
SoK: A Study of Using Hardware-assisted Isolated
Execution Environments for Security

Fengwei Zhang
Department of Computer Science

Wayne State University
fengwei@wayne.edu

Hongwei Zhang
Department of Computer Science

Wayne State University
hongwei@wayne.edu

ABSTRACT
Hardware-assisted Isolated Execution Environments (HIEEs)
have been widely adopted to build effective and efficient de-
fensive tools for securing systems. Hardware vendors have
introduced a variety of HIEEs including system management
mode, Intel management engine, ARM TrustZone, and Intel
software guard extensions. This SoK paper presents a com-
prehensive study of existing HIEEs and compares their fea-
tures from the security perspective. Additionally, we explore
both defensive and offensive use scenarios of HIEEs and dis-
cuss the attacks against HIEE-based systems. Overall, this
paper aims to give an essential checkpoint of the state-of-
the-art systems that use HIEEs for trustworthy computing.

Keywords
Isolated execution environments, hardware, security

1. INTRODUCTION
Isolating code execution is one of the fundamental ap-

proaches to achieving security. Researchers use virtualiza-
tion technology to create an isolated execution environment
for running defensive tools. Moreover, Virtual machine in-
trospection [21] has been widely adopted for attacks detec-
tion and malware analysis. However, existing virtualization-
based approaches have limitations including: 1) Dependence
on hypervisors that may have a large Trusted Computing
Base (TCB). For instance, the latest Xen hypervisor has
532K lines of source code obtained from [11]. 2) Failure to
deal with hypervisor or firmware rootkits. Virtualization-
based approaches rely on hypervisors so they cannot analyze
the same or higher privilege-level rootkits. And 3) suffering
from system performance overhead (e.g., context switches
from a VM to a hypervisor).

In light of these problems, researchers proposed to use
Hardware-assisted Isolated Execution Environments (HIEEs)
for securing systems. This approach combines the isolated
execution concept with hardware-assisted technologies. Both

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HASP 2016, June 18 2016, ,
c© 2016 ACM. ISBN 978-1-4503-4769-3/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2948618.2948621

are crucial to secure computer systems: The isolated exe-
cution concept provides a Trusted Execution Environment
(TEE) for running defensive tools on a compromised sys-
tem. Using hardware-assisted technologies excludes the hy-
pervisors from TCB, achieves a high level of privilege (i.e.,
hardware-level privilege), and reduces performance overhead
giving that context switches are performed faster in hard-
ware.

In this SoK paper, we survey the state-of-the-art sys-
tems that leverage HIEEs for security. We first study six
hardware-level computing environments (i.e., HIEEs) that
have been used for building security tools. Based on the
timelines they introduced, we categorize them as follows. 1)
Legacy HIEEs: System Management Mode (SMM) and Dy-
namic Root of Trust for Measurements (DRTM); 2) recent
HIEEs: Intel Management Engine (ME), AMD Platform Se-
curity Processor (PSP), and ARM TrustZone; 3) the latest
HIEE: Intel Software Guard Extensions (SGX). We discuss
the security usage scenarios of HIEEs from both defensive
and offensive points of view, and further describe these us-
age scenarios along with the existing HIEE-based systems.
Additionally, we identify attacks and security concerns to
HIEE-based systems from two aspects: 1) the isolated com-
puting environments (i.e., HIEEs themselves) and 2) the
approach of using HIEEs for security. For each HIEE it-
self, we enumerate potential attacks against it and describe
corresponding mitigations. In terms of the approach of us-
ing HIEEs for security in general, we raise security con-
cerns such as ensuring trusted path and verifying trustwor-
thy hardware. Note that the concept of HIEE needs to be
distinguished from TEE. On one hand, a TEE may not be
a HIEE such as software-based TEEs (e.g., virtualization
technology); on the other hand, a HIEE does not have to be
a TEE (e.g., SMM is a HIEE but may not be a TEE because
it is not designed for security).

The main contributions of this SoK paper are:

• We present a thorough study of six HIEEs including
SMM, Intel ME, AMD PSP, DRTM, Intel SGX, and
ARM TrustZone, and compare their hardware features
for trustworthy computing.

• We explore both the defensive and offensive use sce-
narios of HIEEs and describe them with the state-of-
the-art HIEE-based systems.

• We discuss all attacks against the computing environ-
ment of each HIEE (e.g., bypassing the isolation) and
some mitigations.

• We raise the concerns about the approach of using
HIEEs for security including ensuring the trusted switch-
ing path and verifying trustworthiness of hardware tech-
nologies.

The rest of the paper is organized as follows. Section 2
explains different HIEEs including SMM, Intel ME, AMD
PSP, DRTM, Intel SGX, and ARM TrustZone. Section 3
presents the security use cases of HIEEs. Section 4 presents
all attacks against the HIEEs. Section 5 discusses the secu-
rity concerns of the HIEE-based approach. Lastly, Section 6
concludes the SoK paper with our expectations.

2. HIEE
In this section, we first explain Hardware-assisted Isolated

Execution Environments (HIEEs) including system manage-
ment mode, Intel management engine, AMD secure proces-
sor, dynamic root of trust for measurement, Intel software
guard extension, and ARM TrustZone. Then, we briefly
compare these HIEEs.

2.1 System Management Mode
System Management Mode (SMM) [24] is a mode of ex-

ecution similar to Real and Protected modes available on
x86 platforms (Intel started to use SMM in its Pentium
processors since early 90s). It provides a hardware-assisted
isolated execution environment for implementing platform-
specific system control functions such as power management.
It is initialized by the Basic Input/Output System (BIOS).

