
1

SnapMem: Hardware/Software Cooperative Memory
Resistant to Cache-Related Attacks on ARM-FPGA

Embedded SoC
Jingquan Ge and Fengwei Zhang , Senior Member, IEEE

Abstract—ARM-FPGA embedded SoCs have been widely used
in the fields of 5G Wireless, next-generation ADAS (Advanced
Driver-Assistance Systems) and Industrial Internet-of-Things due
to its high performance and hardware design flexibility. However,
this type of SoC suffers various security threats, one of which
is cross-domain cache-related attacks, such as Flush+Reload,
Flush+Flush, Meltdown and Spectre. Many hardware and soft-
ware defenses have been proposed to resist these cross-domain
cache-related attacks. However, hardware defenses require mod-
ifications of basic architecture, which cannot be deployed on
existing devices. On the other hand, software runtime defenses
have incomplete coverage or introduce significant performance
overhead. In this paper, we propose SnapMem, a hardware/soft-
ware cooperative memory that can make sensitive data burn after
reading on ARM-FPGA embedded SoC. Any process can only
access the SnapMem created by itself. Through the cooperation
of software and hardware, SnapMem can transfer sensitive
data in or out of main memory in real time. Based on this
burn-after-reading mechanism, SnapMem can effectively prevent
attackers from stealing sensitive data of the victim process or
kernel space. Security and performance evaluations show that
SnapMem can resist all cross-domain cache-related attacks while
introducing lower performance overhead than other software
runtime defenses on ARM-FPGA embedded SoC.

Index Terms—Cache Attack, Defence, Memory, Cross-Domain,
ARM-FPGA, Burn-After-Reading.

I. INTRODUCTION

In recent years, with the rapid development of automotive
electronic systems, Internet of Things and 5G Wireless, the
market demand for SoCs with high performance, low power
consumption and versatility is increasing. ARM-FPGA em-
bedded SoCs, which combine both software and hardware,
give system architects and ARM developers a flexible platform
to meet the performance, power and functional needs of
customers. This type of SoCs such as Xilinx Zynq and Versal
series [1], have been widely used in the fields mentioned
above. However, like Intel, AMD’s x86 or Qualcomm, Sam-
sung’s ARM product, ARM-FPGA embedded SoC are also
suffering a variety of security threats. Among them, cache-
related attack is one of the most attractive threats.

Manuscript received 28 November 2023; revised 1 March 2024; accepted 5
April 2024. This work was supported in part by the National Natural Science
Foundation of China under Grant 62372218; and in part by the Shenzhen
Science and Technology Program under Grant SGDX20201103095408029.
(Corresponding author: Fengwei Zhang)

Jingquan Ge and Fengwei Zhang are with Research Institute of Trustworthy
Autonomous Systems, and Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China (e-
mail: gerty1986823@126.com; zhangfw@sustech.edu.cn).

Since the concept of cache-related attack was first proposed
by Kocher [2] and Kelsey et al. [3], more types of cache-
related attacks [4]–[14] have been presented by researchers.
It becomes an important security threat to operating systems
running on modern processors. Before 2018, since most cache-
related attacks can only attack encryption implementations
or shared pages, the security threats caused by them are
limited. However, with the continuous emergence of Meltdown
[15], Spectre [16] and their variants [17]–[25], the ability of
cache-related attacks has been greatly enhanced. These cache-
related attacks can break the isolation boundaries between
different processes, or even between user and kernel spaces.
More importantly, the target of these attacks is not limited to
encryption implementations and shared pages, but extends to
the entire process or kernel memory.

Researchers have proposed many defense solutions to de-
tect and defend against cache-related attacks. However, these
defenses have the following shortcomings. First, hardware de-
fenses [26]–[33] need to modify the basic CPU architectures,
which cannot be deployed on existing devices. Second, each
software runtime defense [34]–[39] only targets a certain type
of cache-related attack and cannot cover all. Third, significant
performance loss may be introduced by some defense solutions
[35], [37]–[40]. Therefore, designing defenses that can avoid
the above three shortcomings has become a focus of research
in both academia and industry.

On the other hand, the main goal of cache-related attacks
is to steal sensitive data in main memory. Meanwhile, most
of the data in main memory is not sensitive data and does not
need to be protected. Therefore, not all data in main memory
needs to be protected. The security of the system can be
guaranteed as long as the sensitive data in the main memory
can be protected. However, since cache-related attacks can
theoretically steal the entire kernel and process memory, they
can ideally steal all data in main memory. So a secure idea is to
store sensitive data out of main memory. But this idea cannot
be implemented on general SoC platforms because general
SoCs can only access and process data in main memory.
Fortunately, ARM-FPGA embedded SoC provides a platform
for system developers to partially modify the hardware layer.
We can freely design hardware peripherals on this type of
SoC and mount them on AXI bus of ARM CPU. Using this
software/hardware cooperative mechanism, we can design a
more secure memory mechanism to store sensitive data out of
main memory.

In this paper, we present SnapMem, a memory mechanism

https://orcid.org/0000-0002-9879-0260
https://orcid.org/0000-0003-3365-2526

2

that burns after reading. SnapMem is a software/hardware co-
design, which consists of a hardware module and a software
module on ARM-FPGA embedded SoC. The software module
has two functions, the first is the management of process
access permissions, and the second is the control of the
hardware module. Each process can create its own unique
SnapMem and can only access its own SnapMem. Any process
that wants to access the SnapMem of another process is strictly
prohibited. On the other hand, the software module controls
the hardware module to move sensitive data from the main
memory to the hardware memory or vice versa. When sensitive
data is not being accessed, it is not stored in the main memory
but in SnapMem’s hardware memory. This sensitive data is
only moved to the main memory when it is accessed using
SnapMem’s API . More importantly, SnapMem’s hardware
memory does not have an address map for ARM CPU, it can
only be accessed by SnapMem’s hardware module. Therefore,
cache-related attacks are powerless against sensitive data in
SnapMem.

We implement SnapMem by designing the software module,
the hardware module, the SnapMem’s APIs and modifying
the Linux kernel. We perform various types of cache-related
attacks to evaluate the security of SnapMem. It shows that
SnapMem can defend against all cache-related attacks, which
is more secure than other software defense solutions on ARM-
based platforms. In addition, we conduct performance evalua-
tions on SnapMem APIs and Linux original APIs, respectively.
Moreover, we evaluate the system performance overhead of
SnapMem by running UnixBench and SPECrate2017. The
two overheads of SnapMem (0.07% on UnixBench and 0.04%
on SPECrate2017) are better than all other software runtime
defense schemes.

Our main contributions are summarized as follows:

• We create a hardware/software co-design of a more
secure memory mechanism. This memory mechanism not
only isolates sensitive data from main memory, but also
isolates sensitive data from different processes, which can
resist all cache-related attacks.

• Our design requires only one software module, one
hardware module and minimal modification to the Linux
kernel, which does not require modification of the basic
CPU architecture. Therefore, it can be easily deployed
on ARM-FPGA embedded devices that have been widely
used.

• We conduct security and performance evaluations on the
real ARM-FPGA embedded SoC. The security results
show that the defense capability of this memory mech-
anism can cover all cache-related attacks. Performance
evaluations indicate that our design has lower perfor-
mance overhead than all other software runtime defenses.

• We propose a new idea for the secure improvement
of memory mechanism. This memory mechanism only
requires isolated control and memory modules to be
mounted on the data and address buses, so it can be
widely used on various platforms such as ASICs and
CPU-FPGAs.

II. BACKGROUND AND MOTIVATION

In this section, we first give the detailed descriptions of the
ARM-FPGA embedded SoC. Then, we discuss the evolution
of cache-related attacks. Finally, we will introduce the existing
defenses and their shortcomings in depth.

A. ARM-FPGA embedded SoC

ARM-FPGA embedded SoCs combine the software pro-
grammability of ARM processors and hardware programma-
bility of FPGAs, which enable differentiated and customizable
solutions. This type of SoCs [1], [41] have flooded the market
and are widely used in areas such as autonomous driving,
5G communications, and the Internet of Things. Among these
SoCs, Zynq UltraScale+ MPSoC [42] is a typical representa-
tive. For simplicity without loss of generality, we take Zynq
UltraScale+ MPSoC as an example to explain the hardware
architecture of ARM-FPGA embedded SoC in detail.

Figure 1 shows the Simplified hardware architecture of
ZU9EG, a representative product of the Zynq UltraScale+
MPSoC family. To be more intuitive, Figure 1 omits hardware
components that are not related to our design, including
dual-core Arm Cortex-R5F and on-chip memory, etc. As can
be seen from Figure 1, the simplified hardware architecture
of ZU9EG consists of three parts, namely quad-core Arm
Cortex-A53 MPCore, the main memory and FPGA. On Zynq
UltraScale+ MPSoC, the communication between the ARM
MPCore and FPGA is based on the AXI bus . Similarly, the
communication between the FPGA and the main memory is
also based on the AXI bus. In other words, the ARM MPCore
can access the FPGA through the AXI bus, while the FPGA
can also use the AXI bus to access the main memory.

