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Abstract—Virtual Machine Introspection (VMI) systems have
been widely adopted for malware detection and analysis. VMI
systems use hypervisor technology for system introspection and
to expose malicious activity. However, recent malware can detect
the presence of virtualization or corrupt the hypervisor state thus
avoiding detection.

We introduce SPECTRE, a hardware-assisted dependability
framework that leverages System Management Mode (SMM) to
inspect the state of a system. Contrary to VMI, our trusted code
base is limited to BIOS and the SMM implementations. SPECTRE
is capable of transparently and quickly examining all layers of
running system code including a hypervisor, the OS, and user
level applications. We demonstrate several use cases of SPECTRE
including heap spray, heap overflow, and rootkit detection using
real-world attacks on Windows and Linux platforms. In our
experiments, full inspection with SPECTRE is 100 times faster
than similar VMI systems because there is no performance
overhead due to virtualization.
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I. INTRODUCTION

The complexity and ever-increasing sophistication of mal-
ware coupled with our everyday dependence on computer
systems has resulted in an ongoing arms race in the cyber-
security field. Today, malicious code can both infect and
hide its activities effectively, even while exfiltrating data and
damaging the victim host. To make matters worse, Internet-
borne malware is focusing more than ever on taking over
desktop applications and installing host rootkits. For example,
variants of ZeroAccess [1], a rootkit for both 32-bit and 64-bit
versions of Windows, is quickly becoming one of the most
widespread malware threats.

Traditionally, malware detection is provided by installing
anti-malware tools (e.g., anti-virus) within the operating sys-
tem. However, all defensive techniques that run as processes
in the operating system are inherently vulnerable to malicious
code executing at the same level. Therefore, when a rootkit
compromises the OS, most if not all of the common protec-
tion suites become ineffective, misleading the user that the
system is protecting while the malware operates freely in the
background.

To address this, security researchers suggested Virtual
Machine Introspection (VMI) [2] for malware detection. VMI
executes all programs inside a guest Virtual Machine (VM),

translating their semantic state information to malware detec-
tion tools that run outside the VM (i.e., on the host). The goal
is to isolate and protect the malware detection software from
the potentially vulnerable guest so that stealthy malware cannot
interfere or corrupt the protection mechanisms. Although a step
to the right direction, VMI systems have practical limitations.

First, VMI systems depend on the integrity of the hyper-
visor, which has a sizable Trusted Computing Base (TCB).
For instance, the latest Xen 4.2 contains approximately 208K
lines of code. Although this size is dwarfed by the code size
of a typical operating system, the attack surface posed by
the hypervisor remains significant. The National Vulnerability
Database [3] shows that there are 100 vulnerabilities in Xen
and 90 vulnerabilities in VMWare ESX. In addition, VM
escape attacks [4], [5] and hypervisor rootkits [6] are widely
deployed.

Secondly, armored malware can detect the presence of a
VM or debugger and alter its own execution [7], [8], [9].
Indeed, malware running inside of the VM can read a virtual
device name or simply read the IDT or LDT registers to detect
the presence of a VM [10]. In such cases, attaining behavioral
transparency from the perspective of the malware is urgent and
difficult to achieve.

Lastly, and most importantly, traditional VMI techniques
incur a high overhead on system performance, making them
unpopular among end-users. Some of the more theoretical
solutions are deemed incur such a high latency that they
are deemed unfit for use in current computing systems. For
instance, existing VMI methods often take on the order of
seconds to pause a VM guest to scan its memory. We could
potentially improve the performance through the use of heuris-
tics or other approximations, but this leads to false positives
and false negatives, adversely affecting the end solutions.

In light of these problems, we have developed SPECTRE,
a novel framework capable of attaining fast, OS-level trans-
parency with a small TCB while examining a live system.
We do not rely on a large hypervisor, instead employing
a small (fewer than 1,000 lines) code base. Thus, software
running at the OS level (e.g., rootkits) cannot be made aware
of our system while maintaining high performance. SPECTRE
leverages System Management Mode (SMM) on x86-based
architectures to identify malware at different levels (hypervisor,
OS, process) without any dependence on the underlying code.
Since SMM code is part of the BIOS, SPECTRE only needs to
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trust the BIOS and any volatile system firmware, thus heavily
reducing the size of the TCB. Therefore, assuming that we
can trust the hardware and BIOS, the framework remains
sound. We demonstrate potential applications of our approach
by detecting a variety of memory-based attacks without de-
pending on the integrity of underlying software components
while the system is running. Using our system, we expose
the presence of heap spray attacks, heap overflow attacks,
and rootkits. SPECTRE enables OS-transparent introspection
of native system memory. Thus, armored malware using anti-
virtualization will be unable to detect our system.

As an enabling platform for other malware detection tech-
niques, SPECTRE offers a fast solution to the semantic gap
problem. It can quickly reconstruct data structures used by
the kernel about each process running on a system. In this
paper, we use our introspection system to detect a variety
of stealthy malware. In particular, we demonstrate successful
exposure of heap spray attacks, heap overflow attacks, and
various rootkits, all on the native system without using a
VMM or other abstraction technology. We also explain how
this modular framework can be augmented for use in future
work. As such, we consider our system to be not only a useful
detection mechanism and introspection tool, but also a vehicle
for enabling research related to advanced malware.

In our experiments using working prototypes for Microsoft
Windows and Linux systems, we were able to find and recon-
struct process-related structures in less than 8ms in Windows
and less than 5ms in Linux. Our semantic reconstruction
enabled us to transparently defend against a wide range of
malware threats including heap spray, heap overflow, and
rootkit activity. To that end, we detected samples of heap spray
attacks in less than 35ms. In Windows, we were able to detect
heap overflows in 32ms. We were also able to detect a rootkit
in Windows in 8ms, while the same process took 5ms in Linux.
Lastly, we demonstrate SPECTRE is capable of maintaining a
reasonably low performance overhead by varying the sampling
interval.

Contributions In summary, we make the following contribu-
tions:

• We introduce a hardware-assisted framework that can
examine code across all layers of running system
code including a hypervisor, the operating system, and
individual applications.

• SPECTRE is OS-agnostic and fully transparent to
higher level software including malware.

• We have implemented a prototype of our framework in
both Linux and Windows, and demonstrated that our
system can detect various memory attacks including
heap spray, heap overflow and rootkits.