SMM is triggered by asserting the System Management
Interrupt (SMI) pin on the CPU. This pin can be asserted
in a variety of ways, which include writing to a hardware
port or generating Message Signaled Interrupts with a PCI
device. Next, the CPU saves its state to a special region
of memory called System Management RAM (SMRAM).
Then, it atomically executes the SMI handler stored in SM-
RAM. SMRAM cannot be addressed by the other modes of
execution. The requests for addresses in SMRAM are in-
stead forwarded to video memory by default. This caveat
therefore allows SMRAM to be used as a secure storage. The
SMI handler is loaded into SMRAM by the BIOS at boot
time. The SMI handler has unrestricted access to the phys-
ical address space and can run privileged instructions (For
this reason, SMM is often referred to as ring -2.) The RSM

instruction forces the CPU to exit from SMM and resume
execution in the previous mode.

In general, there are software- and hardware-based meth-
ods to trigger an SMI. In software, we can write to an ACPI
port to raise an SMI. For example, Intel chipsets use port
0x2b as specified by the Southbridge datasheet; AMD K8
chipset with a VIA VT8237r Southbridge uses 0x52f as the
SMI triggering port [53]. In terms of hardware-based meth-
ods, there are many hardware devices that can be used to
raise an SMI, including keyboards, network cards, and hard-
ware timers. Figure 1 shows the process of triggering an SMI
from an OS in Protected Mode. Note that other CPU modes
(e.g., Real Mode) can also switch into SMM by triggering
an SMI.

2.2 Intel Management Engine
The Intel Management Engine (ME) is a micro-computer

embedded inside of all recent Intel processors, and it exists
on Intel products including servers, workstations, desktops,

Protected Mode

Normal OS

System Management Mode

Isolated Execution Environment

SMI
Handler

Isolated SMRAM

Highest privilege

Interrupts disabled

SMM entry

SMM exit

Software
or

Hardware

Trigger SMI

RSM

Figure 1: SMI Triggering Process

tablets, and smart phones [36]. Intel introduced ME as an
embedded processor in 2007. At that time, its main func-
tion was to support Intel Active Management Technology
(AMT), and Intel AMT is the first application running in
the ME. Recently, Intel started to use ME as a Trusted Exe-
cution Environmental (TEE) for executing security-sensitive
applications. According to the latest ME book [36] written
by an Intel Architect working on ME, a few security appli-
cations have been or will be implemented in ME including
enhanced privacy identification, protected audio video path,
identity protection technology, and boot guard.

Figure 2 shows the hardware architecture of ME. From
the figure we can see that ME is like a computer; it contains
a processor, cryptography engine, Direct Memory Access
(DMA) engine, Host-Embedded Communication Interface
(HECI) engine, Read-Only Memory (ROM), internal Static
Random-Access Memory (SRAM), a timer, and other I/O
devices. ME executes the instructions on the processor, and
it has code and data caches to reduce the number of ac-
cesses to the internal SRAM. The internal SRAM is used to
store the firmware code and runtime data. Besides the in-
ternal SRAM, ME also uses some Dynamic Random-Access
Memory (DRAM) from the main system’s memory (i.e., host
memory). This DRAM serves a role as the disk; the mem-
ory pages of code/data that are not currently used by ME
processor will be evicted from SRAM and swapped out to
DRAM in the host memory. The region of DRAM is re-
served by the BIOS when system boots. This DRAM is
dedicated for ME use and the operating system cannot ac-
cess it. However, the design of ME does not trust the BIOS
and it assumes the host can access the reserved DRAM re-
gion.

Since the embedded processor (i.e., ME processor) cannot
address the host memory, two engines (i.e., DAM engine
and HECI engine) are introduced for the data transmission
between the ME memory and the main system’s memory.
DMA engine is used to move large amounts of data between
the ME memory and the host memory. Note that the DMA
engine can only understand the physical memory addresses
when accessing host memory. The cryptography engine is
used to execute the expensive cryptography algorithms so
that it offloads the commutation from the ME processor.
The cryptography engine includes many algorithms includ-
ing AES, SHA, DRING, and big number arithmetic [36], and
the ME firmware can use them by invoking their APIs.

The ME firmware is stored on two types of media: ROM
and SPI flash memory. As shown in the figure 2, the ROM
is located in the ME. The code in the ROM is burned in the
manufacture stage and it cannot be modified. The ROM
stores a boot loader and serves as the root of trust of the

Management Engine

ME
Processor

Crypto
Engine

DMA
Engine

HECI
Engine

ROM

Internal
SRAM

Interrupt
Controller

Timer

CLink I/O

Internal Bus

Figure 2: Architecture of Management Engine

Table 1: Main Hardware Components of ME

Hardware Description
ME processor Main master device that executes the firmware

ROM Boot loader; cannot be modified; as the root of trust of ME
Internal SRAM Storing the code and data at runtime
Crypto engine Executing crypto algorithm to save the processor’s cycles

DMA engine Transmitting large amounts of data between host and ME
HECI engine Moving small amounts of data; host can program it

ME. The majority of the ME firmware is stored on SPI
flash memory, and it includes a custom OS and applica-
tions. The flash is divided into multiple regions. Depending
on the applications implemented in ME, the flash firmware
located differently on the host motherboard (e.g., BIOS and
NIC). The flash normally are locked by the OEMs to prevent
malicious modifications. However, researchers have demon-
strated bypassing these lock mechanisms to inject code into
ME [50]. Table 1 lists the main hardware components of
ME.

2.3 AMD Embedded Processors
Though ME is for Intel processors, we can find similar

technologies on AMD platforms. AMD Secure Processor [4]
(also called Platform Security Processor or PSP) is a dedi-
cated processor embedded inside of the main AMD CPU. It
works with ARM TrustZone technology and software-based
Trusted Execution Environment (TEE) to enable running
third-party trusted applications. AMD Secure Processor is
a hardware-based technology which enables secure boot up
from BIOS level into the TEE. Trusted third-party appli-
cations are able to leverage industry-standard APIs to take
advantage of the TEE’s secure execution environment. An-
other example is System Management Unit (SMU) [30]. The
SMU is a subcomponent of the Northbridge that is respon-
sible for a variety of system and power management tasks
during boot and runtime. The SMU contains a processor to
assist [3]. Since AMD integrated Northbridge into the CPU,
the SMU processor is an embedded processor inside of the
CPU, which is same as Intel ME.