Fig. 1: Simplified Hardware architecture of Zynq UltraScale+
MPSoC (ZU9EG).

On the other hand, the FPGA contains two most important
types of components, namely custom IP and block RAM.
Block RAM is the storage space owned by the FPGA itself.
These block RAMs can be configured to be visible or invisible
to the AXI bus. When the block RAMs are configured to
be invisible to AXI bus, they can only be accessed by the
custom IP of the FPGA. We design SnapMem based on this
feature of block RAM. The custom IP represents the hardware
programming capability of the FPGA, which is the hardware
module designed by the hardware engineer. When the custom

3

IP needs to communicate with the ARM MPCore or the main
memory, an AXI interface needs to be configured for it. AXI
interface [43] can be divided into two categories in terms of
function, namely master interface and slave interface. As the
name implies, the master interface is the interface that can
actively access the main memory according to the physical
address. Correspondingly, the slave interface means that the
custom IP has its own physical address and can be accessed by
ARM MPCore. In the design of SnapMem, both AXI master
and slave interfaces are required.

B. Cache-Related Attacks

Cache-related attacks can be divided into three categories,
namely low resolution cache attacks, high resolution cache
attacks and transient execution Attacks. Low resolution cache
attack is a cache attack launched by early security researchers
using statistical methods [2], [5], [8], [9], [44], [45]. Because
this type of attack has a lot of noise and the attack efficiency is
very low, it is called low resolution cache attack. In the second
decade of the 21st century, cache attacks based on cache flush
instructions or operations began to emerge, typically such as
Evict+Reload [11], Flush+Reload [10], and Flush+Flush [13].
Lipp et al. [14] successfully implemented the Evict+Reload,
Flush+Reload and Flush+Flush attacks on ARMv8-A. Begin-
ning in 2018, transient execution attacks have entered the field
of vision of researchers, including Spectre-BTB [16], Spectre-
PHT [16], [17], Spectre-STL [18], Meltdown [15], Meltdown-
GP [23], MeltdownPrime and SpectrePrime [25], etc. This type
of attack exploits the transient execution vulnerability of the
CPU and steals sensitive information through the cache side
channel. Therefore, this type of attack is also an important
category of cache-related attacks.

C. Defenses and Limitations

Hardware Defenses: The most effective defense solution
for Meltdown, Spectre and their variants is to modify the
hardware architecture of modern processors. In the past three
years, Many hardware defense schemes have been proposed,
such as SafeSpec [26], Conditional Speculation [28], Spectre-
Guard [30], ConTExT [27], InvisiSpec [46], STT [47], Reuse-
trap [29], SpecCFI [31], MuonTrap [32] and GhostMinion
[33]. Most of these schemes are effective against Meltdown
and Spectre variants and have little performance overhead.
However, modifications to the processor hardware architecture
can only be implemented on next-generation products. These
defenses cannot be deployed on existing devices.

Software Runtime Defenses: Before the discovery of Melt-
down and Spectre, Researchers [34], [35], [48] often defend
against cache-related attacks by monitoring cache activity in
real time. But these runtime defenses are only effective for
Prime+Probe or encryption-targeted Flush+Reload. They are
incapable of defending against Meltdown, Spectre and their
variants. In the Linux kernel of ARMv8-A, there are three
runtime defenses that can effectively defend against Meltdown
and Spectre variants, which are KPTI (kernel page table
isolation) [39], Spectre-BTB mitigation [37] and Spectre-STL
mitigation [38] respectively. However, Each of these defenses

targets only one Meltdown or Spectre variant. They cannot
cover all Meltdown or Spectre variants. Moreover, a certain
performance overhead is also brought by each of the three
defenses. In addition, there are two software runtime defenses
[49], [50] that focus on designing more secure APIs to resist
cache-related attacks. But both of the two researches are only
effective for cache-related attacks using the flush instructions.

Static Code Fixing: Static code analysis/fixing defenses
[40], [51], [52] are effective for defending against or detecting
cache-related attacks. However, fixing static code imposes a
large performance overhead on the runtime system [40].

Software/Hardware Collaborative Defenses: Two encryp-
tion implementations [53], [54] based on software/hardware
co-design can resist cache timing attack, which is an old
and low resolution cache-related attack. The two defenses are
powerless against the new high resolution cache-related at-
tacks. There are two software/hardware collaborative defenses
[55], [56] that can resist the latest high resolution cache-
related attacks and Spectre/Meltdown variants. However, these
two schemes are based on the detection of flush instructions
and cannot defend against cache-related attacks that do not
require flush instructions, such as Prime+Probe, Evict+Reload,
MeltdowmPrime and SpectrePrime.

III. THREAT MODEL

A. Our Threat Model
Our assumptions of the attacker are as follows. First, the

attacker can execute her arbitrary code on the same machine
with the victim process, but without root privileges. There-
fore, the attacker can launch all cache-related attacks, such
as Prime+Probe, Evict+Reload, Flush+Reload, Flush+Flush,
Meltdown, Spectre and so on. Since the attacker does not
have root privileges, she cannot access software or hardware
modules of SnapMem. Second, the attacker knows the address
layout of the victim process or kernel. In fact, it is not very
difficult to obtain the address layout of the victim process
or kernel. In many attack scenarios, an attacker can legally
obtain a copy of the victim’s process or kernel binary. Using
a binary copy of the victim’s process or kernel, the attacker
can load and fully reproduce the address layout on his or her
host. The only difference between the address layout of these
copies running on the attacker’s host and the victim process or
kernel is the base address. For the victim process, the attacker
only needs to exploit vulnerabilities such as memory reading
to easily obtain its base address. As for the base address of the
victim kernel, it often follows certain operating system rules.
For example, in ARM64-based OS, the kernel base address is
usually 0xFFFF000000000000, while in x86 64-based OS, the
kernel base address is usually 0xFFFF800000000000. Based
on the obtained address layout, the attacker can infer the
virtual and physical addresses of sensitive data in the victim
process or kernel space. This assumption enables attackers to
clean the targeted cache lines to launch high resolution cache-
related attacks.

In summary, the attacker can implement all cross-domain
cache-related attacks to steal sensitive data throughout the
main memory. However, the attacker cannot access Snap-
Mem’s modules and thus cannot affect SnapMem’s data and

4

control flow. Therefore, the attacker has one and only one way
to access SnapMem, which is to call SnapMem’s APIs.

B. Threat Model Comparison

In order to explain SnapMem’s threat model more clearly
and intuitively, we compare SnapMem with existing defense
solutions. According to the introduction in Section II-C, de-
fense solutions can be divided into four categories, namely
hardware defenses, software runtime defenses, static code
fixing and software/hardware collaborative defenses. Among
them, the threat models of the first two categories are relatively
clear, while the threat models of the latter two categories are
relatively vague. Therefore, we focus on comparing SnapMem
with hardware defenses and software runtime defenses.

The first category is hardware defense solutions that modify
the hardware architecture, such as Conditional Speculation
[28], MuonTrap [32], SPECCFI [31], SpectreGuard [30],
InvisiSpec [46] and STT [47]. The threat models for this
type of hardware defense solution are almost identical and
can be summarized into three assumptions. The first as-
sumption of the hardware defense solutions is the same as
SnapMem, which is that the attacker can run code on the
same machine as the victim process. The second assumption
of the hardware defense solutions is quite different from Snap-
Mem. SnapMem assumes that attackers can launch all cache-
related attacks, including transient execution attacks (Melt-
down, Spectre and their variants), as well as traditional cache-
related attacks (Prime+Probe, Evict+Reload, Flush+Reload
and Flush+Flush). The hardware defense solutions assume
that attackers can only launch transient execution attacks.
The third assumption of the hardware defense solutions is
the same as SnapMem, which also requires the attacker to
obtain the address layout of the victim process. As can be
seen from the above comparisons, the threat model of the
hardware defense solutions make smaller assumptions about
the attacker’s capabilities than SnapMem’s.

The second category is software defense solutions, such as
KPTI [39], HomeAlone [34] and CloudRadar [35]. The threat
model assumptions of these three software defense solutions
are very similar to SnapMem. However, when these three
software defense solutions were proposed, transient execution
attacks had not yet been discovered. Therefore, their threat
models only assume traditional cache-related attacks and do
not include transient execution attacks. In other words, these
three software defense solutions have lower assumptions about
attacker capabilities than SnapMem.

Overall, SnapMem’s threat model makes higher assump-
tions about attacker capabilities than existing defense solu-
tions. In other words, SnapMem’s defense capabilities are
more powerful than existing defense solutions.

IV. DESIGN

In this section, we first introduce the entire design of
SnapMem. Then, we will provide details of the software and
hardware modules of SnapMem.