• Compared to existing VMI approaches we can achieve
faster execution for both detection and regular applica-
tion execution while relying on a much smaller TCB.

• SPECTRE is transparent to all code running on the tar-
geted host enabling us to perform transparent analysis
avoiding detection by the malicious code.

II. BACKGROUND

A. System Management Mode

System Management Mode (SMM) is an execution mode
similar to Real and Protected modes available on the x86
architectures. It provides a transparent mechanism for imple-
menting platform-specific system control functions such as
power management. It is implemented by the BIOS.

SMM is triggered by asserting the system management
interrupt (SMI) pin on the motherboard hardware. This pin
can be asserted using both software and hardware mechanisms.
After assertion, the CPU saves its state in a specific region of
memory called system management RAM (SMRAM). Next,
it atomically executes the system management interrupt (SMI)
handler. SMRAM is inaccessible from other CPU execution
modes, and can therefore act as trusted storage. The SMI
handler has access to physical address space (i.e., paging is
disabled) and can run any instruction. We expand upon SMM
and its usage in Sections IV and V.

B. BIOS and Coreboot

The Basic Input-Output System (BIOS) is an integral
part of all computers. It initializes hardware and loads the
operating system. BIOS code is stored on non-volatile ROM
on the motherboard. Coreboot [11] is an open-source project
aimed at replacing the BIOS in current computers. It performs
a small hardware initialization, then executes its ‘payload.’
Coreboot switches to protected mode at an early stage and
is chiefly written in the C language. SPECTRE uses a custom
SMI handler in Coreboot. This made implementation much
easier since Coreboot already handles hardware initialization.
Furthermore, this allows SPECTRE to be far more portable to
other systems, since Coreboot abstracts away heterogeneity of
specific hardware configurations.

III. THREAT MODEL AND ASSUMPTIONS

A. Memory-based Attacks

Most malware will alter memory at some point causing the
system to enter a state not intended in the original design. We
call them memory-based attacks. For example, a typical heap
spray attack will place a large number of NOP instructions
in dynamic memory, a heap overflow attack will change heap
application data or metadata in memory, and rootkits will alter
kernel code or data. Since SPECTRE is capable of examing
all layers of running system code and data (e.g., hypervisor,
OS, user-level applications) in the memory, it can sucessfully
detect those memory-based attacks including heap spray, heap
overflow, and rootkits when accommodating corresponding
memory checking modules.

B. Assumptions

SPECTRE uses SMM to detect malware in the operating
system. The attack is assumed to have unlimited computing
resources and can exploit zero-day vulnerabilities of desktop
applications. We have a similar threat model to VMI systems
as in [12], [13], [14], but since we do not rely on the operating
system or hypervisor to accomplish the inspection task, we do
not need to trust the hypervisor or the OS. We assume SMM is
locked and will remain intact after boot, and the attacker cannot
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Fig. 1. Operation of SPECTRE. We can detect a variety of memory-based attacks from within the SMI handler.

change the SMI handler or flash the BIOS and reboot. Cache
poisoning techniques which change the SMI handler [15] are
out of the scope of this paper. We assume that the target
machine is equipped with trusted boot hardware, such as a
BIOS with Core Root of Trust for Measurement (CRTM) and
a Trusted Platform Module (TPM) [16] to ensure the integrity
of the SMI handler upon booting the system. We assume that
the attacker does not have physical access to the machine.
We also assume that the hardware can be trusted to function
normally; malicious hardware (e.g., hardware trojans) is out of
scope.

IV. SYSTEM ARCHITECTURE

Fig. 1 illustrates the operation of the SPECTRE system,
which consists of two machines. The target machine is the
machine to be protected, and the monitor machine is respon-
sible for receiving status messages from the target machine
and triggering alerts. The whole inspection process consists
of four major stages. First, the target machine enters SMM
by triggering a system management interrupt (SMI) regularly
and reliably. Second, after entering SMM, the target machine
rebuilds accurate semantic information about the operating sys-
tem in a trusted environment without relying on the (potentially
altered) operating system. Third, the target machine executes
monitoring modules that evaluate the integrity of the kernel
or user-space processes. Finally, a “heartbeat” message is sent
securely to the monitor machine. When a suspicious behavior
is detected, an alert is transmitted as part of the heartbeat
message.

SMM gives us several useful properties. First, it has unre-
stricted access to the whole physical memory in the system, so
it is difficult for stealthy, malicious code to hide itself. Second,
the SMI handler is loaded only once when the computer is
powered up, and locked thereafter. Thus, even if malicious
code can rewrite the BIOS or SMI handler, it won’t be able to
execute that code until rebooting. However, we can use TPM
to prevent this attack by checking the integrity of the BIOS
and SMM code before booting up. Third, the SMI handler
can quickly inspect memory because it executes atomically
and benefits tremendously from locality optimizations. Lastly,
SMM provides a region of secure memory (SMRAM) in
which we store data each time the SMI handler runs. This
secure memory allows us to inspect system memory without
having to trust the underlying operating system for storing
relevant data. This protection is ensured transparently by the
memory management unit (MMU), which redirects accesses
to SMRAM addresses to a portion of video memory.

A. Periodic Triggering of System Management Mode

We periodically assert a system management interrupt
(SMI) on the target machine so that it can enter SMM.
There are two ways to trigger a SMI: software-based and
hardware-based. Software can cause a SMI via I/O access
to a particular port specified by the chipset. Software-based
mechanisms are convenient and easy to implement, but they
are not transparent to the operating system. Thereforew, if the
OS becomes compromised, malicious code can interfere with
software and prevent it from accessing those special ports.

Alternatively, many hardware devices are also capable
of triggering a SMI, including PCI devices, keyboards, and
hardware timers. Our system utilizes a hardware timer built
into the chipset, which is capable of generating a SMI at
a regular and configurable interval. We set the timer con-
figuration parameters in the BIOS before the OS loads, so
we can trust the timer after booting. Nonetheless, advanced
malware may be able to change these configuration settings
after compromising the OS. This would effectively result in
a denial of service. However, a monitor machine can trivially
detect denials of service—it expects “heartbeat” messages sent
at regular intervals. If these heartbeats cease, then the monitor
machine can detect a denial of service attack. Additionally,
we can prevent masquerading attacks by using a key exchange
in the BIOS before the OS loads. We describe the detailed
implementation in Section V.

