
SoK: A Comparison Study of Arm TrustZone and
CCA

Haoyang Huang1,2, Fengwei Zhang2,1,†,
Shoumeng Yan3, Tao Wei3, Zhengyu He3

1Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology
2Department of Computer Science and Engineering, Southern University of Science and Technology

3Ant Group
12232406@mail.sustech.edu.cn, zhangfw@sustech.edu.cn

shoumeng.ysm@antgroup.com, Lenx.wei@antgroup.com, zhengyu.he@antgroup.com

Abstract—Arm TrustZone is the most popular hardware-
assisted Trusted Execution Environment (TEE) solution on mo-
bile and Internet of Things (IoT) devices. However, this well-
established TEE faces significant challenges in deployment to new
scenarios, such as cloud computing. In response, Arm introduces
the Confidential Compute Architecture (CCA) in Armv9-A as
the next-generation Arm TEE solution. Due to different design
goals, CCA has significant differences from TrustZone.

In this paper, we present a comprehensive overview of Arm
TrustZone and CCA, analyzing and comparing them across
three critical dimensions: flexibility, security, and performance.
Furthermore, we summarize the limitations of TrustZone and
CCA and discuss potential solutions. By exploring these aspects,
our study can provide valuable insights into the strengths
and weaknesses of each technology, helping developers and
researchers to better understand and select the right technology
for their specific needs.

I. INTRODUCTION

The Arm architecture has been widely used in mobile
devices and Internet of Things (IoT) devices over the past
few decades [1], [2]. These devices contain significant user
personal data [3], [4], [5], such as passwords and unique
biometric details. Since the operating system (OS) is vulner-
able, attackers can easily access sensitive data by exploiting
it [6], [7]. Consequently, there is a pressing need for robust
security mechanisms that can safeguard sensitive data from
the system software. To meet this growing demand, hardware-
assisted Trusted Execution Environment (TEE) has received
much attention as a solution. It offers advantages over previ-
ous solutions regarding Trusted Computing Base (TCB) and
performance overhead [8], [9].

TrustZone [10] is the representative hardware-assisted TEE
solution on the Arm architecture. It aims to protect code and
data in TEE from being accessed by software such as OS in the
Rich Execution Environment (REE). It guarantees the system’s
security by partitioning all of SoC’s hardware and software
resources into the Normal world and the Secure world [11].
Nowadays, TrustZone is widely used in our daily life and plays
a critical role in protecting our sensitive data [12], [13], [14].
Many OEMs, such as Samsung and Google, have integrated
this technology into their products [15].

†
The corresponding author.

Over the past few years, cloud vendors have increasingly
been providing Arm-based cloud systems due to their ad-
vantage in power efficiency over x86 server processors [16],
[17]. Arm released the Neoverse series [18], [19] to meet
the needs of cloud computing in terms of performance and
scalability, However, these CPUs still use TrustZone as their
TEE solution. Since TrustZone is initially designed for mobile
devices and IoT devices, it cannot meet the requirements of
cloud tenants. For example, it is hard for cloud tenants to
deploy their code in the Secure world due to the security
considerations of vendors [20].

In 2021, Arm introduced Confidential Compute Architecture
(CCA) [21] in Armv9-A. The design goals of CCA are to
establish a minimal trust chain and ensure attestable trust [22].
These different design goals set CCA apart from TrustZone
and motivate us to perform a study focusing on the following
research questions:

• RQ1: What are the flexibility and security differences
between TrustZone and CCA?

• RQ2: What is the performance difference between Trust-
Zone and CCA?

• RQ3: What limitations of TrustZone does CCA address?

Flexibility indicates how easily and efficiently developers
can manage trusted resources. TEEs with high flexibility can
reduce development costs and expand the range of application
use cases. Security indicates TEEs’ ability to protect appli-
cations from specific attacks. Due to different security con-
siderations, TEEs may provide different security guarantees.
Since flexibility and security are critical factors that affect the
adoption of TEEs, we introduce RQ1 (in Sections III and IV)
to compare TrustZone and CCA regarding these two aspects.

Performance is another critical factor that affects the adop-
tion of TEEs. We choose a series of benchmarks to evaluate
the performance overhead of CCA and TrustZone in different
scenarios to answer RQ2 (in Section V). However, there are no
commercial devices with CCA enabled. Although evaluating
CCA’s features on the Arm Fixed Virtual Platform (FVP) [23]
using Arm’s official firmware is possible, accurately measuring
its performance is difficult since the FVP does not offer precise
CPU cycle information [24], [25]. To overcome this limitation,

Secure

App App

Host OS

Hypervisor

Monitor

TA TA

TOS

SPM

Normal World Secure World

EL0

EL1

EL2

EL3

Interconnect

TZASC TZPC

Memory Peripehrals

SMMU

DMA

MMU

Cortex-A Cores

Secure
N

orm
al

......

Trusted Untrusted TrustZone Hardware Extension

TrustZone-A

Move monitor mode to
Exception Level (EL) 3

Introduce Secure EL2 to
support Secure Virtualization

Introduce Arm
TrustZone

Classic

Armv6

Cortex-A

Armv8.1-A Armv8.2-A Armv8.3-A Armv8.4-AArmv7-A Armv8-A

Fig. 1: TrustZone architecture overview.

we made firmware modifications to evaluate the performance
overhead of CCA on a physical development board.

Finally, we present RQ3 (in Section VI) to explore whether
TrustZone finally be replaced by CCA. We first summarize
the limitations of TrustZone and discuss the approaches that
have attempted to address these limitations. We then analyze
whether CCA has addressed them entirely and the unique
limitations of CCA.

Outline: The rest of this paper is organized as follows.
In Section II, we start with an overview of TrustZone and
CCA. Then, we explain how to adapt the CCA software
stack to a physical development board. Following this, we
compare TrustZone and CCA regarding flexibility, security,
and performance in Sections III, IV, and V, respectively. We
also analyze the limitations of TrustZone and CCA and discuss
potential solutions for them in Section VI. Lastly, we introduce
some related works in Section VII and provide a conclusion
in Section VIII.

II. OVERVIEW

A. TrustZone Overview

Figure 1 shows the TrustZone architecture overview. It
has four Exception Levels (EL0, EL1, EL2, and EL3) and
two security states (Secure and Non-secure). Correspondingly,
there are two worlds: the Normal world, which hosts complex
software like OS in REE, and the Secure world, which hosts
trusted applications (TAs) and a lightweight Trusted OS (TOS)
in TEE [26]. TrustZone employs two essential components
to guarantee isolation between two worlds: the TrustZone
Address Space Controller (TZASC) [27] and the TrustZone
Protection Controller (TZPC) [28]. They are used for mem-
ory protection and peripheral protection, respectively. The
TZASC is responsible for partitioning the external memory
and configuring the access permission for each memory region.
The TZPC can configure the security state of peripherals,
thus blocking any unauthorized access attempts. Besides,
TrustZone ensures interrupts are routed to their target worlds
through the Generic Interrupt Controller (GIC) [29].

So
ftw

ar
e

TCB of Realms

check pass check fail

CCA Hardware Extension

H
ar
dw

ar
e

Secure Normal

SMMU

DMA

Interconnect

MMU

CPU

Memory

S-1 MMU

S-2 MMU

GPC

VA

IPA

PA

Ac
ce

ss
G

PF

S-1 MMU

S-2 MMU

GPC

VA

IPA

PA

DPT Check

Access

DPT fault

NormalRealm

MPE

RealmRoot

Root
World

Realm
VMs

TA

TOS

EL2 SPM

Secure World

Host OS

Hypervisor

Normal World

RMM

Realm World

EL1

EL0 App App

MonitorEL3

TA

Fig. 2: CCA architecture overview.

B. CCA Overview

Figure 2 shows CCA’s architecture overview. CCA intro-
duces two additional worlds: the Root world and the Realm
world. Correspondingly, there are four security states in CCA,
and the system’s physical memory is divided into four Physical
Address Spaces (PASs). The memory access privilege differs
in different security states (Table I).

Roles of each World. The Normal world and the Secure world
in CCA are similar to their roles in TrustZone. The difference
is that the EL3 in TrustZone belongs to the Secure world,
while the EL3 in CCA belongs to the Root world. In the
Root world, Monitor is responsible for trusted booting and
context switch between different worlds. The Realm world is
designed to run third-party applications and is isolated from
the Normal world and the Secure world. The software running
in the Realm world includes Realm virtual machines (VMs)
and Realm Management Monitor (RMM). The Realm VM
is a confidential VM that the host can dynamically create
in the Normal world [21]. RMM provides a set of Realm
Management Interfaces (RMIs) to the host that can be used
to determine the execution scheduling and memory allocation
of Realm VMs. Although the host can manage the Realm
VMs, it cannot directly access their content. RMM ensures
the isolation between each Realm VM through the two-stage
translation, which controls the memory view of each VM.

