
Efficiently Rebuilding Coverage in Hardware-Assisted Greybox
Fuzzing

Tai Yue∗
Academy of Military Science, China
Department of Computer Science and
Engineering, Southern University of

Science and Technology, China
National University of Defense

Technology, China
yuetai17@nudt.edu.cn

Yibo Jin
Department of Computer Science and
Engineering, Southern University of

Science and Technology, China
yjinbd@cse.ust.hk

Fengwei Zhang†
Department of Computer Science and
Engineering, Southern University of

Science and Technology, China
zhangfw@sustech.edu.cn

Zhenyu Ning
Hunan University, China

zning@hnu.edu.cn

Pengfei Wang†
National University of Defense

Technology, China
pfwang@nudt.edu.cn

Xu Zhou
National University of Defense

Technology, China
zhouxu@nudt.edu.cn

Kai Lu
National University of Defense

Technology, China
kailu@nudt.edu.cn

ABSTRACT

Coverage-based greybox fuzzing (CGF) is an efficient technique
for detecting vulnerabilities, but its coverage-feedback mechanism
introduces significant overhead in binary-only fuzzing. Although
hardware-assisted greybox fuzzing (HGF) has been proposed to
address this issue, existing approaches struggle to achieve a balance
between the efficiency and sensitivity of coverage, as well as to
cope with trace buffer overflow.

In this paper, we review the typical HGF tools and identify sev-
eral challenges in their coverage-feedback mechanisms, including
efficiency, sensitivity, and stability. Taking Arm CoreSight as an ex-
ample, we present an efficient tool called Stalker to address these
challenges. To achieve high-speed execution while maintaining a
branch-sensitivity coverage, we propose two coverage strategies
with different overheads and sensitivities and design a novel double-
layer coverage mechanism that maximizes the benefits of these
strategies. We further accelerate Stalker by conducting many op-
timizations in the decoder and kernel. To mitigate the imprecision
and instability in coverage introduced by trace buffer overflow, we
propose an adaptive CPU frequency modulation mechanism that
adjusts the bandwidth of the trace units. We implement Stalker
on an Arm Juno R2 development board and thoroughly evaluate

∗This work was done while Tai Yue visiting at COMPASS lab.
†The corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RAID 2024, September 30–October 02, 2024, Padua, Italy

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0959-3/24/09
https://doi.org/10.1145/3678890.3678933

the efficiency and sensitivity of coverage-feedback mechanisms in
existing tools. Our comprehensive evaluations demonstrate that
Stalker outperforms other state-of-the-art (SOTA) tools in address-
ing these challenges. Comparedwith Armored-Edge, Armored-Path,
and 𝜇AFL, Stalker accelerates the execution speed by 2.81×, 1.74×,
and 1.4× and covers 23.9%, 66.1%, and 3.5% more branches, as well
as 66.4%, 323.3%, and 19.2% more paths, respectively.

CCS CONCEPTS

• Security and privacy→ Software and application security.

KEYWORDS

Hardware-assisted Greybox Fuzzing, Hardware Tracing

ACM Reference Format:

Tai Yue, Yibo Jin, Fengwei Zhang, Zhenyu Ning, Pengfei Wang, Xu Zhou,
and Kai Lu. 2024. Efficiently Rebuilding Coverage in Hardware-Assisted
Greybox Fuzzing. In The 27th International Symposium on Research in Attacks,

Intrusions and Defenses (RAID 2024), September 30–October 02, 2024, Padua,

Italy. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3678890.
3678933

1 INTRODUCTION

CGF has become an efficient technique for detecting software vul-
nerabilities [32, 33]. A prominent tool is AFL [54]. By generating
numerous inputs at a high speed, AFL and its extensions have dis-
covered numerous vulnerabilities [11, 12, 23, 43, 47, 54]. However,
this high speed is supported by lightweight compile-time instru-
mentation, which is unavailable for binaries without the source
code [14]. For binary-only fuzzing, the main performance bottleneck
arises from the collection and reconstruction of coverage [14, 37].

https://doi.org/10.1145/3678890.3678933
https://doi.org/10.1145/3678890.3678933
https://doi.org/10.1145/3678890.3678933

RAID 2024, September 30–October 02, 2024, Padua, Italy Yue et al.

Recently, modern processors have been equipped with tracing
techniques1, such as Intel Processor Trace (Intel PT) [29] or Arm
CoreSight [5], which efficiently trace executed instructions and
encode control flow information into trace packets. By employing
a decoder to decode the trace packets and rebuild the coverage,
researchers have proposed HGF to improve binary-only fuzzing [2,
14, 24, 31, 41, 42, 56]. Compared to other techniques employed in
binary-only fuzzing, such as dynamic binary instrumenting (DBI)
or static binary rewriting [9, 15, 19, 21, 25, 34, 37, 57], hardware
tracing offers efficient control flow tracing with a negligible runtime
overhead (2-5%) [46]. It relies solely on hardware platform without
requiring additional prerequisites for the binary, making it highly
practical [2, 8, 14, 24, 31, 41, 42, 56]. Moreover, the powerful tracing
ability makes HGF effective in fuzzing the code that is challenging
to instrument, such as the secure applications running in the Trust
Execution Environment (TEE) or macOS kernel [42, 44, 45, 49].

Though existing hardware-assisted tools have been employed in
detecting vulnerabilities in real-world applications [14, 24, 31, 41,
42, 49, 56], there remains some challenges in the coverage-feedback
mechanism of current HGF tools. First, it is challenging for

existing tools to rebuild coverage with high efficiency and

moderate sensitivity (we regard the sensitivity of popular branch-
granularity coverage as moderate sensitivity in this paper). The
branch-count coverage of AFL has been proven to be highly effi-
cient and is followed by many fuzzers [11, 15, 35, 37, 42, 51, 52],
including some HGF tools [2, 39, 42, 56]. However, rebuilding the
branch-count coverage by hardware tracing techniques requires
additional workloads (e.g., disassembling the binaries). Generally,
tracing techniques like Intel PT and Arm CoreSight can not directly
record the source addresses of branches (i.e., edges). They usually
record whether a branch is taken or not and the destinations of
indirect branches. Some may support tracing direct branch desti-
nations (e.g., Arm CoreSight). Some tools [2, 39, 42, 56] rebuilt the
branch-count coverage by disassembling the binary to recover the
entries of executed blocks, but this approach incurred significant
overhead. 𝜇AFL [31] utilizes the Branch Broadcasting (BB)mode
of the Embedded Trace Macrocell (ETM), which is the trace unit of
Arm CoreSight. The BB mode enables ETM to trace the destinations
of direct branches. Under this mode, 𝜇AFL captures more addresses
of branches and efficiently rebuilds a branch coverage similar to the
branch-count coverage of AFL. However, the BB mode increases
the trace data and introduces more workload to the decoder than
the default mode. To reduce the overhead in rebuilding coverage,
PTrix [14] and Armored-Path2 [2] rebuild coverage directly from
the trace packets without disassembling code but introduced a more
sensitive path coverage than that in AFL. The sensitive coverage
makes the fuzzer select and add superfluous seeds into the seed
queue, defined as seed explosion. The seed explosion puts heavy
pressure on the scheduling algorithm, limiting the fuzzing efficiency.
We will demonstrate this phenomenon in Section 5.3. Second, the

1In this paper, we only focus on the hardware tracing techniques employed in fuzzing.
Some other techniques, such as the Last Branch Record (LBR), are not under our
consideration and beyond the scope of this paper.
2Armored-CoreSight refers to libxdc and incorporates two types of coverage: branch-
count coverage, referred to as Armored-Edge, and PTrix-type path coverage, denoted
as Armored-Path.

trace buffer overflow in hardware tracing introduces impre-

cision and instability in rebuilding coverage, affecting the

fuzzing efficiency. A stable fuzzer should consistently follow the
same path of a deterministic program when given the same input
repeatedly. However, modern CPUs utilize the delicate on-chip
buffer to temporarily store trace data. The trace buffer overflow
occurs frequently when the trace data is generated at a high band-
width [18, 58]. The overflow incurs the loss of trace data, which
may impact the precision and stability of coverage. For example,
AFL-type tools usually calculate the checksum of the trace bitmap
to represent an execution path [54]. The imprecise coverage may
impact the calculation of checksum and then impact the stability of
the fuzzer, which will weaken the efficiency of fuzzing. Experiments
in Section 5.4 will prove this.

In this paper, we explore the problems in rebuilding coverage by
hardware tracing and argue that an efficient HGF should satisfy two
conditions: 1) Building branch coverage with low overhead

to avoid the seed explosion. 2) Alleviating the trace buffer

overflow.We present solutions to these challenges and develop an
efficient hardware-assisted fuzzer. Considering that the prevalence
of Arm-based devices and servers calls for efficient fuzzers [2, 31],
we take Arm CoreSight as examples to implement the fuzzer. Addi-
tionally, the universality of the problems we tackle and the similar-
ities between Intel PT and Arm CoreSight allow for applying some
of our methods to the tools based on Intel PT. Moreover, since our
focus lies solely on enhancing the coverage-feedback mechanism
in HGF, optimizing mutation strategies and scheduling algorithms
or exploring parallel fuzzing are out of our scope.

We present Stalker, an efficient hardware-assisted greybox fuzzer

designed to achieve above two criteria: 1) To balance the efficiency
and sensitivity in rebuilding coverage (Criteria 1), we propose a
novel double-layer coverage mechanism. The core design of this
mechanism is executing test cases under the lightweight path cov-

erage to preliminarily discover the coverage-increased seeds and
filtering them under the moderate branch coverage. To reduce the
overhead, we design the lightweight path coverage under the de-
fault mode of ETM, optimize the CoreSight driver to disable the
unnecessary formatter, and develop a light and stable decoder based
on ptm2human [26]. To select a new seed with branch coverage and
avoid seed explosion, we develop the moderate branch coverage
under the BB mode of ETM without expensive disassembling. 2)
To alleviate the overflow (Criteria 2), we propose an adaptive CPU

frequency modulation mechanism to retain a high execution speed
while preventing the overflow. We also illustrate how to configure
ETM efficiently to reduce its bandwidth of generating trace data
and trace the necessary coverage information during fuzzing.

We implement Stalker based on AFL and conduct compre-
hensive experiments to evaluate it against SOTA tools, including
AFL [54], Armored-CoreSight [2], 𝜇AFL [31] (emulated by Stalker-
Branch-Fmt), PTrix [14], and libxdc [39]. On 10 real-world programs,
Stalker outperforms other Arm-based tools in executing the test
cases and rebuilding the same granularity coverage (2.81×, 1.74×,
and 1.4× faster than Armored-Edge, Armored-Path, and 𝜇AFL, re-
spectively) and covers 10.0%, 23.9%, 66.1%, and 3.5% more branches
and 13.7%, 66.4%, 323.3%, and 19.2% more paths than AFL-QEMU++,
Armored-Edge, Armored-Path, and 𝜇AFL, respectively. Compared
with PTrix and libxdc, Stalker is 2.2× and 1.6× faster than them in

Efficiently Rebuilding Coverage in Hardware-Assisted Greybox Fuzzing RAID 2024, September 30–October 02, 2024, Padua, Italy

rebuilding coverage, respectively. We also evaluate the effectiveness
and efficiency of the mechanisms in Stalker. The results show that
our double-layer coverage mechanism enables Stalker to execute
most of test cases under the bottom-layer path coverage with only
9.9% repeated executions and avoid the seed explosion under the
top-layer branch coverage. Our frequency modulation mechanism
significantly reduces the trace buffer overflow.