B. Rebuilding Semantic Information

Since SMM has unrestricted access to all physical memory
and registers, once entering SMM, the target machine can in-
trospect all its physical memory. However, since only physical
address space is visible in SMM, we must reconstruct the
semantics of various operating system structures in order to
evaluate data and code integrity of the kernel and user-space
programs.

When the SMI handler is first triggered, the CPU context
that is saved contains virtual addresses relevant to the running
thread. Moreover, in both Windows and Linux, many kernel
structures reference virtual addresses. Thus, we should first
be able to translate virtual addresses to physical addresses,
so that we can access important data from within the SMI
handler. Fortunately, this process is identical in both Windows
and Linux.

Both operating systems reserve a large section of virtual
address space for kernel mode operations. Addresses above
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a constant, PAGE OFFSET, are considered kernel space.
PAGE OFFSET is 0xC0000000 for Linux, and 0x80000000
for Windows. In either case, finding the physical address in
the kernel space simply consists of subtracting PAGE OFFSET
from the virtual address.

For user space virtual addresses (VA), both operating
systems use a two-level paging scheme on our test bed. There
is a page directory containing pointers to particular page tables,
which in turn point to specific pages. Each 32-bit virtual
address is split into three regions: a 10-bit page directory offset,
a 10-bit page table offset, and a 12-bit page offset. The CR3
register points to the base of the page directory. From there, the
first 10 bits of the virtual address are used to find an entry in
the directory which points to the base of a page table. The next
10 bits of the virtual address are used as an offset into the page
table, yielding a pointer to the page where the required data
is stored. Physical Address Extension (PAE) essentially adds
a fourth level of translation which could easily be integrated
into our system.

C. Memory Checking Modules

Our system is designed to easily accommodate various
existing defensive technologies. We demonstrate this capability
with several modules that detect an array of attacks including
Heap Spray, Heap Overflow, and Rootkits. Other checking
modules can be extended into the SMI handler of our system.
More details can be found in Section V.

1) Heap Spray Attacks: SPECTRE’s heap spray detection
module regularly scans the heaps of vulnerable processes in
memory. When a heap spray attack occurs, it will fill the heap
with a NOP sled. When detecting a large region of NOP bytes,
we conclude that a heap spray attack has occurred.

2) Heap Overflow Attacks: SPECTRE can detect heap over-
flow attacks by evaluating the integrity of heap-related struc-
tures in the operating system. Typically, heap overflow attacks
will alter entries in the free list maintained by the operating
system [17]. This structure helps the OS track which blocks
of the heap have been freed by the program for reallocation.
A heap overflow attack will overflow the boundary of a heap
buffer and rewrite data contained in an adjacent free block.
This behavior will cause inconsistencies in the free list for
which we can easily scan.

3) Rootkits: Once installed, rootkits pose a serious threat
to a system’s health. Nonetheless, in order to execute any code,
they must alter the system memory in some detectable way,
such as corrupting the list of processes. Ultimately, we detect
rootkits by evaluating the integrity of kernel structures.

D. Reporting Alerts

Once detecting an attack, the SMI handler alerts the mon-
itor machine over a serial or Ethernet cable. We must ensure
that communicating with the monitor machine is secure. There
are two requirements to establish a trusted connection between
the target machine and the monitor machine: a shared secret
key between the target and the monitor machines, and a trusted
network interface on the target machine. The target machine
can establish a shared secret key with the monitor machine
in the BIOS before booting the OS. Since we trust the BIOS

at startup, we can store the key in the trusted SMRAM. This
key is then rendered inaccessible from other execution modes;
only our SMI handler has access to it. This allows us to ensure
that an attack cannot masquerade as our system to the monitor
machine.

Since we cannot rely on the target machine’s untrusted
operating system to relay the alert message to the monitor
machine, our approach involves writing driver code within
the SMI handler for our network card. We use two separate
network interfaces in our testbed—one for normal network
usage, and one exclusively for use by our SMI handler. This
approach makes our system more transparent to the operating
system. With no driver installed in the OS, software is unaware
of its presence. Our system can remain undetected while
operating, naturally at the expense of a PCI slot. However,
while a compromised OS can scan the PCI device and write a
new driver to operate the network card, it still cannot fake the
network packet without the shared secret key. Thus, reporting
alerts of SPECTRE is secure.

Moreover, our system can detect denial of service attacks
that may occur if our system becomes compromised. Since
the monitor machine will expect receiving “heartbeat” updates
from the target machine at regular intervals, it is trivial to
detect aberrations in packet delivery time.

V. DESIGN AND IMPLEMENTATION

SPECTRE supports both Windows and Linux OS envi-
ronments. In our testbed, the target machine has a ASUS-
M2V MX SE motherboard with AMD K8 northbridge and
VIA VT8237R southbridge, 2.2GHz AMD Sempron LE-1250
CPU, and 2GB Kingston DDR2 RAM. We use the inte-
grated network card for normal network traffic and an Intel
e1000 Gigabit network card for SMM packet transmission.
Additionally, the monitor machine consists of a simple Linux
machine. It runs an instance of minicom for communication
via the serial port and a simple socket program to receive
network packets from the target machine. Its specifications are
inconsequential to the performance of the system. We use an
open source BIOS, Coreboot with a SeaBIOS payload. For a
Linux environment, we use CentOS 5.5 with kernel 2.6.24 and
Debian with kernel 2.6.32. For a Windows environment, we
use Windows XP SP3. Each environment is 32 bit; however,
our system is also capable of running in a 64-bit environment
with slight changes in the paging system.

We now describe the design and implementation of each
of the four steps mentioned in Section IV: triggering SMM at
regular intervals, reconstructing semantic data, running a de-
tection module, and communicating with the monitor machine.

A. Periodically Triggering SMM

We use a hardware timer, General Purpose 0 (GP0), to
periodically assert a system management interrupt (SMI) [18].
The timer is configured via control registers in the southbridge,
which we set in Coreboot before the OS loads. This timer is
configured with a starting value and unit of time. When the
specified unit of time elapses, the timer value decrements by
1. Upon reaching 0, the timer will assert a SMI and then reset
its value, restarting the process again. For example, when we
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Fig. 2. Finding the list of processes in Windows.

assign the timer a value of 5 and a time unit of 1 second, it
will trigger a SMI every 5 seconds.