Granule Protection Check. CCA extends Memory Manage-

ment Unit (MMU) with Granule Protection Check (GPC) to
block invalid access. When translating Virtual Address (VA)
to Physical Address (PA), GPC in MMU checks whether the
current security state can access the target physical address.
When the processor fails in GPC, it will report granule pro-
tection check fault (GPF). Besides the access from processors,
it is also necessary to check the access to the main memory
from Direct Memory Access (DMA) devices. However, since
DMA devices can directly access the memory without the
intervention of the processor, MMU cannot perform GPC for
DMA devices. CCA extends System MMU (SMMU) with
GPC to address this issue. SMMU is a hardware component
that provides address translation for DMA devices. In this way,
invalid DMA access can also be blocked by GPC.

MMU performs GPC based on the Granule Protection Table
(GPT), an in-memory structure belonging to the Root world.
It has two levels to look up, and the entries in the GPT at
different levels have different descriptors (shown in Figure 3).
In GPT, Granule Protection Information (GPI) indicates the
associated world of granules. GPC can block illegal access by
checking whether the current security state has rights to access
memory based on the corresponding GPI.
Device Assignment. GPC can only manage memory access
permissions in the granularity of worlds. To enable finer
control over access, the CCA introduces Device Assignment
(DA) [30], which manages devices at the level of Realm
VMs. CCA extends SMMU with an additional structure called
Device Permission Table (DPT). DPT records the binding
relationship between Realm VMs and devices. When a DMA
device initiates a DMA access, SMMU can verify whether
the target address falls within the memory footprint of the
associated Realm VM by consulting the DPT.
Hardware-assisted Memory Encryption. Memory Protection
Engine (MPE) is a hardware component that provides memory
encryption and integrity in CCA. However, a noteworthy lim-
itation exists: MPE encrypts the entire memory space within
the Realm world using a single key. To enhance security,
CCA introduces a mechanism known as Memory Encryption
Context (MEC), enabling a memory region in the Realm world
to be assigned a unique encryption key. In this way, RMM
and Realm VMs can be encrypted with a different key. These
encryption keys are identified by MECIDs and are securely
stored in write-once system registers. In practice, the MECID
works with system registers and the page table bits. The page
table bits select the encryption key from the corresponding
register for a given memory region.

C. CCA Prototype
The CCA prototype consists of three parts: Monitor, RMM,

and hypervisor. RMM is a decoupled hypervisor that provides
sensitive services for Realm VMs, like metadata management
and memory mapping. The hypervisor is responsible for
scheduling Realm VMs and memory allocation. It makes de-
cisions for Realm VMs through RMIs. Monitor is responsible
for booting the system and forwarding RMIs. Besides, it also
provides services for RMM, such as GPT management [22].

TABLE I: Access permissions in different security states.
” ” denotes access to the target PAS is allowed, and ”–
” denotes access is forbidden.

Root state Realm state Secure state Non-secure state
Root PAS – – –
Realm PAS – –
Secure PAS – –
Normal PAS

Block

Block

...

...

Table

Granules

Granules

...

...

Contiguous

L1 EntriesL0 Entries

G
ranule Size

GTPBR_EL3

0
1
2

15

......

Physical Memory

Fig. 3: Overview of Granule Protection Table (GPT). In L0
table, Block descriptor indicates a region (1G to 512G), and
Table descriptor indicates the next level Table address. In L1
table, Contiguous descriptor indicates a region (2M to 512M)
and Granules descriptor contain GPI values for 16 physical
granules. The granule size can be 4KB, 16KB, and 64KB.

CCA Design Analogs. The official CCA software stack has
been open-source, including TF-A [31], TF-RMM [32], and
patched KVM [33]. They correspond to Monitor, RMM, and
hypervisor, respectively. While we can assess the features of
CCA on FVP, accurately evaluating the performance overhead
remains challenging since it cannot provide accurate CPU
cycles. Therefore, we modify the CCA software stack and port
it to an Armv8 device to obtain a more precise measurement of
CCA’s performance. Although these modifications do not offer
security guarantees due to the lack of CCA-related hardware
on an Armv8 device, they can mimic performance costs caused
by extensions from CCA.

We observe that RMM and hypervisor do not have any
hardware dependencies. Therefore, running RMM and hy-
pervisor on an Armv8 device is similar to running them
on the FVP with CCA enabled. However, Monitor requires
interactions with hardware to support the Realm world and
GPT management. Therefore, we need to make two main
modifications to Monitor to support CCA on an Armv8 device.

First, to support the Realm world, we modify Monitor to
add another context in the Normal world and move RMM and
Realm VMs to this context, which means RMM runs in N-
EL2 and Realm VMs run in N-EL0&1. Since no additional
registers are added to the Realm world, this new context is
the same as the Realm world. The context switch between the
Realm world and the Normal world can be simulated by the
context switch between these two individual contexts within
the Normal world.

Second, to support GPT-related operations, we make two
modifications. We can find that not all GPT-related opera-
tions need to interact with hardware. GPT is an in-memory
structure used for memory partition in CCA. Some GPT-

related operations, such as GPT construction, GPT destruction,
GPT Entry addition, and GPT Entry deletion, only require
modifications to the GPT in memory. For these operations, we
only need to add corresponding functions to Monitor. As for
some operations related to configuring GPT control registers,
we simulate them by reading and writing to some unused EL3
registers, such as ACTLR_EL3.

Limitations and Bias. We note there are still some perfor-
mance differences between the Armv8 device and real hard-
ware with RME enabled due to differences in hardware. One
such difference is the absence of GPC on the Armv8 device,
where its MMU does not perform GPT checks on memory
accesses. However, the cost of GPC is expected to be offset
by the good caching behavior of future CCA hardware [24].
In addition, the Armv8 device lacks the MPE subsystem.
MPE is used in CCA systems to provide memory encryption
and integrity, but no specific implementation details of this
hardware component is currently available in the manual or
FVP. Therefore, we are unable to evaluate the performance
overhead caused by MPE.

III. FLEXIBILITY COMPARISON

A. Memory Management

Memory management represents the system’s ability to
adjust permission settings of memory regions to meet specific
requirements. We evaluate this criterion of TrustZone and CCA
from five aspects:

• Dynamic Allocation: The ability to change the associ-
ated world and size of memory regions dynamically.

• Minimal Granularity: The smallest configurable size of
a memory region.

• Memory Region Number: The number of memory
regions that can be configured.

• R/W-separate Configuration: The ability to configure
read and write permissions of memory regions separately.

• Core-specific Configuration: The ability to apply differ-
ent memory partition configurations for different cores.

TrustZone achieves memory partition using TZASC.
TZASC does not simply divide memory into the Secure and
Non-secure regions. It also allows configuring read and write
permissions of the Secure world and Normal world for each
region. This feature is beneficial to create regions for specific
purposes, such as shared memory between the Secure world
and the Normal world. TrustZone allows to configure the size
of memory regions during runtime. TZASC is limited in the
number of memory areas it can manage [27]. When all the
regions are allocated, the only way to expand Secure world
memory is to adjust the boundaries of these regions. However,
direct adjustments to the boundaries of Secure world memory
regions may affect the memory used by the Normal world.
Therefore, memory management in TrustZone is always fixed
during the boot stage. Besides, the minimum size of memory
regions is 32KB [27], which may lead to memory waste.

CCA records the associated world of each granule in
GPI. Therefore, it can achieve dynamic memory transitions

between different worlds by modifying them during runtime.
Regarding granularity, GPT supports configurations for the
associated world of each memory region in 4KB, which is
finer than TrustZone. To support validation for access from
DMA devices, CCA extends GPC to SMMU. However, GPC
in SMMU only supports the validation for the output PA,
which means that access from DMA devices can only be
blocked by the granularity of the world. For memory access
management in finer granularity, CCA introduces Device As-
signment (DA) [30]. With DA, a DMA device can be bound to
a specific Realm VM and allowed only to access the memory
region allocated to the Realm VM.

Compared to TrustZone, CCA optimizes memory utilization
through dynamic memory allocation and finer granularity.
Besides, since GPC is a part of MMU, each core can have
its memory partition configuration. Conversely, the memory
management provided by TZASC is shared by all cores.
Therefore, CCA can support core-specific configuration, which
TrustZone does not support. However, there is a limitation
in the permission management in GPC. Unlike TZASC, the
GPT can only determine which world each page belongs to
and does not support separate configurations of read and write
permissions.

