Speedster: An Efficient Multi-party State
Channel via Enclaves
AsiaCCS 2022

Jinghui Liao, Fengwei Zhang, Wenhai Sun, Weisong Shi

V Vo

WAYNE STATE PURDUE ' neo

UNIVERSITY UNIVERSITY.

Outline

* Introduction and Background
* Architecture of Speedster

* Design and Implementation

* Evaluation

e (Conclusion

Why Need Payment/State Channel

Channel

3
o B

Alice Bob

Traditional Channel e Celer

Alice

Multi-party Channel Multi-Party Virtual State Channels
Stefan Dziembowski EUROCRYPT 2019

David

Challenges: Isolation

1. States in different channels are
1solated. Even with hash-time-lock

contract (HTLC).

Multi-party state channel needs to
synchronize states among channels to
prevent double-spending.

Challenges: Efficiency

2. To setup a multi-party state channel,
multiple channels need to be created on
the blockchain first!

That is expensive and time consuming!

Challenges: Resource Overhead

3. Overhead on processing multi-party
transactions.

Process multi-party transactions require
recursive states update.

Reliable Solution

Using Trusted and Isolated Execution
Environment to establish and manage
channels without interacting with the main
chain!

Applications

User mode

Supervisor mode

A e
Hypervisor Kernel

Software

Hardware

Main CPU

Provide Trust
Execution
Environment

~

)

Strong isolation,
which cannot be
accessed by Host

\

)

Outline

* Introduction and Background
* Architecture of Speedster

* Design and Implementation

* Evaluation

e (Conclusion

High-level Architecture of the Speedster

enclave

Certified Channel

progenclave

State (cert,, cert,, ck)

J

< | 1 |« =

Blockchain (contractepeepsrer)

Speedster architecture.

enclave
progenclave
o & O
)
/%2

Outline

* Introduction and Background
* Architecture of Speedster

* Design and Implementation
* Evaluation

e (Conclusion

Speedster Design & Implementation

= Peer-to-Peer Channel Network
= Multi-Party State Channel
" Cross-platform

= TEE Security

a { b \
[\ \ A\ | S

e\) A\
T3 Y » |
~U -yl \ /2
R /

Certified Channel T

Definition (Certified Channel). A Speedster channel is
called a Certified Channel if it is established between two attested

enclave accounts and both participants have the channel certificate
iIssued by the other party.

Blockchain

< »
<4 »
< »
<4 »
< »
<4 »
< »
<4 »
< »
<4 »

Off-chain Channel Open/Close

1: Node create a TEE account.

2: Node register the account to blockchain,

2: Nodes interact with other nodes off-chain
(attestation, channel creation, transaction)

Transactions in channels are encrypted with AES-
GCM instead of ECDSA.

Speedster Design & Implementation

= Certified Channel

= Multi-Party State Channel
" Cross platform

= TEE Security

A a | N

~EE\R | T
-y . W b A =
AR & o WY
\ 3 & /5]

Peer-to-Peer Channel Network

Definition (Peer-to-Peer Channel Network). A payment/state channel
network in which a node can establish direct channel connections with
other nodes efficiently off-chain and process transactions without relying

on intermediaries.

Direct channel connection.
Off-chain channel open and close at anytime.

Minimum fee cost.

Speedster Design & Implementation

= Certified Channel

m Peer-to-Peer Channel Network

" Cross-platform

= TEE Security

q X \
& AN\ N | 7
~U -yl \ /2

Multi-Party State Channel

B U
tv. - cand N N1 +A R cand N N2 tA N - e . B _cert. 0

h o
tv. - cand N N1 +A R cand N N2 tA N - e . B _cert. 0

t ¢ X :send0.01toB, send 0.02t0 C B cert, O

t ¢ Dier : send 0.04 o A, send 0.03 10 C
tXi+o : send 0.03 to A, send 0.07 to B

v 1B certy, +002
State,; |
:r C cert, -0.04

E (ccid, tx;) l

T B cert, +0.01
State; !

! ‘e C cert. -0.06

¢« (ccid, tx;,4) ' h

1 ¥ .
B cert, +0.05

o

State;,;

e C cert, -0.06

! (ccid, tx;,,)

State,, | B certb +0.05

d

(ccid, tx;) T C ocert. -0.03

\ \ (ccid, tx;,4)
EBE

(ccid, tx,,)
An eXamlull\.— 1 \.-I\\.—UULIIIB U 11141 Ll lulul \.Y CIUIIVICT VWWIILTULw L UIIIVIIB I_\’ B
and C, assuming SORT(pk,4)>SORT(pkg)>SORT(pk¢). (+) and (-) in the
tables represent the balance change after each respective Certified

Channel transaction.