The contributions of this paper are as follows:
• We review the development and technical details of existing
hardware-assisted fuzzers and highlight the challenges in coverage-
feedback mechanisms, such as the efficiency and sensitivity in
rebuilding coverage and the effects of trace buffer overflow.

• We design a double-layer coverage mechanism, consisting of light-
weight branch coverage and moderate path coverage. This mecha-
nism leverages the strengths of both coverage layers, achieving
low overhead while avoiding seed explosion.

• We propose a novel adaptive CPU frequency modulation mecha-

nism, alleviating the trace buffer overflow.
• We implement the prototype of Stalker on the Arm Juno R2 and
comprehensively evaluate it against SOTA tools, including Arm
and Intel platforms. Results show that our techniques have better
effectiveness and efficiency than other tools.

• Weopen the source code of Stalker at https://github.com/MoonLight-
SteinsGate/Stalker.

2 BACKGROUND

2.1 Coverage-Based Greybox Fuzzing

CGF is a widely used technique for vulnerability detection [11, 22,
40]. A fundamental principle of CGF is that as more code is covered,
the likelihood of triggering bugs increases [36]. To continually
improve coverage, current CGF tools employ genetic algorithms to
discover and select test cases that increase coverage in a metric [54].

Previous research has highlighted the impact of different cover-
age metrics on fuzzing efficiency [48]. Metrics with higher sensitiv-
ity can result in a larger number of inputs available for seed selec-
tion, potentially leading to seed explosion and the fuzzer becoming
trapped in exploring specific code regions [14, 48]. Consequently,
popular tools often follow the branch-count coverage of AFL, which
captures basic block transitions (i.e., branches or edges) and keeps
a record of their hit counts in a coverage bitmap [54].

2.2 Arm CoreSight Technique

ETM

Source

Formatter

Buffer

CPU
ETF

ETR
Replicator

Link Sink

System Memory
AXI

Formatter

Formatter
TPIU

Trace buffer overflow L1 encodingL2 encoding

Figure 1: The CoreSight architecture on Arm Juno R2.

Arm proposed CoreSight architecture for debugging and trac-
ing of complex system on chip (SoC), which contains a series of
hardware components [5]. Fig. 1 shows the CoreSight architecture

implemented on Arm Juno R2 [6]. As a trace source, Embedded Trace

Macrocell (ETM) traces instructions and data by monitoring buses
with negligible overhead. To reduce the size of trace data, the ETM
encodes the trace elements into packets [7] (i.e., L2 encoding [55]).
Both Embedded Trace FIFO (ETF) and Embedded Trace Router (ETR)
can store the trace data [4]. However, on Juno R2, ETF utilizes a
64KB dedicated FIFO buffer to store data with low latency, while
ETR routes the data over an AXI bus to memory with some latency
but up to 4 GB from DRAM. Therefore, on many high-end SoCs
(e.g., Juno R2), users usually configure ETR as a sink to stores all
trace data, and ETF as a link to avoid data loss if a delay occurs
when accessing the DRAM via ETR [4].

There are two details in this configuration: 1) The formatter in
ETR embeds source ID signals into the trace streams to stamp the
trace source of each stream (referred to as L1 encoding), which
introduces unnecessary L1 decoding when only one ETM is uti-
lized. 2) If ETM generates an excessive amount of trace data at a
high frequency (higher than the bandwidth of the ETF output data),
the limited buffer in ETF might overflow and raise a signal to stop
ETM. ETM then halts until the overflow is resolved (generating an
Overflow packet to record this event), resulting in the loss of trace
data during this period. We record this as trace buffer overflow.

400634: cmp w0, #0x62 // b
400638: b.ne 400650
40063c: cmp w1, #0x61 // a
400640: b.ne 400650
400644: cmp w2, #0x64 // d
400648: b.ne 400650
40064c: bl 400480 <raise@plt>
400650: ldp x29, x30, [sp],#64
400664: ret

1. int test_func(char x, char y, char z)
2. {
3. if(x == 'b')
4. if(y == 'a')
5. if(z == 'd')
6. raise(SIGSEGV);
7. return 0;
8. }

source code assembly code

N
E

0x400650

Input

Record

ETM trace

E

0x400650

x != 'b' x == 'b'
y != 'a'

x == 'b'
y == 'a'
z != 'd'

x == 'b'
y == 'a'
z == 'd'

N
N
E

0x400650

N
N
N
E

0x400480

default

branch broadcasting

Figure 2: Code snippet to illustrate the ETM elements.

2.3 Embedded Trace Macrocell

Similarly to Intel PT, the ETM3 is embedded into the CPU to trace
instructions and generate trace elements, including Atom and Ad-
dress elements [7]. An Atom element indicates whether a branch
is taken (𝐸) or not taken (𝑁), while an Address element repre-
sents the destination address of a branch. By default, the ETM only
records the addresses of indirect branches, such as ret and blr. In
the Branch Broadcasting (BB) mode, direct branch destinations
are also captured [7]. Furthermore, users can configure the context
ID and address range comparators of the ETM to trace a specific
process within the assigned address range.

Fig. 2 presents a code snippet along with its assembly code and
the essential trace elements recorded by the ETM in different modes.
The function test func encompasses four paths. Upon receiving
the input 𝑠1 = (∗, ∗, ∗), the function takes a direct branch from
0x400638 to 0x400650. ETM records this branch as an Atom ele-
ment 𝐸 by default and address 0x400650 as an Address element
3Due to the diversity in the versions and implementations of ETMs on different SoCs,
we focus on the ETM-v4 of Juno R2 in this paper.

https://github.com/MoonLight-SteinsGate/Stalker
https://github.com/MoonLight-SteinsGate/Stalker

RAID 2024, September 30–October 02, 2024, Padua, Italy Yue et al.

Stalker-
Branch

PTrix

Branch-count coverage with disassembling code Branch coverage with BB mode

Path coverage Disable formatter

Stalker-
Path

Stalker-
Path

Stalker-
Branch

PTFuzz <

Rebuild path coverage directly
from trace packets

Libxdc<

Accelerate rebuilding branch coverage by micro-optimizations

Armored-
Edge Armored-

Path

<

Stalker<

<

Rebuild branch coverage by capturing direct branches under
branch broadcasting mode without disassembling code

Disable formatter to
avoid L1 decoding

Disable branch broadcasting to reduce the size of trace data

 ≈

Accelerate the speed by double-layer coverage mechanism

<

Introduce light overhead in double-
layer coverage mechanism

 ≈

Intel Arm

 AFLμ
<

Disable formatter to avoid L1 decoding Refer to libxdc

Key point in rebuilding coverage

< Comparison in efficiency (right is better)

Timeline2018 2019 2020 2021 2022 2023
Figure 3: The details of coverage-feedback mechanisms in existing hardware-assisted tools.

under the BB mode. For the input 𝑠2 = (′𝑏′, ∗, ∗), which satisfies the
conditional statement in line 3, the function bypasses the branch at
0x400638. ETM denotes this with an Atom element 𝑁 . Regardless
of the mode, an execution path can be represented by a sequence
of Address and Atom elements, such as (𝑁, 𝐸, 0x400650), starting
from an entry. Hence, we can construct coverage based on these
elements without disassembling the code.

3 REBUILDING COVERAGE IN HGF

3.1 Coverage-Feedback Mechanism

The coverage-feedback mechanism plays an essential role in HGF,
which evaluates test cases but introduces the highest overhead. To
better understand the challenges in HGF, we conduct a comprehen-
sive review of its development, qualitatively compare existing tools,
and list the details of their coverage-feedback mechanisms in Fig. 3.

From Fig. 3, the coverage-feedback mechanisms of existing tools
can be categorized into three groups: 1) Building branch-count

coverage with disassembling code. Early tools like PTFuzz [56]
decode the trace data and use the disassembly code to recover the
addresses of executed basic blocks for rebuilding the branch-count
coverage. However, this approach incurs significant overhead and
reduces the throughput. Though libxdc [39] and Armored-Edge [2]
accelerate this process by implementing many micro-optimizations,
such as heavy caching and branchless code, this way introduces
more overhead than directly rebuilding coverage from trace ele-
ments. 2) Building path coverage directly from the trace ele-

ments. PTrix [14] proposed to build the path coverage by hashing
trace elements without heavy disassembling. Armored-Path [2] fol-
lowed this approach. However, the overly sensitive path coverage
leads to a large number of selected seeds and the seed explosion
problem, which poses heavy pressure on the scheduling algorithm.
This causes the sensitive coverage to be less practical than branch
coverage in certain scenarios. Moreover. 3)Building branch cover-

age directly from the trace elements based on the hardware

features. 𝜇AFL [31] rebuilds branch coverage based on the BB
mode of ETM to avoid heavy code disassembling. However, under
the BB mode, the size of trace data increases, leading to heavier
decoding overhead compared to the default mode.

Upon analysis and comparison of these tools, it is evident that
the fastest approach to rebuild coverage is (2). However, it also
introduces the seed explosion. Therefore, the main challenge in

efficiently rebuilding coverage in HGF is to strike a balance

between efficiency and sensitivity.

Furthermore, the presence of trace buffer overflow impairs the ac-
curacy and stability of coverage rebuilt by many hardware-assisted
fuzzers [2, 31], which would weaken the fuzzing efficiency. For ex-
ample, AFL-type tools [5, 14, 31, 56] calculate the checksum of the
local bitmap to represent an execution path. The checksum is used
in many mutation strategies. The trim strategy prunes the seed by
selecting a smaller one with the same checksum to maintain high
execution speed [54]. The deterministic strategies identify the un-
necessary mutations on specific bytes by observing the checksum
in conducting bitflip strategy [54]. When the trace buffer overflow
occurs, the loss of trace data may lead to an incomplete trace bitmap,
which impacts the calculation of the checksum. In this scenario, the
test cases with the same trace may be regarded as different seeds if
the checksums are incorrectly calculated, impacting the efficiency
of these mutation strategies or causing the seed explosion. Hence,
it is important to prevent trace buffer overflow to ensure the

effectiveness and stability of HGF.

In conclusion, we argue that efficient HGF should meet two
criteria: 1) Rebuilding coverage with lightweight overhead

while avoiding seed explosion; 2) Alleviating the trace buffer

overflow. To achieve (1), we propose a novel double-layer coverage
mechanism. This mechanism employs a lightweight path coverage
for executing test cases with high throughput, and a moderate
branch coverage for filtering and selecting the seeds into the seed
queue to prevent seed explosion. To achieve (2), we propose the
adaptive CPU frequency modulation mechanism. This mechanism
modulates the bandwidth of ETM by adjusting the CPU frequency,
effectively avoiding trace buffer overflow.

