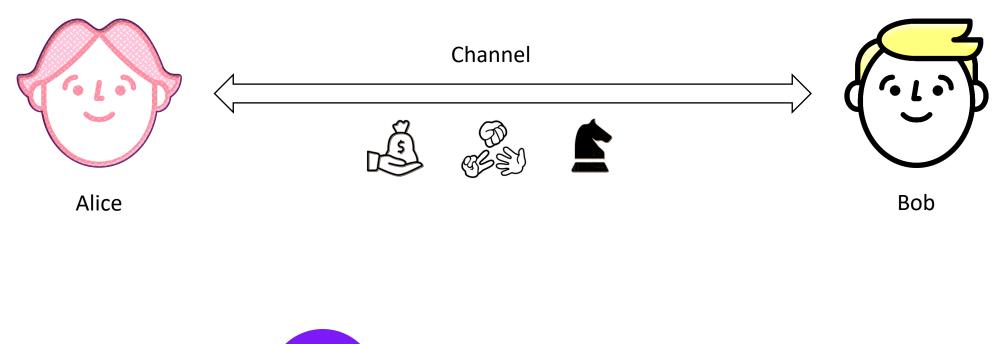
Speedster: An Efficient Multi-party State Channel via Enclaves

AsiaCCS 2022

Jinghui Liao, Fengwei Zhang, Wenhai Sun, Weisong Shi

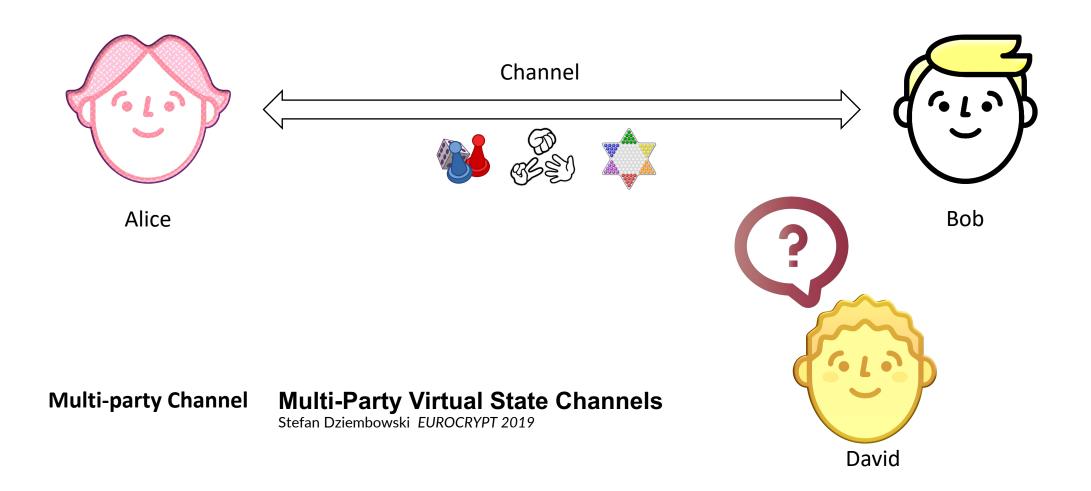
Outline



• Introduction and Background

- Architecture of Speedster
- Design and Implementation
- Evaluation
- Conclusion

Why Need Payment/State Channel


...

Traditional Channel

Why Need Multi-party State Channel

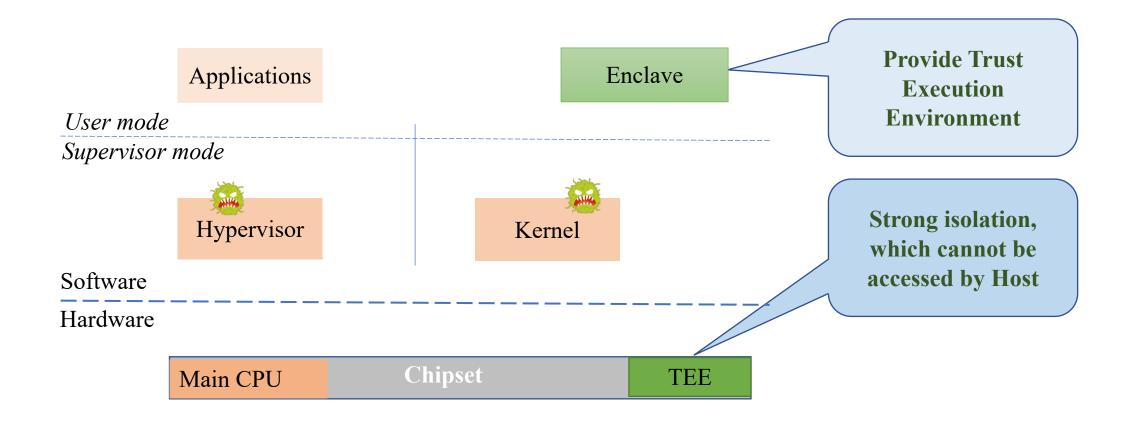
 States in different channels are isolated. Even with hash-time-lock contract (HTLC).

