Efficiently Rebuilding Coverage in
Hardware—Assisted Greybox Fuzzing

Tai Yue"?3, Yibo Jin?, Fengwei Zhang*?, Zhenyu Ning®, Pengfei Wang*3, Xu Zhou®, and Kai Lu®
! Academy of Military Science,

2 Southern University of Science and Technology, > National

University of Defense Technology, * Hunan University

“Rebuilding Coverage in Binary-only Fuzzing

Existing techniques in rebuilding coverage:

® Dynamic binary instrumentation (e.g., { BN -1

AFL-PIN, AFL-QEMU)
® Heavy overhead

e Static binary rewriting (e.g., RetroWrite) Testcases
e Additional prerequisites for binaries :
e Hardware tracing (e.g., PTFuzz, PTrix) { Binary }

® Negligible runtime overhead
e Powerful tracing ability

Hardware-assisted Greybox Fuzzing

Hardware-assisted greybox fuzzing (HGF):

¢ Hardware tracing techniques (Intel PT, { E -1

Arm CoreSight)

® Decoding the trace packets /
T estcases
® Rebuilding coverage

® Fuzzing kernel, TEE OS... { Binary } { Trace data }

-

‘Hardware-assisted Greybox Fuzzi

ng

Challenges in rebuilding coverage of HGF:

¢ Difficult to rebuild coverage with high
efficiency and moderate sensitivity
® Edge coverage by disassembling the
binary (heavy overhead) (PTFuzz)
® Path coverage directly from the trace
packets (seed explosion) (PTrix)
® Branch coverage by hardware features

Source Link

—_——, e e e e e e — — — — ——— — — e - e — = e— — — —

ETM

Replicator

A
_———

(

(additional decoding overhead) («AFL)
e Affected by the hardware tracing buffer
overflow
® Trace data loss (imprecision and
instability in coverage)

r e e 1

L2 encoding | Trace buffer overflow Ii AXI | L1 encoding l

The classic architecture of CoreSight

\ Stalker

An efficient HGF tool based on Arm
CoreSight.

Targets:
® Building moderate (branch-level)
coverage with low overhead to avoid
the seed explosion
® Alleviating the trace buffer overflow
Methods:
® Double-layer coverage mechanism
e Adaptive CPU frequency modulation
mechanism (ACFMM)

‘Double-layer Coverage Mechanism

Stalker utilizes this mechanism to efficiently
rebuild coverage and select the seeds in
moderate coverage.

Key point: assigning the execution of test
cases and the selection of seeds to
different coverages.
Details:
® Lightweight path coverage in bottom
layer
® Moderate branch coverage in top
layer

[Seed queue]
T

Branch seeds

Path seeds

lghweight pan covrage

‘Double-layer Coverage Mechanism

Stalker rebuilds these coverages by directly
decoding the trace packets without
disassembling the binaries.

[Seed queue]
T

Lightweight path coverage: efficiently Branch seeds
executing the testcases and selecting the
path seeds.

 ETM default mode

* Sensitive coverage (seed explosion)

Path seeds
Moderate branch coverage: effectively
filtering the path seeds and selecting and —
adding the branch seeds into the seed
queue.

7

 ETM Branch Broadcasting (BB) mode
e Additional decoding overhead

‘Double-layer Coverage Mechanism

Stalker also implements many strategies for
efficiently and stably rebuilding coverage.

Branchless design: accelerate rebuilding
coverage

Filtering noisy packets: keeping the
stability of coverage

Disable formatter: reducing the decoding
overhead

Adaptive CPU Frequency Modulation Mechanism

Stalker utilizes the ACFMM to maintain a high
CPU frequency and alleviate the trace buffer
overflow.

Key observation: slowing down the CPU e B o e o e Link S '____E
frequency can decrease the ETM bandwidth namarataman

Key point: ETM |- | Buffer Replicator e

* |f there is frequent buffer overflow over == gy ——) g 7 |
time, reducing the CPU frequency to [LZWM
prevent overflow

 When no overflow occurs for an extended
period, the frequency is increased to
accelerate execution

The classic architecture of CoreSight.

Adaptive CPU Frequency Modulation Mechanism

Stalker utilizes the ACFMM to maintain a high

CPU frequency and alleviate the trace buffer
overflow.

Key observation: slowing down the CPU
frequency can decrease the ETM bandwidth
Key point:

* If there is frequent buffer overflow over
time, reducing the CPU frequency to
prevent overflow

 When no overflow occurs for an extended
period, the frequency is increased to
accelerate execution

Algorithm 4 ACFMM

1:
2
3
4:
B
6.
1
8

9:
10:
| B
12:
13:
14:
15:
16:
17:
18:
19:
20:
21;

repeat

testcase = Mutation(seed)
overflow flag = RunTarget(COV, testcase)
if COV == PATH COV then
path execs +=1
end if
if overflow flag == TRUE then
if COV == PATH COV then
overflow nums path += 1
end if
no overflow num = 0
Decrease(cur cpu freq mode)
else
no overflow num += 1
if no overflow num == INTERVAL then
Increase(cur_cpu freq cov)
no overflow num = 0
end if
end if
INTERVAL = (path execs / overflow nums path) / 5
Limit(INTERVAL)

22: until fuzzer exit

The algorithm of ACFMM.
10

Stalker

Stalker is built on AFL and Arm CoreSight.