A. Overview of SnapMem

SnapMem is a more secure memory mechanism for sen-
sitive data. Its core idea is to hide sensitive data where
the CPU cannot access it unless the SnapMem’s APIs are
called. SnapMem’s APIs have a process-based authentication
mechanism. In other words each process can create its own
SnapMem, but can only access the SnapMem created by itself.
Similarly, a malicious process can create its own SnapMem,
but cannot access the SnapMem of other processes. Even
if the malicious process can read the entire main memory
using cache-related attack, it still cannot steal sensitive data in
SnapMem. Because the sensitive data is stored in SnapMem’s
hardware memory, not in the main memory. And the hardware
memory of SnapMem can only be accessed by the hardware
module of SnapMem, not by the CPU.

Figure 2 shows the entire hardware and software archi-
tecture of SnapMem. From Figure 2, we can see that the
entire software and hardware system is divided into three
layers, namely user space, kernel space and hardware layer.
SnapMem has components in all three layers. In user space,
SnapMem has a total of 4 API components, which are
SnapMem alloc(), SnapMem read(), SnapMem write() and
SnapMem free() respectively. As the name implies, the func-
tion of SnapMem alloc() is to allocate hardware memory
of SnapMem. The functions of SnapMem read() and Snap-
Mem write() are to read and write SnapMem’s hardware
memory respectively. SnapMem free() completes the release
of SnapMem’s hardware memory.

In kernel space, the design of SnapMem mainly includes
SnapMem software module and the modifications to kernel
functions (do fork() and do exit()). SnapMem software mod-
ule implements the functions of 4 SnapMem’s APIs in kernel
space. The work of process identity authentication is done
by the submodule of Process ID Checker. In the hardware
layer, SnapMem has two components, SnapMem hardware
module and SnapMem memory. SnapMem hardware module
completes the functions of communicating with software and
transferring data from hardware to the main memory. The
submodule of Controller is mainly responsible for the function
of communicating with software. The work of data movement
is completed by another submodule Data Mover. The function
of SnapMem memory is to store sensitive data on hardware.

To reduce the overhead under certain conditions, we de-
sign two versions of SnapMem, named SnapMem-strict and
SnapMem-light. The strict version of SnapMem will actively
clear sensitive data in the main memory after each read and
write. The light version of SnapMem does not actively clear
the main memory after each read and write. SnapMem-light
will passively clear the main memory only when the legitimate
process actively calls the two APIs SnapMem light open() and
SnapMem light close() to close the SnapMem.

The data and control flow of SnapMem-strict are shown in
Figure 3. For simplicity and intuition, Figure 3 focuses on
reading and writing to SnapMem and omits SnapMem alloc()
and SnapMem free(). From Figure 3 we can see that there
are 8 steps for reading and 6 steps for writing to SnapMem.
Below, we introduce the 8 steps of SnapMem read() and 6

5

Fig. 2: Hardware and software architecture of SnapMem

steps of SnapMem write() in detail respectively.
In summary, SnapMem read() (strict) involves the following

8 steps.
① Process ID Checker checks if the caller is legal.
② Software module communicates with Controller to tell

the hardware what memory size and offset to access.
③ Controller passes the size and offset information to Data

Mover, and starts the read function of Data Mover.
④ Data Mover reads out the data of the corresponding

address in the hardware memory one by one.
⑤ Data Mover sends the read data into the main memory.
⑥ Software module transfers data from kernel to user space.
⑦ Data Mover reads out the data in the main memory and

clears the main memory one by one.
⑧ Data Mover sends the read data into the hardware mem-

ory.
Correspondingly, SnapMem write() (strict) has similar 6

steps as shown below.
1) The identity of the caller is checked by Process ID

Checker.
2) Software module transfers data from user to kernel space.
3) Software module passes the information of memory size

and offset to Controller.
4) Controller tells Data Mover the memory size and offset.
5) Data Mover reads out the data of the corresponding

address in the main memory, and clears the main memory.
6) Data Mover sends the read data into the hardware mem-

ory.
In the SnapMem-light design, SnapMem read() and Snap-

Mem write() are much simpler than SnapMem-strict. In
SnapMem-light, SnapMem read() only needs to run steps ①
and ⑥, while SnapMem write() only needs to complete steps
1) and 2). All other steps are completed by the two APIs
SnapMem light open() and SnapMem light close(). We will
describe the differences between the two versions in more
details in Section IV-B.

B. Software of SnapMem

As described in Section IV-A, the main function of Snap-
Mem software module is to complete the operations of the
four APIs in kernel space. Below, we describe the functional
design of these four APIs in detail. Additionally, we will intro-
duce modifications to the original kernel functions to support
SnapMem. For ease of introduction, we list all parameters and
signals that the software module of SnapMem needs to use in
Table I.

TABLE I: The explanations of all the parameters and variables
used in software of SnapMem.

Parameter/Signal Explanation
SnapMem offset The offset of the data address to be ac-

cessed in SnapMem.
SnapMem size The size of the data to be accessed in

SnapMem.
SnapMem data Data written to or read from SnapMem.
SnapMem state Indicates whether SnapMem’s status is

strict or light.
SnapMem ID The SnapMem of each process has its own

unique ID.
SnapMem in Trigger to transfer data from main memory

to SnapMem memory.
SnapMem out Trigger to transfer data from SnapMem

memory to main memory.

SnapMem alloc(): SnapMem alloc() mainly completes
three operations. First, query whether the current process has
created a SnapMem. Exits with an error if the current process
has already created a SnapMem. Second, allocate SnapMem
for the current process and store the process ID. Third, assign
an SnapMem ID to the current process.

SnapMem read(): The operation steps of SnapMem read()
in kernel space are shown in Algorithm 1. A detailed de-
scription of all parameters and variables can be found in
Table I. From Algorithm 1 we can see that if the process
owns a SnapMem, it will get its own unique SnapMem ID.
The SnapMem ID determines which SnapMem memory it can

6

Fig. 3: Data and control flow of SnapMem-strict.

Algorithm 1: SnapMem read() of SnapMem

Input: Offset of SnapMem : SnapMem offset;
Size of SnapMem : SnapMem size;
Output: Data read from SnapMem : SnapMem data;

1 if The current process has a SnapMem then
2 Get its own SnapMem ID;
3 if SnapMem state is SnapMem-strict then
4 Flush and Invalidate all cache lines of the main

memory corresponding to SnapMem;
5 Pass the SnapMem ID to Controller;
6 Pass SnapMem offset and SnapMem size to

Controller;
7 Send a SnapMem out trigger to Controller;
8 Invalidate all cache lines of the main memory

corresponding to SnapMem;
9 Waiting for the Data Mover to complete its

work;
10 Transfer SnapMem data in the main memory

from kernel space to user space;
11 Flush and Invalidate all cache lines of the main

memory corresponding to SnapMem;
12 Pass the SnapMem ID to Controller;
13 Pass SnapMem offset and SnapMem size to

Controller;
14 Send a SnapMem in trigger to Controller;
15 Invalidate all cache lines of the main memory

corresponding to SnapMem;
16 Waiting for the Data Mover to complete its

work;

17 else
18 Transfer SnapMem data in the main memory

from kernel space to user space;

19 else
20 Return an error to user space;

access. The related operation of this SnapMem ID completes
the authentication mechanism of the process. After getting
SnapMem ID, you need to check the status of SnapMem. This
status determines whether SnapMem is a strict version or a
light version. Starting from the third line of Algorithm 1, we
can clearly see the difference between SnapMem-strict and
SnapMem-light. The read operation of SnapMem-light omits
the steps of controlling the hardware, so its steps are very
simple. From the fourth line of Algorithm 1 we know that
cache lines need to be flushed and invalidated before passing
parameters to Controller. The purpose of these steps is to
ensure that all data can be flushed from the cache back to
the main memory. This ensures that the hardware transmits
the correct data in the main memory.

After all parameters are passed to the hardware, we need to
start the hardware to transfer the data from SnapMem memory
into the main memory, as shown in line 7 of Algorithm 1.
Subsequently, the cache line will be invalidated again in line
8. This step is to ensure that CPU access to SnapMem data
bypasses the cache and directly accesses the main memory.
When the hardware completes the data transfer work, Snap-
Mem data will be moved from kernel to user space in line
10. Then, operations related to the cache lines and controlling
the hardware are re-executed. The difference is that the data
transfer direction of the hardware is reversed, from the main
memory to SnapMem memory, as shown in lines 11 to 16. This
reverse data movement is to re-hide sensitive data in hardware
memory.

SnapMem write(): Algorithm 2 shows the operation steps
of SnapMem write() in kernel space. As can be seen
from Algorithm 2, the operation steps of SnapMem write()
are very similar to SnapMem read(). SnapMem ID and
SnapMem state related operations are the same as Snap-
Mem read(), as shown in lines 1 to 3. In addition, Snap-
Mem write() does not require cache line and hardware related
operations before transferring data from user to kernel space.