Though a software-based SMI triggering mechanism would
be easier to use, it is not usable for two reasons. First, software-
based triggering would require extending our trust base to the
operating system—malware that compromises the OS is able
to stop the triggering software. Secondly, since it is software,
the exact timing is left to the mercy of the OS scheduler.
If the software trigger does not get scheduled due to high
multiprogramming in the OS, then we may unintentionally
suffer a denial of service. Thus, we choose the hardware-based
approach that is much more reliable and transparent.

B. Rebuilding Semantic Information

SPECTRE performs inspection operations within SMM,
which is agnostic to the particular operating system. However,
in order to introspect the integrity of the OS, we have to fill
the semantic gap on the data structures, which are different
for Windows and Linux environments. We elaborate on this
below.

1) Bridging the Semantic Gap in Microsoft Windows:
Microsoft Windows maintains a complex hierarchy of data
structures responsible for processes and threads. In particular,
each CPU is associated with a Kernel Processor Control Re-
gion (KPCR) [19]. This data is always present at a static virtual
address, 0xffdff000, in memory. Thus, if we can translate that
virtual address to a physical address, we can easily access it
from within the SMI handler.

Fortunately, the CR3 register stores the physical address
of the page directory of the currently executing process. This
allows us to find the physical address corresponding to any
given virtual address used by that process, including the
KPCR. While each process has a unique CR3 value, SMM
saves the CR3 register when switching from protected mode.
Therefore, we can simply read the CR3 value from SMRAM
to find the KPCR regardless of what the OS was doing before
the SMI occurred.

At offset 0x34 of the KPCR, there is a pointer to
another structure, the KdVersionBlock, which contains
certain global variables pertinent to the current version
of the kernel. Within the KdVersionBlock, the ad-
dress of PsActiveProcessHead is stored at offset 0x78.
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Fig. 3. Finding heap data in Windows. Each arrow represents a translation
from virtual to physical space.

PsActiveProcesssHead is a pointer to the start of a
circularly- and doubly-linked list of pointers to executive
process structures, which we then use to find the heap of each
process. Additionally, the executive process structure provides
forward and backward links to other executive process struc-
tures. Fig. 2 provides a visual representation of the structures
we must traverse to find PsActiveProcessHead and the
executive process structures to which it links.

Unfortunately, some rootkits are capable of altering this
linked list to hide themselves through a technique called
Direct Kernel Object Manipulation (DKOM) process hiding.
This means we must consider alternative ways of enumerating
processes. We consider a method used by a program called
KProcCheck [20].

First, we can use the method above to find the
first executive process running on the system (called the
PsInitialSystemProcess). This executive process is
located at a fixed address, so we only need to find it once
when first starting the system. Even if a rootkit removes this
process from the linked list, we can still retrieve it from within
the SMI handler.

Next, within the executive process structure, there is a
HANDLE_TABLE structure containing information about that
process’s files, devices, ports, and similar handle objects.
This structure contains a HandleTableList consisting of
backward and forward links to handle tables of other pro-
cesses. This means we can enumerate each handle table for
every process running on the system, regardless of whether
or not a given process has been hidden. Additionally, the
HANDLE_TABLE structure also contains a pointer to the
executive process to which it belongs. Thus, even if a rootkit
uses DKOM hiding, we can still find the executive process it
tries to hide using this method.

Using the methods described above, we can enumerate
all of the processes running on the system. Each executive
process structure exists in kernel space of a particular process.
It contains the name of the binary on the filesystem (e.g.,
“firefox.exe”). This allows us to find and analyze a specific
process, regardless of which process is running when SMM is
triggered. While rootkits would be able to change the name of
the process, we would be able to detect it via simple integrity
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checking. We can simply store the name of the image in
SMRAM and check if that same executive process changed
names during the next run.

Each executive process contains a pointer to a Process
Environment Block (PEB), which is a user space structure
that stores the locations of heap structures belonging to that
process. Each process has at least one default heap, and can
optionally create additional private heaps as needed. Pointers
to each heap are stored in the process’s PEB. Each heap
structure contains additional pointers to a maximum of 64 heap
segments, each of which stores a sequence of heap entries. The
entries contain 8 bytes of metadata followed by the actual heap
data. The entries in a segment are stored contiguously in virtual
memory. Fig. 3 illustrates the hierarchy of data structures we
must traverse to enumerate entries in the heap.

2) Filling the Semantic Gap in Linux: Linux offers a much
simpler process management scheme. There is a circularly- and
doubly-linked list of task_struct structures, each of which
contains information about processes running in the system.
We can enumerate all of the processes by finding a single
task_struct and walking through the list.

We leverage the kernel-exported symbol information to find
a starting task_struct and then enumerate all of the pro-
cesses. Firstly, we find the virtual address of the init_task
pointer from the System.map file in the /boot directory.
The System.map file is produced once when the kernel is
compiled; it stores all of the symbol information about the
kernel. init_task is a static address that points to the
task_struct of a specific process, swapper. Within this
task_struct, we can find forward and backward links that
form a circularly- and doubly-linked list of tasks at offset
0x178 in our kernel. Additionally, offset 0x29b contains the
name of the process, which helps identify specific processes.
Fig. 4 illustrates these steps to find the list of tasks in Linux.
Similarly, we use the modules symbol in System.map to
find the list of kernel modules.

Since the task_struct list is used by the scheduler,
Linux rootkits cannot hide by altering this list—otherwise, they
might impact their own execution. Instead, they often hide by
altering the /proc directory.

Once we have the pointer to a task, all information related
to the process address space is included in an object called
the memory descriptor, mm. The mm field stores the pointer to
a memory structure, called mm_struct, for the process. The
mm_struct structure contains start_brk and brk fields,

which correspond to the starting and ending addresses of the
heap.

In contrast to Windows, the Linux environment simply
allocates heap space one page at a time (via the sbrk
system call). Typically, applications use heap allocators built
into libraries like glibc, and thus malware typically exploits
vulnerabilities in a particular heap allocator. For example, glibc
uses a similar free list structure as in Windows—16 byte total
metadata in free entries with forward and backward links to
other free entries of the same size. Thus, the glibc allocator
has free list vulnerabilities similar to those in Windows.