3.2 Double-Layer Coverage Mechanism

Inspired by the above analysis, we propose the double-layer cover-
age mechanism. The fundamental design of this mechanism

is to assign the execution of test cases and the selection of

seeds to different coverages. To efficiently execute the test cases,
we employ a lightweight path coverage in the bottom layer. We also
propose a moderate branch coverage in the top layer to select and
add the seeds into the seed queue without introducing the seeds
explosion. We will illustrate how to design these two coverages in
Section 3.3.

Algorithm 1 elaborates on this mechanism. Stalker executes
each test case under the lightweight path coverage in the bottom
layer (Line 3). By comparing the path trace bits and path bitmap

Efficiently Rebuilding Coverage in Hardware-Assisted Greybox Fuzzing RAID 2024, September 30–October 02, 2024, Padua, Italy

Algorithm 1 Double-Layer Coverage Mechanism
1: repeat

2: testcase = Mutation(seed)
3: path trace bits = RunTarget(PATH COV, testcase) //Executing the testcase

under the path coverage
4: if Filter(path trace bits, useless bitmap) then
5: if HasNewBits(path bitmap, path trace bits) then
6: branch trace bits = RunTarget(BRANCH COV, testcase) //Re-executing

the testcase under the branch coverage
7: if HasNewBits(branch bitmap, branch trace bits) then
8: AddToQueue(testcase)
9: Update(useful path bitmap, path trace bits)
10: else

11: Update(useless bitmap, path trace bits)
12: end if

13: end if

14: end if

15: if Purge(path bitmap) then
16: path bitmap = useful path bitmap
17: end if

18: until fuzzer exit

of the path coverage, if a test case is identified as a new seed (de-
fined as a path seed) under the path coverage, Stalker proceeds
to re-execute the test case using the top-layer moderate branch
coverage and examine the corresponding branch trace bits and
branch bitmap (Line 4-7). If a path seed triggers new states under
the branch coverage, it will be considered useful and added to the
seeds queue (defined as a branch seed) (Line 7-9). It means that
the branch seeds are selected from the path seeds. Finally, a test
case will be added to the seeds queue (i.e., branch seed) only if it
triggers new states under both path and branch coverage.

Purge strategy. A test case marked as a path seed but not a
branch seed may not contribute to covering more branches. We de-
fine such case asuseless path seed and incorporate its path trace bits
into the useless bitmap to filter out these useless cases in subsequent
testing. Since the path bitmap is contaminated with useless path
seeds in the function HasNewBits, we periodically remove these
useless entries from the path bitmap via the useful path bitmap,
which records the bitmap of branch seeds under path coverage.
This strategy can retain the sensitivity of the path coverage.

By employing the double-layer coverage mechanism, Stalker
can execute test cases rapidly under the path coverage while pre-
venting seed explosion by filtering out excessive path seeds and
selecting only the branch seeds based on the branch coverage (Cri-
teria (1)). This approach ensures efficient execution and effective
seed selection, improving the overall performance of Stalker.

3.3 Rebuilding Coverage by Arm ETM

B2
b A1

B1 B2

B1
b.ne A3

B3
ret

B2
b A1

B1
b.ne A3

B1
b.ne A3

B4
…

B2B1 B3 B4B1

N E N E E

E NN A1

N A1B1 Atom element Address elementBasic blockNot taken Direct branch Indirect branch

AFL

ETM: default mode

ETM: branch broadcasting

Basic Block

E1 E2 E1 E2 E3 E4

E A1 E A3 E A4

E A4

Figure 4: The runtime information tracing of AFL and ETM.

To design efficient and stabilized coverage, we begin by examin-
ing the control flow captured by AFL and ETM. Fig. 4 lists four basic
blocks (B1-B4). The test case executes a path that covers seven basic

blocks, including a loop. AFL captures all the blocks and calculates
the hash values for six edges (E1, E2, E1, E2, E3, E4). In contrast, ETM
generates an element sequence as (𝑁, 𝐸, 𝑁 , 𝐸, 𝐸, 𝐸,𝐴4) by default
and (𝑁, 𝐸,𝐴1, 𝑁 , 𝐸,𝐴1, 𝐸, 𝐴3, 𝐸, 𝐴4) under the BB mode. However,
neither sequence contains all basic block addresses. Though we
can recover these addresses by disassembling the code, this yields
unacceptable overhead [14, 31].

Notice that the basic blocks are separated by branch instructions,
while ETM generates an Atom element for each branch, regardless
of whether it is taken or not. An Atom element 𝑁 indicates the pro-
gram executing consecutive basic blocks without taking a branch.
We divide the element sequence into several slices by the Address
elements and utilize the Atom elements within each slice to denote
the edges. While the BB mode of ETM records direct branches, it
also incurs additional decoding costs compared to the default mode.
Considering this, we design two coverage strategies with different
sensitivities and overheads for the two modes.

Moderate branch coverage. ETM records the destinations of all
branch instructions under the BB mode. This results in an element
sequence of the form (..., 𝐸, 𝐴𝑋, 𝑁, ..., 𝑁 , 𝐸,𝐴𝑌). Within the slice
between two Address elements, the program executes𝑀 consecu-
tive basic blocks, where the number of Atom element 𝑁 is (𝑀 − 1).
We can utilize the count of 𝑁 elements to represent the number of
edges. Notably, slices without any 𝑁 elements, such as (𝐴1, 𝐸, 𝐴3),
indicate that the program takes a branch from one block to another.

Inspired by this, we design a moderate branch coverage under
the BB mode. As shown in Algorithm 2, each slice is assigned a

Algorithm 2 Moderate Branch Coverage
1: trace bits = Malloc(MAP SIZE)
2: prev slice = 0
3: N elements nums = 0
4: repeat

5: if packet.type == Atom then

6: atom sequence = Decode(packet)
7: N elements nums += Count(atom sequence)
8: end if

9: if packet.type == Address then
10: addr = Decode(packet)
11: if Filter(addr) then
12: if N elements nums > MAX NUM then

13: N elements nums = MAX NUM
14: end if

15: cur slice = addr + N elements nums
16: index = cur slice ⊕ prev slice
17: trace bits[index] += 1
18: prev slice = cur slice ≫ 1
19: N elements nums = 0
20: end if

21: end if

22: until decoder exit

hash value calculated as the sum of the destination address and the
count of the 𝑁 elements present in the slice. To ensure coverage is
limited to the assigned address range (specifically, the text sections
of the binary), we filter out addresses that fall outside of this range.
Furthermore, the presence of loops is captured by ETM in the
BB mode through repeated slices, as exemplified by (𝐴1, 𝑁 , 𝐸,𝐴1),
with a counter indicating the repetition. As a result, this coverage
is not highly sensitive to loops. However, it should be noted that
recording all branches in this mode increases the decoding overhead.
Therefore, we propose a lightweight coverage in the default mode.

RAID 2024, September 30–October 02, 2024, Padua, Italy Yue et al.

Lightweight path coverage. Under the default mode, the Atom
sequencewithin a slicemay includemultiple𝐸 elements. To uniquely
identify each slice, we utilize a hash function to calculate the hash
value of the Atom sequence.

We propose a lightweight path coverage in the default mode
of ETM (Algorithm 3). Specifically, we utilize one bit to represent
an Atom element (𝑁 is 0 and 𝐸 is 1) and denote this slice as the
sum of an Address element and the hash value calculated from the
Atom sequence. This coverage strategy operates at a path granular-
ity, making it more sensitive than branch coverage, as even slight
differences in Atom sequences result in distinct hash values. Fortu-
nately, the overhead associated with reconstructing this coverage
is relatively light compared to the top-layer branch coverage.

Algorithm 3 Lightweight Path Coverage
1: trace bits = Malloc(MAP SIZE)
2: prev slice = 0
3: hash value = 0
4: repeat

5: if packet.type == Atom then

6: atom sequence = Decode(packet)
7: hash value = Hash(atom sequence, hash value)
8: end if

9: if packet.type == Address then
10: addr = Decode(packet)
11: if Filter(addr) then
12: cur slice = addr + hash value
13: index = cur slice ⊕ prev slice
14: trace bits[index] += 1
15: prev slice = cur slice ≫ 1
16: hash value = 0
17: end if

18: end if

19: until decoder exit

Branchless design. PTrix implemented a similar path cover-
age [14]. However, it executes a significant amount of conditional
code, as the hash function is called for every 64 TNT bits or for every
TIP packet. In our testing, we found that the numerous conditional
branches introduce considerable overhead. In contrast to PTrix [14],
our path coverage implements a branchless design that performs
the hash operations after decoding each Atom packet. This design
can significantly reduce the number of conditional branches and
accelerate coverage rebuilding.

Filtering noisy packets. To ensure the stability of Stalker,
we apply a filtering process to the Address elements. This step is
necessary because certain noisy packets from ETM can introduce
unrelated addresses among the tracing packets [31]. For example,
an exception brings two Address packets of the entry and exit
points, which may not be the branch destinations. Without filtering
noisy packets, the same test case could produce different element
sequences with each execution and be regarded as different seeds,
referred to as instability in AFL [1]. In our testing, Stalker remains

stable in rebuilding coverage under 100K repeated executions.
Disable formatter. As mentioned in Section 2.2, the L1 encod-

ing of the ETR formatter can introduce additional decoding costs.
Since we bind on a specific core to perform fuzzing, identifying the
ID of ETM is unnecessary. To mitigate this redundant overhead,
we disable the formatter. Evaluation in Section 5.1 shows that it

accelerates Stalker for 1.4×.

3.4 Adaptive CPU Frequency Modulation

Mechanism

The ETF buffer can potentially overflow due to the high bandwidth
of trace packets generated by ETM. This bandwidth is determined by
factors, including the executed instructions, the ETM configuration,
and the program’s execution speed.

To address this issue, we configure ETM to trace specific pro-
cesses and limit the range of addresses in the text section to exclude
unrelated instructions. Additionally, we set up ETM to focus on the
program flow elements without other unrelated elements like times-
tamps. This configuration meets the requirements for rebuilding
coverage and reduces the number of trace packets, minimizing the
overhead of decoding data and slowing down the ETM bandwidth.

Furthermore, decreasing the ETM bandwidth can be achieved
by reducing the CPU frequency to slow down program execution.
While it is feasible to run programs at a minimal frequency to
avoid overflow, this approach may hinder fuzzing speed. It is worth
noting that some programs and test cases may not cause trace
buffer overflow even undermaximum frequency. Hence, we propose
an adaptive CPU frequency modulation mechanism (ACFMM) to
maintain a high CPU frequency and alleviate the overflow.

Our mechanism operates as follows: during testing, if there is
frequent buffer overflow over time, the CPU frequency is reduced
to prevent overflow. Conversely, when no overflow occurs for an
extended period, the frequency is increased to accelerate execution.
We adjust the frequency using the kernel driver interface, which
introduces minimal overhead (about 64us-160us in Juno R2).