7

Algorithm 2: SnapMem write() of SnapMem

Input: Offset of SnapMem : SnapMem offset;
Size of SnapMem : SnapMem size;
Output: Data written to SnapMem : SnapMem data;

1 if The current process has a SnapMem then
2 Get its own SnapMem ID;
3 if SnapMem state is SnapMem-strict then
4 Transfer SnapMem data in the main memory

from user space to kernel space;
5 Flush and Invalidate all cache lines of the main

memory corresponding to SnapMem;
6 Pass the SnapMem ID to Controller;
7 Pass SnapMem offset and SnapMem size to

Controller;
8 Send a SnapMem in trigger to Controller;
9 Invalidate all cache lines of the main memory

corresponding to SnapMem;
10 Waiting for the Data Mover to complete its

work;

11 else
12 Transfer SnapMem data in the main memory

from user space to kernel space;

13 else
14 Return an error to user space;

Lines 5 to 10 show the steps for transferring SnapMem data
from the main memory to the hardware memory, which is
the same as lines 11 to 16 of SnapMem read(). In general,
SnapMem write() is much simpler than SnapMem read(),
because it only runs the operations related to the cache line
and hardware control once.

SnapMem free(): SnapMem free() mainly runs two opera-
tions. First, clear the stored current process ID to zero. Second,
clear the SnapMem ID value assigned to the current process
to zero.

Modifications to Kernel: SnapMem’s modifications to the
kernel are mainly for two kernel functions do fork() and
do exit(). The two functions are run when the process is
created and terminated, respectively. We modify them mainly
to prevent the memory leak of SnapMem. As we all know,
unexpected termination of a process occurs frequently in a
running system. It will cause the allocated SnapMem to not be
released. On the other hand, the release of SnapMem requires a
call to SnapMem free(). If the programmer accidentally forgets
to call SnapMem free() in the end of program, SnapMem
cannot be released too. The occurrence of the two situations
will lead to memory leaks of SnapMem. On ARM-FPGA SoC,
SnapMem is an invaluable resource. We cannot tolerate the
occurrence of these two SnapMem memory leaks. Therefore,
we modified do fork() and do exit() so that the process
checks for memory leaks of SnapMem on both creation and
termination. The operation they add is to check whether the
current process has its own unreleased SnapMem. If there
is, release the SnapMem, clear the stored process ID and
SnapMem ID to zero.

C. Hardware of SnapMem

As can be seen from Figures 2 and 3, SnapMem hardware
module consists of two submodules, namely Controller and
Data Mover. Below, we describe the operation steps of these
two submodules in detail. The introduction of SnapMem
memory is omitted here. Because SnapMem memory is created
based on Zynq’s block RAM, it uses Zynq’s free commercially
available mature interface IPs. In other words, SnapMem
memory does not have any innovation in functionality. There-
fore, the functional details of SnapMem memory will not be
introduced here.

Controller: The function of Controller is mainly to com-
plete the control of Data Mover and the conversion of ad-
dresses or signals. Controller has a total of 4 operation steps
as follows.

1. Receive SnapMem ID, SnapMem offset, SnapMem size
and the trigger signal sent by software.

2. Based on SnapMem ID, SnapMem offset and Snap-
Mem size, calculate the address range of SnapMem data.

3. Send the address range of SnapMem data to Data Mover.
4. Send the trigger signal to Data Mover to start its data

transfer function.

Fig. 4: State machine of Data Mover in SnapMem.

Data Mover: In SnapMem hardware module, Data Mover
is the core component. Figure 4 shows the state machine
of Data Mover. From Figure 4, we can know that Data
Mover has a total of 5 states, namely Idle, Controller Clear,
Read, Memory clear and Write. Table II lists all registers and
variables that Data Mover needs to use. Below, we describe
the operation steps in the 5 states of Data Mover in detail.

TABLE II: The explanations of all the Registers and variables
used in Data Mover.

Register/Signal Explanation
SourceStartAddr The start address of the source data.
SourceEndAddr The end address of the source data.
DestinStartAddr The starting address of the destination data.
DestinEndAddr The end address of destination data.
DataMovTrig The trigger register for Data Mover.
WrAddrReg The register that stores the destination write

address.
WrDataReg The register that stores the data to be

written to destination address.
RdAddrReg The register that stores the source address

of the read data.
RdDataReg The register to store read data.

8

• Idle: This is the initial state of Data Mover. In the Idle
state, the main function of Data Mover is to wait for the
input of signals and parameters, including SourceStar-
tAddr, SourceEndAddr, DestinStartAddr, DestinEndAddr
and DataMovTrig.

• Controller Clear: When DataMovTrig is not equal to 0,
Data Mover will enter Controller Clear state from the
Idle state. In this state, Data Mover mainly completes
one operation, that is, clearing DataMovTrig register of
Controller to zero. If this DataMovTrig register is not
cleared, Data Mover will be triggered again to start after
completing the data transfer and returning to the Idle
state.

• Read: This state has two functions. The first function of
Read state is to read the data at the source address into
RdDataReg of Data Mover. Then, Data Mover puts the
read data into WrDataReg and waits to be written to the
destination address.

• Memory Clear: There are two operations in this state.
The first operation of this state is to clear the data of the
source address of the read data. Then, RdAddrReg register
will be incremented by 4.

• Write: In this state, Data Mover first writes the data in
WrDataReg to the destination address. Then, Data Mover
will judge whether WrAddrReg is equal to DestinEn-
dAddr. If WrAddrReg is equal to DestinEndAddr, Data
Mover goes back to the Idle state. If WrAddrReg is not
equal to DestinEndAddr, WrAddrReg is incremented by
4.

V. IMPLEMENTATION

Section IV focuses on the design principle of SnapMem.
In this section, we will introduce the implementation of
SnapMem in detail. Like Section IV, we also describe the
implementation from both software and hardware aspects.

A. Software of SnapMem

SnapMem alloc(): We use the ioctl() system call to pass a
parameter to the SnapMem software module in the kernel.
This parameter instructs the kernel to allocate SnapMem
memory. We define a global array SnapMem PID list in the
kernel. Each element of SnapMem PID list is used to hold
the ID of the process that owns SnapMem. The index of the
element is its SnapMem ID. By iterating over the elements
of SnapMem PID list, the first empty element can be found.
Then, the ID of the current process is stored in this element.

SnapMem read(): SnapMem read() uses the read() sys-
tem call to enter the kernel and passes two parameters,
SnapMem offset and SnapMem size. The SnapMem ID can
be obtained by traversing SnapMem PID list. We use the
two instructions DC CIVAC and DC IVAC to flush and
invalidate the cache line. Then, we use iowrite32() to write
the three parameters SnapMem ID, SnapMem offset, Snap-
Mem size and the trigger signal to Controller. The kernel
function copy to user() is utilized by us to move data from
kernel space to user space.

SnapMem write(): The implementations of
SnapMem write() and SnapMem read() are similar, with only
two differences. First, SnapMem write() enters the kernel
using the write() system call. Second, moving data from user
to kernel space is done based on copy from user().

SnapMem free(): The implementation of SnapMem free()
is also based on the ioctl() system call. After the kernel
traverses the array SnapMem PID list, it finds the element
that stores the current process ID and clears it to zero.

Modifications to Kernel: The operation steps for adding
do fork() and do exit() are the same as SnapMem free(). The

two modified kernel functions traverse SnapMem PID list and
clear the element storing the current PID.

B. Hardware of SnapMem

We wrote the hardware code for SnapMem using Verilog
HDL language. Moreover, we synthesized and implemented
the hardware of SnapMem in Vivado Design Suite.

Controller: We configured an AXI slave interface for Con-
troller. Through AXI SmartConnect [57] of Xilinx, we connect
the AXI slave interface of Controller to M AXI HPM0 FPD
interface [43] of the ARM MPCore processor. Therefore, the
processor can access Controller through the physical address
of the AXI slave interface.

Data Mover: Because Data Mover needs to actively access
the main memory and the hardware memory, it is configured
with an AXI master interface. Similar to Controller, Data
Mover is also based on AXI SmartConnect and is connected
to S AXI HP0 FPD [43] of the ARM MPCore processor.

VI. EVALUATION

In this section, we detail the security, performance and
hardware evaluation of SnapMem. First, our evaluation envi-
ronment is introduced in Section VI-A. Then we describe the
security evaluation results in Section VI-C. In Section VI-D,
we show the performance evaluation results. Finally, hardware
overhead is provided in Section VI-E.

A. Evaluation Environment

Our experimental platform is Xilinx ZCU102 Evaluation
Board [58]. It has one ZU9EG SoC with a total of 4 ARM
Cortex-A53 cores. The platform also has 4GB of DDR4
memory and 29GB of hard drive storage. We implemented
SnapMem and other defense solutions based on Linux kernel
5.4.0 running in Ubuntu 16.04.6 LTS on ZCU102 platform.
The cross compiler we utilize is aarch64-linux-gnu- with the
gcc version of 10.1.0.