B. Peripheral Management

Peripheral management represents the system’s ability to
adjust permission settings of peripherals to meet specific
requirements. We evaluate this criterion of TrustZone and CCA
from four aspects:

• Dynamic Configuration: The ability to change the se-
curity state of peripherals dynamically.

• Minimal Granularity: The smallest configurable size of
a peripheral.

• Peripheral Number: The number of peripherals that can
be configured.

• Core-specific Configuration: The ability to apply differ-
ent configurations for different core.

In TrustZone, TZPC is used to configure the security state
dynamically for each peripheral. However, the granularity of
TZPC is limited to the whole peripheral. For example, all
of a peripheral’s registers are accessible to the Secure world
if the peripheral’s security state is set to Secure. Besides,
the number of peripherals that TZPC can manage is limited.
TZPC uses register bits to denote the associated world of
each peripheral [28]. There are only three registers, and each
register only has 8 bits for configuration. Therefore, TZPC can
only manage 24 peripherals at most.

In Arm architecture, access to peripherals is achieved
through Memory Mapped I/O (MMIO), allowing processors
to access peripherals like it accesses main memory. Therefore,
GPC can be used to check the access permissions from
processors to peripherals. By modifying the GPI corresponding
to the peripheral’s physical address, the access permissions of
each peripheral can be dynamically configured. Besides, there
is no limitation on the number of peripherals that GPC can
manage.

TABLE II: Summary for Comparison in Flexibility. ” ” de-
notes corresponding features are supported, and ”–” denotes
corresponding features are not supported.

Criteria TrustZone CCA

Memory Management

(§III-A)

Dynamic Allocation

Minimal Granularity 32KB 4KB

Memory Region Number Limited Unlimited

R/W-separate Configuration –

Core-specific Configuration –

Peripheral Management

(§III-B)

Dynamic Configuration

Peripheral Number Limited Unlimited

Core-specific Configuration –

C. Summary

The comparison results in terms of flexibility are summa-
rized in Table II. Compared to TrustZone, CCA provides more
flexibility in memory and peripheral management. CCA sup-
ports dynamic and finer-grained memory allocation. Besides,
it can manage an unlimited number of memory regions and
peripherals and support core-specific configurations. However,
there is a limitation in the permission management in CCA,
since GPC does not support separate configurations of read
and write permissions.

IV. SECURITY COMPARISON

A. Memory Isolation

Memory isolation means preventing the processor and
DMA devices from illegally accessing memory. In TrustZone,
TZASC ensures the isolation between the Normal world and
the Secure world. Since it lies between the interconnect and
the memory, it can block access from processors and DMA
devices. In CCA, GPC is applied to check the output PA of
the address translation in MMU and SMMU. Although the
memory isolation mechanisms in TrustZone and CCA can
be used to block illegal memory access, they have different
characteristics.

First, TZASC can be configured by the software running
in S-EL1/2. In this way, attackers can bypass the memory
isolation mechanism once they hijack the TOS in TrustZone. In
contrast, GPC can only be configured by the software running
in EL3. Besides, TZASC does not support isolation between
S-EL1/2 and EL3. Since the code and data in EL3 belong to
the Secure world, attackers can exploit the software running
in S-EL1/2 to affect the execution of Monitor. However, CCA
moves the code and data belonging to EL3 from the Secure
world to the Root world, which can mitigate this kind of
security risks.

B. Memory Encryption

Memory encryption can protect code and data in memory
from physical attacks. TrustZone hardware extensions do not
include built-in memory encryption. Therefore, attackers can

access to DRAM data in the Secure world through physical
attacks such as the cold boot attack [34]. Although it can be
implemented in software, there is usually a large performance
overhead, and the original software needs to be modified [35],
[36], [37]. Conversely, CCA offers hardware-assisted memory
encryption through MPE, ensuring data integrity. In the design
of CCA, except for the Normal world, the other three worlds
must be enabled with encryption. A separate encryption key
or tweak is used for each world, and spatial isolation is
guaranteed with address tweaks [38]. Since the encryption can
be applied to the Secure world, TrustZone can benefit from the
memory encryption with MPE.

With MPE, although attackers can extract data from mem-
ory, they cannot understand the meaning of encrypted data
since they do not know the keys. Nevertheless, MPE does not
guarantee content erasure when the world change is applied to
a granule. Explicit content scrubbing by software is necessary
before transitioning.

C. Peripheral Isolation

Peripheral isolation means preventing the processor and
DMA devices from illegally accessing peripherals. Blocking
malicious access to some peripherals is necessary since private
data may be stored there. For example, sensing systems use
the existing or external sensors attached to mobile devices to
capture various data types [39]. Passwords, fingerprints, and
other sensitive data are also input from peripherals.

TrustZone uses TZPC and AXI interconnect to regulate the
access to peripherals. TZPC configures the access permissions
of peripherals, and AXI interconnect can then check the
permissions with the access source. If the security state of
processors or DMA devices does not match the permissions,
AXI interconnect will block such invalid access. CCA lever-
ages GPC in MMU to block invalid access to peripherals from
processors. In Arm architecture, MMIO is used to support
access to peripherals. By configuring the entries of the address
of registers and buffers belonging to peripherals in GPT,
CCA can block invalid access to peripherals. Similarly, invalid
access from DMA devices can be blocked by GPC in SMMU.

Although both TrustZone and CCA support peripheral iso-
lation, they have different security levels. Similar to TZASC,
TZPC can be configured by the software in S-EL1, while GPT
can only be modified by the software in EL3. In this way,
attackers can bypass the peripheral isolation mechanism once
they hijack the TOS.

D. Interrupts Isolation

An interrupt is a signal from hardware or software sent to
the processor to indicate that an event has occurred. Malicious
interrupts can interfere with the expected workflow of the
processor. Manipulating an interrupt mechanism during the
exploitation makes it easier to trigger these races, which is
nearly impossible due to their unique requirement on execution
orders [40]. Furthermore, the lack of interrupt isolation may
hinder the deployment of TEEs to the real-time scenario [41],

[42]. Therefore, it is necessary for TEEs to ensure that
interrupts can be routed correctly and securely.

TrustZone supports the isolation of secure interrupts and
non-secure interrupts. In GICv3 affinity mode [29], the inter-
rupt type is IRQ if the state of the processor matches the target
of the interrupt, while the interrupt type is FIQ in other cases.
IRQ can be handled by software in the current security state,
while FIQ needs to be routed to software in EL3 for further
processing. In this way, software in the Normal world cannot
preempt secure interrupts.

For CCA, the hypervisor in the Normal world virtualizes
interrupts for Realm VMs and then signals to the Realm
through commands passed to RMM [21]. Attackers can pass
malicious interrupts to Realm VMs by compromising the
hypervisor. Then, unforeseen problems may happen when
Realm VM handles malicious interrupts since it violates its
design assumptions.

E. Hardware-assisted Attestation

The hardware-assisted attestation brings significant benefits
to system security and integrity. It measures the system’s
state and provides assurance that the software running on
the system has not been tampered with or modified since
its initial trusted state. This capability is crucial in detecting
unauthorized changes, such as malware injections and unau-
thorized updates. Moreover, hardware-assisted attestation can
verify whether applications run on a platform that genuinely
supports the required security features. It ensures that the VMs
or applications are loaded and launched on the platform with
the required security features supported.

TrustZone lacks hardware-assisted attestation [20], [43],
whereas CCA offers this functionality for Realm VMs. Follow-
ing is the process of the attestation for Realm VMs: At first,
Realm VMs initiate an attestation request to Realm attestation
service. Realm attestation service creates a Realm attestation
token with information about the Realm boot state. Then,
the Realm attestation service sends a request to the CCA
platform attestation service. CCA platform attestation creates
a Hardware Enforced Security (HES) host attestation token
with information about the HES host boot state and a CCA
platform boot token with information about the CCA platform
boot state. Finally, these tokens are combined into a report.
Users can request this report at any time. The hardware in CCA
implements this feature by being bound to a unique identity
and supporting the measurement of essential firmware.

F. Isolation in TLB and Cache

The Translation Lookaside Buffer (TLB) and cache are
critical components in the memory hierarchy that enhance
system performance. When the processor tries to access the
memory, it first checks whether the translation result and data
are in TLB and cache. However, since the hardware extensions
for memory isolation are behind the TLB and cache, they
cannot intercept access to the TLB and cache. Therefore, there
is a need for TEEs to provide additional hardware mechanisms
to ensure the security of TLB and cache.

With TrustZone enabled, each entry in TLB has an ad-
ditional field to indicate whether the entry belongs to the
Secure world or the Normal world. The entries for the same
virtual address in different worlds are independent. When
applications run in the Normal world, the MMU only searches
the TLB entries belonging to the Normal world. Therefore, it
can prevent applications in the Normal world from accessing
the Secure world. Similarly, TrustZone divides the cache into
two parts by extending an NS bit in the cache line [44]. In this
way, the processor can distinguish cache lines from different
worlds and fetch data correctly.

