
SHELTER: Extending Arm CCA with Isolation in User Space

Yiming Zhang1,2,3,∗, Yuxin Hu1,2,∗, Zhenyu Ning4,1, Fengwei Zhang2,1,†, Xiapu Luo3,
Haoyang Huang1,2, Shoumeng Yan5, Zhengyu He5

1Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology
2Department of Computer Science and Engineering, Southern University of Science and Technology

3Department of Computing, The Hong Kong Polytechnic University
4College of Computer Science and Electronic Engineering, Hunan University

5Ant Group

Abstract
The increasing adoption of confidential computing is pro-

viding individual users with a more seamless interaction with
numerous mobile and server devices. TrustZone is a promis-
ing security technology for the use of partitioning sensitive
private data into a trusted execution environment (TEE). Un-
fortunately, third-party developers have limited accessibility
to TrustZone. This is because TEE vendors need to validate
such security applications to preserve their security rigorously.
Moreover, TrustZone-based systems suffer from vulnerabili-
ties affecting Trusted App and trusted OS, possibly causing
the entire system to be compromised.

Advanced virtualization-based TEE introduced in the re-
cently new concept of Confidential Compute Architecture
(CCA) creates a new physical address space called Realm
world for confidential computing to protect the data confi-
dentiality and integrity. The current version of CCA primar-
ily targets the VM level in the Realm world and does not
provide user-level isolated environments. To fill up this gap,
we present SHELTER, which is a complement to CCA’s pri-
mary Realm VM-style architecture. SHELTER allows third-
party developers to deploy their applications with isolation
in userspace. SHELTER is designed by cooperating with Arm
CCA hardware primitive available in Armv9.2 to provide
hardware-based isolation while removing the need for soft-
ware workloads to trust their data to a Host OS, hypervisor, or
privileged software (e.g., trusted OS, Secure/Realm hypervi-
sor). We have implemented and evaluated SHELTER, and the
results demonstrated that SHELTER guarantees the security
of applications with a modest performance overhead (<15%)
on real-world workloads.

1 Introduction

The increasing adoption of confidential computing is provid-
ing individual users with a more seamless interaction with

∗
Co-first authors.

†
The corresponding author.

devices [14]. Meanwhile, as vast numbers of devices are being
widely deployed and connected, a host of new security vul-
nerabilities and attacks are breaking out [33]. It is critical that
these devices provide a high level of security and privacy to
protect sensitive data. On Arm platforms, TrustZone [26] sup-
ports such an ability that enforces system-wide isolation using
two different physical address spaces (PAS) named Normal
world and Secure world for untrusted and trusted software,
respectively.

Although TrustZone enables systems to protect sensitive
data in the TEE, there still exist two major limitations to
practice: (i) Third-party developers have limited accessibility
to TrustZone. This is because TEE vendors need to rigor-
ously validate such security applications to prevent the de-
ployment of Trusted Applications (TA) that may import ex-
ploitable vulnerabilities [11]. These processes increase the
required time for deploying new TAs, conflicting with the
time-to-market trend of computing services [46]. (ii) The
attack surface for commercial TrustZone-based systems is
enlarged since there are increasing vulnerabilities affecting
TAs and trusted OSes, according to recent studies [33, 34].
There is a defense mechanism based on privilege division
in Arm architecture called Exception Levels (EL0-EL3). For
example, in the Secure world, Secure Exception Level 0 (i.e.,
S.EL0) runs TAs, S.EL1 runs the trusted OS, and S.EL3 runs
a secure firmware. However, once a vulnerability affecting
the trusted OS is exploited, the entire TrustZone-based sys-
tems [32, 64, 72] would be compromised [33].

Arm recently introduced a new system called Confidential
Compute Architecture (CCA) [23] to protect data in use on
Armv9.2. CCA conducts computation in a new PAS named
Realm world. To shield portions of code and data from access
or modification, CCA houses a Realm Management Monitor
(RMM) [24] like a lightweight secure hypervisor. RMM can
instantiate multiple Realm VMs in the Realm world enforced
by a new hardware primitive so-called Real Management Ex-
tension (RME) [28]. However, though Armv9.2 with CCA
hardware primitives might be available on the market soon,
the software ecosystem of CCA is in the early stage; develop-

ers still cannot use it or are unclear about how to implement
Realm VM systems with RMM. Moreover, the current ver-
sion of CCA primarily targets the VM level in the Realm
world [57], and does not provide user-level isolated environ-
ments. These problems raise one intuitive question: Is it possi-
ble to better construct confidential computing on compatible
platforms for third-party developers by utilizing advanced
hardware primitives like RME?

