “StrongBox: A GPU TEE on Arm
Endpoints,” in Proceedings of the 29th ACM SIGSAC Conference on
Computer and Communications Security, 2022.

[39] ARM, “Fixed Virtual Platforms,” https://www.arm.com/en/pro
ducts/development-tools/simulation/fixed-virtual-platforms.

[40] D. Li, Z. Mi, Y. Xia, B. Zang, H. Chen, and H. Guan, “TwinVisor:
Hardware-isolated Confidential Virtual Machines for ARM,” in
Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, 2021, pp. 638–654.

[41] J. Jiang, J. Qi, T. Shen, X. Chen, S. Zhao, S. Wang, L. Chen,
G. Zhang, X. Luo, and H. Cui, “CRONUS: Fault-isolated, Secure
and High-performance Heterogeneous Computing for Trusted
Execution Environment.”

[42] H. Liljestrand, T. Nyman, L. J. Gunn, J.-E. Ekberg, and N. Asokan,
“PACStack: an Authenticated Call Stack,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021, pp. 357–374.

[43] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg,
and N. Asokan, “PAC it up: Towards Pointer Integrity using
ARM Pointer Authentication,” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 177–194.

[44] ARM, “TRUSTZONE FOR CORTEX-A,” https://www.arm.com/
technologies/trustzone-for-cortex-a, 2022.

[45] ——, “ARM Generic Interrupt Controller Architecture Specifica-
tion version 2.0,” https://developer.arm.com/documentation/ih
i0048/latest, 2013.

[46] ——, “GICv3 and GICv4 Software Overview,” https://develope
r.arm.com/documentation/dai0492/latest, 2013.

14

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3334277

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://developer.arm.com/solutions/graphics-and-gaming/developer-guides/game-engine-guides
https://developer.arm.com/solutions/graphics-and-gaming/developer-guides/game-engine-guides
https://developer.arm.com/solutions/graphics-and-gaming/developer-guides/game-engine-guides
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-texture-compression-tool
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-texture-compression-tool
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-texture-compression-tool
https://developer.arm.com/solutions/graphics-and-gaming/developer-guides/vr-best-practice
https://developer.arm.com/solutions/graphics-and-gaming/developer-guides/vr-best-practice
https://www.nvidia.com/en-us/data-center/data-center-gpus/
https://www.nvidia.com/en-us/data-center/data-center-gpus/
https://cloud.google.com/compute/docs/gpus/
https://cloud.google.com/compute/docs/gpus/
https://developer.apple.com/videos/play/tech-talks/10858/
https://developer.apple.com/videos/play/tech-talks/10858/
https://developer.qualcomm.com/software/adreno-gpu-sdk/gpu/
https://developer.qualcomm.com/software/adreno-gpu-sdk/gpu/
https://iot.asus.com/solutions/facerecognition/
https://iot.asus.com/solutions/facerecognition/
https://www.st.com/en/embedded-software/fp-ai-facerec.html
https://www.st.com/en/embedded-software/fp-ai-facerec.html
https://developer.arm.com/documentation/PRD29-GENC-009492/latest/
https://developer.arm.com/documentation/PRD29-GENC-009492/latest/
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21815
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21815
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1121
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1121
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1093
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1093
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21821
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21821
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5991
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5991
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing/
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing/
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing/
https://github.com/OP-TEE/optee_test
https://www.arm.com/en/products/development-tools/simulation/fixed-virtual-platforms
https://www.arm.com/en/products/development-tools/simulation/fixed-virtual-platforms
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://developer.arm.com/documentation/ihi0048/latest
https://developer.arm.com/documentation/ihi0048/latest
https://developer.arm.com/documentation/dai0492/latest
https://developer.arm.com/documentation/dai0492/latest

[47] ——, “Cortex-A7 MPCore Technical Reference Manual,” https:
//developer.arm.com/documentation/ddi0464/latest/, 2022.

[48] ——, “Arm Cortex-A53 MPCore Processor Technical Reference
Manual,” https://developer.arm.com/documentation/ddi0500/
latest/, 2022.

[49] ——, “Arm Cortex-A57 MPCore Processor Technical Reference
Manual,” https://developer.arm.com/documentation/ddi0488/
latest/, 2022.

[50] ——, “Arm Cortex-A72 MPCore Processor Technical Reference
Manual,” https://developer.arm.com/documentation/100095/l
atest/, 2022.

[51] ——, “OpenCL,” https://developer.arm.com/tools-and-software
/graphics-and-gaming/mali-drivers/user-space, 2022.

[52] ——, “Arm Architecture Reference Manual Armv8, for Armv8-
A architecture profile,” https://developer.arm.com/documentat
ion/ddi0487/latest/, 2022.