CCA extends the TLB and cache with an additional bit
to support identifying the Realm world and the Root world.
Besides, the TLB in CCA caches the translation of virtual
addresses to physical addresses and the GPT entries. Since
the CCA supports dynamic memory allocation, the GPT
entries may be updated at any time. If the GPT entries
are not updated in time, attackers can bypass the memory
isolation mechanism. Therefore, there is a need to ensure
the consistency of entries in TLB. CCA does not provide
hardware mechanisms to invalidate TLB entries automatically.
Instead, CCA provides additional instructions for the firmware
developers to invalidate cached copies of GPT entries from
TLBs based on physical addresses [45]. When a region of
memory in the Normal world can be transferred to the Realm
world, the firmware must invalidate the TLB entries, ensuring
that software running in the Normal world cannot access the
memory region that has been moved.

TABLE III: Summary for Comparison in Security. ” ” de-
notes corresponding features are supported, and ”–” denotes
corresponding features are not supported.

Criteria TrustZone CCA

Memory Isolation

(§IV-A)

Access Control for processors

Access Control for DMA

Isolation between S-EL1/2 and EL3 –

Level to Configure S-EL1/2 EL3

Memory Encryption (§IV-B) Hardware-assisted Encryption –

Peripheral Isolation

(§IV-C)

Access Control for processors

Access Control for DMA

Level to Configure S-EL1/2 EL3

Interrupt Isolation (§IV-D) Individual Interrupt for TEE –

Attestation (§IV-E) Hardware-assisted Attestation –

TLB and Cache (§IV-F) Isolation in TLB and Cache

G. Summary

The comparison results in terms of security are summarized
in Table III. CCA provides stronger security guarantees than
TrustZone in most aspects. The isolation mechanism in CCA
can only be configured by the software running in EL3 and
supports to isolate EL3 from other worlds. Besides, it supports
hardware-assisted memory encryption and hardware-assisted
attestation. However, since interrupts for the Real world in

REE->EL3

Prepare Context

for TEE EL3->TEE
TEE->EL3

Prepare Context

for REE EL3->REE
0.0

0.2

0.4

0.6

0.8

1.0
C

PU
 C

yc
le

s
1e3

TrustZone
CCA

Fig. 4: Performance overhead in different stages during context
switch.

CCA are virtualized by the hypervisor, it may introduce
unforeseen problems when handling malicious interrupts.

V. PERFORMANCE EVALUATION

A. Environment Setup

We use a Juno-R2 development board to evaluate the per-
formance of benchmarks on TrustZone, which has 2 Cortex-
A72 (1.2GHz) big cores and 4 Cortex-A53 (950MHz) small
cores. All these cores are Armv8-A and support TrustZone
extensions. The firmware we use to evaluate is TF-A v2.3 and
OPTEE v3.6.0, and the Linux kernel version of the host OS
is 5.3.0.

To ensure a fair comparison of performance between CCA
and TrustZone, we maintain consistency by using the Juno-R2
development board for evaluating benchmark performance on
CCA. The firmware we use is based on TF-A v2.3 and TF-
RMM v0.2.0. The Linux kernel version of the host OS is 5.3.0,
and we modify its KVM to support CCA. To host Realm VMs,
we employ a modified version of Kvmtool [46], which Arm
officially provides. We use the Performance Monitoring Unit
(PMU) to count CPU cycles. Besides, since the test results
may be unstable when enabling big and small cores, we only
enable 4 Cortex-A53 small cores.

B. Microbenchmarks

World Switch. In practice, some tasks require collaboration
between the TEE and the REE. This collaboration demands
a context switch between the TEE and the REE, making it
vital to evaluate the efficiency of this switch. If the context
switch wastes too much time, the TEE may not be well-suited
for certain scenarios. To address this concern, we break down
the context switch process into multiple steps and measure the
cost of each step. The workflow involved in the context switch
process is: (1) The application in the Normal world begins the
context switch by invoking SMC instruction. It jumps to EL3
and starts at the address of the interrupt vector table. The stack
pointer (SP) is replaced with SP_EL3. After that, it saves
general-purpose registers from register x0 to register x29.
Because SP_EL3 only stores the cpu_context structure,

it needs to restore real runtime stack value from SP_EL3.
This stack value is put into SP_EL0. Then, it goes to the
corresponding SMC handler, which is known as the dispatcher.
(2) At the corresponding dispatcher in EL3, it saves the system
registers of the source security state. Then, it restores the
system registers of the target security state. At last, it sets
cpu_context for the target security state. (3) Before leaving
EL3, it saves SP_EL0 and restores SP_EL3. After that, it can
restore general-purpose registers from SP_EL3. When all the
registers are prepared, it uses the eret instruction to leave
EL3. (4) When the required task is finished in the TEE, it
issues an SMC call to return to EL3. (5) Similar to step 2, the
dispatcher saves and restores system registers and sets the next
cpu_context. (6) Finally, it returns control to the REE.

In the context switch microbenchmark, an SMC call is used
to trigger the context switch. Figure 4 shows the time cost of
each step in the context switch process. The cost of roundtrip
transitions between EL3 and the REE and between EL3 and
the TEE are similar. This is because issuing an SMC call to
the EL3 firmware and using the eret instruction to return to
the TEE and REE incur no additional overhead in TrustZone
and CCA. The key distinction in the context switch between
TrustZone and CCA lies in the cost of saving and restoring
system registers. In CCA, system registers related to EL1 and
EL2 are saved and restored in EL3. As for TrustZone, since
TOSs such as OPTEE run at S-EL1, only the system registers
associated with EL1 are saved and restored in EL3.

C. Benchmarks

CPU Intensive Workload Comparison. In this test, we
choose nbench [47] to evaluate the impact of CCA and
TrustZone on performance. Nbench is a testing program used
to evaluate the performance of computer systems. It includes a
group of routines that simulate common computer tasks, such
as numeric sort and LU decomposition.

As shown in Figure 5, the performance overhead of CCA
is similar to TrustZone in most CPU intensive cases. One
reason is that the major work of these benchmarks is fin-
ished in user space. Therefore, the context switch caused
by running test routines in Realm VMs is negligible and
does not introduce much overhead. Besides, the cache also
reduces the performance overhead. Nbench mainly tests the
computing capability of the CPU. Since the size of the data
and instructions it uses is small enough to be stored in the
cache, the two-stage translation that comes from virtualization
will not significantly impact it.

Memory Intensive Workload Comparison. Besides CPU
intensive workloads, we also use STREAM [48] benchmark
and Random Access benchmark to evaluate the performance
of CCA and TrustZone in memory intensive workloads. The
STREAM benchmark is a synthetic benchmark program de-
signed to measure the sustainable memory bandwidth and the
corresponding computation rate. As for the Random Access
benchmark, it measures the random access performance of
memory.

NUMERIC SORT
BITFIELD

FP EMULATION IDEA
HUFFMAN

NEURAL NET
LU

DECOMPOSITION

0.0

0.2

0.4

0.6

0.8

1.0

1.2
lo

g(
C

PU
 C

yc
le

s)
1e1

TrustZone
CCA

Fig. 5: Performance overhead on CPU intensive workloads.

Copy Scale Add Triad
Rand Read

Rand Write

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

lo
g(

C
PU

 C
yc

le
s)

1e1

TrustZone
CCA

Fig. 6: Performance overhead on memory intensive workloads.

Figure 6 shows the performance overhead of TrustZone and
CCA in each case. TrustZone is slightly faster than CCA
on average. In both STREAM and Random Access, we only
evaluate the performance overhead in user space. The virtual-
ization mainly causes the performance gap between TrustZone
and CCA. In CCA, it requires a two-stage translation to access
the memory. However, in TrustZone, the memory access is
translated in one stage. In addition, the benchmark utilizes a
memory size that exceeds cache size several times, effectively
reducing cache hits and minimizing the impact of cache. As
a result, TrustZone outperforms CCA in memory-intensive
workloads.

I/O Intensive Workload Comparison. We also design an
application to evaluate the performance overhead in I/O inten-
sive workloads. The workflow of this application is as follows:
First, the application reads a file from the disk and loads the
content to the TEE. Then, the application decrypts the file
content and calculates the hash value based on the content.
Finally, the application encrypts the result and writes it back
to the filesystem.