Speedster Design & Implementation

= Certified Channel
m Peer-to-Peer Channel Network

= Multi-Party State Channel

= TEE Security

AT a | \
~[EE\R | T |
-y . W b A =
|3 | N | B> (X / |
\ § €y | \ /

Cross-platform

Prototype of Speedster is cross-platform:

* |ntel SGX:
* Linux-SGX SDK
* OpenEnclave
e AMD SEV:
* Qemu
e Vm:Ubuntul8.04
* ARM TrustZone
 OPTEE
* OpenEnclave

Speedster Design & Implementation

= Certified Channel
s Peer-to-Peer Channel Network
= Multi-Party State Channel

" Cross-platform

- { A ".
o | \} N | = |
~U -yl \ /2

TEE Security

TEE Attacks:

* Replay/Rollback attacks.
e Side-channel attacks.
 Denial-of-service attacks.

Solutions:

* A generalized TEE abstraction.

* SEV-SE, Monotonic Counter, RPMB Secure Storage.
* Side-channel-attack resistant cryptographic library.
* Committee enforcement design.

TEE Security

TEE Attacks:
* Replay/Rollback attacks.

. Side.—channel attacks. 3 TEE Security is another research topic,
* Denial-of-service attacks. we can not cover all attacks here!!!

Solutions:

* A generalized TEE abstraction.

* SEV-SE, Monotonic Counter, RPMB Secure Storage.
e Side-channel-attack resistant cryptographic library.
* Committee enforcement design.

Outline

* Introduction and Background
* Architecture of Speedster

* Design and Implementation

* Evaluation

e (Conclusion

Evaluation

The test environment platform:

v' Intel SGX: quad-core 3.6 GHz Intel(R) E3-1275 v5 CPU with 32 GB memory.

v AMD SEV: 64 GB DRAM and an SEV-enabled AMD Epyc 7452 CPU, which has 32 cores and a
base frequency of 2.35 GHz.

v" ARM TrustZone: QEMU cortex-a57 virtual machine with 1 GB memory and Linux buildroot
4.14.67-g333dc9e97-dirty as the kernel.

v" Real world: Azure Standard DC1s_v2 (1 vCPUs, 4 GB memory) virtual machines.

Evaluation

Appllcatlons
Instant State Sharing
* Faster Fund Exchange (ERC20 transaction)
e Sequential Contract Execution (Gomoku)
* Parallel Contract Execution (Rock-Paper-Scissors)
* Multi-party Applications (Monopoly)

Evaluation: Time Cost for Transaction Authentication

3 128 bytes
£ 256 bytes
1024 bytes

sev_aes_dec -

sev_aes_enc -

sev_ecdsa_verf

J AES-GCM is 3-4 orders faster
sev_ecdsa_sign L than ECDSA.

SgX_aes_deC:4.

Sgx_aes_enc <

sgx_ecdsa_verf

sgx_ecdsa_sign

trustzone_aes_dec F

trustzone_aes_enc ¥

trustzone_ecdsa_verf

trustzone_ecdsa_sign

100 101! 102 103 104 10°

Evaluation: Transaction Performance

= \We use the popular layer-2 network, the LN, as a baseline.
= The experiment results are averaged from 10,000 trials.

Payment ERC20 Gomuku RPC a2 Speedstes
IN N/A N/A N/A Payment ERC20 RPC Gomoku
192.630 /
14 72,143 30,920 53,355 2,549
SEV:AES-GCM 0.1372 0.1382 0.6667 0.1365 Throughput (tpS) o0 4ae w107 are 1159
SGX:AES-GCM 0.0205 0.3500 0.4500 0.1930
548.183 80.483 82.490 80.743 82.866
TZ:AES-GCM 20.496 40.148 95.092 37.215 Latency (ms) o T e e L

Local time cost for end-to-end transaction (ms) Channel performance in real-world Evaluation

Speedster has better performance than LN in payment processing.

Evaluation: Channel System Comparison

Channel Projects
LN [68] TeeChan [65] TeeChain [66] DMC [37] SFMC [24] Perun [40] Celer [38] Speedster
v v X v v

Features

Direct Off-chain Channel Open

Direct Off-chain Channel Close

Dynamic Deposit

P2PCN

Multi-Party State Channel

Dispute-Free

[
X
X
X
Off-Chain Contract Execution X
X
X
X
X

> | % x| %% |x|x
N TS [X< [%[%[N SN
S>> [> %]|x
NI S| EIRINISNN
| % x| x| %%
X | X[X[X% |N]>x|x|x
%N SIS RS

Duplex Channel

Feature comparison with other channel projects.

Speedster is the only project that provides all features.

Outline

* Introduction and Background

* Architecture of KShot

* Design and Implementation

* Evaluation: Effectiveness and Performance

e Conclusion

Conclusion

* Speedster — efficient multi-party state channel system
— Leverage TEE.
— Use AES-GCM to encrypt transaction.
— Off-chain channels can be freely opened/closed.
— Dispute free.
— Support multi-party state channels.
— Cross-platform.

Thank you!

l1ao1h2021(@mail.sustech.edu.cn/jinghui@wayne.edu

https://fengweiz.github.com/

mailto:liaojh2021@mail.sustech.edu.cn
mailto:jinghui@wayne.edu
https://fengweiz.github.com/