Algorithm 4 ACFMM
1: repeat

2: testcase = Mutation(seed)
3: overflow flag = RunTarget(COV, testcase)
4: if COV == PATH COV then

5: path execs += 1
6: end if

7: if overflow flag == TRUE then

8: if COV == PATH COV then

9: overflow nums path += 1
10: end if

11: no overflow num = 0
12: Decrease(cur cpu freq mode)
13: else

14: no overflow num += 1
15: if no overflow num == INTERVAL then

16: Increase(cur cpu freq cov)
17: no overflow num = 0
18: end if

19: end if

20: INTERVAL = (path execs / overflow nums path) / 5
21: Limit(INTERVAL)
22: until fuzzer exit

Algorithm 4 outlines the mechanism. It begins by checking the
overflow flag during each execution. If an overflow occurs, the
CPU frequency (denoted as cur cpu freq cov) is decreased, and the
no overflow num is reset to 0. Once the no overflow num reaches a
predefined threshold value, the frequency is increased to enhance ef-
ficiency. In the default mode, the amount of trace data generated by
ETM is greater compared to the BB mode. Consequently, the thresh-
old for triggering overflow in the default mode is higher than that
in the BB mode. To control the CPU frequency in these two modes
and coverages, we use cur cpu freq path and cur cpu freq branch,

Efficiently Rebuilding Coverage in Hardware-Assisted Greybox Fuzzing RAID 2024, September 30–October 02, 2024, Padua, Italy

Fuzzer

Kernel

Hardware ETM
CPU

Reserved
MemoryDrivers

Fork
Server

Binary

Seed
Queue

Initialization

Path Seed Path
Bitmap

Branch
Bitmap

Branch
Trace_bits

Path
Trace_bits

Decoder

Modulator

Branch
Seed

① Signal

② Enable ETM and

execute the binary

⑤ Enable ETM with branch broadcasting

and re-execute the binary

⑧ Add to the seed queue

③⑥ Decode trace data

⑦ Compare

④ Compare

No

No

⑨ Modulate CPU frequency

Yes

Yes

Purge

Trace

Trace buffer overflow
Memory

Map

Fuzzing
Loop

Default Mode
Branch Broadcasting Mode

ETR
Formatter

ETF
Buffer

Disable formatter

Figure 5: The architecture and workflow of Stalker.

respectively (uniformly shown as cur cpu freq cov in Algorithm 4).
Moreover, the threshold value INTERVAL influences the frequency of
increasing the CPU frequency. A longer INTERVAL leads to a slower
increase in CPU frequency, while a shorter INTERVAL maintains a
high CPU frequency, potentially resulting in frequent overflows.
To address this, we use the overflow rate to adaptively adjust the
INTERVAL and limit its upper and lower bounds.

Overall, by balancing the efficiency and stability, the ACFMM is
flexible in adjusting the CPU frequency tomaintain high throughput
and avoid overflow, which satisfies the Criteria (2).

4 DESIGN AND IMPLEMENTATION

4.1 Overview

We built Stalker on AFL [54]. As shown in Fig. 5, Stalker fol-
lows the framework of AFL, including the fuzzing engine, mu-
tation strategies, and scheduling algorithms, but incorporates the
coverage-feedbackmechanism through CoreSight. In the user space,
we employ the double-layer coverage mechanism to reconstruct cov-
erage and select branch seeds (Section 3.2). To avoid trace buffer
overflow, we take the adaptive CPU frequency modulation mech-

anism (Section 3.4). Moreover, we implement a decoder based on
ptm2human [26] to decode the trace data. In the kernel space, the
registers of CoreSight are mapped to the user space through the dri-
ver. This enables convenient control of ETM and ETR for Stalker.

Workflow. From Fig. 5, Stalker begins by configuring ETM
and setting up the fork server. Then it selects a seed from the seed
queue and enters the fuzzing loop. Before executing each test case,
Stalker notifies the fork server to fork a child process and retrieves
the process ID (1○). After enabling ETM to trace this process un-
der the default mode, Stalker notifies this process to execute the
program (2○). Once the execution is completed, Stalker disables
ETM and reads and decodes the trace data from memory (3○). Then,
Stalker rebuilds the coverage using the lightweight path cover-

age in bottom layer and compares the path bitmap (4○). If a test
case is regarded as a path seed, Stalker will enable the BB mode
of ETM, re-execute the case, and examine it using the top-layer
moderate branch coverage (5○ 6○ 7○). Only the branch seed is added
to the seed queue (8○). Stalker also examines the overflow and
adaptively modulates the CPU frequency by ACFMM(9○).

4.2 Technical Details

Fork server. Efficient fuzzers employ a fork server to ensure the
fuzzed program only goes through execve(), linking, and library
initialization only once [53], which can avoid those overhead signif-
icantly. Similar to PTrix and Armored-CoreSight [2, 14], we patch
this mechanism in the tested binary by patchelf [17].

CoreSight driver. For faster retrieval of trace data, we reserve
a 256MB physical memory region during the kernel initialization
and force ETR to copy the trace data from the buffer to this region.
Stalker can then swiftly fetches trace data through sharedmemory
mapped from this reserved space. To disable the formatter, we set
the EnFt and EnTI bits of the formatter control register to 0.

Decoder. The decoder of Stalker is developed based on a open-
source tool, namely ptm2human [26]. To improve its efficiency, we
employ a hash table for rapid identification of trace packets, and
skip the decoding of unrelated packets. Specifically, according to the
ETM technical manual [7], the first byte of a trace packet determines
its category. We utilize a table to establish the mapping relationship
between them. Since only Atom, Address, and Exception packets
contain the Address andAtom elements, we focus on decoding these
three packet types while excluding other unrelated packets. Atom
packets have a size of one byte and may contain multiple Atom
elements, so we create a table to map bytes to Atom sequences.

Finally, we implement Stalker on the Arm Juno R2 development
board (an official platform released by Arm) [6]. Our modifications
to AFL, ptm2human, and Linux kernel (including CoreSight driver)
consist of approximately 1, 220, 871, and 41 LoCs, respectively.

5 EVALUATION

We conducted systematic experiments to evaluate the effectiveness
and efficiency of Stalker in addressing the following questions:

Q1: How about the efficiency of rebuilding coverage by Stalker
compared with other hardware-assisted tools?

Q2: What is the overall performance of Stalker in terms of
throughput and coverage compared to other tools?

Q3: Does the double-layer coverage mechanism enhance the
efficiency of Stalker while avoiding seed explosion?

Q4: How about the effects brought by trace buffer overflow?
Does the ACFMM effectively avoid overflow?

RAID 2024, September 30–October 02, 2024, Padua, Italy Yue et al.

Q5: Do the other strategies in Stalker enhance the efficiency
and stability of Stalker?

We evaluated Stalker on Arm Juno R2 development board run-
ning Linux-5.3 (8GB RAM) with a Cortex-A72 processor cluster
(0.6GHz-1.2GHz, 2MB L2 cache) and a Cortex-A53 cluster (0.45GHz-
0.95GHz, 1MB L2 cache) [6]. To compare Stalker with PT-based
tools, we utilize a Centos server with 48 cores (Intel Xeon E5-2650
with 2.20GHz) and 64GB RAM.

5.1 Efficiency of Rebuilding Coverage

Compared tool.We verify the efficiency of existing methods in re-
building coverage reported in Fig. 3. We evaluated the two types of
coverage in Stalker, namely Stalker-Branch and Stalker-Path,
and compared them with AFL-QEMU [54], AFL-QEMU++ [20],
Armored-CoreSight (Edge and Path) [2], 𝜇AFL [31], PTrix [14], and
libxdc [39]. AFL-QEMU is a popular binary-only fuzzer. Some re-
searchers have improved its performance and integrated it into
AFL++4 [10, 20]. We applied this update to AFL (AFL-QEMU++).
Armored-CoreSight and 𝜇AFL are SOTA Arm-based hardware-
assisted tools. To ensure a fair comparison, we adapted the rebuilding-
coverage component of Armored-CoreSight (CoreSight-decoder [3]),
which uses edge and path coverage, to work with Stalker on our
platform. For 𝜇AFL, which is based on ETM-v3.5 and focuses on
testing drivers, we emulated it by enabling only moderate branch
coverage and the formatter in Stalker as it takes the similar way
as our branch coverage to rebuild coverage, denoted as Stalker-
Branch-Fmt. Since neither Armored-CoreSight nor 𝜇AFL explicitly
propose to turn off the formatter, we enable it while running them.
We also explore the overhead brought by formatter via comparing
Stalker with Stalker-Fmt (i.e., Stalker with the formatter).

Since PTrix and libxdc cannot be directly deployed on Arm Juno
R2 [14, 39], we followed the experiments conducted in libxdc [39]
and ported the lightweight path coverage of Stalker in libxdc5 to
compare the decoding time on the Centos server.

Tested programs. We conducted experiments on 10 real-world
binaries selected by following the recent binary-only fuzzingworks [14,
15, 37], listed in Table 1. They were selected according to the fol-
lowing considerations: 1) High level of diversity to evaluate the
applicability of Stalker; 2) Numerous branches to distinguish the
performance of fuzzers; 3) Running in a real environment where
ETM can directly trace them. Moreover, we use the same binaries
patched with the fork server for the Arm-based tools to conduct
fair experiments. For the PT-based tools, we follow the benchmark
from libxdc [39], which includes 8 programs.

Setup. Referring to the evaluation in PTrix [14], we fuzzed the
10 binaries by AFL-QEMU++ for 24 hours, collected the discovered
seeds as the input corpus, and reran them to measure the execution
speed. The execution time for each test case was defined as the
time taken to execute the test case and rebuild coverage. We ran
all tools except PT-based on tools under the maximal frequency of
one Cortex-A53 core, repeated this experiment 5 times, and filtered
out the overflow cases for a fair comparison6.

4AFL++ also has an immature Frida mode, but it fails in our platform.
5Since Intel PT does not support the BB mode in ETM to capture the addresses of
direct branches, we only port the path coverage in Stalker to libxdc.
6Considering the code caches in Armored-Edge when running the first test case, we
also filter out the first case to ensure fairness in evaluation.

Table 1: Target binaries evaluated in our evaluation.

Program Version Size Format

objdump –dwarf-check -C -g -f -dwarf -x @@ binutils-v2.37 11MB elf
readelf -a @@ binutils-v2.37 4MB elf
nm-new -C @@ binutils-v2.37 5.8MB elf

bsdtar -xf @@ /dev/null libarchive-3.5.2 3.4MB tar
nasm -f elf -o sample @@ nasm-2.15.05 3.0MB text

bison @@ bison-3.8 2.6MB text
tiff2bw @@ /dev/null tiff-4.3.0 1.5MB tiff

tiffinfo @@ tiff-4.3.0 1.6MB tiff
xmllint @@ libxml2-2.9.10 100KB xml
tic @@ ncurses-6.3 260KB text

For PTrix and libxdc, to explore their efficiencies in different sizes
of trace data, we varied the sizes from 512KB to 2GB, conducted
the experiments on our Centos server, and repeated each trial 5
times. Considering the cold caches in libxdc when running a single
input, we iteratively ran libxdc 26 rounds. We recorded the first
running time as libxdc-cold and calculated the average time of the
remaining 25 rounds as libxdc-hot.