B. Evaluation Design

The evaluation experiments are divided into security anal-
ysis, performance analysis and hardware overhead. In the
security analysis, all attacks are running on the real ZU9EG
SoC platform. However, due to the weak transient execution
capability of ZU9EG, transient execution attacks are simu-
lated. For a detailed introduction to simulated attacks, please
refer to Section VIII. Performance analysis is divided into

9

three aspects: API, encryption application and system perfor-
mance overhead. API experiments mainly focus on the time
overhead of API calls. Encryption applications use SnapMem
to implement a more secure AES implementation. The system
performance experiments compare the performance overhead
of SnapMem, KPTI, Spectre-BTB mitigation and Spectre-STL
mitigation. running on the ZU9EG SoC platform. One thing
that needs to be emphasized is that in the API comparison
experiment, the overhead test of reading and writing a small
amount of data was also included. The specific results can
be found in Table IV. In this test, the hardware defense
solutions (STT and InvisiSpec) was running in the Gem5
emulator, while the software defense solution and SnapMem
were running on ZU9EG platform. The reason why Gem5 is
not used to simulate the SnapMem solution is because the
block RAM used by SnapMem has Xilinx’s unique interface
IPs and timing logic. Using Gem5 to simulate SnapMem will
produce great distortion, and ultimately lose the authenticity
of the overhead comparison results.

C. Security Analysis

We have tested all cache-related attacks that can be imple-
mented on this ARM-FPGA SoC. Since the branch prediction
and out-of-order execution capabilities of ARM Cortex-A53
core are not strong enough, Meltdown, Spectre and their
variant attacks cannot actually run on the platform. Therefore,
we simulated these types of variant attacks using /dev/mem of
the Linux file system. Experimental results in Table III prove
that SnapMem can effectively defend against all cache-related
attacks, including Prime+Probe, Evict+Reload, Flush+Reload,
Flush+Flush, Spectre-PHT, Spectre-BTB, Spectre-STL, Spec-
trePrime, Meltdown, Meltdown-GP and MeltdownPrime.

TABLE III: Security Evaluation of SnapMem

Attack Classification Defense Capability
Prime+Probe ✓
Evict+Reload ✓
Flush+Reload ✓
Flush+Flush ✓
Spectre-PHT ✓
Spectre-BTB ✓
Spectre-STL ✓
SpectrePrime ✓
Meltdown ✓
Meltdown-GP ✓
MeltdownPrime ✓

D. Performance Analysis

APIs of SnapMem: In the performance evaluation ex-
periments, we first test the latency of 4 SnapMem APIs.
To make the results look more intuitive, we compared the
different SnapMem APIs with the original Linux API of
similar functionality. Figure 5 shows the comparison results of
SnapMem alloc() and malloc(). As can be seen from Figure 5,
the call delay of SnapMem alloc is much larger than malloc(),
which is about 10 times. One of the reasons for such a big
difference is that the call delay of malloc() itself is very
small. The second reason is because the process authentication

Fig. 5: Comparison of SnapMem alloc() and malloc().

mechanism of SnapMem alloc() takes much more time. From
the Figure 5, we can also know that the call delay of the two
APIs has nothing to do with the allocated memory size.

Fig. 6: Comparison of SnapMem’s access APIs and memcpy().

Figure 6 shows the latency comparison between Snap-
Mem’s access APIs and memcpy(). This result includes both
SnapMem-strict and SnapMem-light for read and write op-
erations. The ordinate in Figure 6 is exponentially growing.
As can be seen from Figure 6, the latency of SnapMem-
light’s read and write functions and memcpy() are in an order
of magnitude. Also, as the data size increases, the access
latency of SnapMem-light gets closer to memcpy(). This is
enough to prove that the access overhead of SnapMem-light
is indeed small. In contrast, the access overhead of SnapMem-
strict is much greater than the previous two. This is mainly
because each read and write operation of SnapMem-strict is
accompanied by operations and waits on hardware and cache
lines. Therefore, the SnapMem-light is more suitable for low
security but high performance requirements, while SnapMem-
strict is the opposite.

However, we can also see from Figure 6 that SnapMem
is not suitable for reading and writing small amounts of
data. When reading and writing 128-byte data, whether it is
SnapMem-strict or SnapMem-light, the performance overhead
of reading and writing is very large. The results in Table IV
more clearly show the comparison of read and write overhead
for a small amount of data between different defense solutions.
Among hardware defense solutions, STT and InvisiSpec are
two open source projects that can be simulated and evaluated
on Gem5 [59]. We used the Gem5 simulator to simulate the
STT and InvisiSpec solutions respectively, and tested the time
overhead of memcpy(). On the other hand, we also tested the
time overhead of memcpy() of three software defense solutions

10

TABLE IV: Reading and writing overhead for small amounts
of data (128 bytes). The overheads of hardware solutions
(STT and InvisiSpec) are compared with the original CPU
hardware architecture, and the overheads of software solutions
(KPTI, Spectre-BTB mitigation and Spectre-STL mitigation)
are compared with the original Linux OS. The overhead of
SnapMem is also compared to the memcpy() function in the
original Linux OS.

Solution Function Overhead

STT memcpy() 27%
InvisiSpec memcpy() 35%

KPTI memcpy() 5%
Spectre-BTB mitigation memcpy() 3%
Spectre-STL mitigation memcpy() 2%

SnapMem-light SnapMem light read() 1120%
SnapMem light write() 900%

SnapMem-strict SnapMem strict read() 4135540%
SnapMem strict write() 8284700%

KPTI, Spectre-BTB mitigation and Spectre-STL mitigation.
From Table IV, we can see that in the case of small data
volume, the overhead of SnapMem is far higher than that
of other solutions. Therefore, the current SnapMem design
is not suitable for read and write operations of small data
volumes. In addition, it can be seen from Table IV that the
cost of hardware defense solutions is much greater than that
of software defense solutions. This is because the hardware
defense solution modifies the cache hierarchy or predictor,
which greatly affects the memory read and write speed.
Correspondingly, the modification of the kernel source code
by the software defense solution has very little impact on the
memory read and write speed.

Fig. 7: Comparison of SnapMem free() and free().

Figure 7 shows the call delay comparison results of Snap-
Mem free() and free(). This result is similar to that of Figure
5. The big delay difference between SnapMem free and free()
is also because of SnapMem free’s process authentication
mechanism.

AES Encryption: In order to see the overhead of SnapMem
in practical applications, we designed the T-table encryp-
tion implementation of AES based on the two versions of
SnapMem. Figure 8 shows the encryption time comparison
between the original T-table AES, SnapMem-strict-based AES
and SnapMem-light-based AES implementations. As can be
seen from Figure 8, when the amount of data is relatively
small, the overheads of the two SnapMem-based AES imple-

Fig. 8: Comparison of AES encryption time.

mentations are much larger than the original version of AES.
But as the amount of data continues to increase, the time of
the three is getting closer and closer. This result shows that
SnapMem has good performance overhead in the case of large
data volumes, but poor performance in the case of small data
volumes.

UnixBench [60]: Researchers design UnixBench to provide
a basic indicator of the performance of a Unix-like system. We
perform UnixBench under 5 system settings to test the perfor-
mance overhead of critical operations on Linux system. Figure
9 shows the comparative evaluation results of UnixBench. As
can be seen from Figure 9, the test Context Switching increase
significantly on the SnapMem enabled Linux system. This
is mainly because Context Switching creates and terminates
a large number of processes, while SnapMem has additional
operations to release SnapMem memory in the creation and
termination of processes.

Overall, KPTI enabled Linux has the largest total overhead
on UnixBench, which is as high as 1.5%. The total over-
heads of the Spectre-BTB mitigation and the Spectre-STL
mitigation are 0.98% and 0.6%, respectively. Correspondingly,
SnapMem’s UnixBench has a total overhead of just 0.07%.
This result indicates that SnapMem has much less impact on
the critical operations of Linux system than the other three
defenses.

SPEC CPU 2017 [61]: SPEC CPU 2017 suites provide a
comparative measure of compute-intensive performance using
workloads developed from real user applications. So we utilize
SPEC CPU 2017 to compare the impact of SnapMem and
other defenses on user application performance. We evaluate
all of SPEC CPU 2017 INT and FP applications under five
system settings. These 5 system settings are the same as
UnixBench tests. Figure 10 shows the evaluation results of
SPECrate2017 benchmark. As shown in Figure 10, SnapMem
has a high overhead in namd and xalancbmk test. Because
both namd and xalancbmk create and terminate processes
frequently.

Overall, in the SPEC CPU 2017 tests, the KPTI mitigation
has the highest total overhead at 0.14%. Followed Spectre-STL
mitigation, the total overhead is 0.08%. Both SnapMem and
spectre-BTB mitigation have a total overhead of 0.04%. This
result indicates that SnapMem and Spectre-BTB mitigation has
less performance impact on user applications than the other
two defenses.

11

Fig. 9: Evaluation results of UnixBench.

Fig. 10: SPEC2017 benchmark results.