C. Running a Detection Module

Once we glean relevant semantic information from the
operating system, we can start executing a module for system
inspection. Our system is flexible to easily accommodating var-
ious existing defensive technologies. We demonstrate this ca-
pability with several modules that can detect various memory-
based attacks, including heap spray attacks, heap overflow
attacks, and rootkits. Note that we acknowledge the simplicity
of these detection algorithms that should not be considered
as major contributions of this paper; our goal is to show the
flexibility of our system framework to accommodate various
checking modules. Other checking modules can be extended
into the SMI handler of our system.

1) Detecting Heap Spray Attacks: Once we have access to
heap data, detecting a heap spray is the same for both Windows
and Linux environments. We scan the heap for the presence of
a potential NOP sled. Unfortunately, the x86 NOP instruction,
0x90, is not the only technique used to achieve NOP-like
behavior. Other common instructions include or al, 0x0c
and xor eax, eax. In fact, many repeated sequences of
bytes exhibit the behavior of a NOP sled, provided they do
not affect the registers required for the shellcode to execute.
Therefore, we heuristically check for the presence of a NOP
sled by searching for contiguous, repeated sequences of bytes
in the heap of a process.

Essentially, we wrote a regular expression engine in
the SMI handler which recognizes the following pattern:
[ˆ(0x00|0xFF)]{n,}. This pattern will recognize a se-
quence of at least n or more repeated bytes other than 0x00 or
0xFF. Naturally, changing the value of n will affect the false
positive rate. The results of our experiments are detailed in
section VI.

2) Detecting Heap Overflow Attacks: In Windows, an
application can have multiple heaps, and each heap has a free
list array with 128 elements called the FreeList. We can find
this array at offset 0x178 from the heap base. Each FreeList is
a list of free chunks chained by a doubly linked-list. Each
free chunk has 16 bytes meta data including sizes of and
pointers to the previous and current free chunks. In Linux,
heap management is provided by a library (e.g. glibc), but
the free blocks are chained by doubly-linked lists and uses
the same 16 byte header structure. The attacks exploiting the
FreeList depend on the specific heap implementation, but the
malicious code must change pointers to hijack execution. Our
system transverses all entries in each heap’s free list to see if
there is any broken points.
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We did not implement a heap overflow detection module
for Linux because heap free blocks are maintained by glibc
library. This adds another layer of the semantic gap problem
for reconstructing heap structures. We considered it as a future
work.

3) Detecting Rootkits: Detecting rootkits depends upon
monitoring the integrity of 1) kernel code, and 2) kernel data.
To check the integrity of kernel code, we simply compute
a hash of the static kernel code within the SMI handler.
Alternatively, we send the static kernel code to a remote server
for integrity attestation. Remote checking may be favorable in
environments where consumption of network bandwidth is less
expensive than local hash computation. Since the SMI handler
essentially pauses the native system, we want to avoid overly
long computation in the SMI handler to avoid incurring too
much overhead.

The more challenging aspect is maintaining integrity of
dynamic data structures in the kernel. Previous research has
proposed many defensive techniques against rootkits [12], [21],
[13]. In order to demonstrate this capability in our system, we
wrote a simple rootkit detection module of listing all running
processes (pslist) and kernel modules (lsmod) for both
Microsoft Windows and Linux platforms. We leverage the se-
curity caveats of SMM to bring accurate semantic information
from the operating system to a trusted ‘external’ viewpoint.
We can discover rootkits by comparing these external views
with the internal views of the operating system process states.
In Section VI, we test our system using some rootkits available
in the wild.

D. Communication with the Monitor Server

The last stage of our system requires communicating with
an external server. We accomplish this task by writing driver
code for our particular network card in the SMI handler. It
consists of manually configuring registers on the device and
interacting with the PCI bus.

In brief, we implemented a simple MAC-layer protocol
for communicating with the external server. It sends a 214
byte packet in the SMI handler consisting of a 14 byte header
and a fixed 200 byte payload. The payload is encrypted with
a simple XOR with a key we store in SMRAM, which is
first retrieved before the OS loads. The payload contains a
sequencing number which simply increments by 1 each time
the SMI handler runs. The rest of the payload provides enough
spaces for detection modules to convey specific information to
the monitor machine.

VI. EXPERIMENTAL RESULTS

A. Code Size

First, we considered the size of the code required for our
system to run. In total, there are 470 lines of new C code in the
SMI handler, including all three memory checking modules.
Each module consisted of less than 100 lines of C code, and the
total network transmission code was 110 lines. After compiling
the Coreboot code, the binary size of our SMI handler was
only 780 bytes, which reduce the trusted computing base of
our system.
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Fig. 5. Breakdown of SMI handler runtime.

B. Breakdown of SMI Handler Runtime

Next, it is important to quantify how much time is required
to execute each step of our system. For this experiment, we
have broken SPECTRE into the following logical operations:
1) Switching to SMM; 2) Reconstructing OS semantics; 3)
Running a detection module; 4) Reporting status via NIC; 5)
Switching from SMM to resume the OS. All of the above
except for step 3 should take constant amounts of time. The
running time of a detection module will depend upon the type
of attack and the complexity of the detection technique. For
example, the time taken to traverse a linked list of processes
will depend upon how many processes are running (i.e., the
length of the list) when the module begins executing. However,
the rest of the steps execute a fixed set of instructions, and thus
we expect them to have somewhat constant running times.
In this section, we wanted to understand the ‘fixed cost’
associated with using our system. In other words, how much
time does SPECTRE need to bring useful semantic information
to the developer? Thus, we considered each of the times
associated with steps 1, 2, 4, and 5. Step 3 (running detection
modules) is discussed later.

We measured the time taken by each step by measuring
the TSC register, which stores how many CPU cycles have
elapsed since powering on. We disabled technologies in the
BIOS that affected CPU clock speed so that a difference in
the TSC register represented a constant unit of time, computed
with the equation,

T = (R1 −R0)(
1

C
),

where T is measured time, Rt is the value of the TSC
register at time t, and C is the clock speed on the CPU. We
recorded the TSC register at several points during our system’s
execution, such as the beginning and end of the SMI handler.