Compared with Arm-based and DBI-based tools. We calcu-
lated the average execution time of these tools and normalized the
result using AFL-QEMU as the baseline, presented in Fig. 6. From
Fig. 6, we can conclude that:

1)Disabling the formatter has a significant positive impact

on the efficiency of rebuilding coverage. By disabling the for-
matter, the execution time of Stalker-Branch and Stalker-Path
decreases by approximately 1.4× compared to when the formatter
is enabled. 2) Stalker is faster than Armored-CoreSight in

rebuilding coverage with the same granularity. Stalker-Path
and Stalker-Path-Fmt are 1.74× and 1.25× faster than Armored-
Path, respectively. These improvements are attributable to disabling
the formatter mechanism and micro-optimizations in our decoder
(e.g., branchless design), bringing 1.39× and 1.25× acceleration,
respectively. Stalker-Branch and Stalker-Branch-Fmt also out-
perform Armored-Edge by 2.81× and 2.04×, respectively. 3) Re-
building branch coverage by BBmode is faster than disassem-

bling code. Evenwith enabling the formatter, Stalker-Branch-Fmt
remains 2.04× faster than Armored-Edge. This highlights the ad-
vantage of Stalker-Branch in rebuilding branch coverage directly
from the trace data generated by ETM under BB mode, compared
to Armored-Edge’s reliance on heavy code disassembling. 4) Re-
building coverage directly from trace data without enabling

BB mode or disassembling code is the fastest way. Though
Stalker-Path and Stalker-Branch rebuild coverage directly from
the trace data, the former is 1.7× faster than the latter. The reason
is that Stalker-Branch needs to decode more trace data in rebuild-
ing coverage. 5) Stalker is significantly faster than QEMU-

based fuzzers on our platform. Stalker-Path is 10.5× and 2.09×
faster than AFL-QEMU and AFL-QEMU++, respectively. Similarly,
Stalker-Branch outperforms AFL-QEMU and AFL-QEMU++ by
6.14× and 1.22×, respectively.

Compared with PTrix and libxdc.We report the average re-
sults in Fig. 7(c) and some detailed results in Fig. 7(a)(b). From Fig.
7(c), Stalker-Path is 1.63× and 2.2× faster than libxdc-hot and
PTrix with the shortest decoding time, respectively. This supports
our analysis in Section 3.1. Libxdc-cold performs worse than PTrix
on small files (less than 8MB) but better than PTrix on large files

Efficiently Rebuilding Coverage in Hardware-Assisted Greybox Fuzzing RAID 2024, September 30–October 02, 2024, Padua, Italy

Figure 6: Normalized execution time of all tools with AFL-QEMU as the baseline (lower is better). The grey and remaining bars denote the execution and decoding

part of hardware-assisted tools in executing test cases, respectively.

(more than 8MB). This is because the cache mechanism in libxdc
provides less improvement when decoding fewer trace data. How-
ever, even after iterative running, libxdc-hot is still 1.63× slower
than Stalker-Path on all sizes of trace data.

Figure 7: Decoding time of PTrix, libxdc-cold, libxdc-hot, and Stalker-Path

on different trace file sizes (lower is better).

Notably, even building the path coverage without disassembling
code, Stalker-Path is about 2.2× faster than PTrix. This is due to
our micro-optimizations, particularly the branchless design.

Response to Q1: By rebuilding coverage directly from the trace
data and disabling formatter, Stalker rebuilds the same granular-
ity coverage more efficiently, 2.81×, 1.74×, and 1.4× faster than
Armored-Edge, Armored-Path, and 𝜇AFL, respectively. Stalker
also outperforms PTrix and libxdc by 2.2× and 1.63×, respectively.

5.2 Performance of Stalker

Metric. Since we test these binaries in a development board with
limited computation resources, it is difficult to detect crashes. We
refrain from using the number of crashes as a metric, aligning with
the evaluation in SNAP [16]. Instead, we evaluate all the tools with
the throughput, path coverage, and branch coverage. To calculate
the coverage in the unified metrics, we have retained all the seeds
discovered by these tools and re-executed them using AFL-QEMU.

Setup. Referring to [13, 30, 52], we fuzzed each program in Table
1 for 5 rounds of 24 hours on a single Cortex-A53 core to reduce
the impact of randomness, with the initial seed provided by AFL.
Considering the relatively lower performance of our board com-
pared to servers and the effectiveness of AFL’s random strategies in
achieving broader coverage in a shorter time [50, 52], we disabled
deterministic mutations while running all the tools to reach the
coverage saturation point in 24 hours as soon as possible. In addi-
tion, we ran AFL-QEMU and AFL-QEMU++ at the maximal CPU
frequency and ran Arm-based tools with ACFMM.

Results. We report the detailed results in Table 2. Stalker con-
ducts an average of 16.38𝑀 test cases, which is 4.75×, 2.12×, 2.58×,
1.30×, and 1.45× more than AFL-QEMU, AFL-QEMU++, Armored-
Edge, Armored-Path, and Stalker-Branch-Fmt, respectively. Bene-
fiting from the high throughput, Stalker explores the greatest num-
ber of paths (4, 191) and branches (6, 527) across the 10 programs.
Even utilizing the same branch coverage to filter seeds, Stalker
outperforms Stalker-Branch-Fmt due to its higher speed, which is
achieved by disabling formatter and incorporating a double-layer
coverage mechanism. Although Armored-Path executes numerous
test cases, it achieves the least coverage in terms of 990 paths and
3, 929 branches. This can be attributed to seed explosion caused
by its sensitive path coverage, which traps Armored-Path in ex-
ploring localized code regions. Armored-Edge performs worse than
Stalker due to its heavy overhead in rebuilding coverage.

We also depicts the throughput and branch coverage graphs of
Stalker and five other tools on 10 programs over 24 hours in Fig. 8.
From the bar charts, the blue bar, which denotes Stalker, is higher
than others on most programs. Only on nasm, xmllint, and tic, the
throughput of Stalker is less than that of Armored-Path. After
analyzing the results, the reason is that Armored-Path is trapped by
seed explosion and generates numerous test cases, which leads to
that Armored-Path is unable to trigger the logical codes as deeply
as Stalker and executes more lightweight test cases than Stalker.

RAID 2024, September 30–October 02, 2024, Padua, Italy Yue et al.

Table 2: Average throughput, path coverage, and branch coverage of six tools. T: throughput. P: path coverage. B: branch coverage.

AFL-QEMU AFL-QEMU++ Armored-Edge Armored-Path Stalker-Branch-Fmt Stalker
Programs T P B T P B T P B T P B T P B T P B
objdump 3.69M 5,483 12,303 7.05M 8,418 12,875 7.99M 5,277 12,502 18.0M 2,199 9,027 17.01M 7,627 14,415 21.6M 9,240 14,038
readelf 4.89M 5,222 7,426 9.27M 6,106 7,561 16.64M 6,358 8,598 17.28M 1,715 5,711 22.46M 6,639 8,910 31.32M 7,271 9,380

nm-new 4.28M 1,065 3,198 10.52M 2,295 4,395 4.95M 1,058 3,249 19.79M 591 2,798 14.86M 2,478 4,765 20.09M 5,043 6,218

bsdtar 3.55M 1,627 4,373 8.78M 2,233 5,013 6.95M 1,701 4,752 11.75M 193 2,738 8.62M 1,879 4,812 15.22M 2,084 4,999
nasm 0.56M 3,679 5,193 1.75M 5,291 5,368 0.93M 1,706 4,533 3.83M 1,279 3,925 1.33M 4,477 5,429 2.2M 5,423 5,492

bison 1.44M 1,465 5,730 1.92M 2,235 6,995 0.77M 805 2,848 3.74M 814 2,785 2.46M 2,197 7,004 5.71M 2,286 7,071

tiff2bw 5.7M 1,459 3,533 15.37M 1,939 4,233 6.1M 1,377 3,419 11.24M 547 2,665 18.28M 1,717 4,593 24.69M 2,055 4,820

tiffinfo 4.69M 2,072 3,936 12.13M 2,654 4,174 7.26M 2,152 4,171 11.56M 626 3,083 13.34M 2,295 4,223 20.17M 2,466 4,289

xmllint 2.95M 2,554 5,493 5.58M 2,972 5,776 5.6M 2,598 5,745 14.84M 1,192 4,898 7.81M 3,021 5,883 12.31M 3,063 5,876
tic 2.72M 2,303 2,699 5.03M 2,715 2,959 6.35M 2,163 2,878 13.84M 753 1,660 6.96M 2,843 3,016 11.16M 2,979 3,088

Avg. 3.45M 2,692 5,388 7.74M 3,685 5,934 6.35M 2,519 5,269 12.59M 990 3,929 11.31M 3,517 6,305 16.45M 4,191 6,527

%-Chg +376.8% +55.7% +21.1% +112.5% +13.7% +10.0% +159.1% +66.4% +23.9% +30.7% +323.3% +66.1% +45.4% +19.2% +3.5% - - -

Figure 8: Throughput and branch coverage of six tools over 24 hours. Bar: mean of throughput. Solid lines: mean of the coverage. Line shadows: 95% confidence

intervals for 5 fuzzing rounds.

As a result, Armored-Path covers the least coverage among these
tools. In the term of branch coverage, as can be seen from the line
charts, the blue line is higher than other lines on almost all programs
except objdump, indicating that Stalker covers the most branches
among the six tools and reaches the upper coverage significantly
faster than the others on most binaries.

Response toQ2: Stalker surpasses AFL-QEMU, AFL-QEMU++,
Armored-Edge, Armored-Path, and 𝜇AFL with higher throughput
and covering 55.7%, 13.7%, 66.4%, 323.3%, and 19.2% more paths
and 21.1%, 10.0%, 23.9%, 66.1%, and 3.5% branches, respectively.

5.3 Double-Layer Coverage Mechanism

To better understand the sensitivities of the coverage metrics and
evaluate the efficiency and effectiveness of the double-layer cover-
age, we collected the seeds in the queue found by hardware-assisted
tools in Section 5.2, and filtered them by AFL-QEMU. Then we
counted the number of seeds before and after the filtering as 𝑁𝑞

and 𝑁𝑓 , respectively, and defined the sensitive ratio as 𝑁𝑞/𝑁𝑓

to evaluate the coverage sensitivity. Particularly for Stalker, we

count the number of path seeds and calculate the ratio between the
path seeds and branch seeds. Table 3 lists the detailed results. Addi-
tionally, we count the number of test cases executed by Stalker
with path coverage and branch coverage, respectively. By analyzing
these results, we can conclude that:

1)Double-layer coverage cankeep Stalker executingmost

of test cases under lightweight path coverage. In detail, Stalker
averagely executes 16.45𝑀 test cases in each trail, with 2.18𝑀 test
cases by the moderate branch coverage and 14.27𝑀 cases by the
path coverage, respectively. Moreover, as per our design, each path
seed found by Stalker is re-executed under the moderate branch
coverage, which constitutes the primary overhead of our double-
layer mechanism. From Table 3 and Table 2, Stalker selects an
average of 1.62𝑀 path seeds from 16.45𝑀 test cases, implying that
only 9.8% of the test cases are repeatedly executed under the heavy
branch coverage. In conclusion, double-layer coverage introduces
light overhead and improves the speed of Stalker as executing
86.7% test cases with lightweight coverage. 2) Double-layer cov-
erage can avoid the seed explosion. Using this mechanism,

Efficiently Rebuilding Coverage in Hardware-Assisted Greybox Fuzzing RAID 2024, September 30–October 02, 2024, Padua, Italy

Table 3: Numbers of selected and filtered seeds of the hardware-assisted tools,

respectively. The right column denotes the number of seeds filtered by AFL

in the branch-count coverage. The two left columns in Stalker, and one in

others represent the number of seeds selected by them.