* Implementing the forkserver
e Optimizing the CoreSight driver and

decoder

o 5 3 o T 3 S '
. Add to the seed queue '
Initialization —* Default Mode '
: 4 -=--» Branch Broadcasting Mode !

B2y P)
E \ @ Signal - s Decode trace data 5
. ' o : '
[] |
|]
2 Fuzzer .
. .
|]
|] |]
. : H
» (@ Enable ETM and i (5 Enable ETM with branch broadcasting .
. execute the binary : and re-execute the binary E
:- --- - --- B """ ® Modulate CPU frequency :
' Kernel Trace Drivers E
H - '
' '
' CPU : '
+ Hardware ! Trace buffer overflow EiE Disable formatter | '
: ETM : gl .
M - |]
--- | |

fhe arCHiteéture and wdl:kflow of Stalker 11

_Experiments Setup

Platform: Arm Juno R2 development board
(A72*%2 0.6-1.2GHz, A53*4 0.45-0.95GHz)

Compare tools:
* QEMU-based: AFL-QEMU, AFL-QEMU++*
* CoreSight-based: Armored-CoreSight, uAFL
* PT-based: PTrix, libxdc (kAFL)

Tested software:

e 10 real-world programs selected from
other papers in top conferences
* Benchmark of libxdc

L https://abiondo.me/2018/09/21/improving-afl-gemu-mode/

Table 1: Target binaries evaluated in our evaluation.

Program Version Size Format
objdump -dwarf-check -C -g -f -dwarf -x @@ binutils-v2.37 11MB
readelf -a @@ binutils-v2.37 4MB
nm-new -C @@ binutils-v2.37 5.8MB
bsdtar -xf @@ /dev/null libarchive-3.5.2 3.4MB
nasm -f elf -o sample @@ nasm-2.15.05 3.0MB
bison @@ bison-3.8 2.6MB
tiff2bw @@ /dev/null tiff-4.3.0 1.5MB
tiffinfo @@ tiff-4.3.0 1.6MB
xmllint @@ libxml2-2.9.10 100KB
tic @@ ncurses-6.3 260KB

elf
elf
elf
tar
text
text
tiff
tiff
xml
text

The real-world programs in
our evaluation

12

_Efficiency of Rebuilding Coverage

Compared with CoreSight-based and QEMU-based tools:
Stalker rebuilds the same granularity coverage more Branch coverage and path
efficiently, with 2.81x, 1.74x, 1.4%, and 1.22x faster than coverage of Stalker
Armored-Edge, Armored-Path, uAFL, and AFL-QEMU++,
respectively.

=

UEJ 0.7 E AFL-QEMU++ EEl Armored-Path Stalker-Path-Fmt EEm Stalker-Path

c 0.6 EEE Armored-Edge mmm Stalker-Branch-Fmt Stalker-Branch B Execution Part

o 8

<

205

)

Eo04

&

0.3

(&)

2

» 0.2

O | | || | |II| I

e 1y [0 1

& 0.0 -!--!! l!Ill= i o I.Illl -----! manmnn HEEN mnnnss HEEEREN llllll IIIII!
objdump readelf nm-new bsdtar nasm bison tiff2bw tiffinfo xmllint tic Avg.

Normalized execution time of all tools with AFL-QEMU as the baseline

13

_Efficiency of Rebuilding Coverage

Compared with PT-based tools:
Stalker-Path outperforms PTrix and libxdc by 2.2x
and 1.63x, respectively.

(c) Average decoding time

[L
. 10" —@— PTrix ,(,./.o::_
) =#=libxdc-cold .4_; ,,,,
© [/.l"" _.-t
p- - libxdc-hot —"T-
AT .-
E 10° -#- Stalker-Path —
5 e
3 P
8 10° i
------ =
= ,—/"‘/‘r+'
) _ = e
@ 4 S =1 o/:- ﬂﬂﬂﬂﬂ
o 10 ./:_’ ____
é /' """""
et Path coverage of Stalker
G
210 212 214 216 218 220

Trace size (KB)

Decoding time of PTrix, libxdc-cold, libxdc-hot, and Stalker-Path
on different trace file sizes 14

\ Performance of Stalker

Results:

On 10 programs, Stalker surpasses AFL-QEMU, AFL-QEMU++,

Armored-Edge, Armored-Path, and ¢AFL with higher throughput
and covering 55.7%, 13.7%, 66.4%, 323.3%, and 19.2% more

paths and 21.1%, 10.0%, 23.9%, 66.1%, and 3.5% branches,

respectively.

