
Tai Yue1,2,3, Yibo Jin2, Fengwei Zhang*2, Zhenyu Ning4, Pengfei Wang*3, Xu Zhou3, and Kai Lu3

1 Academy of Military Science,
2 Southern University of Science and Technology, 3 National

University of Defense Technology, 4 Hunan University

Efficiently Rebuilding Coverage in
Hardware-Assisted Greybox Fuzzing

Rebuilding Coverage in Binary-only Fuzzing

2

Existing techniques in rebuilding coverage:

• Dynamic binary instrumentation (e.g.,
AFL-PIN, AFL-QEMU)
• Heavy overhead

• Static binary rewriting (e.g., RetroWrite)
• Additional prerequisites for binaries

• Hardware tracing (e.g., PTFuzz, PTrix)
• Negligible runtime overhead
• Powerful tracing ability

 Fuzzer

Binary

Testcases

Coverage

Hardware-assisted Greybox Fuzzing

3

Hardware-assisted greybox fuzzing (HGF):

• Hardware tracing techniques (Intel PT,
Arm CoreSight)

• Decoding the trace packets
• Rebuilding coverage
• Fuzzing kernel, TEE OS…

Fuzzer

Binary

 CPUTracing unit

Trace data

Testcases

Coverage

Hardware-assisted Greybox Fuzzing

4

Challenges in rebuilding coverage of HGF:

• Difficult to rebuild coverage with high
efficiency and moderate sensitivity
• Edge coverage by disassembling the

binary (heavy overhead) (PTFuzz)
• Path coverage directly from the trace

packets (seed explosion) (PTrix)
• Branch coverage by hardware features

(additional decoding overhead) (𝜇AFL)
• Affected by the hardware tracing buffer

overflow
• Trace data loss (imprecision and

instability in coverage)

The classic architecture of CoreSight

Stalker

5

An efficient HGF tool based on Arm
CoreSight.

Targets:
• Building moderate (branch-level)

coverage with low overhead to avoid
the seed explosion

• Alleviating the trace buffer overflow
Methods:

• Double-layer coverage mechanism
• Adaptive CPU frequency modulation

mechanism (ACFMM)

Double-layer Coverage Mechanism

6

Stalker utilizes this mechanism to efficiently
rebuild coverage and select the seeds in
moderate coverage.

Key point: assigning the execution of test
cases and the selection of seeds to
different coverages.
Details:

• Lightweight path coverage in bottom
layer

• Moderate branch coverage in top
layer

Seed queue

Path seeds

Lightweight path coverage

Moderate branch coverage

Branch seeds

Double-layer Coverage Mechanism

7

Stalker rebuilds these coverages by directly
decoding the trace packets without
disassembling the binaries.

Lightweight path coverage: efficiently
executing the testcases and selecting the
path seeds.

• ETM default mode
• Sensitive coverage (seed explosion)

Moderate branch coverage: effectively
filtering the path seeds and selecting and
adding the branch seeds into the seed
queue.

• ETM Branch Broadcasting (BB) mode
• Additional decoding overhead

Seed queue

Path seeds

Lightweight path coverage

Moderate branch coverage

Branch seeds

Double-layer Coverage Mechanism

8

Stalker also implements many strategies for
efficiently and stably rebuilding coverage.

Branchless design: accelerate rebuilding
coverage
Filtering noisy packets: keeping the
stability of coverage
Disable formatter: reducing the decoding
overhead

Adaptive CPU Frequency Modulation Mechanism

9

Stalker utilizes the ACFMM to maintain a high
CPU frequency and alleviate the trace buffer
overflow.

Key observation: slowing down the CPU
frequency can decrease the ETM bandwidth
Key point:
• If there is frequent buffer overflow over

time, reducing the CPU frequency to
prevent overflow

• When no overflow occurs for an extended
period, the frequency is increased to
accelerate execution

The classic architecture of CoreSight.

Adaptive CPU Frequency Modulation Mechanism

10

Stalker utilizes the ACFMM to maintain a high
CPU frequency and alleviate the trace buffer
overflow.

Key observation: slowing down the CPU
frequency can decrease the ETM bandwidth
Key point:
• If there is frequent buffer overflow over

time, reducing the CPU frequency to
prevent overflow

• When no overflow occurs for an extended
period, the frequency is increased to
accelerate execution

The algorithm of ACFMM.

Stalker

11

Stalker is built on AFL and Arm CoreSight.

• Implementing the forkserver
• Optimizing the CoreSight driver and

decoder

The architecture and workflow of Stalker

Experiments Setup

12

Platform: Arm Juno R2 development board
(A72*2 0.6-1.2GHz, A53*4 0.45-0.95GHz)

Compare tools:
• QEMU-based: AFL-QEMU, AFL-QEMU++1

• CoreSight-based: Armored-CoreSight, 𝜇AFL
• PT-based: PTrix, libxdc (kAFL)

Tested software:
• 10 real-world programs selected from

other papers in top conferences
• Benchmark of libxdc

The real-world programs in
our evaluation

1 https://abiondo.me/2018/09/21/improving-afl-qemu-mode/

Efficiency of Rebuilding Coverage

13

Compared with CoreSight-based and QEMU-based tools:
Stalker rebuilds the same granularity coverage more
efficiently, with 2.81×, 1.74×, 1.4×, and 1.22× faster than
Armored-Edge, Armored-Path, 𝜇AFL, and AFL-QEMU++,
respectively.

Normalized execution time of all tools with AFL-QEMU as the baseline

Branch coverage and path
coverage of Stalker

Efficiency of Rebuilding Coverage

14

Compared with PT-based tools:
Stalker-Path outperforms PTrix and libxdc by 2.2×
and 1.63×, respectively.

Decoding time of PTrix, libxdc-cold, libxdc-hot, and Stalker-Path
on different trace file sizes

Path coverage of Stalker

Performance of Stalker

15

Results:
On 10 programs, Stalker surpasses AFL-QEMU, AFL-QEMU++,
Armored-Edge, Armored-Path, and 𝜇AFL with higher throughput
and covering 55.7%, 13.7%, 66.4%, 323.3%, and 19.2% more
paths and 21.1%, 10.0%, 23.9%, 66.1%, and 3.5% branches,
respectively.

Throughput and branch coverage of six tools over 24 hours. The blue line represents Stalker.

Throughput of Stalker

Branches covered
by Stalker

Double-Layer Coverage Mechanism

16

The number of seeds before
and after the filtering.

Path seeds Branch seeds

Sensitive ratio

Adaptive CPU Frequency Modulation Mechanism

17

Effectiveness of ACFMM:
• Achieving the highest coverage with

ACFMM
• Reducing the overflow percentage

from 40.92% to 2.46%

The results of disabling/enabling the ACFMM.

Branches covered by
Stalker

Percentage of
overflow testcases

Conclusion

18

Stalker: an efficient hardware-assisted greybox fuzzer based on
Arm CoreSight.

• Double-layer coverage mechanism
• Adaptive CPU frequency modulation mechanism

yuetai17@nudt.edu.cn