Binary
Armored-

Edge

Armored-

Path

Stalker-

Branch-

Fmt

Stalker (Path

Seed/Branch Seed)

objdump 8,820/5,277 51.55K/2,199 9,850/7,627 0.42M/10.63K/8,476
readelf 9,271/6,358 67.05K/1,715 9,335/6,639 1.54M/10.4K/7,345
nm-new 3,202/1,058 56.24K/591 3,781/2,478 0.35M/7,576/4,850
bsdtar 5,750/1,701 64.91K/193 3,034/1,879 4.75M/3,225/2,043
nasm 4,156/1,706 83.29K/1,279 7,324/4,477 0.48M/8,164/4,889
bison 3,367/805 66.16K/814 3,388/2,197 1.11M/3,627/2,282
tiff2bw 2,924/1,377 60.17K/547 2,371/1,717 2.12M/2,566/1,842
tiffinfo 4,135/2,152 59.86K/626 3,353/2,295 1.93M/3,513/2,422
xmllint 6,641/2,598 0.2M/1,192 5,221/3,021 2.18M/5,509/3,115
tic 5,164/2,163 0.26M/753 5,330/2,843 1.28M/6,032/3,118
Avg. 5,343/2,519 97.37K/990 5,298/3,517 1.62M/6,124/4,038

𝑁𝑞/𝑁𝑓 212% 9835% 151% 26392%/152%

Stalker filters 6, 124 branch seeds from the 1.62𝑀 path seeds and
adds them into the queue, effectively avoiding the seed explosion.
3) The sensitivity of our branch coverage is comparable to

that of the branch-count coverage. These 6, 124 branch seeds are
regarded as 4, 038 unique seeds under the branch-count coverage
of AFL, with a sensitive ratio of only 152%. In comparison, while
Armored-Edge employs the same branch-count coverage as AFL, its
sensitive ratio (212%) exceeds that of AFL and Stalker due to insta-
bility within its rebuilding-coverage algorithm. To verify this, we
collect the original seeds found by Armored-Edge and rerun them
by Armored-Edge to filter them once again. Armored-Edge aver-
agely selects 2, 811 seeds from 5, 343 original seeds, approximately
to that of AFL-QEMU (2, 519). This evidence supports the existence
of seed explosion introduced by the instability of Armored-Edge.

Response to Q3: Our double-layer coverage mechanism en-
ables Stalker to execute most of test cases under the lightweight
path coverage and select seeds in a branch-granularity coverage,
effectively avoiding the seed explosion.

5.4 Effectiveness of ACFMM

In this section, we outline some experiments to explore the negative
effects of trace buffer overflow in fuzzing and prove the effectiveness
of ACFMM.

Negative effects of overflow. As stated in Section 3.4, the trace
buffer overflow may impair the deterministic mutation strategies of
AFL, such as introducing some unnecessary mutations. Therefore,
we disabled the ACFMM and ran Stalker under several config-
urations of CPU cores (e.g., Cortex-A53-0.45GHz) to test tiff2bw
with one initial seed for one cycle of all deterministic strategies (i.e.,
from bitflip to auto extras). We reported the results in Table 4.

From Table 4, the execution speed of Stalker on Cortex-A72 is
faster than that on Cortex-A53 due to the higher CPU frequency
and larger L2 cache. Hence, the overflows when Stalker runs
on Cortex-A53 are much less than those on Cortex-A72. Stalker
skips fewer mutations and executes more test cases on Cortex-A72.
Though it executes test cases faster on A72-0.6GHz than on A53-
0.95GHz and A53-0.8GHz, the time to finish the deterministic stage
of Stalker on A72-0.6GHz is 399𝑠 , longer than on A53-0.95GHz
and A53-0.8GHz. In conclusion, the buffer overflow introduces

inaccuracy in rebuilding coverage and impacts the efficiency of the
mutation strategies in AFL.

Table 4: Average testing time, execution speed, the number of executed test

cases and overflow test cases, and skipped mutations of Stalker under differ-

ent configurations in 5 trials.

Config Time(s) Speed(/s) Throughput Overflow Skipped

A53-0.45GHz 506 132.17 66,878 0 153,371
A53-0.8GHz 307 217.84 66,878 0 153,371
A53-0.95GHz 266 251.42 66,878 0 153,371
A72-0.6GHz 399 271.62 108,378 105,875 118,414
A72-1.0GHz 233 439.17 102,326 100,046 118,376
A72-1.2GHz 193 517.06 99,793 97,581 118,376

Effectiveness of ACFMM. To demonstrate the effectiveness of
our mechanism in improving throughput and avoiding overflow, we
tested nasm using the same configuration as described in Section 5.2
but on one Cortex-A72 core. As a control, we ran Stalker without
ACFMM at the minimal and maximal CPU frequency of Cortex-A72
(i.e., A72-0.6GHz and A72-1.2GHz, respectively).

Table 5: Average branches, number of branch and path seeds (B/P seeds),

throughput, and overflows of Stalker, Stalker-A72-0.6GHz, and Stalker-

A72-1.2GHz on nasm. Numbers in the brackets of Throughput: percentages of

the test cases executed under 0.6GHz, 1.0GHz, and 1.2GHz.

Config Branch B/P Seeds Throughput(0.6/1.0/1.2) Overflow

ACFMM 5,649 9,202/890K 3.93M(58%/22%/21%) 96,909(2.46%)
A72-0.6GHz 5,435 8,465/507K 2.23M(100%/-/-) 0.23M(10.34%)
A72-1.2GHz 5,188 22,073/1.17M 4.12M(-/-/100%) 1.68M(40.92%)

Table 5 lists the detailed results of five 24-hour trials. Stalker
achieves the highest coverage and reaches a high throughput with
the least overflows (2.46%). In contrast, Stalker-A72-1.2GHz exe-
cutes the most test cases but suffers 40.92% overflows, resulting in
the lowest coverage. Our ACFMM reduces the overflow percent-
age from 40.92% to 2.46%. Intuitively, Stalker-A72-1.2GHz should
reach the highest coverage. However, affected by the imprecise and
unstable coverage rebuilt under numerous overflows, it mistakenly
selects more seeds and adds 22, 073 branch seeds to the queue. This
leads to seed explosion. To prove this, we filtered these branch seeds
by Stalker-Branch under Cortex-A53-0.45GHz to avoid overflow.
Stalker-Branch only regards these 22, 073 seeds as 4, 676 seeds.

Since Stalker-A72-0.6GHz runs at the minimal frequency, it
is expected to encounter the least overflows. However, it is inter-
esting to note that overflows in Stalker-A72-0.6GHz are more
than those in Stalker with ACFMM. Upon further analysis of
the seeds, we have discovered that the branch seeds discovered
by Stalker-A72-0.6GHz are much heavier than those of Stalker.
By enabling the ACFMM, Stalker executes lightweight test cases
under a higher frequency than 0.6GHz. Consequently, the exe-
cution time of some cases under Stalker is shorter than under
Stalker-A72-0.6GHz. Since the scheduling algorithm in AFL pri-
oritizes faster seeds [54], Stalker allocates more energy to these
seeds and generates a greater number of lightweight test cases
compared to Stalker-A72-0.6GHz, which leads to fewer overflows.

We analyze the average execution speed and the number of
overflow and present the results in Fig. 9. From Fig. 9(a), the average
execution speed of Stalker-A72-0.6GHz slows significantly after 5
hours, which illustrates that Stalker-A72-0.6GHz generates lots

RAID 2024, September 30–October 02, 2024, Padua, Italy Yue et al.

0 5 10 15 20 25
Time (hour)

0

20

40

60

80

100

120

140

Av
er

ag
e

ex
ec

ut
io

n
sp

ee
d

(/s
)

(a) Execution speed

Stalker
Stalker-A72-0.6GHz
Stalker-A72-1.2GHz

0 5 10 15 20 25
Time (hour)

0.0

0.5

1.0

1.5

2.0

N
um

be
r o

f t
ra

ce
 b

uf
fe

r o
ve

rfl
ow

 (M
)

(b) Overflow

Stalker
Stalker-A72-0.6GHz
Stalker-A72-1.2GHz

Figure 9: Average execution speed and the number of overflow of Stalker

under different configurations on nasm. Solid lines: mean. Line shadows: 95%

confidence intervals.

of heavy test cases in the later stage. Therefore, as can be seen in
Fig. 9(a), its number of overflow is negligible in the early stage but
rapidly increases after 5 hours. In contrast, as can be seen in Fig. 9(b),
the number of the overflow of Stalker with ACFMM increases very
slowly. Moreover, Stalker maintains a high execution speed by
generating more lightweight test cases and running under a higher
CPU frequency than Stalker-A72-0.6GHz. Therefore, the overflow
rate of Stalker with ACFMM is lower than that of Stalker-A72-
0.6GHz.

Response to Q4: The overflows impact the precision and stabil-
ity of coverage, incurring seed explosion. Our ACFMM effectively
alleviates the overflows and improves the performance of Stalker.

5.5 Other Strategies

We also evaluated other strategies to prove their efficiency and
stability, including the purge strategy and filtering noisy packets.
Notably, for the fork server, since previous work [28] has proven
the high efficiency of this mechanism, we skip to evaluate it.

Filter mechanism in rebuilding coverage. We introduce one
critical point in decoding the trace data and rebuilding coverage:
filtering the noisy information. To illustrate the stability ensured
by it, we built Stalker-Branch-DF and Stalker-Path-DF with dis-
abling the filtering mechanism, ran them by one test case, and
repeated 100K times under Cortex-A53-0.45GHz. Then we recorded
the number of recognized paths, IRQ exceptions, and the execu-
tion speed (times/sec). Considering that xmllint and tic are stateful
programs, we skip testing them. From the results, Stalker-Branch
and Stalker-Path are stable in rebuilding coverage without mis-
takenly detecting any other paths. Without this mechanism, the
more exceptions, the more noisy paths are introduced.

Figure 10: Utilization rate of path bitmap and number of path seeds of Stalker

and Stalker w/o Purge on readelf.

Purge strategy. To prove the effectiveness of the purge strategy,
we disabled this strategy (Stalker w/o Purge) and compared it
against Stalker on readelf under the configurations in Section 5.2.
The branch coverage of Stalker w/o Purge is significantly less
than that of Stalker and remains stagnant after 3 hours, covering
an average of 7, 412 branches, significantly less than Stalker with
covering 9, 380 branches.