2.4 Dynamic Root of Trust for Measurement
Trust Computing Group (TCG) introduced Dynamic Root

of Trust for Measurement (DRTM) [52], also called ”late
launch”, in the TPM v1.2 specification [51] in 2005. It is
an alternative to the Static Root of Trust for Measurement
(SRTM). Unlike SRTM which operates at boot time, DRTM
allows the root of trust for measurement to be initialized

Normal World

Rich OS in REE

Secure World

Secure OS in TEE

Normal world
user mode

Normal world
priviledge modes

Secure world
user mode

Secure world
priviledge modes

Monitor mode

Figure 3: Processor Modes in TrustZone-enabled
ARM Architecture

at any point. To implement this technology, Intel devel-
oped Trusted eXecution Technology (TXT) [25], providing
a trusted way to load and execute system software (e.g., OS
or VMM). TXT uses a new CPU instruction, SENTER, to
control the secure environment. Intel TXT does not make
any assumptions about the system state, and it provides
a dynamic root of trust for late launch. Thus, TXT can
be viewed as a hardware-assisted isolated execution envi-
ronment to run security sensitive tasks. AMD has a similar
technology called Secure Virtual Machine [2], and it uses the
SKINIT instruction to enter the secure environment. Note
that both TXT and SVM introduce a significant overhead
on the late launch operation (e.g., the SKINIT instruction
in [31]).

2.5 Intel Software Guard Extensions
In 2013, Intel presented three introduction papers on Soft-

ware Guard Extensions (SGX) [34, 5, 23]; SGX is a set of
instructions and mechanisms for memory accesses added to
Intel architecture processors. These extensions allow an ap-
plication to instantiate a protected container, referred to as
an enclave. An enclave could be used as a TEE, which pro-
vides confidentiality and integrity even without trusting the
BIOS, firmware, hypervisors, and OSes. Some of researchers
consider SGX as a new generation of TXT [39, 15]. Jain et
al. [27] developed OpenSGX, an open-source platform that
emulates Intel SGX hardware components at the instruction
level by modifying QEMU. It demonstrated OpenSGX can
be used to protect sensitive information of Tor nodes.

2.6 ARM TrustZone
ARM TrustZone technology [6] is a hardware feature that

creates an isolated execution environment since ARMv6 around
2002 [12]. Similar to other hardware isolation technologies,
it provides two environments or worlds. The Trust Exe-
cution Environment (TEE) is called the secure world, and
the Rich Execution Environment (REE) is called the nor-
mal world. To ensure the complete isolation between the
secure world and the normal world, TrustZone provides se-
curity extensions for hardware components including CPU,
memory, and peripherals.

The CPU on a TrustZone-enabled ARM platform has two
security modes: secure world and normal world. Figure 3
shows the processor modes in a TrustZone-enabled ARM
platform. Each processor mode has its own memory access
region and privilege. The code running in the normal world
cannot access the memory in the secure world, while the
program executed in the secure world can access the mem-
ory in normal world. The secure and normal worlds can be
identified by reading the NS bit in the Secure Configuration

Table 2: Summary of HIEEs

SMM ME PSP DRTM SGX TrustZone
Timelines ˜1993 ˜2007 ˜2013 ˜2005 ˜2013 ˜2002
Supported hardware x86 Intel AMD Intel/AMD Intel ARM
Sharing main CPU X X X X
High privilege X X X X
Zero overhead X X
Designed for security X X X X X

Register (SCR), which can only be modified in the secure
world. As shown in Figure 3, TrustZone uses Monitor mode
that only runs in the secure world to serve as a gatekeeper
managing the switches between the two worlds. The normal
world can call a special instruction called the Secure Mon-
itor Call (smc) to enter the Monitor mode and modify the
NS bit to switch into the secure world.

TrustZone uses Memory Management Unit mechanism to
support virtual memory address spaces in both the secure
and normal worlds. The same virtual address space in the
two worlds is mapped to different physical regions. There are
two types of hardware interrupts: Interrupt Request (IRQ)
and Fast Interrupt Request (FIQ). The secure world can
assert FIQ or IRQ while the normal world can only assert
IRQ.

2.7 Summary of HIEEs
Table 2 summarizes the features of HIEEs. SMM is avail-

able on all x86 architecture including Intel and AMD pro-
cessors; ME is only for Intel-specific processors, while PSP
is a hardware feature for AMD; DRTM is introduced by
TCG; both Intel and AMD processors have a corresponding
implementation (i.e., VT-x/SVM); TrustZone is a security
extension on ARM processors. Except for Intel ME and
AMD PSP, all other HIEEs share the main CPU in a time-
sliced fashion. SMM, ME, PSP, and TrustZone have a high
privilege; for instance, they are able to access all host phys-
ical memory. Additionally, ME- or PSP-based systems have
zero performance overhead to the main CPU because they
run on an independent processor. Except for SMM, all other
HIEEs are originally designed for security purposes.

3. USE CASES
In this section, we survey the use cases of HIEE for both

defense and offensive purposes and describe the state-of-the-
art HIEE-based systems for each scenario.

3.1 System Introspection
System introspection has been widely adopted for ensur-

ing security. There are an array of tools that use HIEE for
system introspection, integrity checking, and malware de-
tection. HyperGuard [41] suggests using SMM to monitor
hypervisor integrity by taking snapshots of a VM guest and
checking it in SMM. HyperCheck [65] has similar goals, but
outsource the snapshot to an external server for OS/hypervisor
integrity checking, since it can reduce the computation over-
head on the protected machine. HyperSentry [8] uses an out-
of-band channel, specifically the Intelligent Platform Man-
agement Interface, to trigger SMM to check the integrity of
base code operating on critical data. While HyperGuard,
HyperCheck, and HyperSentry focus on enforcing OS or hy-
pervisor integrity checking, IOCheck [64] is a framework to
enhance the security of I/O devices at runtime. It lever-
ages SMM to quickly check the integrity of I/O configu-

rations and firmware. Spectre [62] is another SMM-based
system that introspects the host memory for malware de-
tection. It periodically checks the host memory for heap
overflow, heap spray, and rootkit attacks. Ge et al. [22] pro-
pose SPROBES that leverages ARM TrustZone technology
as a HIEE to restrict the normal world’s kernel execution to
approved kernel code memory. It enables the secure world
to cause the normal world to trap on any normal world in-
struction and provides an unforgeable view of the normal
world’s processor state. TZ-RKP [7] is a similar TrustZone-
based system that aims to enforce kernel code integrity on
ARM platforms. It further improves SPROBES by adding
defense mechanism including data integrity protection and
performance enhancement. Flicker [31] and Trustvisor [32]
employ Dynamic Root of Trust Measurement (DRTM) to
provide a HIEE for running security code. One particular
usage is to run a rootkit detector for OS integrity checking.

