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Rebuilding Coverage in Binary-only Fuzzing
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Existing techniques in rebuilding coverage:

• Dynamic binary instrumentation (e.g., 
AFL-PIN, AFL-QEMU)
• Heavy overhead

• Static binary rewriting (e.g., RetroWrite)
• Additional prerequisites for binaries

• Hardware tracing (e.g., PTFuzz, PTrix)
• Negligible runtime overhead
• Powerful tracing ability
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Hardware-assisted Greybox Fuzzing 
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Hardware-assisted greybox fuzzing (HGF):

• Hardware tracing techniques (Intel PT, 
Arm CoreSight)

• Decoding the trace packets
• Rebuilding coverage
• Fuzzing kernel, TEE OS…
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Hardware-assisted Greybox Fuzzing 

4

Challenges in rebuilding coverage of HGF:

• Difficult to rebuild coverage with high 
efficiency and moderate sensitivity
• Edge coverage by disassembling the 

binary (heavy overhead) (PTFuzz)
• Path coverage directly from the trace 

packets (seed explosion) (PTrix)
• Branch coverage by hardware features 

(additional decoding overhead) (𝜇AFL)
• Affected by the hardware tracing buffer 

overflow
• Trace data loss (imprecision and 

instability in coverage)

The classic architecture of CoreSight



Stalker
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An efficient HGF tool based on Arm 
CoreSight.

Targets:
• Building moderate (branch-level) 

coverage with low overhead to avoid 
the seed explosion

• Alleviating the trace buffer overflow
Methods:

• Double-layer coverage mechanism
• Adaptive CPU frequency modulation 

mechanism (ACFMM)



Double-layer Coverage Mechanism
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Stalker utilizes this mechanism to efficiently 
rebuild coverage and select the seeds in 
moderate coverage.

Key point: assigning the execution of test 
cases and the selection of seeds to 
different coverages.
Details:

• Lightweight path coverage in bottom 
layer

• Moderate branch coverage in top 
layer

Seed queue

Path seeds

Lightweight path coverage

Moderate branch coverage

Branch seeds



Double-layer Coverage Mechanism
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Stalker rebuilds these coverages by directly 
decoding the trace packets without 
disassembling the binaries.

Lightweight path coverage: efficiently 
executing the testcases and selecting the 
path seeds.

• ETM default mode
• Sensitive coverage (seed explosion)

Moderate branch coverage: effectively 
filtering the path seeds and selecting and 
adding the branch seeds into the seed 
queue.

• ETM Branch Broadcasting (BB) mode
• Additional decoding overhead
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Double-layer Coverage Mechanism
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Stalker also implements many strategies for 
efficiently and stably rebuilding coverage.

Branchless design: accelerate rebuilding 
coverage
Filtering noisy packets: keeping the 
stability of coverage
Disable formatter: reducing the decoding 
overhead



Adaptive CPU Frequency Modulation Mechanism
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Stalker utilizes the ACFMM to maintain a high 
CPU frequency and alleviate the trace buffer 
overflow.

Key observation: slowing down the CPU 
frequency can decrease the ETM bandwidth
Key point: 
• If there is frequent buffer overflow over 

time, reducing the CPU frequency to 
prevent overflow

• When no overflow occurs for an extended 
period, the frequency is increased to 
accelerate execution

The classic architecture of CoreSight.



Adaptive CPU Frequency Modulation Mechanism
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Stalker utilizes the ACFMM to maintain a high 
CPU frequency and alleviate the trace buffer 
overflow.

Key observation: slowing down the CPU 
frequency can decrease the ETM bandwidth
Key point: 
• If there is frequent buffer overflow over 

time, reducing the CPU frequency to 
prevent overflow

• When no overflow occurs for an extended 
period, the frequency is increased to 
accelerate execution

The algorithm of ACFMM.



Stalker
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Stalker is built on AFL and Arm CoreSight.

• Implementing the forkserver
• Optimizing the CoreSight driver and 

decoder

The architecture and workflow of Stalker



Experiments Setup
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Platform: Arm Juno R2 development board 
(A72*2 0.6-1.2GHz, A53*4 0.45-0.95GHz)

Compare tools:
• QEMU-based: AFL-QEMU, AFL-QEMU++1 

• CoreSight-based: Armored-CoreSight, 𝜇AFL
• PT-based: PTrix, libxdc (kAFL)

Tested software:
• 10 real-world programs selected from 

other papers in top conferences
• Benchmark of libxdc

The real-world programs in 
our evaluation

1 https://abiondo.me/2018/09/21/improving-afl-qemu-mode/



Efficiency of Rebuilding Coverage
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Compared with CoreSight-based and QEMU-based tools:
Stalker rebuilds the same granularity coverage more 
efficiently, with 2.81×, 1.74×, 1.4×, and 1.22× faster than 
Armored-Edge, Armored-Path, 𝜇AFL, and AFL-QEMU++, 
respectively.

Normalized execution time of all tools with AFL-QEMU as the baseline

Branch coverage and path 
coverage of Stalker



Efficiency of Rebuilding Coverage
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Compared with PT-based tools:
Stalker-Path outperforms PTrix and libxdc by 2.2× 
and 1.63×, respectively.

Decoding time of PTrix, libxdc-cold, libxdc-hot, and Stalker-Path
on different trace file sizes

Path coverage of Stalker



Performance of Stalker
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Results:
On 10 programs, Stalker surpasses AFL-QEMU, AFL-QEMU++, 
Armored-Edge, Armored-Path, and 𝜇AFL with higher throughput 
and covering 55.7%, 13.7%, 66.4%, 323.3%, and 19.2% more 
paths and 21.1%, 10.0%, 23.9%, 66.1%, and 3.5% branches, 
respectively.

Throughput and branch coverage of six tools over 24 hours. The blue line represents Stalker. 

Throughput of Stalker

Branches covered 
by Stalker



Double-Layer Coverage Mechanism
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The number of seeds before 
and after the filtering.
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Sensitive ratio



Adaptive CPU Frequency Modulation Mechanism
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Effectiveness of ACFMM:
• Achieving the highest coverage with 

ACFMM
• Reducing the overflow percentage 

from 40.92% to 2.46%

The results of disabling/enabling the ACFMM.

Branches covered by 
Stalker

Percentage of 
overflow testcases



Conclusion
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Stalker: an efficient hardware-assisted greybox fuzzer based on 
Arm CoreSight.

• Double-layer coverage mechanism
• Adaptive CPU frequency modulation mechanism
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