Figure 7 shows that the performance overhead of CCA is
much lower than TrustZone because OP-TEE cannot read and
write files directly. When the trusted application (TA) in the
Secure world requires file access, it will invoke the CA in
the Normal world to complete the file access. Then, the TA
copies the file content from the shared buffer to the secure

File Size(1KB)

File Size(4KB)

File Size(8KB)

File Size(16KB)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
PU

 C
yc

le
s

1e6

TrustZone
CCA

Fig. 7: Performance overhead on I/O intensive workloads. The
x-axis represents the size of the file read by the application.

memory and finishes the tasks. In CCA, applications running
in Realm VMs can access files through VirtIO, which is more
efficient than the method used in TrustZone. Therefore, CCA
outperforms TrustZone in I/O intensive workloads.

VI. LIMITATION ANALYSIS

A. TrustZone’s Limitations

TrustZone works well at protecting sensitive data and code.
However, due to its design choices, it still has some limitations.
These limitations can be divided into two categories based
on their root causes. The first category (L1-4) is caused by
the deployment and security considerations of vendors. For
example, to ensure security, vendors usually do not open the
Secure world to third-party developers and limit the interfaces
exposed to applications. The second category (L5-7) is caused
by the design of TrustZone hardware extensions. Specifically,
they are caused by the lack of consideration for security threats
(L5, 6) and use cases (L7).

Limitation 1: TAs are not protected from the system soft-
ware in the Secure software. The design goal of TrustZone is
to isolate the Secure world from the Normal world. Therefore,
TrustZone can protect TAs from the system software in the
Normal world but does not protect them from the system
software in the Secure world [22]. The system software in the
Secure world, like the TOS, has a large code base since they
need to implement enough secure services to host applications
independently, which leads to large potential vulnerabilities
that attackers may exploit [20], [49]. In practice, not all the
components of system software needs access to memory re-
gions used by applications [50], [51]. Ensuring different access
permissions among components becomes crucial to mitigate
threats from compromised system software components within
the Secure world.

Limitation 2: The Secure world of TrustZone is not
open to third-party developers. Vulnerabilities in TAs may
expose new attack surfaces for attackers to compromise the
whole system [52], [53]. For example, attackers can use a
vulnerable TA as a trampoline to gain control of the Linux
Kernel [54]. Therefore, vendors control and restrict access to

the Secure world to ensure security [55], [20]. However, such a
design choice limits the use cases of TrustZone. The restrictive
deployment policy makes it difficult for third-party developers
to take advantage of hardware features provided by TrustZone.

Limitation 3: The Secure world of TrustZone lacks com-
patibility. To keep TCB as small as possible, TOS is designed
to be lightweight and exposes only a small number of in-
terfaces to applications, making it different from the OS in
the Normal world. Therefore, the development of TAs follows
a different process from the development of applications in
the Normal world [56], [57], [58]. These compatibility issues
can result in costly and time-consuming efforts to port legacy
applications from the Normal world into the Secure world.
Besides, different vendors may have different implementations
of the TOS [59], which leads to additional effort to port trusted
applications.

Limitation 4: Extending TrustZone for GPUs and other
accelerators introduces a large TCB. Developers rely on
GPUs and accelerators to achieve better performance for
workloads like AI and graphics-intensive applications. These
accelerators often process sensitive data, such as personal
information and trade secrets. A straightforward approach is to
port workloads and corresponding device drivers to the Secure
world. However, it results in excessive secure memory usage
and introduces a large TCB [60]. Therefore, using GPU and
accelerators for secure computation while keeping small TCB
low is essential to cover a broader range of TrustZone.

Limitation 5: The system software in the Secure world
has unrestricted access to the whole system memory. In
TrustZone, TZASC is configurable by software running in S-
EL1/2 [27]. Therefore, attackers can exploit vulnerabilities in
the system software in the Secure world and configure the
TZASC to turn off memory isolation [61]. Then, they can
access any memory region and compromise the whole system.

Limitation 6: TrustZone lacks support for memory en-
cryption. TrustZone hardware extensions do not include a
component to encrypt memory. This limitation makes it dif-
ficult to protect memory from physical attacks, such as cold
boot attacks [34], [62], bus monitoring attacks [63], and DMA
attacks [64]. Through physical attacks, attackers can access the
memory and retrieve sensitive data without exploiting software
vulnerabilities.

Limitation 7: TrustZone lacks flexibility in memory man-
agement. TrustZone partition memory into different regions
and configure their properties through TZASC. However, the
number of configurable regions is limited [27]. TZASC cannot
deal with enforced isolation between memory regions when
physical memory is heavily fragmented [65]. Besides, the
minimum size of memory regions is 32KB [27], affecting the
efficiency of memory utilization.

Projects for Addressing TrustZone’s Limitations. In re-
sponse to these limitations, researchers have proposed many
projects. We list the approaches used by these projects and
explain them in Table IV. Besides, we list the limitations

TABLE IV: Approaches to address TrustZone’s limitations and
their description.

Approach Description

So
ft

w
ar

e

A1: Trusted Runtime Ensure isolation for applications; provide critical system
servicesand forward unhandled exceptions to the host OS

A2: Decoupled Hypervisor Ensure isolation for OSs; provide critical system services
and forward unhandled exceptions to the host hypervisor

A3: Secure Partition Monitor Ensure isolation for OSs and work independently

A4: Secure Monitor Ensure isolation for different execution environments
(including EL0, EL1, and EL2)

A5: Record and Replay Record the required instructions for secure tasks outside the
TEE and execute them inside the TEE

A6: Binary Scanning Remove specific instructions that may break isolation

A7: Memory Allocation Strategy Allocate memory using specific schemes, such as
continuous memory allocation (CMA)

H
ar

dw
ar

e

A8: Two Stage Translation Translate VA to Intermediate PA (IPA) in Stage-1
and then translate IPA to PA in Stage-2

A9: On-chip Memory Integrated with the chip and non-removable

A10: Resource Domain Controller Restrict physical access to a specific resource and can
differentiate between multiple bus masters

A11: Modified TZASC Extend TZASC to support core-specific configurations

TABLE V: Projects for Addressing TrustZone’s Limitations.
Target: ” ” denotes this limitation is addressed, ”G#” denotes
this limitation is addressed partially, and ”–” denotes this
limitation is not addressed. ”An” denotes this limitation is
addressed with Approach n in Table IV. Drawback: ” ” de-
notes the project has this drawback, ”G#” denotes the project
has this drawback in certain cases, and ”–” denotes the project
is without this drawback.

vT
Z

[6
6]

Tw
in

vi
so

r
[6

7]
T

L
R

[6
8]

Tr
us

tS
ha

do
w

[6
9]

Se
cD

ee
p

[6
0]

Tr
us

tI
C

E
[7

0]

T
E

E
v

[5
9]

Pr
O

S
[6

5]

G
R

-T
[7

1]
St

ro
ng

bo
x

[7
2]

,[
73

]
Pr

iv
at

eZ
on

e
[7

4]
M

yT
E

E
[7

5]
C

ry
pt

M
e

[3
5]

M
in

im
al

K
er

ne
l

[3
7]

Se
cT

E
E

[3
6]

R
eZ

on
e

[6
1]

SA
N

C
T

U
A

RY
[5

5]
H

af
ni

um
[7

6]

Ta
rg

et

Limitation 1
A2

A2 – – – – – – – – – – – – – – – –

Limitation 2 – – – – –
A4 – – – –

A4

A4 – – – –

A11 –

Limitation 3 – –
A1

A1 – –

A3 – – – – –
A1 – – – – –

Limitation 4 – – – –
A1 – – –

A5

A8 – – – – – – – –

Limitation 5 – – – – – –
A3,6

A3,6 – – – – – – –

A10 –
A3

Limitation 6 – – – – – – – – – – – –
A9

A9

A9 – – –

Limitation 7 – G#
A7 – – – – – G#

A7 – – – – – – – – – –

D
ra

w
ba

ck

Software Modification – – – – – – G# G# G# – – – – – –

Hardware Modification – – – – – – – – – – – – – – – – –

Large Performance Overhead – – – – – G# – – – – – –

Large Memory Overhead – – – – – – – – – – – – – – – – –

Lack of Generality – – – – – – – – – – – – – – – – –

Large TCB – – – – – – – – – – – – – – – –

addressed by these projects and the corresponding drawbacks
of the projects in Table V.