E. Hardware Overhead

Table V provides the hardware implementation overhead of
SnapMem. As can be seen from Table V, in the hardware
design of the entire SnapMem, the AXI interface occupies
the most hardware resources, which are 87% of all LUTs and
89% of all registers, respectively. Relatively speaking, Data
Mover and Controller occupy much less hardware resources
than AXI interface. Data Mover uses 5.8% of LUTs and 1.3%
of registers, while Controller utilizes 2.9% of LUTs and 6.1%
of registers. On the other hand, SnapMem memory takes up
all the block RAM. Moreover, SnapMem memory also uses
3.9% of LUTs and 3.8% of registers due to the need for a
communication interface.

TABLE V: Hardware implementation overhead of SnapMem

SnapMem Compo-
nent

LUT as
logic

LUT as
Memory

Registers Block
RAM

Data Mover 1025 0 303 0
Controller 515 0 1379 0
AXI Interface 11307 3999 20009 0
SnapMem Memory 685 5 850 360Kb
Reset Module 13 1 34 0
Overall 13545 4005 22575 360Kb

VII. RELATED WORK

In this section, we present several software runtime defenses
and software/hardware co-design to resist cache-related attacks
similar to SnapMem.

12

Several effective studies on software runtime defense
are proposed to resist Prime+Probe, Flush+Reload and
Flush+Flush attacks. HomeAlone [34] can detect Prime+Probe
attacks by using the same side channel (L2 cache) as attackers.
CloudRadar [35] can detect Prime+Probe and Flush+Reload
attacks in real time using hardware performance counters. Se-
cure Collaborative APIs (SCAPI) [50] designed a collaborative
mechanism for flush and time APIs to resist Flush+Reload and
Flush+Flush in real time.

Some effective software runtime defenses against Spectre,
Meltdown and their variants are also proposed by researchers.
Google presents Return Trampoline (retpoline) [36] to de-
fend against Spectre-BTB. It replaces indirect branches with
push+return instruction sequences to prevent BTB poisoning.
kernel Page-Table Isolation (KPTI) [39] can defend against
Meltdown because it ensures no valid mapping to kernel space
in user space. EPTI [62] was designed to defend against
Meltdown attack in cloud. It has less overhead than KPTI and
can be applied to unpatched VMs. Additionally, Linux open
source community provides two software runtime schemes
on ARMv8-A, which are Spectre-BTB mitigation [37] and
Spectre-STL mitigation [38] respectively.

There are also some studies that utilize software/hardware
co-design to defend against cache-related attacks in real time.
AdapTimer [55] is a software/hardware collaborative timer,
which can resist flush-based cache-related attacks on ARM-
FPGA embedded SoC. SecFlush [56] designs a flush detector
in hardware, which cooperates with software to mitigate cache-
related attacks.

VIII. DISCUSSION

Simulated Attacks: All experiments of SnapMem are based
on Xilinx’s ZU9EG platform, which has 4 ARM Cortex-A53
cores. However, due to the weak branch prediction and out-
of-order execution capabilities of the ARM Cortex-A53 multi-
core processor, we cannot successfully run Meltdown, Spectre-
BTB, and Spectre-STL attacks on this platform. Therefore, we
can only run simulated experiments for these three attacks. The
simulated Meltdown, Spectre-BTB and Spectre-STL attacks
utilize /dev/mem of the Linux file system to directly read and
write the main memory corresponding to SnapMem. Although
they are not real attacks, they have a greater ability to steal
sensitive data than real attacks. The failure of these three
simulated attacks is enough to prove the security of SnapMem.

Overhead of API: From the performance evaluation re-
sults, we can see that SnapMem has a very large overhead
when reading and writing a small amount of data. This is
because every read and write of SnapMem starts the hardware
module regardless of the data size. In future work, we look
forward to solving the problem of large overhead with small
amounts of data. A feasible solution is to directly make
the hardware memory of SnapMem accessible to the CPU
when reading and writing small amounts of data. SnapMem’s
memory is only accessible when SnapMem’s read and write
APIs are called, and is inaccessible at other times. Here, we
temporarily name this solution SnapMem Opt. The core of the
SnapMem Opt solution is a control register that determines

whether SnapMem can be directly accessed by the CPU. This
controller is a privileged controller and can only be controlled
by SnapMem’s API in user space. Since this solution omits
the process of moving data from SnapMem memory to main
memory, it greatly reduces the reading and writing overhead
of a small amount of data. We use Gem5 simulator to design
an proof-of-concept version of SnapMem Opt and conduct a
feasibility assessment of the read and write overhead. To be
typical without losing generality, the SnapMem Opt solution
does not use dedicated block RAM and interface IPs, but is
designed based on a separately isolated physical space in the
main memory. Due to time constraints, this proof-of-concept
version of SnapMem Opt did not perform any optimization
of hardware and software. Therefore, it is far from optimal
performance and full functionality. But it is enough to verify
the feasibility of the technical route. Table VI shows the
comparison of read and write overhead of small amounts of
data between SnapMem Opt and SnapMem.

TABLE VI: Comparison of reading and writing overhead for
small amounts of data (128 bytes) between SnapMem Opt and
SnapMem.

Solution Function Overhead

SnapMem-light SnapMem light read() 1120%
SnapMem light write() 900%

SnapMem-strict SnapMem strict read() 4135540%
SnapMem strict write() 8284700%

SnapMem Opt SnapMem Opt read() 259%
SnapMem Opt write() 231%

As can be seen from Table VI, compared with SnapMem,
the overhead of the proof-of-concept version of SnapMem Opt
has been greatly reduced. This experimental result proves
that SnapMem Opt’s technical route is feasible. In our future
work, we will conduct comprehensive performance optimiza-
tion and improvements on the proof-of-concept version of
SnapMem Opt. We believe that the overhead of the improved
version of SnapMem Opt will be further reduced.

IX. CONCLUSION

Cache-related attacks have become a huge security threat
to ARM-FPGA embedded SoCs. Existing hardware defenses
cannot be deployed on existing SoCs, while software run-
time defenses have limited defense capabilities and high
performance overhead. This paper presents SnapMem, a soft-
ware/hardware collaborative defense that can be deployed on
existing ARM-FPGA platforms. SnapMem is a more secure
memory that burns after reading. Any process can only access
the SnapMem created by itself. Sensitive data appears briefly
in the main memory only when accessed by a legitimate
process calling SnapMem’s APIs. Based on this mechanism,
SnapMem can resist all cache-related attacks. We implemented
various cache-related attacks on real ARM-FPGA platform
and verified that SnapMem is more secure than other defense
schemes. The system performance evaluation results show that
the overheads of SnapMem are the lowest among all defense
solutions.

13

REFERENCES

[1] Xilinx, “Xilinx adaptive socs,” https://www.xilinx.com/products/
silicon-devices/soc.html, 2022.

[2] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Advances in Cryptology - CRYPTO ’96, 1996,
pp. 104–113.

[3] J. Kelsey, B. Schneier, D. A. Wagner, and C. Hall, “Side channel
cryptanalysis of product ciphers,” in ESORICS 98, 1998, pp. 97–110.

[4] D. J. Bernstein, “Cache-timing attacks on aes,” https://cr.yp.to/
antiforgery/cachetiming-20050414.pdf, 2005.

[5] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: The case of AES,” in CT-RSA 2006, 2006, pp. 1–20.

[6] A. Bogdanov, T. Eisenbarth, C. Paar, and M. Wienecke, “Differential
cache-collision timing attacks on AES with applications to embedded
cpus,” in CT-RSA 2010, 2010, pp. 235–251.

[7] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games - bringing
access-based cache attacks on AES to practice,” in S&P 2011, 2011,
pp. 490–505.

[8] M. Weiß, B. Heinz, and F. Stumpf, “A cache timing attack on AES in
virtualization environments,” in FC 2012, 2012, pp. 314–328.

[9] R. Spreitzer and T. Plos, “On the applicability of time-driven cache
attacks on mobile devices,” in Network and System Security - 7th
International Conference, NSS 2013, 2013, pp. 656–662.

[10] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,” in Proceedings of the 23rd USENIX
Security Symposium, 2014, pp. 719–732.

[11] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in USENIX Security
15., 2015, pp. 897–912.

[12] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The spy in the sandbox: Practical cache attacks in javascript and their
implications,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, 2015, pp. 1406–1418.

[13] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A fast
and stealthy cache attack,” in DIMVA 2016, 2016, pp. 279–299.

[14] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “Ar-
mageddon: Cache attacks on mobile devices,” in USENIX Security 16,
2016, pp. 549–564.

[15] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX
Security 18, 2018.

[16] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in (S&P’19), 2019.

[17] V. Kiriansky and C. A. Waldspurger, “Speculative buffer overflows:
Attacks and defenses,” CoRR, vol. abs/1807.03757, 2018. [Online].
Available: http://arxiv.org/abs/1807.03757

[18] J. Horn, “speculative execution, variant 4: speculative store bypass,”
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528, 2018.