[53] D. Cerdeira, J. Martins, N. Santos, and S. Pinto, “REZONE: Dis-
arming TrustZone with TEE Privilege Reduction,” arXiv preprint
arXiv:2203.01025, 2022.

[54] J. Lee, Y. Liu, and Y. Lee, “ParallelFusion: Towards Maximum
Utilization of Mobile GPU for DNN Inference,” in Proceedings of
the 5th International Workshop on Embedded and Mobile Deep Learning,
2021, pp. 25–30.

[55] J. S. Jeong, J. Lee, D. Kim, C. Jeon, C. Jeong, Y. Lee, and B.-G. Chun,
“Band: Coordinated Multi-DNN Inference on Heterogeneous Mo-
bile Processors,” in Proceedings of the 20th Annual International
Conference on Mobile Systems, Applications and Services, 2022, pp.
235–247.

[56] W. Diffie and M. Hellman, “New directions in cryptography,”
IEEE transactions on Information Theory, vol. 22, no. 6, pp. 644–654,
1976.

[57] ARM, “OP-TEE Trusted OS,” https://github.com/OP-TEE/opte
e_os.

[58] CVE, “CVE-2019-1010295,” http://cve.mitre.org/cgi-bin/cven
ame.cgi?name=CVE-2019-1010295, 2021.

[59] ——, “CVE-2019-1010296,” http://cve.mitre.org/cgi-bin/cven
ame.cgi?name=CVE-2019-1010296, 2021.

[60] ——, “CVE-2021-44149,” http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2021-44149, 2021.

[61] ARM, “Juno r2 ARM Development Platform SoC,” https://deve
loper.arm.com/documentation/ddi0515/latest, 2016.

[62] ——, “Open Source Mali Midgard GPU Kernel Drivers,”
https://developer.arm.com/tools-and-software/graphics-and-

gaming/mali-drivers/midgard-kernel, 2022.
[63] J. S. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “SeCReT:

Secure Channel between Rich Execution Environment and Trusted
Execution Environment,” in NDSS, 2015.

[64] H. Sun, K. Sun, Y. Wang, and J. Jing, “TrustOTP: Transforming
Smartphones into Secure One-Time Password Tokens,” in Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 976–988.

[65] Eklektix, Inc., “A deep dive into cma.” https://lwn.net/Articles
/486301/, 2021.

[66] ARM, “Midgard Architecture,” https://gitlab.freedesktop.org/p
anfrost/mali-isa-docs/-/blob/master/Midgard.md, 2017.

[67] ——, “Mali-G78 GPUs Valhall instruction set docu-
mentation released after reverse-engineering work,”
https://www.cnx-software.com/2021/07/23/mali-g78-gpu-v
alhall-instruction-set-documentation-reverse-engineering/, 2021.

[68] AlDanial, “cloc,” https://github.com/AlDanial/cloc, 2021.
[69] BYTE Magazine, “Linux/unix nbench,” http://www.tux.org/~m

ayer/linux/bmark.html, 2022.
[70] X. Wang, S. Yeoh, R. Lyerly, P. Olivier, S.-H. Kim, and B. Ravindran,

“A Framework for Software Diversification with ISA Hetero-
geneity,” in 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), 2020, pp. 427–442.

[71] K. Hohentanner, P. Zieris, and J. Horsch, “PACSafe: Leveraging
ARM Pointer Authentication for Memory Safety in C/C++,” arXiv
preprint arXiv:2202.08669, 2022.

[72] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf,
“SANCTUARY: ARMing TrustZone with User-space Enclaves,” in
NDSS, 2019.

[73] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vTZ:
Virtualizing ARM TrustZone,” in 26th USENIX Security Symposium
(USENIX Security 17), 2017, pp. 541–556.

[74] S. Checkoway and H. Shacham, “Iago Attacks: Why the System
Call API is a Bad Untrusted RPC Interface,” ACM SIGARCH
Computer Architecture News, vol. 41, no. 1, pp. 253–264, 2013.

[75] FuZhou Rockchip Electronics Co., Ltd., “Rockchip RK3288 Techni-
cal Reference Manual Part1,” http://opensource.rock-chips.com/
images/8/8f/Rockchip_RK3288_TRM_V1.2_Part1-20170321.pdf,
2017.

[76] Amlogic, Inc., “S905 Datasheet,” https://dn.odroid.com/S905/D
ataSheet/S905_Public_Datasheet_V1.1.4.pdf, 2016.

[77] STMicroelectronics, “GPU device tree configuration,” https:
//wiki.st.com/stm32mpu/wiki/GPU_device_tree_configuration,
2022.