3.2 Memory Forensics
Jiang et al. [54] propose a firmware-assisted memory ac-

quisition and analysis tool for digital forensics. It leverages
SMM to reliably perform acquisition of volatile memory of
a target system, and then transmits the memory contents
to a remote machine for analysis by using a network card.
SMMDumper [35] implements the proposed system from pa-
per [54] on QEMU, and it further enables to dump and trans-
mit physical memory extending over 4 GB. TrustDump [48]
is a TrustZone-based memory acquisition mechanism that is
capable of reliably obtaining the RAM memory and CPU
registers of the mobile OS even if the OS has crashed or has
been compromised. It uses the secure domain of TrustZone
as a HIEE and runs the memory acquisition module in it for
memory forensics.

3.3 Transparent Malware Analysis
Zhang et al. [61] propose MalT, a bare-metal debugging

tool for malware analysis. Its core idea is to use SMM to
increase the debugging transparency. Specifically, it lever-
ages SMM as a HIEE that leaves a minimal footprint on
the debugging system and provides a more transparent exe-
cution environment for debuggers. We believe other HIEEs
including ARM TrustZone and Intel ME can also be used
for transparent malware analysis due to their high privi-
lege and stealthiness. Furthermore, Intel ME can achieve
a higher level of transparency because it executes on a co-
processor and does not introduce any performance overhead
on the main CPU.

3.4 Executing Sensitive Workloads
Flicker [31] and TrustVisor [32] employ DRTM with a

small trusted computing base to create a HIEE. Flicker cre-
ates an on-demand secure environment using DRTM, while
TrustVisor uses DRTM to securely initialize a light-weight
hypervisor that uses hardware virtualization (VT-x/SVM)
to protect the applications running in the secure environ-
ments. The two systems use the TPM to provide remote
attestations and to securely store data for executing sensi-
tive workloads. Bumpy [33] is a Flicker-based system for
securing sensitive network input. It handles inputs in a spe-
cial code module that is executed in an isolated environ-
ment using the Flicker. Sun et al. presents TrustICE [49], a
TrustZone-based isolation framework to provie isolated com-
puting environments (ICEs) on mobile devices. The main

idea of TrustICE is to create ICEs in the normal world rather
than in the secure world. It leverages the TrustZone exten-
sions to isolate the sensitive workloads in an ICE from an
untrusted OS in the normal world. TrustOTP [47] aims to
transform mobile phones to display one-time password to-
kens. It leverages TrustZone technology and can securely
display the password even if the mobile OS is malicious or
crashed. SICE [9] is a framework to provide hardware-level
isolation and protection for sensitive workloads running on
x86 platforms in the cloud. It uses SMM as a HIEE and
runs on multi-core processors to allow the isolated environ-
ments to concurrently run security sensitive workloads and
the normal OS. It does not rely on any software component
in the host environment and supports up to 4GB of isolated
memory. TrustLogin [63] is another SMM-based system that
securely performs login operations on commodity operating
systems. Even if the operating system and applications are
compromised, an attacker is not able to reveal the login pass-
word from the host. TrustLogin leverages SMM to transpar-
ently protect the login credentials from keyloggers. In ad-
dition, Microsoft Research presents two systems, Haven [10]
and VC3 [43], that use Intel SGX as a HIEE and protect
the confidentiality and integrity of applications in the cloud.
They rely on SGX processors to isolate memory regions and
keep the OS and hypervisor out of the TCB. Kim et al. [28]
adopts SGX to secure network applications such as Tor.

3.5 Rootkits and Keyloggers
Though researchers have used hardware-assisted isolated

execution environments for implementing defensive tools, at-
tackers can also use it for malicious purposes due to their
high privilege and stealthiness. SMM Rootkits: Se-
curity researchers have proposed to use SMM to implement
attacks. In 2004, Duflot [17] demonstrated the first SMM-
based attack to bypass the protection mechanism in OpenBSD.
Embleton et al. [20] use SMM to implement a chipset level
keylogger and a network backdoor capable of directly inter-
acting with the network card to send logged keystrokes to
a remote machine via network packets. Schiffman and Ka-
plana [42] further demonstrated that with USB keyboards
instead of PS/2 ones. Other SMM-based attacks focus on
achieving stealthy rootkits [13, 1]. For instance, the National
Security Agency (NSA) uses SMM to build an array of rootk-
its including DEITYBOUNCE for Dell and IRONCHEF for
HP Proliant servers [1]. However, these attacks require by-
passing or unlocking SMRAM protection. We discuss how
to bypass SMRAM protection mechanism in Section 4.1.
ME Rootkits: Serveral attacks [50, 46] have been de-
mostrated using ME to implement advanced stealthy rootk-
its. Tereshkin and Wojtczuk [50] injects malicious code in to
the Intel Active Management Technology (AMT) to imple-
ment ME ring -3 rootkits. DAGGER [46] is a DMA-based
keylogger implemented in ME, and it captures keystrokes
very early in the platform boot process, which enables DAG-
GER to capture harddisk encryption passwords. DRTM,
SGX, and TrustZone Rootkits: To the best of our knowl-
edge, we have not seen any publicly available examples of
DRTM, SGX, and TrustZone rootkits. However, similar to
SMM or ME rootkits, attackers have the motivation to im-
plement rootkits in them due to their stealthiness. In
particular, researchers [37, 16, 27] raise concerns of misus-
ing SGX for malware or rootkits, so malicious programs run-
ning in an enclave cannot be analyzed due to the hardware

Table 3: Summary of SMM Attacks and Solutions

SMM Attacks Solutions
Unlocked SMRAM [17, 20, 13] Set D LCK bit
SMRAM reclaiming [41] Lock remapping and TOLUD registers
Cache poisoning [58, 19] SMRR
Graphics aperture [18] Lock TOLUD
TSEG location [18] Lock TSEG base
Call/fetch outside of SMRAM [18, 60] No call/fetch outside of SMRAM

protection; normal security tools like anti-virus and rootkits-
detectors cannot know if an enclave has been compromised
or not.