[19] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. B. Abu-
Ghazaleh, “Spectre returns! speculation attacks using the return stack
buffer,” in 12th USENIX Workshop on Offensive Technologies, WOOT
2018, Baltimore, MD, USA, August 13-14, 2018, C. Rossow and
Y. Younan, Eds. USENIX Association, 2018. [Online]. Available:
https://www.usenix.org/conference/woot18/presentation/koruyeh

[20] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, D. Lie, M. Mannan,
M. Backes, and X. Wang, Eds. ACM, 2018, pp. 2109–2122. [Online].
Available: https://doi.org/10.1145/3243734.3243761

[21] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium, USENIX Security
2018, Baltimore, MD, USA, August 15-17, 2018, W. Enck and A. P. Felt,
Eds. USENIX Association, 2018, pp. 991–1008. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck

[22] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom,
“Foreshadow-ng: Breaking the virtual memory abstraction with transient
out-of-order execution,” 2018. [Online]. Available: $$Uhttps://lirias.
kuleuven.be/retrieve/515917$$Dforeshadow-ng.pdf[freelyavailable]

[23] ARM, “Vulnerability of speculative processors to cache timing
side-channel mechanism,” https://developer.arm.com/support/
security-updates/speculative-processor-vulnerability, 2021.

[24] J. Stecklina and T. Prescher, “Lazyfp: Leaking FPU register state using
microarchitectural side-channels,” CoRR, vol. abs/1806.07480, 2018.
[Online]. Available: http://arxiv.org/abs/1806.07480

[25] C. Trippel, D. Lustig, and M. Martonosi, “Meltdownprime and
spectreprime: Automatically-synthesized attacks exploiting invalidation-
based coherence protocols,” CoRR, vol. abs/1802.03802, 2018. [Online].
Available: http://arxiv.org/abs/1802.03802

[26] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin,
D. Ponomarev, and N. B. Abu-Ghazaleh, “Safespec: Banishing the
spectre of a meltdown with leakage-free speculation,” in Proceedings
of the 56th Annual Design Automation Conference 2019, DAC 2019,
Las Vegas, NV, USA, June 02-06, 2019. ACM, 2019, p. 60. [Online].
Available: https://doi.org/10.1145/3316781.3317903

[27] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and D. Gruss,
“Context: A generic approach for mitigating spectre,” in 27th Annual
Network and Distributed System Security Symposium, NDSS 2020,
San Diego, California, USA, February 23-26, 2020. The Internet
Society, 2020. [Online]. Available: https://www.ndss-symposium.org/
ndss-paper/context-a-generic-approach-for-mitigating-spectre/

[28] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional
speculation: An effective approach to safeguard out-of-order execution
against spectre attacks,” in 25th IEEE International Symposium on
High Performance Computer Architecture, HPCA 2019, Washington,
DC, USA, February 16-20, 2019. IEEE, 2019, pp. 264–276. [Online].
Available: https://doi.org/10.1109/HPCA.2019.00043

[29] H. Fang, M. Doroslovacki, and G. Venkataramani, “Reuse-trap: Re-
purposing cache reuse distance to defend against side channel leakage,”
in 57th ACM/IEEE Design Automation Conference, DAC 2020, San
Francisco, CA, USA, July 20-24, 2020. IEEE, 2020, pp. 1–6. [Online].
Available: https://doi.org/10.1109/DAC18072.2020.9218725

[30] J. Fustos, F. Farshchi, and H. Yun, “Spectreguard: An efficient
data-centric defense mechanism against spectre attacks,” in Proceedings
of the 56th Annual Design Automation Conference 2019, DAC 2019,
Las Vegas, NV, USA, June 02-06, 2019. ACM, 2019, p. 61. [Online].
Available: https://doi.org/10.1145/3316781.3317914

[31] E. M. Koruyeh, S. H. A. Shirazi, K. N. Khasawneh, C. Song, and N. B.
Abu-Ghazaleh, “Speccfi: Mitigating spectre attacks using CFI informed
speculation,” in 2020 IEEE Symposium on Security and Privacy, SP
2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 2020, pp.
39–53. [Online]. Available: https://doi.org/10.1109/SP40000.2020.00033

[32] S. Ainsworth and T. M. Jones, “Muontrap: Preventing cross-domain
spectre-like attacks by capturing speculative state,” in 47th ACM/IEEE
Annual International Symposium on Computer Architecture, ISCA 2020,
Valencia, Spain, May 30 - June 3, 2020. IEEE, 2020, pp. 132–144.
[Online]. Available: https://doi.org/10.1109/ISCA45697.2020.00022

[33] S. Ainsworth, “Ghostminion: A strictness-ordered cache system
for spectre mitigation,” in MICRO ’21: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, Virtual Event, Greece,
October 18-22, 2021. ACM, 2021, pp. 592–606. [Online]. Available:
https://doi.org/10.1145/3466752.3480074

[34] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “Homealone:
Co-residency detection in the cloud via side-channel analysis,” in 32nd
IEEE Symposium on Security and Privacy, S&P 2011, 22-25 May
2011, Berkeley, California, USA. IEEE Computer Society, 2011, pp.
313–328. [Online]. Available: https://doi.org/10.1109/SP.2011.31

[35] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time
side-channel attack detection system in clouds,” in Research in Attacks,
Intrusions, and Defenses - 19th International Symposium, RAID 2016,
Paris, France, September 19-21, 2016, Proceedings, ser. Lecture
Notes in Computer Science, F. Monrose, M. Dacier, G. Blanc, and
J. Garcı́a-Alfaro, Eds., vol. 9854. Springer, 2016, pp. 118–140.
[Online]. Available: https://doi.org/10.1007/978-3-319-45719-2 6

[36] P. Turner, “Retpoline: a software construct for preventing branch-target-
injection,” https://support.google.com/faqs/answer/7625886, 2018.

[37] W. Deacon, “arm64: Add skeleton to harden
the branch predictor against aliasing attacks,”
https://patchwork.kernel.org/project/linux-arm-kernel/patch/
4349161f0ed572bbc6bff64bad94aa96d07b27ff.1562908075.
git.viresh.kumar@linaro.org/, 2018.

[38] M. Zyngier, “arm64: Run arch workaround 2 enabling code on
all cpus,” http://lkml.iu.edu/hypermail/linux/kernel/2010.3/11148.html,
2020.

[39] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and
S. Mangard, “KASLR is dead: Long live KASLR,” in Engineering

https://www.xilinx.com/products/silicon-devices/soc.html
https://www.xilinx.com/products/silicon-devices/soc.html
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://arxiv.org/abs/1807.03757
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://doi.org/10.1145/3243734.3243761
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
$$Uhttps://lirias.kuleuven.be/retrieve/515917$$Dforeshadow-ng.pdf [freely available]
$$Uhttps://lirias.kuleuven.be/retrieve/515917$$Dforeshadow-ng.pdf [freely available]
https://developer.arm.com/support/security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/security-updates/speculative-processor-vulnerability
http://arxiv.org/abs/1806.07480
http://arxiv.org/abs/1802.03802
https://doi.org/10.1145/3316781.3317903
https://www.ndss-symposium.org/ndss-paper/context-a-generic-approach-for-mitigating-spectre/
https://www.ndss-symposium.org/ndss-paper/context-a-generic-approach-for-mitigating-spectre/
https://doi.org/10.1109/HPCA.2019.00043
https://doi.org/10.1109/DAC18072.2020.9218725
https://doi.org/10.1145/3316781.3317914
https://doi.org/10.1109/SP40000.2020.00033
https://doi.org/10.1109/ISCA45697.2020.00022
https://doi.org/10.1145/3466752.3480074
https://doi.org/10.1109/SP.2011.31
https://doi.org/10.1007/978-3-319-45719-2_6
https://support.google.com/faqs/answer/7625886
http://lkml.iu.edu/hypermail/linux/kernel/2010.3/11148.html

14

Secure Software and Systems - 9th International Symposium, ESSoS
2017, Bonn, Germany, July 3-5, 2017, Proceedings, ser. Lecture Notes
in Computer Science, E. Bodden, M. Payer, and E. Athanasopoulos,
Eds., vol. 10379. Springer, 2017, pp. 161–176. [Online]. Available:
https://doi.org/10.1007/978-3-319-62105-0 11

[40] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and
A. Roychoudhury, “oo7: Low-overhead defense against spectre
attacks via program analysis,” IEEE Trans. Software Eng.,
vol. 47, no. 11, pp. 2504–2519, 2021. [Online]. Available:
https://doi.org/10.1109/TSE.2019.2953709

[41] Intel, “Intel stratix 10 sx soc fpgas,” https://www.intel.com/content/
www/us/en/products/details/fpga/stratix/10/sx.html, 2022.

[42] Xilinx, “Zynq ultrascale+ mpsoc: Heterogeneous multiprocessing plat-
form for broad range of embedded applications,” https://www.xilinx.
com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html, 2022.

[43] ——, “Zynq ultrascale+ device technical reference manual,”
https://www.xilinx.com/content/dam/xilinx/support/documentation/
user guides/ug1085-zynq-ultrascale-trm.pdf, 2020.