Since the coverage is calculated by re-executing the seeds, we
analyzed the number of path seeds of Stalker and Stalker w/o
Purge during a 24-hour trial in Fig. 10(a). The number of Stalker
w/o Purge increases slowly in the later stage and is less than that
of Stalker. As outlined in Section 3.2, to maintain the sensitivity
of the path bitmap, we purge it with the useful path bitmap.

Thus, we plot the utilization rate of these bitmaps (i.e., the per-
centage of non-zero bytes) in Fig. 10(b). Since Stalker w/o Purge
disables the purge strategy, the path bitmap is polluted by useless
path seeds, and its entries are almost occupied 100% after 4 hours.
In contrast, the utilization rate of the path bitmap in Stalker is
usually consistent with the useful path bitmap, making Stalker
always sensitive to discovering path seeds. In conclusion, the purge
strategy maintains the sensitivity of Stalker for discovering new
seeds and improves the coverage.

Response to Q5: The purge strategy and filtering noisy packets
can enhance the efficiency and stability of Stalker.

6 DISCUSSION

Rebuilding coverage in HGF. During our experiment, we ob-
served certain performance differences among the different meth-
ods in various scenarios. For instance, when dealing with light-
weight test cases, the overheads of Stalker andArmored-CoreSight
were quite similar. However, when faced with heavy cases, recon-
structing path coverage directly from trace data (e.g., Stalker-Path)
proved to be significantly faster compared to other methods, includ-
ing 𝜇AFL [31] and libxdc [39]. Nevertheless, the discrepancy in over-
heads between rebuilding path coverage and branch coverage forms
the foundation of our double-layer mechanism. If the overhead of
rebuilding path coverage is comparable to that of branch cover-
age, the fuzzer could directly focus on rebuilding branch coverage
without implementing the double-layer coverage mechanism for
efficient testing. However, since such cases are relatively rare, the
double-layer coverage mechanism remains highly applicable and
efficient. Furthermore, in comparing Stalker-Branch and Armored-
Edge, we recommend that developers prioritize hardware features
over code disassembling when aiming to rebuild branch coverage.

Generality. The implementation of CoreSight can vary across
different SoCs. For example, the version of ETM in 𝜇AFL[31] is v3.5,
which utilizes one bit in the P-header packet to denote whether
an instruction is executed or not. Consequently, directly deploy-
ing Stalker on other Arm platforms may not be straightforward.
Some methods of Stalker (e.g., disabling the formatter) may not
be adopted on the Intel platform, either. However, in this paper,
we focus on addressing the summarized challenges in HGF and
present Stalker as a template to showcase the design of a SOTA
hardware-assisted fuzzer. We believe that the design philosophy
of Stalker can be referred to by some other tools, including those
based on Intel PT, to solve common issues like low throughput, seed

Efficiently Rebuilding Coverage in Hardware-Assisted Greybox Fuzzing RAID 2024, September 30–October 02, 2024, Padua, Italy

Table 6: Results for different decoding methods. DF: disabling filter mechanism.

Stalker-Branch Stalker-Branch-DF Stalker-Path Stalker-Path-DF
Program Path IRQ Speed(/s) Path IRQ Speed(/s) Path IRQ Speed(/s) Path IRQ Speed(/s)
objdump 1 4,307 120 1,302 4,388 117 1 4,082 139 1,726 4,200 132
readelf 1 1,720 170 669 1,638 165 1 1,660 182 643 1,426 180
nm-new 1 3,015 128 986 3,103 125 1 3,350 150 1,467 3,275 144
bsdtar 1 5,191 102 1,260 4,874 101 1 4,564 129 1,748 4,428 123
nasm 1 82,900 8 2,490 83,172 9 1 84,048 18 8,582 83,079 18
bison 1 7,502 86 1,647 8,285 85 1 8,060 136 3,594 8,230 126
tiff2bw 1 4,588 101 891 4,567 102 1 3,744 128 1,812 4,529 124
tiffinfo 1 4,592 101 1,041 4,793 100 1 5,334 124 1,914 4,514 120

Average 1 14,226 102 1,285 14,352 100 1 14,355 125 2,685 14,210 120

explosion, or buffer overflow. For example, Armored-CoreSight [2]
can potentially enhance speed by disabling the formatter. Though
Intel PT is unable to record the direct branches, it may be feasible
for PTrix [14] to incorporate branch coverage of libxdc [39] and
implement a double-layer coverage mechanism to mitigate seed
explosion. This is based on Intel PT and requires additional work,
which is out of our scope.

Scalability. During our evaluation, limited by the poor com-
putation resource of the Arm Juno R2 development board, it was
difficult to evaluate some large binaries on our platform. Theoreti-
cally, the large binaries with extensive branches may significantly
pressure the coverage-feedback mechanisms of existing HGF tools,
including Stalker, causing heavy overhead in rebuilding the cover-
age. Fortunately, in this scenario, our approaches (e.g., double-layer
coverage mechanism, disabling the formatter) can still improve the
coverage-feedback mechanisms in existing HGF tools. For exam-
ple, disabling the formatter can accelerate rebuilding coverage in
Armored-CoreSight [2].

Parallelism. In this paper, we focus on enhancing HGF in single-
core fuzzing. Limited by the implementation of CoreSight on spe-
cific devices where the trace data generated by multiple ETMs is
integrated into only one ETF and ETR, both Stalker and Armored-
CoreSight may currently unsupport parallel fuzzing[2]. It does not
mean that the practicability of Stalker or the other Arm-platform
tools may be limited in the multi-cores platform. Customizing
CoreSight with multi-ETRs may provide the possibility to enhance
Stalker. It is also feasible to improve Stalker with the parallel
decoding architecture proposed in PTrix[14] for utilizing the multi-
cores computation resources, which requires additional design and
lots of engineering works and remains our future work.

7 RELATEDWORK

Dynamic binary instrumentation in fuzzing. Recent works
have improved the performance of DBI in AFL++ with an updated
QEMU mode and Frida mode [10, 20]. Nevertheless, our evaluation
shows that Stalker surpasses the updated QEMU mode in single-
core fuzzing. While DBI techniques support parallel fuzzing and can
leverage higher-performance platforms to utilize more computa-
tional resources, hardware tracing holds the advantage of extracting
control flow with strong ability. For example, recent works employ
ETM to directly trace the drivers even trusted applications on some
devices [31, 38, 44, 45, 49]. Consequently, for specific targets, utiliz-
ing hardware tracing can yield higher efficiency and convenience
compared to DBI techniques. Moreover, Jiang et al. [27] proposed
anti-emulation technique that utilized the inconsistent instructions

to mitigate QEMU-based fuzzing. However, hardware tracing is not
impeded by this technique.

Static binary rewriting. Several studies have applied static
binary rewriting to achieve compiler-level performance for binary-
only fuzzing [15, 19, 21, 37, 57]. However, many of these approaches
are either unsound or constrained by strict prerequisites of the tar-
get binaries [57]. e9patch [19] requires the absence of inline data in
the binary, while RetroWrite [15] relies on available relocation in-
formation. These restrictions greatly limit the practicality of binary
rewriting in fuzzing. Compared with binary rewriting, HGF may
be more practical on large-scale binaries without these restrictions.

Avoiding trace buffer overflow. To address the buffer over-
flow, HART [18] leverages the Performance Monitoring Unit (PMU)
to generate interrupts after executing certain instructions, ensuring
that the trace data size never exceeds the capacity of the trace buffer.
However, this technique takes a conservative way to raise the in-
terrupts frequently in a low threshold. Employing this method in
fuzzing will introduce heavy overhead and split the control flow
information into multiple slices, making reconstructing precise and
stable coverage challenging. In contrast, moderating the CPU fre-
quency may be a more practical and efficient approach for fuzzing.

8 CONCLUSION

In this paper, we reviewed existing tools in HGF and summarized
the challenges in rebuilding coverage by hardware tracing. We pre-
sented Stalker as an efficient hardware-assisted greybox fuzzing
technique, using Arm CoreSight as an illustrative example. We pro-
posed a novel coverage mechanism to achieve high-speed fuzzing
with a moderate branch coverage close to AFL and a frequency
modulation mechanism to alleviate trace buffer overflow. Optimiz-
ing the CoreSight driver and decoder, we built Stalker on the
Arm Juno R2 development board and conducted systematic evalua-
tions. The results show that our technique addresses the pointed
challenges and performs better than existing SOTA tools.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers and COMPASS
members for their insightful comments. This work was supported
in part by the National Natural Science Foundation China under
Grant 62372218, Grant 62272472, and Grant 62306328, and in part
by the Natural Science Foundation of Hunan Province of China
under Grant 2023RC3021.

REFERENCES

[1] 2018. Stability problem in PTFuzz. https://github.com/hunter-ht-2018/ptfuzzer/
issues/2.

https://github.com/hunter-ht-2018/ptfuzzer/issues/2
https://github.com/hunter-ht-2018/ptfuzzer/issues/2

RAID 2024, September 30–October 02, 2024, Padua, Italy Yue et al.

[2] Yuichi Sugiyama Akira Moroo. 2021. ARMored CoreSight: Towards Efficient
Binary-only Fuzzing. https://ricercasecurity.blogspot.com/2021/11/armored-
coresight-towards-efficient.html.

[3] Yuichi Sugiyama Akira Moroo. 2021. CoreSight-decoder. https://github.com/
RICSecLab/coresight-decoder.

[4] Arm. 2011. CoreSight Trace Memory Controller Technical Reference Manual.
https://developer.arm.com/documentation/ddi0461/b/?lang=en.

[5] Arm. 2016. ARM CoreSight SoC-400 Technical Reference Manual. https://
developer.arm.com/documentation/100536/latest/.

[6] Arm. 2016. Juno r2 Development Platform SoC. https://developer.arm.com/
documentation/100114/0200.

[7] Arm. 2021. Embedded Trace Macrocell Architecture Specification ETMv4.0 to
ETM4.6. https://developer.arm.com/documentation/ihi0064/latest/.

[8] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence..
In NDSS, Vol. 19. 1–15.

[9] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In USENIX

annual technical conference, FREENIX Track, Vol. 41. Califor-nia, USA, 10–5555.
[10] Andrea Biondo. 2018. Improving AFL’s QEMU mode performance. https://

abiondo.me/2018/09/21/improving-afl-qemu-mode/.
[11] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2017. Coverage-

based greybox fuzzing asmarkov chain. IEEE Transactions on Software Engineering
45, 5 (2017), 489–506.

[12] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui, Cen Zhang, Yuekang Li,
Haijun Wang, and Yang Liu. 2020. {MUZZ}: Thread-aware grey-box fuzzing
for effective bug hunting in multithreaded programs. In 29th USENIX Security

Symposium (USENIX Security 20). 2325–2342.
[13] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.

In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 711–725.
[14] Yaohui Chen, Dongliang Mu, Jun Xu, Zhichuang Sun, Wenbo Shen, Xinyu Xing,

Long Lu, and Bing Mao. 2019. Ptrix: Efficient hardware-assisted fuzzing for
cots binary. In Proceedings of the 2019 ACM Asia Conference on Computer and

Communications Security. 633–645.
[15] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.