One one hand, hardware-assisted isolated execution envi-
ronments are powerful trusted computing environments for
executing security functions (e.g., system introspection for
malware/attacks defense as described); on the other hand, it
creates an ideal environment or infrastructure that attracts
attackers to implement super-powerful rootkits. We believe
the security of HIEEs themselves needs to be explored more
and we discuss the attacks against HIEEs in Section 4.

4. HIEE ATTACKS
In this section, we present the attacks against HIEEs (i.e.,

the hardware computing environments). We show the at-
tacks that can bypass the isolation of these hardware envi-
ronments.

4.1 SMM Attacks
Before 2006, computers did not lock their SMRAM in

the BIOS [20], and researchers used this flaw to implement
SMM-based rootkits [17, 20, 13]. Modern computers lock
the SMRAM in the BIOS so that SMRAM is inaccessi-
ble from any other CPU modes after booting. Wojtczuk
and Rutkowska demonstrated bypassing the SMRAM lock
through memory reclaiming [41] or cache poisoning [58].
The memory reclaiming attack can be addressed by lock-
ing the remapping registers and Top of Low Usable DRAM
(TOLUD) register. The cache poisoning attack forces the
CPU to execute instructions from the cache instead of SM-
RAM by manipulating the Memory Type Range Register
(MTRR). Duflot also independently discovered this architec-
tural vulnerability [19], but it has been fixed by Intel adding
SMRR [24]. Furthermore, Duflot et al. [18] listed some de-
sign issues of SMM, but they can be fixed by correct con-
figurations in BIOS and careful implementation of the SMI
handler. Table 3 shows a summary of attacks against SMM
and their corresponding solutions. Wojtczuk and Kallen-
berg [55] recently presented an SMM attack by manipulat-
ing UEFI boot script that allows attackers to bypass the
SMM lock and modify the SMI handler with ring 0 privi-
lege. The UEFI boot script is a data structure interpreted
by UEFI firmware during S3 resume. When the boot script
executes, system registers like BIOS NTL (SPI flash write
protection) or TSEG (SMM protection from DMA) are not
set so that attackers can force an S3 sleep to take control
of SMM. Fortunately, as stated in the paper [55], the BIOS
update around the end of 2014 fixed this vulnerability.

Butterworth et al. [14] demonstrated a buffer overflow
vulnerability in the BIOS updating process in SMM, but
this is not an architectural vulnerability and is specific to
that particular BIOS version. Recently, Intel introduced
SMM-Transfer Monitor (STM), which virtualizes the SMM
code [24]. It is also the answer to attacks against Intel

TXT [57].

4.2 ME Attacks
Intel uses ME as a TEE to execute security sensitive oper-

ations. However, several attacks have been demonstrated to
bypass the hardware protection mechanism and implement
rootkits in it. In 2009, Tereshkin and Wojtczuk [50] demon-
strated that they can implement ring -3 rootkits in ME by
injecting the malicious code into the Intel Active Manage-
ment Technology (AMT), and this is the first attack against
Intel ME. DAGGER [46] bypasses the ME isolation using
a similar technique in [50], but it hooks the ME firmware
function memset because it is invoked more often. Skochin-
sky [45] discovers that the ME firmware on the SPI flash
uses Huffman encoding to prevent reverse engineering for
implementing rootkits.

4.3 DRTM Attacks
One implementation of Dynamic Root of Trust for Mea-

surement (DRTM) is the Intel Trusted Execution Technol-
ogy (TXT). Wojtczuk and Rutkowska from Invisible Things
Lab demonstrate several attacks [57, 56, 59] against Intel
TXT. In February 2009, Invisible Things Lab presented an
attack against Intel TXT because SMM is not measured
and able to interfere with TXT launch [57]. In December
same year, they demonstrated another way to circumvent
Intel TXT by tricking SENTER into mis-configurating VT-d
setup, so that attackers can compromise the newly loaded
hypervisor using DMA attacks [56]. In 2011, they presented
another attack [59] that exploits a bug in SINIT module, an
internal part of the Intel TXT. Based on the latest talk from
them [40] in December 2015, SMM-Transfer Monitor (STM)
is still not present in Intel products. From this point of view,
Intel TXT must trust the SMM code due to the absence of
STM.

4.4 SGX Attacks
Intel SGX is the latest iteration for trustworthy comput-

ing, and all future Intel processors will have this feature
and use it as a TEE for addressing security problems. How-
ever, researchers raised security concerns about it. Recently,
Costan and Devadas [15] published an extensive study on
SGX. They analyzed the security features of SGX and raised
concerns such as cache timing attacks and software side-
channel attacks. Additionally, SGX tutorial slides from ISCA
2015 [26] mentioned that SGX does not protect against soft-
ware side-channel attacks including using performance coun-
ters. Moreover, SGX for desktop-like environments needs to
establish a secure channel between I/O devices (e.g., key-
board and video display) and an enclave to prevent sensitive
data leakage [38, 27]. Fortunately, Intel Protected Audio
Video Path (PVAP) technology can securely display video
frames and play audio to users; Intel Identity Protection
Technology (IPT) provides security features including Pro-
tected Transaction Display (e.g., entering a PIN by an user).
According to the ME book [36], both PVAP and IPT are re-
alized by ME. SGX needs Enhanced Privacy Identification
(EPID) support for remote attestation [27]. The EPID is
a security mechanism exclusively built in ME and serves as
the hardware root of trust [36]. During the manufacturing
stage, a unique EPID private key is programmed in ME, and
the system uses the EPID private key to provide to the local
host or a remote server that it is a genuine intel platform.