Multi-party state channel needs to synchronize states among channels to prevent double-spending.

2. To setup a multi-party state channel, multiple channels need to be created on the blockchain first!

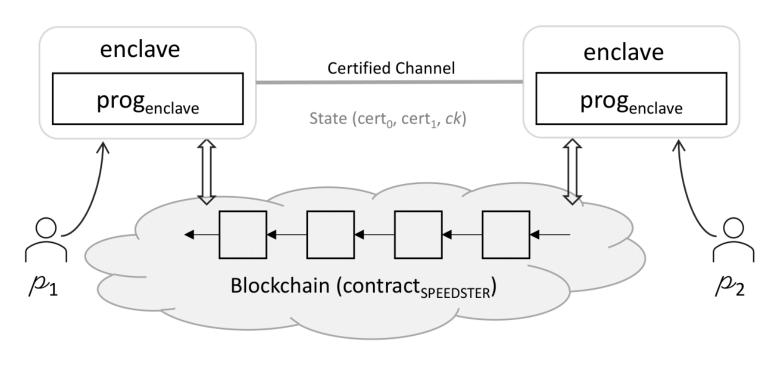
That is expensive and time consuming!

3. Overhead on processing multi-party transactions.


Process multi-party transactions require recursive states update.

Using Trusted and Isolated Execution Environment to establish and manage channels without interacting with the main chain!

Security System In TEE Architecture


Outline

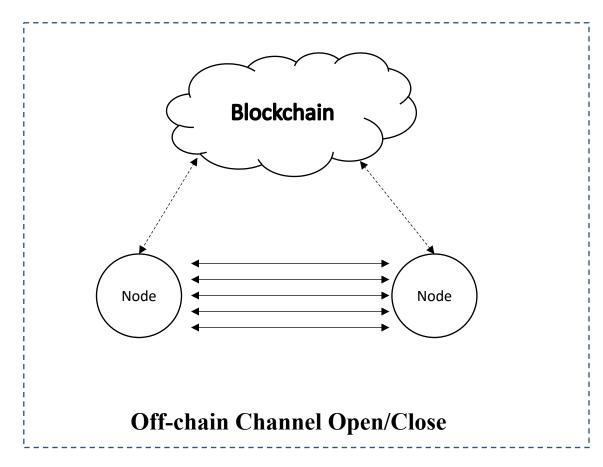
- Introduction and Background
- Architecture of Speedster
- Design and Implementation
- Evaluation
- Conclusion

High-level Architecture of the Speedster

Speedster architecture.

Outline

- Introduction and Background
- Architecture of Speedster
- Design and Implementation
- Evaluation
- Conclusion


- Certified Channel
- Peer-to-Peer Channel Network
- Multi-Party State Channel
- Cross-platform
- TEE Security

Definition (Certified Channel). A Speedster channel is called a Certified Channel if it is established between two attested enclave accounts and both participants have the channel certificate issued by the other party.

Account Based Channel System

- 1: Node create a TEE account.
- 2: Node register the account to blockchain,
- 2: Nodes interact with other nodes off-chain (attestation, channel creation, transaction)

Transactions in channels are encrypted with AES-GCM instead of ECDSA.

Speedster Design & Implementation

- Certified Channel
- Peer-to-Peer Channel Network
- Multi-Party State Channel
- Cross platform
- TEE Security

Definition (Peer-to-Peer Channel Network). A payment/state channel network in which a node can establish direct channel connections with other nodes efficiently off-chain and process transactions without relying on intermediaries.

- Direct channel connection.
- Off-chain channel open and close at anytime.
- Minimum fee cost.

Speedster Design & Implementation

- Certified Channel
- Peer-to-Peer Channel Network
- Multi-Party State Channel
- Cross-platform
- TEE Security

Multi-Party State Channel

Speedster Design & Implementation

- Certified Channel
- Peer-to-Peer Channel Network
- Multi-Party State Channel
- Cross-platform
- TEE Security

Cross-platform

Prototype of Speedster is cross-platform:

- Intel SGX:
 - Linux-SGX SDK
 - OpenEnclave
- AMD SEV:
 - Qemu
 - Vm:Ubuntu18.04
- ARM TrustZone
 - OPTEE
 - OpenEnclave

Speedster Design & Implementation

- Certified Channel
- Peer-to-Peer Channel Network
- Multi-Party State Channel
- Cross-platform
- TEE Security

POLIHER OF SCIENCE AND TECHNOLOGY

TEE Security

TEE Attacks:

- Replay/Rollback attacks.
- Side-channel attacks.
- Denial-of-service attacks.

Solutions:

- A generalized TEE abstraction.
- SEV-SE, Monotonic Counter, RPMB Secure Storage.
- Side-channel-attack resistant cryptographic library.
- Committee enforcement design.