Retrowrite: Statically instrumenting cots binaries for fuzzing and sanitization. In
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1497–1511.

[16] Ren Ding, Yonghae Kim, Fan Sang, Wen Xu, Gururaj Saileshwar, and Taesoo
Kim. 2021. Hardware Support to Improve Fuzzing Performance and Precision. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications

Security. 2214–2228.
[17] Eelco Dolstra. 2004. Patchelf. https://github.com/NixOS/patchelf .
[18] Yunlan Du, Zhenyu Ning, Jun Xu, ZhilongWang, Yueh-Hsun Lin, Fengwei Zhang,

Xinyu Xing, and Bing Mao. 2020. Hart: Hardware-assisted kernel module tracing
on arm. In European Symposium on Research in Computer Security. Springer,
316–337.

[19] Gregory J Duck, Xiang Gao, and Abhik Roychoudhury. 2020. Binary rewriting
without control flow recovery. In Proceedings of the 41st ACM SIGPLAN Conference

on Programming Language Design and Implementation. 151–163.
[20] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:

Combining incremental steps of fuzzing research. In 14th {USENIX} Workshop

on Offensive Technologies ({WOOT} 20).
[21] Antonio Flores-Montoya and Eric Schulte. 2020. Datalog disassembly. In 29th

USENIX Security Symposium (USENIX Security 20). 1075–1092.
[22] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, DongWu, and

Zuoning Chen. 2020. {GREYONE}: Data flow sensitive fuzzing. In 29th USENIX

Security Symposium (USENIX Security 20). 2577–2594.
[23] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and

Zuoning Chen. 2018. Collafl: Path sensitive fuzzing. In 2018 IEEE Symposium on

Security and Privacy (SP). IEEE, 679–696.
[24] Xinyang Ge, Ben Niu, Robert Brotzman, Yaohui Chen, HyungSeok Han, Patrice

Godefroid, and Weidong Cui. 2021. HyperFuzzer: An Efficient Hybrid Fuzzer for
Virtual CPUs. In Proceedings of the 2021 ACM SIGSAC Conference on Computer

and Communications Security. 366–378.
[25] Marc Heuse. 2018. AFL-Dyninst. https://github.com/vanhauser-thc/afl-dyninst.
[26] CC HWANG. [n. d.]. ptm2human. https://github.com/hwangcc23/ptm2human.
[27] Muhui Jiang, Tianyi Xu, Yajin Zhou, Yufeng Hu, Ming Zhong, Lei Wu, Xiapu Luo,

and Kui Ren. 2022. EXAMINER: automatically locating inconsistent instructions
between real devices and CPU emulators for ARM. In Proceedings of the 27th ACM

International Conference on Architectural Support for Programming Languages and

Operating Systems. 846–858.
[28] Jinho Jung, Stephen Tong, Hong Hu, Jungwon Lim, Yonghwi Jin, and Taesoo Kim.

2021. WINNIE : Fuzzing Windows Applications with Harness Synthesis and Fast
Cloning. Proceedings 2021 Network and Distributed System Security Symposium

(2021). https://api.semanticscholar.org/CorpusID:231854623
[29] Andi Kleen and Beeman Strong. 2015. Intel processor trace on linux. Tracing

Summit 2015 (2015).
[30] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.

Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security. 2123–2138.
[31] Wenqiang Li, Jiameng Shi, Fengjun Li, Jingqiang Lin, Wei Wang, and Le

Guan. 2022. 𝜇AFL: Non-intrusive Feedback-driven Fuzzing for Microcontroller
Firmware. arXiv preprint arXiv:2202.03013 (2022).

[32] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. 2018.
Fuzzing: State of the art. IEEE Transactions on Reliability 67, 3 (2018), 1199–1218.

[33] Jie Liang, Mingzhe Wang, Yuanliang Chen, Yu Jiang, and Renwei Zhang. 2018.
Fuzz testing in practice: Obstacles and solutions. In 2018 IEEE 25th International

Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
562–566.

[34] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. Acm
sigplan notices 40, 6 (2005), 190–200.

[35] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. {MOPT}: Optimized mutation scheduling for fuzzers. In
28th {USENIX} Security Symposium ({USENIX} Security 19). 1949–1966.

[36] Charlie Miller. 2008. Fuzz by number: More data about fuzzing than you ever
wanted to know. Proceedings of the CanSecWest (2008).

[37] Stefan Nagy, Anh Nguyen-Tuong, Jason D Hiser, Jack W Davidson, and Matthew
Hicks. 2021. Breaking through binaries: Compiler-quality instrumentation for
better binary-only fuzzing. In 30th USENIX Security Symposium (USENIX Security

21). 1683–1700.
[38] Zhenyu Ning and Fengwei Zhang. 2019. Understanding the security of arm

debugging features. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
602–619.

[39] nyx fuzz. 2023. libxdc. https://github.com/nyx-fuzz/libxdc.
[40] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,

and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing.. In
NDSS, Vol. 17. 1–14.

[41] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, SimonWörner, and Thorsten
Holz. 2021. Nyx: Greybox hypervisor fuzzing using fast snapshots and affine
types. In 30th USENIX Security Symposium (USENIX Security 21). 2597–2614.

[42] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. kafl: Hardware-assisted feedback fuzzing for {OS} kernels.
In 26th {USENIX} Security Symposium ({USENIX} Security 17). 167–182.

[43] Kostya Serebryany. 2017. {OSS-Fuzz}-Google’s continuous fuzzing service for
open source software. (2017).

[44] Haoqi Shan, MoyaoHuang, Yujia Liu, Sravani Nissankararao, Yier Jin, ShuoWang,
and Dean Sullivan. 2023. CROWBAR: Natively Fuzzing Trusted Applications
Using ARM CoreSight. Journal of Hardware and Systems Security (2023), 1–11.

[45] Haoqi Shan, Sravani Nissankararao, Yujia Liu, Moyao Huang, Shuo Wang, Yier
Jin, and Dean Sullivan. 2023. LightEMU: Hardware Assisted Fuzzing of Trusted
Applications. arXiv preprint arXiv:2311.09532 (2023).

[46] Suchakrapani Datt Sharma and Michel Dagenais. 2016. Hardware-assisted in-
struction profiling and latency detection. The Journal of Engineering 2016, 10
(2016), 367–376.

[47] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu, Shengchao
Qin, Hongxu Chen, and Yulei Sui. 2020. Typestate-guided fuzzer for discovering
use-after-free vulnerabilities. In Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering. 999–1010.
[48] Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and Chengyu Song. 2019. Be

sensitive and collaborative: Analyzing impact of coverage metrics in greybox
fuzzing. In 22nd International Symposium on Research in Attacks, Intrusions and

Defenses ({RAID} 2019). 1–15.
[49] Qinying Wang, Boyu Chang, Shouling Ji, Yuan Tian, Xuhong Zhang, Binbin

Zhao, Gaoning Pan, Chenyang Lyu, Mathias Payer, Wenhai Wang, et al. 2023.
SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices. arXiv
preprint arXiv:2309.14742 (2023).

[50] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui, Lingming
Zhang, and Yuqun Zhang. 2022. One Fuzzing Strategy to Rule Them All. In
Proceedings of the International Conference on Software Engineering.

[51] Tai Yue, Yong Tang, Bo Yu, PengfeiWang, and EnzeWang. 2019. Learnafl: Greybox
fuzzing with knowledge enhancement. IEEE Access 7 (2019), 117029–117043.

[52] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu, and Xu Zhou. 2020.
Ecofuzz: Adaptive energy-saving greybox fuzzing as a variant of the adversarial
multi-armed bandit. In 29th {USENIX} Security Symposium ({USENIX} Security
20). 2307–2324.

[53] Michal Zalewski. 2014. Fuzzing random programs without execve(). https:
//lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html.

[54] Michal Zalewski. 2017. American fuzzy lop.
[55] Seyed Mohammad Ali Zeinolabedin, Johannes Partzsch, and Christian Mayr.

2020. Real-time hardware implementation of arm coresight trace decoder. IEEE
Design & Test 38, 1 (2020), 69–77.

[56] Gen Zhang, Xu Zhou, Yingqi Luo, Xugang Wu, and Erxue Min. 2018. Ptfuzz:
Guided fuzzing with processor trace feedback. IEEE Access 6 (2018), 37302–37313.

[57] Zhuo Zhang, Wei You, Guanhong Tao, Yousra Aafer, Xuwei Liu, and Xiangyu
Zhang. 2021. STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries

https://ricercasecurity.blogspot.com/2021/11/armored-coresight-towards-efficient.html
https://ricercasecurity.blogspot.com/2021/11/armored-coresight-towards-efficient.html
https://github.com/RICSecLab/coresight-decoder
https://github.com/RICSecLab/coresight-decoder
https://developer.arm.com/documentation/ddi0461/b/?lang=en
https://developer.arm.com/documentation/100536/latest/
https://developer.arm.com/documentation/100536/latest/
https://developer.arm.com/documentation/100114/0200
https://developer.arm.com/documentation/100114/0200
https://developer.arm.com/documentation/ihi0064/latest/
https://abiondo.me/2018/09/21/improving-afl-qemu-mode/
https://abiondo.me/2018/09/21/improving-afl-qemu-mode/
https://github.com/NixOS/patchelf
https://github.com/vanhauser-thc/afl-dyninst
https://github.com/hwangcc23/ptm2human
https://api.semanticscholar.org/CorpusID:231854623
https://github.com/nyx-fuzz/libxdc
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html

Efficiently Rebuilding Coverage in Hardware-Assisted Greybox Fuzzing RAID 2024, September 30–October 02, 2024, Padua, Italy

by Incremental and Stochastic Rewriting. In 2021 IEEE Symposium on Security

and Privacy (SP). IEEE, 659–676.
[58] Zhiqiang Zuo, Kai Ji, Yifei Wang, Wei Tao, Linzhang Wang, Xuandong Li, and

Guoqing Harry Xu. 2021. JPortal: precise and efficient control-flow tracing for

JVM programswith Intel processor trace. In Proceedings of the 42nd ACM SIGPLAN

International Conference on Programming Language Design and Implementation.
1080–1094.

	Abstract
	1 Introduction
	2 Background
	2.1 Coverage-Based Greybox Fuzzing
	2.2 Arm CoreSight Technique
	2.3 Embedded Trace Macrocell

	3 Rebuilding Coverage in HGF
	3.1 Coverage-Feedback Mechanism
	3.2 Double-Layer Coverage Mechanism
	3.3 Rebuilding Coverage by Arm ETM
	3.4 Adaptive CPU Frequency Modulation Mechanism

	4 Design and Implementation
	4.1 Overview
	4.2 Technical Details

	5 Evaluation
	5.1 Efficiency of Rebuilding Coverage
	5.2 Performance of Stalker
	5.3 Double-Layer Coverage Mechanism
	5.4 Effectiveness of ACFMM
	5.5 Other Strategies

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

