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Challenges: Isolation

1. States in different channels are
1solated. Even with hash-time-lock

contract (HTLC).

Multi-party state channel needs to
synchronize states among channels to
prevent double-spending.




Challenges: Efficiency

2. To setup a multi-party state channel,
multiple channels need to be created on
the blockchain first!

That is expensive and time consuming!



Challenges: Resource Overhead

3. Overhead on processing multi-party
transactions.

Process multi-party transactions require
recursive states update.



Reliable Solution

Using Trusted and Isolated Execution
Environment to establish and manage
channels without interacting with the main
chain!
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High-level Architecture of the Speedster
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Speedster Design & Implementation

= Peer-to-Peer Channel Network
=  Multi-Party State Channel
" Cross-platform

= TEE Security
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Certified Channel T

Definition (Certified Channel). A Speedster channel is
called a Certified Channel if it is established between two attested

enclave accounts and both participants have the channel certificate
iIssued by the other party.



Blockchain

< »
<4 »
< »
<4 »
< »
<4 »
< »
<4 »
< »
<4 »

Off-chain Channel Open/Close

1: Node create a TEE account.

2: Node register the account to blockchain,

2: Nodes interact with other nodes off-chain
(attestation, channel creation, transaction)

Transactions in channels are encrypted with AES-
GCM instead of ECDSA.
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Peer-to-Peer Channel Network

Definition (Peer-to-Peer Channel Network). A payment/state channel
network in which a node can establish direct channel connections with
other nodes efficiently off-chain and process transactions without relying

on intermediaries.

Direct channel connection.
Off-chain channel open and close at anytime.

Minimum fee cost.
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Multi-Party State Channel
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Cross-platform

Prototype of Speedster is cross-platform:

* |ntel SGX:
* Linux-SGX SDK
* OpenEnclave
e AMD SEV:
* Qemu
e Vm:Ubuntul8.04
* ARM TrustZone
 OPTEE
* OpenEnclave
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TEE Security

TEE Attacks:

* Replay/Rollback attacks.
e Side-channel attacks.
 Denial-of-service attacks.

Solutions:

* A generalized TEE abstraction.

* SEV-SE, Monotonic Counter, RPMB Secure Storage.
* Side-channel-attack resistant cryptographic library.
* Committee enforcement design.



TEE Security

TEE Attacks:
* Replay/Rollback attacks.

. Side.—channel attacks. 3 TEE Security is another research topic,
* Denial-of-service attacks. we can not cover all attacks here!!!

Solutions:

* A generalized TEE abstraction.

* SEV-SE, Monotonic Counter, RPMB Secure Storage.
e Side-channel-attack resistant cryptographic library.
* Committee enforcement design.
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Evaluation

The test environment platform:

v' Intel SGX: quad-core 3.6 GHz Intel(R) E3-1275 v5 CPU with 32 GB memory.

v AMD SEV: 64 GB DRAM and an SEV-enabled AMD Epyc 7452 CPU, which has 32 cores and a
base frequency of 2.35 GHz.

v" ARM TrustZone: QEMU cortex-a57 virtual machine with 1 GB memory and Linux buildroot
4.14.67-g333dc9e97-dirty as the kernel.

v" Real world: Azure Standard DC1s_v2 (1 vCPUs, 4 GB memory) virtual machines.



Evaluation

Appllcatlons
Instant State Sharing
* Faster Fund Exchange (ERC20 transaction)
e Sequential Contract Execution (Gomoku)
* Parallel Contract Execution (Rock-Paper-Scissors)
* Multi-party Applications (Monopoly)



Evaluation: Time Cost for Transaction Authentication

3 128 bytes
£ 256 bytes
1024 bytes

sev_aes_dec -

sev_aes_enc -

sev_ecdsa_verf

J AES-GCM is 3-4 orders faster
sev_ecdsa_sign L than ECDSA.

SgX_aes_deC ....................:4. .........

Sgx_aes_enc <

sgx_ecdsa_verf

sgx_ecdsa_sign

trustzone_aes_dec F

trustzone_aes_enc ¥

trustzone_ecdsa_verf

trustzone_ecdsa_sign

100 101! 102 103 104 10°



Evaluation: Transaction Performance

= \We use the popular layer-2 network, the LN, as a baseline.
= The experiment results are averaged from 10,000 trials.

Payment ERC20 Gomuku RPC a2 Speedstes
IN N/A N/A N/A Payment ERC20 RPC Gomoku
192.630 /
14 72,143 30,920 53,355 2,549
SEV:AES-GCM  0.1372 0.1382  0.6667 0.1365 Throughput (tpS) o0 4ae w107 are 1159
SGX:AES-GCM  0.0205 0.3500 0.4500 0.1930
548.183 80.483  82.490 80.743  82.866
TZ:AES-GCM  20.496 40.148  95.092 37.215 Latency (ms) o T e e L

Local time cost for end-to-end transaction (ms) Channel performance in real-world Evaluation

Speedster has better performance than LN in payment processing.



Evaluation: Channel System Comparison

Channel Projects
LN [68] TeeChan [65] TeeChain [66] DMC [37] SFMC [24] Perun [40] Celer [38] Speedster
v v X v v

Features

Direct Off-chain Channel Open

Direct Off-chain Channel Close

Dynamic Deposit

P2PCN

Multi-Party State Channel
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Duplex Channel

Feature comparison with other channel projects.

Speedster is the only project that provides all features.
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Conclusion

* Speedster — efficient multi-party state channel system
— Leverage TEE.
— Use AES-GCM to encrypt transaction.
— Off-chain channels can be freely opened/closed.
— Dispute free.
— Support multi-party state channels.
— Cross-platform.



Thank you!

l1ao1h2021(@mail.sustech.edu.cn/jinghui@wayne.edu

https://fengweiz.github.com/
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