20

o

10.0

8.0

6.0

4.0

2.0

(b) readelf

o —————

0

5

10

15

20

25

20
10
0

6.0
5.0
4.0
3.0
2.0

1.0

--.II‘::/

0

(c) nm=-new

5

10

15

20

25

Throughput of Stalker

Branches covered
by Stalker

Throughput and branch coverage of six tools over 24 hours. The blue line represents Stalker. 15

Double-Layer Coverage Mechanism

Metrics: counting the number of seeds
before and after the filtering as N, and

N¢, defined the sensitive ratio as N /Nr.

Results:

* Improving the speed of Stalker as
executing 86.7% test cases with
lightweight coverage

* Filtering 6,124 branch seeds from the
1.62M path seeds and adding them
into the queue

* The sensitivity of branch coverage in
Stalker is comparable to that of the
branch-count coverage

Path seeds

Branch seeds

Table 3: Numbers of selected and filtered seeds of the hardware-assisted tools,
respectively. The right column denotes the number of seeds filtered by AFL
in the branch-count coverage, The two left'\columns in STALKER, and one in

others represent the number of seeds selected by them.

: Armored- Armored- i ol STALKER (Path
Binary Branch-

Edge Path Fmnt Seed/Branch Seed)
objdump 8,820/5,277 51.55K/2,199 9,850/7,62 0.42M/10.63K/8,476
readelf 9,271/6,358 67.05K/1,715 33 5/6,63\& 1.54M/10.4K/7,345
nm-new 3,202/1,058 56.24K/591 3(81/2,478 0.35M/7,576/4,850
bsdtar 5,750/1,701 64.91K/193 3,034/1,879 4.75M/3,225/2,043
nasm 4,156/1,706 83.29K/1,279 7,324/4,477 48M/8,164/4,889
bison 3,367/805 66.16K/814 | 3,388/2,097 | 1.\1M/3,627/2,282
tiff2bw 2,924/1,377 60.17K/547 2,371/1,71 2.12M/2,566/1,842
tiffinfo 4,135/2,152 59.86K/626 3:353/2,295 1.93M/3,513/2,422
xmllint | 6,641/2,598 | 0.2M/1,192 | 5,221/3,021 | \2.18M/§,509/3,115

tic 5,164/2,163 0.26 M/753 5,330/2,843 128M/6,032/3,118

Avg. 5,343/2,519 97.37K/990 9,298/3,517 1.62M/6,124/4,038
Nq/Nf 212% 9835% 151% 26392%/152%
\

The number of seeds before

and after the filtering.

Sensitive ratio

16

~Adaptive CPU Frequency Modulation Mechanism

Effectiveness of ACFMM: Table 5: Average branches, number of branch and path seeds (B/P seeds),
]]]] throughput, and overflows of STALKER, STALKER-A72-0.6GHz, and STALKER-
e Achievi ng the h |ghest coverage with A72-1.2GHz on nasm. Numbers in the brackets of Throughput: percentages of
the test cases executed under 0.6GHz, 1.0GHz, and 1.2GHz.
ACFMM Config |Branch| B/P Seeds |Throughput(0.6/1.0/1.2)] Overflow

¢ Reducing the overflow percentage ACFMM | 5,649 || 9,202/890K | 3.93M(58%/22%/21%) || 96,909(2.46%)

A72-0.6GHz}r 5,435 || 8,465/507K 2.23M(100%/-/-) 0.23M(10.34%)

from 40.92% to 2.46% A72-1.2gﬂé 5,188 [[22,073/1.17M 4.12M(-/-/100%) 1.68M(40.92%)

e results of disabling/enabling the ACFMM.\

Percentage of

Branches covered by overflow testcases

Stalker

17

Conclusion

Stalker: an efficient hardware-assisted greybox fuzzer based on
Arm CoreSight.

* Double-layer coverage mechanism

* Adaptive CPU frequency modulation mechanism DullheisRaisht
B Stalker-Branch

e m m m m e
5 ® Add to the seed queue
O Y i | e —* Defauit Mode :
& -===> Branch Broadcasting Mode ;
N - ,. = = \ [l
ey ignal £ . N—— ... Branch N, _ ______ Decode trace data
-o oy Compare
Fuzzer Path Path
Bitma Trace bits
(2 Enable ETM and (® Enable ETM with branch broadcasting
execute the binary : and re-execute the binary
H © Modulate CPU frequency
[Kernel Trace Drivers
H CPU ETF Disable formatter ETR I
. Hardware E - Trace buffer overflow LT X .-....
|]
|] .
L R SRRRREPRR . xmllint tic

vuetail/@nudt.edu.cn

Bl Stalker-Path
B Execution Part

Avg.

18