Fig. 5 shows the observed times taken for each step in each
operating system. We can see from the graph that switching
to and resuming from SMM take significant time. This is
attributed to the power management operations that SMM must
perform before our SMI handler can execute. Similarly, the
time to resume from SMM is explained by several factors.
Upon resuming from SMM, the hardware must also reconfig-
ure itself to allow subsequent SMIs to occur, which requires
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TABLE I. HEAP SPRAY ATTACK DETECTION TIME (N=25)

Detection Time STD
Firefox 31.168 ms 0.272 ms
Internet Explorer 27.917 ms 0.154 ms
Adobe Acrobat Reader 25.839 ms 0.302 ms
Adobe Flash 29.455 ms 0.603 ms

many I/O operations thus leading to a considerable running
time.

Note the significant difference in the time taken for re-
constructing the semantics of each operating system. Recon-
structing Windows kernel semantics is much longer than in
Linux (by two orders of magnitude). This is mainly due to
the page table translation steps required in Windows since so
much of the data about processes is stored in userspace. In
Linux, however, most of the required data is stored in kernel
space, and therefore finding the physical addresses reduces to
simple subtraction of the PAGE OFFSET constant.

C. Heap Spray Detection Module

We implemented a heap spray detection module as de-
scribed previously. We tested Firefox, Adobe Acrobat Reader,
and the Adobe Flash plugin in both Windows and Linux, but
since MSIE is not available for Linux, we only tested it in
Windows.

We chose four heap spray attacks available as Metasploit
modules. Using Metasploit eased the experimentation because
it allowed rapid deployment of each attack. Each attack has a
corresponding Common Vulnerabilities and Exposures entry.
The attacks we used are:

1) Firefox 3.5 CVE-2009-2478
2) Internet Explorer 6, 7, 8 CVE-2010-3971
3) Adobe Acrobat 9, 10.1 CVE-2011-2462
4) Adobe Flash Player < 10.2 CVE-2011-6069

These attacks all exploit a vulnerability in an application
that causes it to start executing code in the heap. They are
all written in scripting languages. The first three attacks use
JavaScript, and the last uses ActionScript. They cause the
host program to start executing the malicious script, which
causes it to allocate large amounts of memory. Then, the
attack hijacks control through another means (use-after-free,
stack overflow, etc.) to start executing the sprayed memory.
We ran this experiment in Windows and not Linux because the
dynamic memory system in Windows is much more complex,
and thus provides a ‘worst-case’ performance figure. Table I
shows the average results for 25 trials of each type of heap
spray attack. The results shows that SPECTRE can detect these
attacks in less than 32 ms.

D. Heap Overflow Detection Module

We tested our system against CVE-2012-0276, a real heap
overflow attack affecting an image viewer in Windows called
XnView. The vulnerability exists in XnView versions 1.98 and
earlier. In XnView, insufficient validation while decompressing
certain TIFF files enables a heap-based buffer overflow. The
malicious image overflows a heap entry, then it rewrites
metadata of nearby free chunks in the heap. Then, it simply
waits for these blocks to be reused. When the operating system
unlinks one of these free blocks from the FreeList, execution
jumps to the shellcode.

We detected this attack by checking the integrity of the
FreeList, and it takes 32 ms to detect this attack including 24
ms spent in the detection module and the fixed 8 ms associated
with entering and exiting SMM.

E. Rootkit Detection Module

We used real, publicly available rootkits to test out system
on both Windows and Linux platforms. On Windows plat-
forms, we devised an effective defense mechanism against
the Fu rootkit [22]. Fu Rootkits allow the intruder to hide
information from user-mode applications and even from kernel
modules. Fu hides information by directly manipulating data
structures in the kernel. In particular, it removes an entry
from the PsActiveProcessHeader list. However, we are
able been able to find hidden such processes by finding and
traversing the HANDLE TABLE list.

We successfully detected the Fu rootkit using this method.
On the target machine, Fu hides the ssh.exe process. We
detected the hidden process by enumerating the handle tables
in the SMI handler. This technique took only 8ms.

On the Linux platform, we tested a newly available root-
kit, KBeast (Kernel Beast), on kernel 2.6.32. KBeast is an
advanced armored Linux rootkit that hides its loadable kernel
module, hides files and directories, hides processes, hides sock-
ets and connections, performs keystroke logging, and has anti-
kill functionality [23]. It is currently undetectable by the latest
rootkit detectors including chkrootkit [24] and rkhunter [25].
KBeast leverages the sys_write system call to fake output
of system commands like ps, pstree, top, and lsof to
hide itself. Again, since SMM has an external view of the
system states, our system reconstructs the semantics of data
structures from physical memory to detect malicious behavior
like process hiding.

We were able to detect KBeast in about 5ms using our
system. Using the ps within the OS missed a network dae-
mon process for malicious remote access. However, SPECTRE
successfully discovered the hidden process by traversing the
process list in the system.

F. System Overhead

The last and most important experiment tested how much
overhead our system introduces to the target machine. We used
freely available benchmarking software for both Microsoft
Windows and Linux environments. This helped us account
for the impact on overall system performance caused by our
system’s periodic operation. For this experiment, we ran the
benchmarking software without our system in place. Next, we
ran the same benchmark with SPECTRE enabled at several
different time intervals ranging from 0.0625 to 5.0 seconds
using the General Purpose 0 (GP0) hardware timer on the
southbridge to periodically trigger a SMI. We then calculated
the overhead as a ratio between the scores with and without
the system in place.

In this experiment, the heap spray detection module tar-
geted the heap of the Adobe Acrobat Reader application
in both Windows and Linux. The heap overflow detection
module targeted the heap of the XnView process in Windows.
We did not consider a Linux-based heap overflow detection
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module because it requires reconstructing another layer of
semantic information from the particular heap allocator used
by a process. Lastly, the rootkit detection module listed all of
the running processes in memory to find hidden processes.

1) Windows Evaluation: In Windows, we used PassMark
PerformanceTest to measure benchmark our test system. We
specifically ran the CPU, disk, and memory tests in PassMark
to see the implications on raw performance. Fig. 6(a) shows
the results of this experiment. These results indicate the
relatively low overhead introduced at all sampling intervals.
From Fig. 6(a), we can see that the heap spray and heap
overflow modules have slightly larger overhead than the rootkit
detection module. This is because the heap-based modules
must scan heap data, which in itself takes roughly 30ms.
Rootkit detection, on the other hand, simply scans the list of
running tasks in memory. This task takes only 8ms in the SMI
handler.