The design of SGX assumes that the firmware could be ma-
licious, it becomes unclear if the ME firmware is malicious
since SGX relies on many hardware features (IPT, PVAP,
and EPID) implemented by ME.

4.5 TrustZone Attacks
With the proliferation of mobile computing and wide adop-

tion of TrustZone technology, this attracts attackers to study
TrustZone and bypass the isolation mechanism for steal-
ing sensitive information. Di [44] found vulnerabilities that
are able to execute arbitrarily code in secure world using a
user-level application in normal world. A proof-of-concept
demonstration has been shown on a Huawei HiSilicon device.
Additionally, researchers demonstrate that a TrustZone ker-
nel privilege escalation vulnerability exists on Qualcomm
implementation [29].

5. DISCUSSION
Section 4 explains the specific attacks against each execu-

tion environment. In this section, we discuss the concerns
on the approach of using HIEEs for security.

One challenge of using HIEEs for security is to ensure
the trusted switching path. HIEE-based systems assume
attackers have ring 0 privilege; attackers can intercept the
switching from the normal environment to TEE and provide
a fake switching process to deceive users (i.e., spoofing at-
tack). Additionally, the attackers can perform a Denial of
Service (DoS) attack against a system by simply disabling
the switching due to their ring 0 privilege. Fortunately, Intel
ME and AMD PSP do not have this problem because they
are running independently from the main CPU so that there
is no switching process for them. However, other HIEEs like
SMM, DRTM, SGX, and TrustZone have this problem due
to sharing the main CPU in a time-sliced fashion. To ad-
dress this problem, several ad-hoc solutions are implemented
in HIEE-based systems. Bumpy [33], a DRTM-based sys-
tem, uses an external smartphone as the trusted monitor to
acknowledge the switching. TrustLogin [63], an SMM-based
system, uses the keyboard LED lights to show a user-defined
sequence and the PC speaker to play a melody to ensure
the switching. TrustICE [49], a TrustZone-based system,
uses the LED lights to prevent spoofing attacks. However,
these solutions that ensures the trusted switching path are
not user-friendly. We believe building a generic and user-
friendly trusted path mechanism for HIEE-based systems is
still an open research problem.

The approach of using HIEEs for security heavily depends
on the hardware vendors. It assumes hardware vendors are
trustworthy and provided hardware features are bug-free
(e.g., isolation is guaranteed). Unfortunately, there is no
clear way of verifying these assumptions. Moreover, hard-
ware vendors tend not to release the details of their imple-
mentations due to various reasons (e.g., commercial secrecy).
For instance, Intel ME is a secret land that only the hard-
ware vendor knows, though Intel uses it for many security
features as explained in Section 2. We would like to draw
attention to the community on how to reliably evaluate the
trustworthiness of these mysterious hardware security tech-
nologies.

6. CONCLUSIONS
Hardware-assisted isolated execution environments play

critical roles for trustworthy computing. Moreover, hard-
ware vendors are actively developing hardware-assisted tech-
nologies to address security issues. By surveying the existing
hardware-assisted isolated execution environments and their
state-of-the-art systems, we expect our observations in this
SoK paper provide helpful guidelines for future HIEEs or
HIEE-based systems.

7. ACKNOWLEDGEMENTS
We would like to thank our shepherd, Larry Shi, and the

anonymous reviewers for their insightful comments that im-
proved the paper. This work is supported by the National
Science Foundation Grant No. CNS-1054634. Opinions,
findings, conclusions and recommendations expressed in this
material are those of the authors and do not necessarily re-
flect the views of the US Government.

8. REFERENCES
[1] NSA’s ANT Division Catalog of Exploits for Nearly Every

Major Software/Hardware/Firmware.
http://Leaksource.wordpress.com.

[2] Advanced Micro Devices, Inc. AMD64
ArchitectureProgrammer’s Manual Volume 2: System
Programming.
/urlhttp://support.amd.com/TechDocs/24593.pdf, June
2015.

[3] Advanced Micro Devices, Inc. BIOS and Kernel Developer’s
Guide (BKDG) for AMD Family 16h Models 30h-3Fh
Processors. http://support.amd.com/TechDocs/52740 16h
Models 30h-3Fh BKDG.pdf, March 2015.

[4] AMD TATS BIOS Development Group. AMD Security and
Server Innovation. http://www.uefi.org/sites/default/files/
resources/UEFI PlugFest AMD Security and Server
innovation AMD March 2013.pdf, 2013.

[5] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata.
Innovative Technology for CPU Based Attestation and
Sealing. In Proceedings of the 2nd Workshop on Hardware
and Architectural Support for Security and Privacy
(HASP’13), 2013.

[6] ARM. ARM Security Technology - Building a Secure
System using TrustZone Technology. http://infocenter.arm.
com/help/topic/com.arm.doc.prd29-genc-009492c/
PRD29-GENC-009492C trustzone security whitepaper.pdf,
2009.

[7] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar,
G. Ganesh, J. Ma, and W. Shen. Hypervision Across
Worlds: Real-time Kernel Protection from the ARM
TrustZone Secure World. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications
Security (CCS’14), 2014.

[8] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and
N. C. Skalsky. HyperSentry: Enabling Stealthy In-Context
Measurement of Hypervisor Integrity. In Proceedings of the
17th ACM Conference on Computer and Communications
Security (CCS’10), 2010.

[9] A. M. Azab, P. Ning, and X. Zhang. SICE: A
Hardware-level Strongly Isolated Computing Environment
for x86 Multi-core Platforms. In Proceedings of the 18th
ACM Conference on Computer and Communications
Security (CCS’11), 2011.