For Limitation 1, both vTZ [66] and Twinvisor [67] ad-
dress it by partitioning the system software in the Secure
world into two components and running them in different
execution environments. Limitation 2 is addressed by con-
structing an additional execution environment for third-party
applications. Projects for addressing this limitation adopt a
secure monitor to ensure isolation for different execution
environments. However, the mechanisms behind these secure
monitors are different. For TrustICE [70], the secure monitor

ensures isolation by time slicing. It prevents invalid access
to the protected memory by hanging out software running in
other execution environments. However, such a mechanism
introduces a large performance overhead and is unsuitable
for multicore processors. Other secure monitors ensure spatial
memory isolation by configuring additional hardware features.
PrivateZone [74] and MyTEE [75] use the two stage trans-
lation, and SANCTUARY [55] uses the modified TZASC.
Limitation 3 can be addressed by providing a compatibility
layer for applications. TLR [68] supports applications written
in .NET by porting the language runtime to the Secure world,
and TrustShadow [69] supports unmodified Linux applications
by forwarding system calls to the Normal world. Limitation
4 can be addressed by placing the memory used by GPUs
in the Secure world [60]. However, porting the GPU driver
causes a large increase in TCB. GT-R [71] avoids software
porting by recording executed instructions of GPU drivers in
the cloud and replaying them in the Secure world. However,
this approach introduces a large performance overhead and
memory overhead. Strongbox [72], [73] restricts access to
memory used by GPUs through two stage translation. Besides,
it uses a trusted runtime to forward requests related to GPU
drivers, which avoids introducing a large TCB.

Limitation 5 is caused by the architecture design of Trust-
Zone. TEEv [59], PrOS [65] and Hafnium [76] address lim-
itation by introducing a secure hypervisor. However, because
Secure EL2 is not supported in TEEv and PrOS, they must
conduct binary scanning of TOSs to ensure the absence of
instructions that could compromise the isolation guaranteed
by the provided memory mapping. ReZone [61] achieves
the same goal in another way. It uses Resource Domain
Controller (RDC) to restrict access from processors to mem-
ory. For Limitation 6, CryptMe [35], Minimal Kernel [37]
and SecTEE [36] address it by on-chip memory, which is
integrated with the chip and non-removable. They encrypt
contents in the external memory and decrypt them when they
are loaded into the on-chip memory. However, these projects
introduce a large performance overhead. Limitation 7 is due to
the design of TZASC. PrOS [65] and Twinvisor [67] improve
efficiency of memory utilization by well-designed memory
management schemes. However, they can only address this
limitation partially. As long as TZASC is still relied on to
achieve memory isolation, problems like coarse granularity in
memory management cannot be solved completely.

Despite these projects having made progress in solving the
limitations of TrustZone, they usually focus on specific aspects
of these limitations and have their drawbacks. Although com-
bining approaches used by these projects can address most of
the limitations, integrating them into one project is challeng-
ing. In addition, such complex designs may introduce new
challenges in security and performance. Therefore, addressing
these limitations without any side effects can be challenging
without support from new hardware extensions designed for
TEEs.

B. CCA’s Impacts and Limitations

Many of the limitations of TrustZone resulting from hard-
ware extension design can be resolved through new hardware
features in CCA (L5,6,7). Besides, CCA introduces the Realm
world, allowing developers to run their applications in VM-
level TEEs (L2,3). Furthermore, CCA has different design
requirements for the system software in the Realm world,
which can also address the limitations caused by system
software design (L1).

However, there are still limitations that CCA does not
address. For example, CCA also does not consider the TCB
size increased by drivers of GPU and other accelerators
(L4). Besides, there are some unique limitations in CCA.
First, the approach proposed in CCA to address L1 requires
modifications to existing system software, which increases
the burden on vendors. Second, CCA provides confidential
execution environments for developers at the VM level. The
large codebase introduced by the guest OS exposes a large
attack surface. However, some ways like unikernel [77] can
mitigate this issue. Moreover, GPC does not provide fine-
grained control in R/W permission for memory regions.

VII. RELATED WORKS

Several surveys mentioned different aspects of TrustZone.
Sabt et al. [78] propose a refined definition of TEEs and
compare TrustZone-assisted TEEs using the proposed def-
inition. Ngabonziza et al. [79] discuss Arm architectures
supporting TrustZone, including Armv6, Armv7, and Armv8.
It introduces the details, such as processor states and system
registers of these architectures, and reviews how they imple-
ment TrustZone in the hardware and software. Ning et al. [80]
and Cerdeira et al. [20] discuss potential security threats to
TrustZone and how to mitigate them.

Some studies compare TrustZone with other TEEs. Maene
et al. [81] discuss the details of twelve hardware-assisted
TEEs from industry and academia and compare their security
properties and architecture features. Although these studies
have discussed Arm TrustZone, it has been several years since
these papers were published. There is a gap between the
content discussed in these papers and the state-of-art Arm
architecture. We hope our work can fill this gap. Pinto et al. [1]
compare different TrustZone-assisted TEE systems regarding
their type, TCB size, and whether they support secure user
interface or storage. They also compare several TrustZone-
assisted virtualization solutions and classify them according to
the number of VMs they can support. Besides TrustZone, other
TEE hardware technologies, including Intel Software Guard
Extensions (Intel SGX) [82] and AMD Secure Encrypted
Virtualization (SEV) [83], are also discussed in this paper. Intel
SGX allows developers to create an enclave in the user space,
which can be used to protect the code and data from system
software. AMD SEV ensures the integrity and confidentiality
of the VM’s memory by encrypting the memory of the VM
with a unique key. In this way, the hypervisor can only
manage the execution of the VM but cannot access its memory.
Demigha et al. [84] present, analyze, and compare four major

industrial-scale commercial hardware-assisted TEEs in the
cloud market. These four TEEs are Intel TXT, Arm TrustZone,
AMD SEV, and Intel SGX. In this paper, the authors measure
these TEEs from security, functionality, and deployment. They
also analyze the differences between TEEs in the specific
scenario of cloud computing.

VIII. CONCLUSION

In this paper, we present a comparison study on Trust-
Zone and CCA. We first introduce the architecture features
of TrustZone and CCA. Then, we compare them regarding
flexibility, security, and performance. Following this, we an-
alyze limitations in TrustZone and discuss CCA’s impacts on
TrustZone’s limitations and its unique limitations. We hope
this paper can help the community better understand their
different characteristics and application scenarios.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
insightful comments. This work is partly supported by the
National Natural Science Foundation of China under Grant
No.62372218, Shenzhen Science and Technology Program
under Grant No.SGDX20201103095408029, and Ant Group.

REFERENCES

[1] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A Comprehen-
sive Survey,” ACM computing surveys (CSUR), vol. 51, no. 6, pp. 1–36,
2019.

[2] P. Sparks, “The route to a trillion devices,” White Paper, ARM, 2017.
[3] A.-R. Sadeghi, C. Wachsmann, and M. Waidner, “Security and Privacy

Challenges in Industrial Internet of Things,” in Proceedings of the 52nd
annual design automation conference, 2015, pp. 1–6.

[4] C. Spensky, J. Stewart, A. Yerukhimovich, R. Shay, A. Trachtenberg,
R. Housley, and R. K. Cunningham, “SoK: Privacy on Mobile Devices-
It’s Complicated,” Proc. Priv. Enhancing Technol., vol. 2016, no. 3, pp.
96–116, 2016.

[5] Z. Ling, K. Liu, Y. Xu, Y. Jin, and X. Fu, “An End-to-End View of
IoT Security and Privacy,” in GLOBECOM 2017-2017 IEEE Global
Communications Conference. IEEE, 2017, pp. 1–7.

[6] Z. Zhang, H. Zhang, Z. Qian, and B. Lau, “An investigation of the
android kernel patch ecosystem,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 3649–3666.

[7] Z. Lin, Y. Wu, and X. Xing, “DirtyCred: Escalating Privilege in Linux
Kernel,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022, pp. 1963–1976.

[8] F. Zhang and H. Zhang, “Sok: A study of using hardware-assisted
isolated execution environments for security,” in Proceedings of the
Hardware and Architectural Support for Security and Privacy 2016, 2016,
pp. 1–8.

[9] S. Mofrad, F. Zhang, S. Lu, and W. Shi, “A Comparison Study of Intel
SGX and AMD Memory Encryption Technology,” in Proceedings of the
7th International Workshop on Hardware and Architectural Support for
Security and Privacy, 2018, pp. 1–8.

[10] T. Alves, “Trustzone: Integrated hardware and software security,” Infor-
mation Quarterly, vol. 3, pp. 18–24, 2004.

[11] ARM, “ARM Security Technology Building a Secure System us-
ing TrustZone Technology,” https://developer.arm.com/documentation/
PRD29-GENC-009492/latest/, 2009.

[12] Android, “Android keystore system,” https://developer.android.com/
training/articles/keystore, 2022.

[13] Huawei, “Privacy,” ”https://consumer.huawei.com/au/sustainability/
privacy/”, 2023.