2) Linux Evaluation: We used a similar methodology to
test the overhead in Linux. We used the UnixBench suite to
test performance while the system ran. This was less geared
toward CPU and memory performance, instead focusing on
specific Unix-like operations, like system call and shell piping
performance. The results are presented Fig. 6(b). In general,
SPECTRE introduces low overhead in Linux. Even at the
lowest sampling interval of 1

16s (62.5ms), it causes only 20%
overhead in the heap spray detection module, and only 5%
overhead in the rootkit detection module.

G. Comparison with VMI Systems

SPECTRE provides a new framework for transparent sys-
tem introspection and stealthy malware detection. Compared
to well-known virtual machine introspection based architec-
tures [2], the BIOS in SPECTRE serves a role similar to
the hypervisor in VMI systems. Theoretically, SPECTRE can
achieve the same level of protection as VMI does if 1) we are
able to implement and execute the same detection algorithms in
SMRAM, and 2) we are able to reconstruct all of the necessary
kernel- and user-space data structures that serve as the input
to the detection algorithms. In this paper, we showed several
ways to include different detection modules and recover the
necessary semantic data in SPECTRE.

SPECTRE improves upon VMI systems in three ways.
First, SPECTRE is a hardware-assisted introspection tool which
relies only on the BIOS—it does not need to trust the large-
size hypervisor. Thus, SPECTRE has a much smaller TCB.
Second, SPECTRE can achieve better transparency than VMI
systems. Nowadays, armored malware [9], [26], [27], [10] can
easily detect the presence of a VM, but SPECTRE can remains
transparency while monitoring these malware. Third, SPECTRE
achieves better performance because it does not need to deal
with nested page table translation, and SMM switching is faster
than VM switching. Table II shows the runtime comparison
between SPECTRE and Virtuoso [13]. The program pslist
shows all of the running process information in the OS, and
the program lsmod shows all of the loaded kernel modules.
The results show that SPECTRE can run these tools 100 times
faster than those in Virtuoso. Recently, hardware virtualization
extensions (e.g., Intel VT, AMD-V) have been adopted to VMI
systems to speed up the introspection process.

TABLE II. RUNTIME COMPARISON OF INTROSPECTION PROGRAMS
BETWEEN SPECTRE AND VIRTUOSO

SPECTRE (ms) Virtuoso (ms)

Windows pslist 6.6 450.2
lsmod 7.6 698.1

Linux pslist 4.3 6494.1
lsmod 4.4 2437.0

VMI systems can operate based on trap conditions, allow-
ing asynchronous, event-based tools. The current SPECTRE
prototype can only execute periodically, but it is a straightfor-
ward engineering challenge to implement similar functionality
by using performance counters to trigger SMIs. We can assert
SMIs when certain conditions are met in the CPU performance
counters. For instance, when the instruction cache miss counter
overflows, we can assert a SMI.

VII. SPECTRE LIMITATIONS AND DISCUSSION

The total potential SMRAM size is large enough to in-
clude a number of specific malware detection modules and
algorithms. The default size of SMM memory area is 64 KB
between 0x30000 and 0x3FFFF, with another 4MB memory
region called TSeg optionally available as SMRAM [28]. In
our testbed, the size of our SMI handler with three detection
modules is only 780 bytes. However, the SMRAM is not large
enough to accommodate the general anti-virus tools which rely
upon large signature databases. We can solve this problem
by running complex malware detection tools on the monitor
machine, which can request the target machine to send the
raw memory data through the network [29], [30]. It will
significantly reduce the porting complexity and space used
by the SMI handler. However, it will increase the system
overhead on the target machine. In this scenario, the SMM is
responsible for sending the whole memory (e.g., 4GB in a 32
bit system) to the target machine, the operating system on the
target machine is suspended during the packet transmission.
It will cause significant delays, ultimately suspending the OS
and interrupting the user.

Leveraging existing malware detection algorithms or build-
ing customized detection tools requires a considerable human
effort due to the semantic gap problem. It is not guaranteed
to work correctly if, for example, the OS is significantly
changed or updated. For future work, we are considering auto-
matic reconstruction of operating system semantics combined
with [13], [14].

In addition, SPECTRE only focuses on attacks in memory,
and it does not check the content stored on other I/O devices
such as hard disks. Thus, we cannot inspect data that has
been swapped to disk. Inspecting the filesystem would require
porting a disk driver into the SMI handler, and further filling
the semantic gap introduced by the particular hard disk vendor
and chosen filesystem.

Since SPECTRE relies on periodically polling system mem-
ory, it is vulnerable to the evasion attack [31], where attacker
cleans up the trace before introspection begins. To address
this problem, we could enter SMM every instruction by using
performance counters in the CPU, thus guaranteeing that every
state is introspected. We could also use a random scheduler to
trigger SMI instead of fixed time interval. In this case, the
attacker would not know the time interval used by our system,
increasing the accuracy and precision required of the attack.
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Fig. 6. Overhead introduced in SPECTRE

Vigilare [32] is a system bus traffic monitor on system-on-
a-chip (Soc) for checking kernel integrity. It can defend the
evasion attack in polling systems by using event-driven moni-
toring mechanism. However, Vigilare requires extra hardware
support (i.e., to duplicate system bus traffic to the verifier) in
desktops and servers, while SPECTRE leverages an existing
hardware feature (SMM) for malware introspection.

Because SPECTRE relies a on dedicated network card to
report a heartbeat message to the monitor machine, malicious
NIC firmware may attempt to manipulate the “heartbeat”
message. To defend against such attacks, SPECTRE can store
a hash value of the NIC firmware in SMRAM and check its
integrity before packet transmission in the SMI handler.

Although we implement SPECTRE on a single core pro-
cessor, SMM is able to deal with multi-core processors as
well. Since each core has its own MSR registers, each core
can define its own SMRAM memory range which contains
the SMI handler. When an SMI is generated, it switches all
of the cores on the platform to SMM, each executing its own
SMI handler. In order to achieve isolation and transparency,
we could let one core execute SPECTRE code, and other cores
simply wait until inspection finishes. Another more efficient
way is to let one core stay in SMM for introspection while the
other cores resume execution in the Protected Mode. However,
this approach must handle inter-core communication carefully.
SICE [33] has demonstrated this method on AMD processors.

Intel recently introduced SMI Transfer Monitoring
(STM) [34] that virtualizes SMM code. The idea is to provide
a secured VMM launch. Unfortunately, the use of an STM
involves disabling SMIs, thus potentially preventing our system
from executing. However, we can modify the STM itself,
which executes in SMM, to provide the benefits of SPECTRE
without affecting the added security of STM.