[10] A. Baumann, M. Peinado, and G. Hunt. Shielding
Applications from an Untrusted Cloud with Haven. In
Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’14), 2014.

[11] Black Duck Open Hub. Black Duck Software, Inc.
https://www.openhub.net/p?ref=homepage&query=xen.
Access time: 05/03/2016.

[12] D. Brash. ARM White Paper, The ARM Architecture
Version 6 (ARMv6). http://lars.nocrew.org/computers/
processors/ARM/ARMv6.pdf, January 2002.

[13] BSDaemon, coideloko, and D0nAnd0n. System
Management Mode Hack: Using SMM for ‘Other
Purposes’. Phrack Magazine, 2008.

[14] J. Butterworth, C. Kallenberg, and X. Kovah. BIOS
Chronomancy: Fixing the Core Root of Trust for
Measurement. In Proceedings of the 20th ACM Conference
on Computer and Communications Security (CCS’13),
2013.

[15] V. Costan and S. Devadas. Intel SGX Explained.
https://eprint.iacr.org/2016/086.pdf, 2016.

[16] S. Davenport and R. Ford. SGX: the good, the bad and the
downright ugly. https://www.virusbulletin.com/
virusbulletin/2014/01/sgx-good-bad-and-downright-ugly,
January 2014.

[17] L. Duflot, D. Etiemble, and O. Grumelard. Using CPU
System Management Mode to Circumvent Operating
System Security Functions. In Proceedings of the 7th
CanSecWest Conference (CanSecWest’04), 2004.

[18] L. Duflot, O. Levillain, B. Morin, and O. Grumelard.
System Management Mode Design and Security Issues.
http:
//www.ssi.gouv.fr/IMG/pdf/IT Defense 2010 final.pdf.

[19] L. Duflot, O. Levillain, B. Morin, and O. Grumelard.
Getting into the SMRAM: SMM Reloaded. In Proceedings
of the 12th CanSecWest Conference (CanSecWest’09),
2009.

[20] S. Embleton, S. Sparks, and C. Zou. SMM rootkits: A New
Breed of OS Independent Malware. In Proceedings of the
4th International Conference on Security and Privacy in
Communication Networks (SecureComm’08), 2008.

[21] T. Garfinkel and M. Rosenblum. A Virtual Machine
Introspection Based Architecture for Intrusion Detection.
In Proceedings of the 10th Annual Network and Distributed
Systems Security Symposium (NDSS’03), 2003.

[22] X. Ge, H. Vijayakumar, and T. Jaeger. SPROBES:
Enforcing Kernel Code Integrity on the TrustZone
Architecture. In Proceedings of The 3rd IEEE Mobile
Security Technologies Workshop (MoST), 2013.

[23] M. Hoekstra, R. Lal, P. Pappachan, C. Rozas, V. Phegade,
and J. del Cuvillo. Using Innovative Instructions to Create
Trustworthy Software Solutions. In Proceedings of the 2nd
Workshop on Hardware and Architectural Support for
Security and Privacy (HASP’13), 2013.

[24] Intel. 64 and IA-32 Architectures Software Developer’s
Manual. http://www.intel.com/content/www/us/en/
processors/architectures-software-developer-manuals.html.

[25] Intel. Trusted Execution Technology. http://www.intel.
com/content/www/us/en/trusted-execution-technology/
trusted-execution-technology-security-paper.html.

[26] Intel. ISCA 2015 SGX Tutorial. https:
//software.intel.com/sites/default/files/332680-002.pdf,
2015.

[27] P. Jain, S. Desai, S. Kim, M.-W. Shih, J. Lee, C. Choi,
Y. Shin, T. Kim, B. B. Kang, and D. Han. OpenSGX: An
Open Platform for SGX Research. In Proceedings of the
2016 Annual Network and Distributed System Security
Symposium (NDSS’16), San Diego, CA, Feb. 2016.

[28] S. Kim, Y. Shin, J. Ha, T. Kim, and D. Han. A First Step
Towards Leveraging Commodity Trusted Execution
Environments for Network Applications. In Proceedings of
the 14th ACM Workshop on Hot Topics in Networks
(HotNets), Philadelphia, PA, Nov. 2015.

[29] laginimaineb. Exploring Qualcomm’s TrustZone
implementation. http://bits-please.blogspot.com/2015/08/
exploring-qualcomms-trustzone.html, April 2015.

[30] R. Marek. AMD x86 SMU firmware analysis - Do you care
about Matroshka processors?
https://events.ccc.de/congress/2014/Fahrplan/system/

attachments/2503/original/ccc-final.pdf, 2014.

[31] J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki.
Flicker: An Execution Infrastructure for TCB
Minimization. In Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer
Systems, 2008.

[32] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor,
and A. Perrig. TrustVisor: Efficient TCB reduction and
attestation. In Proceedings of the 31st IEEE Symposium on
Security and Privacy, 2010.

[33] J. M. McCune, A. Perrig, and M. K. Reiter. Safe passage
for passwords and other sensitive data. In NDSS, 2009.

[34] F. Mckeen, I. Alexandrovich, A. Berenzon, C. Rozas,
H. Shafi, V. Shanbhogue, and U. Savagaonkar. Innovative
Instructions and Software Model for Isolated Execution. In
Proceedings of the 2nd Workshop on Hardware and
Architectural Support for Security and Privacy (HASP’13),
2013.

[35] A. Reina, A. Fattori, F. Pagani, L. Cavallaro, and
D. Bruschi. When Hardware Meets Software: A Bulletproof
Solution to Forensic Memory Acquisition. In Proceedings of
the Annual Computer Security Applications Conference
(ACSAC’12), 2012.

[36] X. Ruan. Platform Embedded Security Technology
Revealed: Safeguarding the Future of Computing with Intel
Embedded Security and Management Engine. Apress, 2014.

[37] J. Rutkowska. Thoughts on Intel’s upcoming Software
Guard Extensions (Part 2). http://blog.invisiblethings.org/
2013/09/23/thoughts-on-intels-upcoming-software.html.