[14] Qualcomm, “Guard your data with the qualcomm snapdragon
mobile platform,” ”https://www.qualcomm.com/content/dam/
qcomm-martech/dm-assets/documents/guard your data with the
qualcomm snapdragon mobile platform2.pdf”, 2019.

[15] Z. Ning, C. Wang, Y. Chen, F. Zhang, and J. Cao, “Revisiting arm
debugging features: Nailgun and its defense,” IEEE Transactions on
Dependable and Secure Computing, 2021.

[16] D. Xie, Y. Hu, and L. Qin, “An Evaluation of Serverless Comput-
ing on X86 and ARM platforms: Performance and Design Implica-
tions,” in 2021 IEEE 14th International Conference on Cloud Computing
(CLOUD). IEEE, 2021, pp. 313–321.

[17] S. Xu, A. Shafi, H. Subramoni, and D. K. Panda, “Arm meets Cloud:
A Case Study of MPI Library Performance on AWS Arm-based HPC
Cloud with Elastic Fabric Adapter,” in 2022 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). IEEE,
2022, pp. 449–456.

[18] A. Pellegrini, N. Stephens, M. Bruce, Y. Ishii, J. Pusdesris, A. Raja,
C. Abernathy, J. Koppanalil, T. Ringe, A. Tummala et al., “The Arm
Neoverse N1 Platform: Building Blocks for the Next-Gen Cloud-to-Edge
Infrastructure SoC,” IEEE Micro, vol. 40, no. 2, pp. 53–62, 2020.

[19] A. Pellegrini, “Arm Neoverse N2: Arm’s 2nd generation high perfor-
mance infrastructure CPUs and system IPs,” in 2021 IEEE Hot Chips 33
Symposium (HCS). IEEE, 2021, pp. 1–27.

[20] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “SoK: Understanding
the Prevailing Security Vulnerabilities in TrustZone-assisted TEE Sys-
tems,” in 2020 IEEE Symposium on Security and Privacy (SP). IEEE,
2020, pp. 1416–1432.

[21] ARM, “Introducing Arm Confidential Compute Architecture,” https://
developer.arm.com/documentation/den0125/, 2022.

[22] ARM, “Arm CCA Security Model,” https://developer.arm.com/
documentation/DEN0096, 2021.

[23] “Arm fixed virtual platforms.” https://developer.arm.com/
tools-and-software/simulation-models/fixed-virtual-platforms, 2021.

[24] X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, and G. Stockwell, “Design
and Verification of the Arm Confidential Compute Architecture,” in
Proceedings of the 16th USENIX Symposium on Operating Systems
Design and Implementation, 2022, pp. 465–484.

[25] Y. Zhang, Y. Hu, Z. Ning, F. Zhang, X. Luo, H. Huang, S. Yan, and
Z. He, “SHELTER: Extending Arm CCA with Isolation in User Space,”
in 32nd USENIX Security Symposium (USENIX Security 23), 2023.

[26] ARM, “Learn the architecture: Trustzone for aarch64,” https://developer.
arm.com/documentation/102418/0101/What-is-TrustZone-, 2021.

[27] ARM, “ARM CoreLink TZC-400 TrustZone Address Space Controller
Technical Reference Manual,” https://developer.arm.com/documentation/
ddi0504/latest/, 2014.

[28] ARM, “PrimeCell Infrastructure AMBA 3 TrustZone Protection
Controller (BP147),” https://developer.arm.com/documentation/dto0015/
latest/, 2004.

[29] ARM, “GICv3 and GICv4 Software Overview,” https://developer.arm.
com/documentation/dai0492/latest, 2016.

[30] ARM, “Arm System Memory Management Unit Architecture Specifi-
cation,” https://developer.arm.com/documentation/ihi0070, 2023.

[31] “Trusted-Firmware-A,” https://git.trustedfirmware.org/TF-A/
trusted-firmware-a.git/, 2022.

[32] “TF-RMM,” https://github.com/TF-RMM/tf-rmm, 2022.
[33] “Linux-CCA,” https://gitlab.arm.com/linux-arm/linux-cca, 2022.
[34] L. W. Remember, “Cold Boot Attacks on Encryption Keys,” in 2008

USENIX Security Symposium, vol. 21, 2008.
[35] C. Cao, L. Guan, N. Zhang, N. Gao, J. Lin, B. Luo, P. Liu, J. Xiang, and

W. Lou, “CryptMe: Data leakage prevention for unmodified programs
on ARM devices,” in Research in Attacks, Intrusions, and Defenses:
21st International Symposium, RAID 2018, Heraklion, Crete, Greece,
September 10-12, 2018, Proceedings 21. Springer, 2018, pp. 380–400.

[36] S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng, “SecTEE: A
Software-based Approach to Secure Enclave Architecture Using TEE,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 1723–1740.

[37] S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng, “Minimal Kernel: An
Operating System Architecture for TEE to Resist Board Level Physical
Attacks,” in 22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019), 2019, pp. 105–120.

[38] ARM, “Arm Realm Management Extension (RME) System Architec-
ture,” https://developer.arm.com/documentation/den0129/ad, 2022.

[39] H. Janjua, W. Joosen, S. Michiels, and D. Hughes, “Trusted operations
on sensor data,” Sensors, vol. 18, no. 5, p. 1364, 2018.

[40] Y. Lee, C. Min, and B. Lee, “ExpRace: Exploiting Kernel Races through
Raising Interrupts,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 2363–2380.

https://developer.arm.com/documentation/PRD29-GENC-009492/latest/
https://developer.arm.com/documentation/PRD29-GENC-009492/latest/
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
"https://consumer.huawei.com/au/sustainability/privacy/"
"https://consumer.huawei.com/au/sustainability/privacy/"
"https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf"
"https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf"
"https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf"
https://developer.arm.com/documentation/den0125/
https://developer.arm.com/documentation/den0125/
https://developer.arm.com/documentation/DEN0096
https://developer.arm.com/documentation/DEN0096
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://developer.arm.com/documentation/102418/0101/What-is-TrustZone-
https://developer.arm.com/documentation/102418/0101/What-is-TrustZone-
https://developer.arm.com/documentation/ddi0504/latest/
https://developer.arm.com/documentation/ddi0504/latest/
https://developer.arm.com/documentation/dto0015/latest/
https://developer.arm.com/documentation/dto0015/latest/
https://developer.arm.com/documentation/dai0492/latest
https://developer.arm.com/documentation/dai0492/latest
https://developer.arm.com/documentation/ihi0070
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/
https://github.com/TF-RMM/tf-rmm
https://gitlab.arm.com/linux-arm/linux-cca
https://developer.arm.com/documentation/den0129/ad

[41] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral, “LTZVisor:
TrustZone is the Key,” in 29th Euromicro Conference on Real-Time
Systems (ECRTS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2017.

[42] J. Wang, A. Li, H. Li, C. Lu, and N. Zhang, “RT-TEE: Real-time
System Availability for Cyber-physical Systems using ARM TrustZone,”
in 2022 IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society, 2022, pp. 1573–1573.

[43] S. Matetic, M. Schneider, A. Miller, A. Juels, and S. Capkun, “Dele-
gaTEE: Brokered Delegation Using Trusted Execution Environments,”
in 27th USENIX Security Symposium (USENIX Security 18), 2018, pp.
1387–1403.

[44] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “TruSpy: Cache
Side-Channel Information Leakage from the Secure World on ARM
Devices,” Cryptology ePrint Archive, 2016.

[45] ARM, “The Realm Management Extension (RME), for Armv9-A,” https:
//developer.arm.com/documentation/ddi0615/latest, 2022.

[46] “kvmtool-cca,” https://gitlab.arm.com/linux-arm/kvmtool-cca, 2022.
[47] F. Mayer, “Linux/Unix nbench,” ”https://www.math.utah.edu/∼mayer/

linux/bmark.html”, 2017.
[48] J. D. McCalpin, “Stream: Sustainable memory bandwidth in high

performance computers,” University of Virginia, Charlottesville,
Virginia, Tech. Rep., 1991-2007, a continually updated technical
report. http://www.cs.virginia.edu/stream/. [Online]. Available: http:
//www.cs.virginia.edu/stream/

[49] F. Khalid and A. Masood, “Vulnerability analysis of Qualcomm Secure
Execution Environment (QSEE),” Computers & Security, vol. 116, p.
102628, 2022.

[50] S.-W. Li, J. S. Koh, and J. Nieh, “Protecting Cloud Virtual Machines
from Hypervisor and Host Operating System Exploits,” in 28th USENIX
Security Symposium (USENIX Security 19), 2019, pp. 1357–1374.

[51] A. Van’t Hof and J. Nieh, “BlackBox: A Container Security Monitor
for Protecting Containers on Untrusted Operating Systems,” in 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2022.