SPECTRE is intended to be an extensible framework capa-
ble of enabling advanced detection and analysis techniques
in a secure environment. We evaluated the system through
several use cases such as heap spray attacks. Attack detection
techniques such as NOZZLE [35] can be ported to our system
to increase their coverage. For example, NOZZLE currently
is limited to detecting heap spray attacks within the browser
process in userspace. However, we can easily adopt the de-
tection algorithm within SPECTRE to cover attacks in a larger
scope. In brief, our system framework facilitates broadening

the coverage of analysis and detection.

SPECTRE currently counters three memory-based attacks:
heap spray, heap overflow and rootkit attacks. Other types of
memory-based attacks (e.g. ROP) could also be detected by
SPECTRE after accommodating corresponding efficient detec-
tion algorithms as optional detection modules in our system.

VIII. RELATED WORK

A. Memory-based Attacks and Detection

Memory-based attack detection is an active research area.
In recent years, due to the extensive usage of web browsers
on various web applications, more and more heap-based
memory corruption attacks have surfaced [36], [37], [17],
since attackers can easily allocate malicious objects using
scripting languages embedded in a web page. In 2009, heap
spraying exploits have been identified in the Adobe Reader
using JavaScript embedded in malicious PDF documents [38].

Researchers have proposed a number of effective de-
fensive mechanisms [39], [40] against heap-based memory
attacks. DieHarder [41] analyzed several memory allocators
and showed they were vulnerable to attack, and also pre-
sented a new memory allocator against heap-based attacks.
NOZZLE [35], a runtime heap spray detector, examined in-
dividual objects in the heap, interpreted them as code, and
performed static code analysis to detect malicious intent.
Instead of detecting the attacks at the operating system level,
[42] can detect drive-by-download attacks by emulation to
automatically identify malicious JavaScript code. In this paper,
SPECTRE uses some simple yet effective detection algorithms
to detect samples of heap spray and heap overflow attacks,
which shows the capability and usefulness of our system.
Moreover, SPECTRE is designed with the intent to conveniently
accommodate more advanced attack detection techniques as
new detection modules.

A number of mechanisms and systems have been built to
enforce kernel integrity and detect potential rootkits. SecVi-
sor [43] is a tiny hypervisor that leverages new hardware
extensions to enforce life-time kernel integrity. However, the
deployment of SecVisor requires modification of the kernel.
Instead, SPECTRE does not need to change any code in the
operating system, although it does require changing the BIOS.
Flicker [21] and Trustvisor [44] employ Dynamic Root of
Trust Measurement (DRTM) to provide a trust environment for
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running security code. One particular usage is to run a rootkit
detector for OS integrity checking. SPECTRE can achieve a
similar goal by using only SMM.

B. Bridging the Semantic Gap in VMI Systems

The semantic gap problem has fueled a large amount of
research [12], [13], [14]. Recently, virtualization has been em-
ployed in many environments. Security researchers have em-
braced virtual machine monitors (VMMs) as a new mechanism
to guarantee deep isolation of untrusted software components
from the system. “out-of-the-box” defense mechanisms can
resist tampering at the cost of a native, semantic view of the
host that is enjoyed by the “in-the-box” approach. SPECTRE
must solve the same semantic gap problem since it has no
context information when the system enters SMM.

VMWatcher [12] is a stealthy malware detection system
that uses semantic view reconstruction. Essentially, it pauses
a VM guest and scans the memory of that guest and then
reconstructs semantic information of data structures. Both
Virtuoso [13] and VMST [14] are techniques that can auto-
matically bridge the semantic gap in VM guests. Compared
to these methods, SPECTRE must bridge the semantic gap
manually and execute different detection modules within the
SMI handler. However, our code can run natively without the
need of a hypervisor. In other words, our code base is much
smaller than VMI systems. Additionally, SPECTRE runs much
faster than existing approaches. VMWatcher took on the order
of seconds to pause a VM and scan it; Virtuoso took 6 seconds
for pslist command; and VMST took 60 milliseconds to
dump all the pids in the kernel. However, SPECTRE takes only
5 milliseconds to list all the processes in Linux. Moreover, we
consider automatically filling semantic gap in SMM as a future
work.

C. SMM-based Defensive Systems

SMM has been used as basic building block for several
defensive mechanisms. HyperGuard [45] suggests using SMM
to monitor hypervisor integrity by taking snapshots of a VM
guest and checking it in SMM. HyperCheck [29] had similar
goals, but outsourced the snapshot to an external server for
OS/hypervisor integrity checking, since it can reduce the com-
putation overhead on the protected machine. HyperSentry [30]
used an out-of-band channel, specifically the Intelligent Plat-
form Management Interface, to trigger SMM to check the
integrity of base code operating on critical data. All the existing
SMM-based defensive solutions focus on enforcing OS or
hypervisor integrity checking. Our SPECTRE system provides
a new SMM-based introspection framework for memory-based
malware detection in both OS level and application level.
Besides checking the integrity of the static kernel code, our
system can also detect the malware hidden in the dynamic
kernel code/data and user-space program code/data. After
filling the semantic gap in both Linux and Windows oper-
ating systems, SPECTRE can accommodate various detection
modules to satisfy specific protection requirements.

Several attacks based on SMM have been proposed too.
In 2004, Loic Dulfot [46] developed the first SMM-based
attack to bypass protection mechanisms in OpenBSD. Other
SMM-based attacks focus on achieving stealthy and efficient

rootkits [47], [48]. Most reported vulnerabilites on SMM have
been fixed by the manufactures. In this paper, we assume that
SMM can be trusted.

IX. CONCLUSIONS

In this paper, we presented SPECTRE, a dependable intro-
spection framework for detecting memory-based stealthy mal-
ware by leveraging System Management Mode. It introspects
a live operating system without relying on any underlying
software, and provides a fast, transparent, secure framework for
malware detection with a small TCB. We demonstrate several
use cases for SPECTRE including heap spray, heap overflow,
and rootkit detection using real-world attacks. Through exper-
iments on both Windows and Linux platforms, we are able
to reconstruct process semantic information in under 8ms and
under 5ms, respectively; the introspection tools with SPECTRE
performed 100 times faster than similar tools in VMI systems.
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