[78] ARM, “Arm-Trusted-Firmware,” https://github.com/ARM-sof
tware/arm-trusted-firmware.

[79] ——, “Granule Protection Tables in TF-A,” https://www.trustedf
irmware.org/docs/tfa_tech_forum_2021_10_21_gpt.pdf, 2021.

[80] A. Rattani and R. Derakhshani, “A survey of mobile face biomet-
rics,” Computers & Electrical Engineering, vol. 72, pp. 39–52, 2018.

[81] Mesa 3D, “The Mesa 3D Graphics Library,” https://www.mesa
3d.org/, 2022.

[82] A. W. B. Yudha, J. Meyer, S. Yuan, H. Zhou, and Y. Solihin, “LITE:
A Low-Cost Practical Inter-Operable GPU TEE,” 2022.

[83] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, “TrustICE:
Hardware-assisted Isolated Computing Environments on Mobile
Devices,” in 2015 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. IEEE, 2015, pp. 367–378.

[84] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel,
“Inktag: Secure applications on an untrusted operating system,” in
Proceedings of the eighteenth international conference on Architectural
support for programming languages and operating systems, 2013, pp.
265–278.

[85] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
“Trustshadow: Secure execution of unmodified applications with
arm trustzone,” in Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, 2017, pp.
488–501.

[86] J. Jang, C. Choi, J. Lee, N. Kwak, S. Lee, Y. Choi, and B. B.
Kang, “PrivateZone: Providing a Private Execution Environment
using ARM TrustZone,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 5, pp. 797–810, 2016.

[87] D. Kwon, J. Seo, Y. Cho, B. Lee, and Y. Paek, “PrOS: Light-weight
privatized secure OSes in ARM TrustZone,” IEEE Transactions on
Mobile Computing, vol. 19, no. 6, pp. 1434–1447, 2019.

[88] W. Li, Y. Xia, L. Lu, H. Chen, and B. Zang, “TEEv: Virtualizing
Trusted Execution Environments on Mobile Platforms,” in Proceed-
ings of the 15th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, 2019, pp. 2–16.

[89] ARM, “Hafnium,” https://www.trustedfirmware.org/projects/h
afnium/.

15

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3334277

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://developer.arm.com/documentation/ddi0464/latest/
https://developer.arm.com/documentation/ddi0464/latest/
https://developer.arm.com/documentation/ddi0500/latest/
https://developer.arm.com/documentation/ddi0500/latest/
https://developer.arm.com/documentation/ddi0488/latest/
https://developer.arm.com/documentation/ddi0488/latest/
https://developer.arm.com/documentation/100095/latest/
https://developer.arm.com/documentation/100095/latest/
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/user-space
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/user-space
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1010295
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1010295
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1010296
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1010296
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44149
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44149
https://developer.arm.com/documentation/ddi0515/latest
https://developer.arm.com/documentation/ddi0515/latest
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/midgard-kernel
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/midgard-kernel
https://lwn.net/Articles/486301/
https://lwn.net/Articles/486301/
https://gitlab.freedesktop.org/panfrost/mali-isa-docs/-/blob/master/Midgard.md
https://gitlab.freedesktop.org/panfrost/mali-isa-docs/-/blob/master/Midgard.md
https://www.cnx-software.com/2021/07/23/mali-g78-gpu-valhall-instruction-set-documentation-reverse-engineering/
https://www.cnx-software.com/2021/07/23/mali-g78-gpu-valhall-instruction-set-documentation-reverse-engineering/
https://www.cnx-software.com/2021/07/23/mali-g78-gpu-valhall-instruction-set-documentation-reverse-engineering/
https://github.com/AlDanial/cloc
http://www.tux.org/~mayer/linux/bmark.html
http://www.tux.org/~mayer/linux/bmark.html
http://opensource.rock-chips.com/images/8/8f/Rockchip_RK3288_TRM_V1.2_Part1-20170321.pdf
http://opensource.rock-chips.com/images/8/8f/Rockchip_RK3288_TRM_V1.2_Part1-20170321.pdf
https://dn.odroid.com/S905/DataSheet/S905_Public_Datasheet_V1.1.4.pdf
https://dn.odroid.com/S905/DataSheet/S905_Public_Datasheet_V1.1.4.pdf
https://wiki.st.com/stm32mpu/wiki/GPU_device_tree_configuration
https://wiki.st.com/stm32mpu/wiki/GPU_device_tree_configuration
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://www.trustedfirmware.org/docs/tfa_tech_forum_2021_10_21_gpt.pdf
https://www.trustedfirmware.org/docs/tfa_tech_forum_2021_10_21_gpt.pdf
https://www.mesa3d.org/
https://www.mesa3d.org/
https://www.trustedfirmware.org/projects/hafnium/
https://www.trustedfirmware.org/projects/hafnium/

Chenxu Wang is working on the Joint Ph.D.
degree from Southern University of Science and
Technology (SUSTech) and The Hong Kong
Polytechnic University. He received the Bach-
elor’s degree in Computer Science and Engi-
neering from Southern University of Science and
Technology (SUSTech). His research interests
include virtualization and trusted execution en-
vironment on Arm architecture.