TEE Attacks:

- Replay/Rollback attacks.
- Side-channel attacks.
- Denial-of-service attacks.

TEE Security is another research topic, we can not cover all attacks here!!!

Solutions:

- A generalized TEE abstraction.
- SEV-SE, Monotonic Counter, RPMB Secure Storage.
- Side-channel-attack resistant cryptographic library.
- Committee enforcement design.

TEE Security

Outline

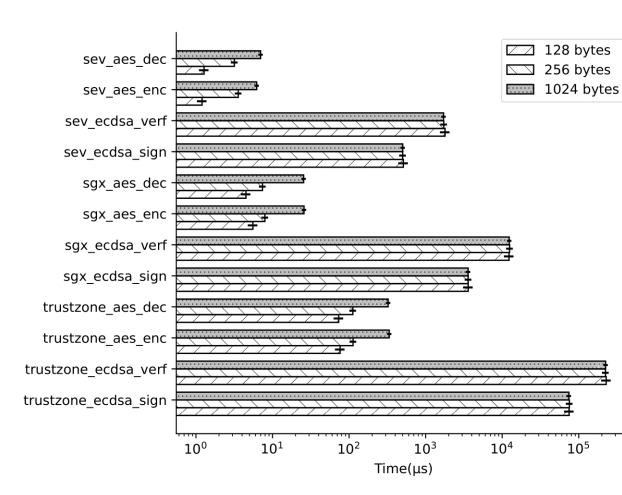
- Introduction and Background
- Architecture of Speedster
- Design and Implementation
- Evaluation
- Conclusion

Evaluation

The test environment platform:

- ✓ Intel SGX: quad-core 3.6 GHz Intel(R) E3-1275 v5 CPU with 32 GB memory.
- ✓ AMD SEV: 64 GB DRAM and an SEV-enabled AMD Epyc 7452 CPU, which has 32 cores and a base frequency of 2.35 GHz.
- ✓ ARM TrustZone: QEMU cortex-a57 virtual machine with 1 GB memory and Linux buildroot 4.14.67-g333dc9e97-dirty as the kernel.
- ✓ Real world: Azure Standard DC1s_v2 (1 vCPUs, 4 GB memory) virtual machines.

Evaluation



Applications:

- Instant State Sharing
- Faster Fund Exchange (ERC20 transaction)
- Sequential Contract Execution (Gomoku)
- Parallel Contract Execution (Rock-Paper-Scissors)
- Multi-party Applications (Monopoly)

Evaluation: Time Cost for Transaction Authentication

AES-GCM is 3-4 orders faster than ECDSA.

Evaluation: Transaction Performance

- We use the popular layer-2 network, the LN, as a baseline.
- The experiment results are averaged from 10,000 trials.

	Payment	ERC20	Gomuku	RPC
LN	192.630	N/A	N/A	N/A
SEV:AES-GCM	0.1372	0.1382	0.6667	0.1365
SGX:AES-GCM	0.0205	0.3500	0.4500	0.1930
TZ:AES-GCM	20.496	40.148	95.092	37.215

Local time cost for end-to-end transaction (ms)

	LN (lnd)		Spe			
	Payn	nent	ERC20	RPC	Gomoku	
Throughput (<i>tps</i>)	14 ±9%	72,143 ±4 %	30,920 ±10 %	53,355 ±7 %	2,549 ±15 %	
Latency (ms)	548.183 ±7 %	80.483 ±1 %	$82.490 \pm 1 \%$	80.743 ±1%	82.866 ±1 %	

Channel performance in real-world Evaluation

Speedster has better performance than LN in payment processing.

Evaluation: Channel System Comparison

Features	Channel Projects							
	LN [68]	TeeChan [65]	TeeChain [66]	DMC [37]	SFMC [24]	Perun [40]	Celer [38]	Speedster
Direct Off-chain Channel Open	×	1	1	×	1	1	×	1
Direct Off-chain Channel Close	×	×	1	×	1	1	×	1
Dynamic Deposit	×	×	1	×	1	×	×	1
Off-Chain Contract Execution	×	×	×	×	×	×	1	1
P2PCN	×	×	×	×	×	×	×	1
Multi-Party State Channel	×	×	×	×	1	×	×	1
Dispute-Free	×	×	1	×	×	×	×	1
Duplex Channel	×	×	1	1	1	×	×	1

Feature comparison with other channel projects.

Speedster is the only project that provides all features.

Outline

- Introduction and Background
- Architecture of KShot
- Design and Implementation
- Evaluation: Effectiveness and Performance
- Conclusion

Conclusion

- * Speedster efficient multi-party state channel system
 - Leverage TEE.
 - Use AES-GCM to encrypt transaction.
 - Off-chain channels can be freely opened/closed.
 - Dispute free.
 - Support multi-party state channels.
 - Cross-platform.

Thank you!

liaojh2021@mail.sustech.edu.cn/jinghui@wayne.edu

https://fengweiz.github.com/