[38] J. Rutkowska. Thoughts on Intel’s upcoming Software
Guard Extensions (Part 1). http://blog.invisiblethings.org/
2013/08/30/thoughts-on-intels-upcoming-software.html,
August 2013.

[39] J. Rutkowska. Intel x86 Considered Harmful. http:
//blog.invisiblethings.org/papers/2015/x86 harmful.pdf,
October 2015.

[40] J. Rutkowska. Towards (reasonably)easonably) Trustworthy
x86 Laptops. 32st Chaos Communication Congress (32C3),
https:
//events.ccc.de/congress/2015/Fahrplan/events/7352.html,
December 2015.

[41] J. Rutkowska and R. Wojtczuk. Preventing and Detecting
Xen Hypervisor Subversions. http://www.
invisiblethingslab.com/resources/bh08/part2-full.pdf, 2008.

[42] J. Schiffman and D. Kaplan. The SMM Rootkit Revisited:
Fun with USB. In Proceedings of 9th International
Conference on Availability, Reliability and Security
(ARES’14), 2014.

[43] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich. VC3:
Trustworthy Data Analytics in the Cloud. In Proceedings of
the 36th IEEE Symposium on Security and Privacy
(S&P’15), 2015.

[44] D. Shen. Exploiting Trustzone on Android. Black Hat USA
Briefings, https://www.blackhat.com/docs/us-
15/materials/us-15-Shen-Attacking-Your-Trusted-Core-
Exploiting-Trustzone-On-Android-wp.pdf.

[45] I. Skochinsky. Intel ME Secrets: Hidden code in your
chipset and how to discover what exactly it does. In
RECON, https:
//recon.cx/2014/slides/Recon%202014%20Skochinsky.pdf,
2014.

[46] P. Stewin and I. Bystrov. Understanding DMA Malware. In
Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA’12). 2012.

[47] H. Sun, K. Sun, Y. Wang, and J. Jing. TrustOTP:
Transforming Smartphones into Secure One-Time Password
Tokens. In Proceedings of the 22nd ACM Conference on
Computer and Communications Security (CCS’15), 2015.

[48] H. Sun, K. Sun, Y. Wang, J. Jing, and S. Jajodia.
TrustDump: Reliable Memory Acquisition on Smartphones.

In Proceedings of The 18th European Symposium on
Research in Computer Security (ESORICS’13)., 2013.

[49] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang. TrustICE:
Hardware-assisted Isolated Computing Environments on
Mobile Devices. In Proceedings of The 45th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’15), 2015.

[50] A. Tereshkin and R. Wojtczuk. Introducing Ring -3
Rootkits. http://invisiblethingslab.com/itl/Resources.html,
2009.

[51] Trusted Computing Group. TCG PC Client Specific
Implementation Specification For Conventional BIOS,
Version 1.20, Revision 1.00, For TPM Family 1.2.
http://www.trustedcomputinggroup.org/files/temp/
64505409-1D09-3519-AD5C611FAD3F799B/
PCClientImplementationforBIOS.pdf, July 2005.

[52] Trusted Computing Group. TCG D-RTM Architecture
Document Version 1.0.0.
http://www.trustedcomputinggroup.org/resources/drtm
architecture specification, June 2013.

[53] VIA. VT8237R Southbridge. http://www.via.com.tw/.
[54] J. Wang, F. Zhang, K. Sun, and A. Stavrou.

Firmware-assisted Memory Acquisition and Analysis Tools
for Digital Forensic. In Proceedings of the 6th International
Workshop on Systematic Approaches to Digital Forensic
Engineering (SADFE ’11), 2011.

[55] R. Wojtczuk and C. Kallenberg. Attacking UEFI Boot
Script. 31st Chaos Communication Congress (31C3),
http://events.ccc.de/congress/2014/Fahrplan/system/
attachments/2566/original/venamis whitepaper.pdf, 2014.

[56] R. Wojtczuk and J. Rutkowska. Another Way to
Circumvent Intelő Trusted Execution Technology.
http://invisiblethingslab.com/resources/misc09/Another%
20TXT%20Attack.pdf, December 2009.

[57] R. Wojtczuk and J. Rutkowska. Attacking Intel Trusted
Execution Technology.
http://invisiblethingslab.com/resources/bh09dc/
Attacking%20Intel%20TXT%20-%20paper.pdf, February
2009.

[58] R. Wojtczuk and J. Rutkowska. Attacking SMM Memory
via Intel CPU Cache Poisoning, 2009.

[59] R. Wojtczuk and J. Rutkowska. Attacking Intel TXT via
SINIT Code Execution Hijacking.
http://www.invisiblethingslab.com/resources/2011/
Attacking Intel TXT via SINIT hijacking.pdf, November
2011.

[60] R. Wojtczuk and A. Tereshkin. Attacking Intelő BIOS.
https://www.blackhat.com/presentations/bh-usa-09/
WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.
pdf.

[61] F. Zhang, K. Leach, A. Stavrou, H. Wang, and K. Sun.
Using Hardware Features for Increased Debugging
Transparency. In Proceedings of the 36th IEEE Symposium
on Security and Privacy (S&P’15), May 2015.

[62] F. Zhang, K. Leach, K. Sun, and A. Stavrou. SPECTRE: A
Dependable Introspection Framework via System
Management Mode. In Proceedings of the 43rd Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’13), 2013.

[63] F. Zhang, K. Leach, H. Wang, and A. Stavrou. TrustLogin:
Securing Password-Login on Commodity Operating
Systems. In Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security
(AsiaCCS’15), 2015.

[64] F. Zhang, H. Wang, K. Leach, and A. Stavrou. A
Framework to Secure Peripherals at Runtime. In
Proceedings of the 19th European Symposium on Research
in Computer Security (ESORICS’14), 2014.

[65] F. Zhang, J. Wang, K. Sun, and A. Stavrou. HyperCheck:
A Hardware-assisted Integrity Monitor. In IEEE
Transactions on Dependable and Secure Computing
(TDSC’14), 2014.