Yunjie Deng is working on the Master degree
from Southern University of Science and Tech-
nology (SUSTech). He received the Bachelor’s
degree in Computer Science and Engineering
from Southern University of Science and Tech-
nology (SUSTech). His research interests in-
clude trusted execution environment and GPU
computing.

Zhenyu Ning is an Associate Professor at Hu-
nan University. He received his Ph.D. degree in
Computer Science from Wayne State University
in 2020. His research interests are in the areas
of security and privacy, including system secu-
rity, mobile security, IoT security, trusted execu-
tion environment, hardware-assisted security.

Kevin Leach is an Assistant Professor of Com-
puter Science at Vanderbilt University. He re-
ceived his PhD degree in computer engineer-
ing from the University of Virginia. His research
interests include systems security, specifically
the debugging transparency problem. He also
works in the area of conversational artificial intel-
ligence, program analysis, medical informatics,
and big data applications.

Jin Li is currently a Professor and Execu-
tive Dean of Institute of Artificial Intelligence &
Blockchain, Guangzhou University. He received
his B.S. degree (2002) and M.S. degree (2004)
from Southwest University and Sun Yatsen Uni-
versity, both in Mathematics. He received his
Ph.D. degree in information security from Sun
Yat-sen University in 2007. His research inter-
ests include security in Artificial Intelligence and
applied cryptography. He publishes more than
100 papers in international conferences and

journals, including IEEE INFOCOM, IEEE TIFS, IEEE TPDS, IEEE TOC,
ESORICS, and etc. His works are cited more than 18000 times at
Google Scholar and the H-Index is 50. He also serves as program chairs
and committee member for many international conferences. He received
NSFC Outstanding Youth Foundation in 2017.

Shoumeng Yan is a principal engineer at Ant
Group and the senior director of secure and
trustworthy computing. He received his Ph.D.
from Northwestern Polytechnic University. His
research interests include OS, TEE, and domain
specific accelerators. He publishes many papers
in international conferences, including USENIX
Security, USENIX ATC, ACM CCS, ACM ASP-
LOS, and etc.

Zhengyu He is a senior principal engineer at Ant
Group and the president of platform technology
business group. He received his Ph.D. degree
from the School of Electrical and Computer En-
gineering at the Georgia Institute of Technol-
ogy. His research interests include the trusted
execution environment, operating system, and
virtualization.

Jiannong Cao is the Otto Poon Charitable Foun-
dation Professor in Data Science and the Chair
Professor of Distributed and Mobile Computing
in the Department of Computing at The Hong
Kong Polytechnic University. His research inter-
ests include distributed systems and blockchain,
wireless sensing and networking, big data and
machine learning, and mobile cloud and edge
computing.

Fengwei Zhang is an Associate Professor in
Department of Computer Science and Engi-
neering at Southern University of Science and
Technology (SUSTech). His primary research
interests are in the areas of systems security,
with a focus on trustworthy execution, hardware-
assisted security, debugging transparency, and
plausible deniability encryption. Before joining
SUSTech, he spent four years as an Assistant
Professor at Department of Computer Science
at Wayne State University.

16

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3334277

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Background
	Arm TrustZone
	Arm Address Translation
	Workflow of Arm Endpoint GPUs
	Arm Secure Virtualization Extension

	Threat Model and Assumptions
	Design
	Goals and Overview
	GPU Exclusivity During Critical Execution
	Dynamic and Fine-grained Protection
	TCB Reduction

	Implementation
	GPU Driver
	GPU Guard
	Task Protector

	Evaluation
	RQ1: TCB Size of StrongBox
	RQ2: Evaluation on Rodinia Benchmarks
	RQ3: Evaluation of System Performance
	RQ4: Evaluation of the Defense Mechanism

	Security Analysis
	Attack on Secure Task RAM
	Attack with Malicious Tasks
	Attack with Fake GPU Device
	Attack with Compromised GPU Software
	Attack from Secure OS and Applications
	Attack from Abusing Secure Tasks

	Discussion
	Related Work
	Conclusion
	References
	Biographies
	Chenxu Wang
	Yunjie Deng
	Zhenyu Ning
	Kevin Leach
	Jin Li
	Shoumeng Yan
	Zhengyu He
	Jiannong Cao
	Fengwei Zhang