[44] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi,
“Cryptanalysis of DES implemented on computers with cache,” in
Cryptographic Hardware and Embedded Systems - CHES 2003, 5th
International Workshop, Cologne, Germany, September 8-10, 2003,
Proceedings, ser. Lecture Notes in Computer Science, C. D. Walter,
Ç. K. Koç, and C. Paar, Eds., vol. 2779. Springer, 2003, pp. 62–76.
[Online]. Available: https://doi.org/10.1007/978-3-540-45238-6 6

[45] M. Neve, J. Seifert, and Z. Wang, “A refined look at bernstein’s AES
side-channel analysis,” in Proceedings of the 2006 ACM Symposium
on Information, Computer and Communications Security, ASIACCS
2006, Taipei, Taiwan, March 21-24, 2006, F. Lin, D. Lee, B. P. Lin,
S. Shieh, and S. Jajodia, Eds. ACM, 2006, p. 369. [Online]. Available:
https://doi.org/10.1145/1128817.1128887

[46] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and
J. Torrellas, “Invisispec: Making speculative execution invisible in the
cache hierarchy,” in 51st Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 2018, Fukuoka, Japan, October 20-24,
2018. IEEE Computer Society, 2018, pp. 428–441. [Online]. Available:
https://doi.org/10.1109/MICRO.2018.00042

[47] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (STT): A comprehensive protection
for speculatively accessed data,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO
2019, Columbus, OH, USA, October 12-16, 2019. ACM, 2019, pp.
954–968. [Online]. Available: https://doi.org/10.1145/3352460.3358274

[48] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of
cache-based side-channel attacks using hardware performance counters,”
Appl. Soft Comput., vol. 49, pp. 1162–1174, 2016. [Online]. Available:
https://doi.org/10.1016/j.asoc.2016.09.014

[49] M. He, C. Ma, J. Ge, N. Gao, and C. Tu, “Flush-detector: More
secure API resistant to flush-based spectre attacks on ARM cortex-a9,”
in IEEE Symposium on Computers and Communications, ISCC 2020,
Rennes, France, July 7-10, 2020. IEEE, 2020, pp. 1–6. [Online].
Available: https://doi.org/10.1109/ISCC50000.2020.9219627

[50] J. Ge, N. Gao, C. Tu, J. Xiang, and Z. Liu, “More secure collaborative
apis resistant to flush+reload and flush+flush attacks on armv8-a,”
in 26th Asia-Pacific Software Engineering Conference, APSEC 2019,
Putrajaya, Malaysia, December 2-5, 2019. IEEE, 2019, pp. 410–417.
[Online]. Available: https://doi.org/10.1109/APSEC48747.2019.00062

[51] G. Irazoqui, T. Eisenbarth, and B. Sunar, “MASCAT: preventing
microarchitectural attacks before distribution,” in Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy,
CODASPY 2018, Tempe, AZ, USA, March 19-21, 2018, Z. Zhao,
G. Ahn, R. Krishnan, and G. Ghinita, Eds. ACM, 2018, pp. 377–388.
[Online]. Available: https://doi.org/10.1145/3176258.3176316

[52] H. Lu, “[patch 0/5] x86: Cve-2017-5715, aka spectre,” https://gcc.gnu.
org/ml/gcc-patches/2018-01/msg00422.html, 2018.

[53] J. Ge, N. Gao, C. Tu, J. Xiang, Z. Liu, and J. Yuan, “Combination of
hardware and software: An efficient AES implementation resistant to
side-channel attacks on all programmable soc,” in Computer Security
- 23rd European Symposium on Research in Computer Security,
ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Proceedings,
Part I, ser. Lecture Notes in Computer Science, J. López, J. Zhou, and
M. Soriano, Eds., vol. 11098. Springer, 2018, pp. 197–217. [Online].
Available: https://doi.org/10.1007/978-3-319-99073-6 10

[54] P. Peng, C. Ma, J. Ge, N. Gao, and C. Tu, “A hardware/software
collaborative SM4 implementation resistant to side-channel attacks on
ARM-FPGA embedded soc,” in IEEE Symposium on Computers and
Communications, ISCC 2020, Rennes, France, July 7-10, 2020. IEEE,

2020, pp. 1–7. [Online]. Available: https://doi.org/10.1109/ISCC50000.
2020.9219591

[55] J. Ge, N. Gao, C. Tu, J. Xiang, and Z. Liu, “Adaptimer:
Hardware/software collaborative timer resistant to flush-based cache
attacks on ARM-FPGA embedded soc,” in 37th IEEE International
Conference on Computer Design, ICCD 2019, Abu Dhabi, United Arab
Emirates, November 17-20, 2019. IEEE, 2019, pp. 585–593. [Online].
Available: https://doi.org/10.1109/ICCD46524.2019.00085

[56] C. Tang, Z. Liu, C. Ma, J. Ge, and C. Tu, “Secflush: A
hardware/software collaborative design for real-time detection and
defense against flush-based cache attacks,” in Information and
Communications Security - 21st International Conference, ICICS 2019,
Beijing, China, December 15-17, 2019, Revised Selected Papers, ser.
Lecture Notes in Computer Science, J. Zhou, X. Luo, Q. Shen, and
Z. Xu, Eds., vol. 11999. Springer, 2019, pp. 251–268. [Online].
Available: https://doi.org/10.1007/978-3-030-41579-2 15

[57] Xilinx, “Smartconnect technology: Unprecedented levels of perfor-
mance for the ultrascale+ devices,” https://www.xilinx.com/products/
technology/smart-connect.html, 2022.

[58] ——, “Zynq ultrascale+ mpsoc zcu102 evaluation kit,” https://www.
xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html, 2022.

[59] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G.
Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. S. B. Altaf, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–
7, 2011. [Online]. Available: https://doi.org/10.1145/2024716.2024718

[60] K. Lucas, “byte-unixbench,” https://github.com/kdlucas/byte-unixbench,
2018.

[61] SPEC, “Spec cpu 2017,” https://www.spec.org/cpu2017/, 2017.
[62] Z. Hua, D. Du, Y. Xia, H. Chen, and B. Zang, “EPTI: efficient

defence against meltdown attack for unpatched vms,” in 2018
USENIX Annual Technical Conference, USENIX ATC 2018, Boston,
MA, USA, July 11-13, 2018, H. S. Gunawi and B. Reed,
Eds. USENIX Association, 2018, pp. 255–266. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/hua

Jingquan Ge received the Ph.D. degree in cy-
berspace security from the Institute of Information
Engineering, Chinese Academy of Sciences, Beijing,
China, in 2020.

He is a research fellow at Department of Com-
puter Science and Engineering at Southern Univer-
sity of Science and Technology (SUSTech). He is
interested in all aspects of system security, including
cache attacks and defenses, control flow integrity,
fuzzing, AI security, hot patching, etc. His current
research fields include root cause analysis of soft-

ware bugs, vehicle system security, and cache side channel defense.

Fengwei Zhang received the Ph.D. degree in Com-
puter Science from George Mason University in
2015.

He is an Associate Professor at Department of
Computer Science and Engineering at Southern Uni-
versity of Science and Technology (SUSTech). His
primary research interests are in the areas of systems
security, with a focus on trustworthy execution,
hardware-assisted security, debugging transparency,
transportation security, and plausible deniability en-
cryption.

https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1109/TSE.2019.2953709
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/sx.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10/sx.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/content/dam/xilinx/support/ documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/content/dam/xilinx/support/ documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://doi.org/10.1007/978-3-540-45238-6_6
https://doi.org/10.1145/1128817.1128887
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1145/3352460.3358274
https://doi.org/10.1016/j.asoc.2016.09.014
https://doi.org/10.1109/ISCC50000.2020.9219627
https://doi.org/10.1109/APSEC48747.2019.00062
https://doi.org/10.1145/3176258.3176316
https://gcc.gnu.org/ml/gcc-patches/2018-01/msg00422.html
https://gcc.gnu.org/ml/gcc-patches/2018-01/msg00422.html
https://doi.org/10.1007/978-3-319-99073-6_10
https://doi.org/10.1109/ISCC50000.2020.9219591
https://doi.org/10.1109/ISCC50000.2020.9219591
https://doi.org/10.1109/ICCD46524.2019.00085
https://doi.org/10.1007/978-3-030-41579-2_15
https://www.xilinx.com/products/technology/smart-connect.html
https://www.xilinx.com/products/technology/smart-connect.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://doi.org/10.1145/2024716.2024718
https://github.com/kdlucas/byte-unixbench
https://www.spec.org/cpu2017/
https://www.usenix.org/conference/atc18/presentation/hua

	Introduction
	Background and Motivation
	ARM-FPGA embedded SoC
	Cache-Related Attacks
	Defenses and Limitations

	Threat Model
	Our Threat Model
	Threat Model Comparison

	Design
	Overview of SnapMem
	Software of SnapMem
	Hardware of SnapMem

	Implementation
	Software of SnapMem
	Hardware of SnapMem

	Evaluation
	Evaluation Environment
	Evaluation Design
	Security Analysis
	Performance Analysis
	Hardware Overhead

	Related Work
	Discussion
	Conclusion
	References
	Biographies
	Jingquan Ge
	Fengwei Zhang