[52] D. Shen, “Exploiting trustzone on android,” Black Hat USA, vol. 2, pp.
267–280, 2015.

[53] S. Wan, M. Sun, K. Sun, N. Zhang, and X. He, “RusTEE: Develop-
ing Memory-Safe ARM TrustZone Applications,” in Annual Computer
Security Applications Conference, 2020, pp. 442–453.

[54] laginimaineb, “War of the Worlds - Hijacking the Linux
Kernel from QSEE,” https://bits-please.blogspot.com/2016/05/
war-of-worlds-hijacking-linux-kernel.html, 2016.

[55] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, “SANCTU-
ARY: ARMing Trustzone with User-space Enclaves,” in Proceedings of
the 26th Annual Network and Distributed System Security Symposium,
2019.

[56] GlobalPlatform, “Tee management framework including asn.1 profile,”
2020. [Online]. Available: https://globalplatform.org/specs-library/
tee-management-framework-including-asn1-profile-1-1-2/

[57] GlobalPlatform, “Tee client api specification,” 2010. [Online]. Available:
https://globalplatform.org/specs-library/tee-client-api-specification/

[58] GlobalPlatform, “Tee internal core api specification,”
2021. [Online]. Available: https://globalplatform.org/specs-library/
tee-internal-core-api-specification/

[59] W. Li, Y. Xia, L. Lu, H. Chen, and B. Zang, “TEEv: Virtualizing
Trusted Execution Environments on Mobile Platforms,” in Proceedings
of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, 2019, pp. 2–16.

[60] R. Liu, L. Garcia, Z. Liu, B. Ou, and M. Srivastava, “SecDeep: Secure
and Performant On-device Deep Learning Inference Framework for
Mobile and IoT Devices,” in Proceedings of the International Conference
on Internet-of-Things Design and Implementation, 2021, pp. 67–79.

[61] D. Cerdeira, J. Martins, N. Santos, and S. Pinto, “ReZone: Disarming
TrustZone with TEE Privilege Reduction,” in Proceedings of the 31st
USENIX Security Symposium, 2022, pp. 2261–2279.

[62] T. Müller and M. Spreitzenbarth, “FROST: Forensic Recovery of Scram-
bled Telephones,” in Applied Cryptography and Network Security: 11th
International Conference, ACNS 2013, Banff, AB, Canada, June 25-28,
2013. Proceedings 11. Springer, 2013, pp. 373–388.

[63] M. G. Kuhn, “Cipher Instruction Search Attack on the Bus-Encryption
Security Microcontroller DS5002FP,” IEEE Transactions on Computers,
vol. 47, no. 10, pp. 1153–1157, 1998.

[64] M. Gross, N. Jacob, A. Zankl, and G. Sigl, “Breaking TrustZone
Memory Isolation through Malicious Hardware on a Modern FPGA-
SoC,” in Proceedings of the 3rd ACM Workshop on Attacks and Solutions
in Hardware Security Workshop, 2019, pp. 3–12.

[65] D. Kwon, J. Seo, Y. Cho, B. Lee, and Y. Paek, “PrOS: Light-weight
privatized se cure OSes in ARM TrustZone,” IEEE Transactions on
Mobile Computing, vol. 19, no. 6, pp. 1434–1447, 2019.

[66] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vTZ:
Virtualizing ARM TrustZone,” in Proceedings of the 26th USENIX
Security Symposium, 2017, pp. 541–556.

[67] D. Li, Z. Mi, Y. Xia, B. Zang, H. Chen, and H. Guan, “Twinvisor:
Hardware-isolated Confidential Virtual Machines for ARM,” in Pro-
ceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, 2021, pp. 638–654.

[68] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using ARM TrustZone
to Build a Trusted Language Runtime for Mobile Applications,” in
Proceedings of the 19th international conference on Architectural support
for programming languages and operating systems, 2014.

[69] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
“TrustShadow: Secure Execution of Unmodified Applications with ARM
TrustZone,” in Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services, 2017, pp. 488–501.

[70] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, “TrustICE: Hardware-
Assisted Isolated Computing Environments on Mobile Devices,” in
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. IEEE, 2015, pp. 367–378.

[71] H. Park and F. X. Lin, “Safe and Practical GPU Computation in
TrustZone,” in Proceedings of the Eighteenth European Conference on
Computer Systems, 2023, pp. 505–520.

[72] Y. Deng, C. Wang, S. Yu, S. Liu, Z. Ning, K. Leach, J. Li, S. Yan,
Z. He, J. Cao et al., “Strongbox: A GPU TEE on Arm Endpoints,” in
Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022, pp. 769–783.

[73] C. Wang, Y. Deng, Z. Ning, K. Leach, J. Li, S. Yan, Z. He, J. Cao, and
F. Zhang, “Building a lightweight trusted execution environment for arm
gpus,” IEEE Transactions on Dependable and Secure Computing, no. 01,
pp. 1–16, 2023.

[74] J. Jang, C. Choi, J. Lee, N. Kwak, S. Lee, Y. Choi, and B. B. Kang,
“PrivateZone: Providing a Private Execution Environment Using ARM
TrustZone,” IEEE Transactions on Dependable and Secure Computing,
vol. 15, no. 5, pp. 797–810, 2016.

[75] S.-K. Han and J. Jang, “MyTEE: Own the Trusted Execution Environ-
ment on Embedded Devices.” in NDSS, 2023.

[76] “Hafnium architecture,” https://hafnium.googlesource.com/hafnium/+/
HEAD/docs/Architecture.md, 2021.

[77] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gaza-
gnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library op-
erating systems for the cloud,” ACM SIGARCH Computer Architecture
News, vol. 41, no. 1, pp. 461–472, 2013.

[78] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted Execution Envi-
ronment: What It Is, and What It Is Not,” in 2015 IEEE Trustcom/Big-
DataSE/ISPA, vol. 1. IEEE, 2015, pp. 57–64.

[79] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin, “TrustZone
Explained: Architectural Features and Use Cases,” in 2016 IEEE 2nd
International Conference on Collaboration and Internet Computing (CIC).
IEEE, 2016, pp. 445–451.

[80] Z. Ning, F. Zhang, W. Shi, and W. Shi, “Position Paper: Challenges
Towards Securing Hardware-assisted Execution Environments,” in Pro-
ceedings of the Hardware and Architectural Support for Security and
Privacy, 2017, pp. 1–8.

[81] P. Maene, J. Götzfried, R. De Clercq, T. Müller, F. Freiling, and
I. Verbauwhede, “Hardware-Based Trusted Computing Architectures for
Isolation and Attestation,” IEEE Transactions on Computers, vol. 67,
no. 3, pp. 361–374, 2017.

[82] INTEL, “Intel software guard extensions,” https://www.
intel.com/content/www/us/en/architecture-and-technology/
software-guard-extensions/supporting-sgx-on-multi-socket-platforms.
html, 2021.

[83] “AMD Secure Encrypted Virtualization (SEV),” https://developer.amd.
com/sev/, 2021.

[84] O. Demigha and R. Larguet, “Hardware-based solutions for trusted cloud
computing,” Computers & Security, vol. 103, p. 102117, 2021.

https://developer.arm.com/documentation/ddi0615/latest
https://developer.arm.com/documentation/ddi0615/latest
https://gitlab.arm.com/linux-arm/kvmtool-cca
"https://www.math.utah.edu/~mayer/linux/bmark.html"
"https://www.math.utah.edu/~mayer/linux/bmark.html"
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/
https://bits-please.blogspot.com/2016/05/war-of-worlds-hijacking-linux-kernel.html
https://bits-please.blogspot.com/2016/05/war-of-worlds-hijacking-linux-kernel.html
https://globalplatform.org/specs-library/tee-management-framework-including-asn1-profile-1-1-2/
https://globalplatform.org/specs-library/tee-management-framework-including-asn1-profile-1-1-2/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://hafnium.googlesource.com/hafnium/+/HEAD/docs/Architecture.md
https://hafnium.googlesource.com/hafnium/+/HEAD/docs/Architecture.md
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://developer.amd.com/sev/
https://developer.amd.com/sev/

	Introduction
	Overview
	TrustZone Overview
	CCA Overview
	CCA Prototype

	Flexibility Comparison
	Memory Management
	Peripheral Management
	Summary

	Security Comparison
	Memory Isolation
	Memory Encryption
	Peripheral Isolation
	Interrupts Isolation
	Hardware-assisted Attestation
	Isolation in TLB and Cache
	Summary

	Performance Evaluation
	Environment Setup
	Microbenchmarks
	Benchmarks

	Limitation Analysis
	TrustZone's Limitations
	CCA's Impacts and Limitations

	Related Works
	Conclusion
	References