In this paper, we propose SHELTER, which is complemen-
tary to CCA’s primary Realm VM-style architecture. SHEL-
TER focuses on hardware-based isolation in the Normal world
userspace with minimal TCB. A key observation is that CCA
introduces an additional PAS named Root world, where the
highest exception level (i.e., EL3) supports the execution of
firmware. CCA hardware primitive RME makes the Root
world inaccessible from any other world. Therefore, SHEL-
TER leverages the RME to house a Monitor which runs at
the Root world natively separated from other system soft-
ware. The Monitor is responsible for supporting isolation
in the userspace while removing the need to trust the Host
OS, hypervisor, or privileged software (e.g., trusted OS, se-
cure hypervisor, or RMM). The third-party developers can
use the SDK of SHELTER that interacts with the Monitor to
manage and develop their applications as SHELTER Apps
(SApps). Granule Protection Table (GPT) [27] in CCA is
an in-memory structure that specifies what PAS a memory
page belongs to. SHELTER reuses the data structure GPT to
protect sensitive data and code. The RME checks the GPT on
each memory access and blocks illegal access. Compared to
TrustZone-based approaches or CCA Realm VMs, SHELTER
supports deploying SApps in the Normal world userspace
and provides memory isolation against different worlds (i.e.,
Normal, Secure, and Realm).

To implement the whole process, we faced several major
challenges. C1: The goal of SHELTER is to provide isolation
between the SApp and all other code with different privileges
(i.e., Normal, Secure, and Realm). The existing method of
CCA using GPT for dividing the main memory state into Nor-
mal world, Secure world, and Realm world cannot achieve
this isolation. This is because an attacker has full access to the
SApp memory if the privileged software is compromised. To
overcome the challenge, we propose a novel memory isolation
mechanism that deploys multi-GPT design to isolate memory
between SApps and other regions (§4.1). The insight is based
on an observation that each CPU core can be configured sep-
arately with GPT, like extended page tables [43, 51, 59]. To
this end, we configure the PAS related to SApps among dif-
ferent GPTs separately to establish an address-space-per-core
for each SApp and other code regions to achieve memory
isolation. C2: Initialization may cause long startup latency
for SApp. For example, the Monitor needs to create a new
SHELTER GPT and add entry information to the SHELTER
GPT whenever an SApp is created. We address the challenge
by adding improved GPT management to speed up SHELTER

creation (§4.3). C3: Since GPT information in multi-core can
be cached in TLB and shared across cores [12], SHELTER
may suffer from an attack that bypasses GPC by using the
shared SHELTER GPT information in another core to access
SHELTER memory. To address the challenge, we use dedi-
cated multi-core management (§4.4) to protect the security of
the SHELTER.

We implemented two prototypes of SHELTER on the Arm
Fixed Virtual Platform (FVP) [8] that supports RME and
a hardware SoC for functional validation and performance
evaluation, respectively. We surveyed 45 CVE reports that
primarily aim to control privileged software instances (e.g.,
trusted OS/TA or hypervisor) to execute arbitrary code (e.g.,
unauthorized access to sensitive data). Our security analy-
sis shows that SHELTER can defend against potential attacks
from highly privileged software compromised by these vul-
nerabilities (§6.2). We extensively evaluate SHELTER’s per-
formance by measuring the overhead of the entire SHELTER
lifecycle and real-world applications in our prototype (§7).
The results show that SHELTER introduces no more than 15%
performance overhead on real-world workloads compared
with Linux.

Our main contributions are summarized as follows:

• We design and implement SHELTER, which is an isolated en-
vironment in the Normal world userspace via the Arm CCA
hardware primitive with a minimal TCB. The prototype is
released at https://github.com/Compass-All/SHELTER.

• We propose a novel isolation mechanism that deploys multi-
GPTs cooperating with Arm RME available in CCA to
securely and efficiently protect SApps.

• We extensively evaluate the functionality of SHELTER and
its performance overhead. The result shows that SHELTER
guarantees the security with a modest performance over-
head on real-world workloads.

2 Background

2.1 Arm TrustZone Mechanisms
On Armv8-A architecture, a CPU core based on a privilege
division has four exception levels (EL0-EL3): EL0 for appli-
cations, EL1 for kernels, EL2 for hypervisors, and EL3 for
secure monitor. TrustZone [26] enables two CPU security
states: Normal and Secure. EL0 and EL1 can run in either of
these states (e.g., executing an untrusted OS in NS.EL1 and
a trusted OS in S.EL1). The EL2 is available in the Secure
state from Armv8.4-A onwards since the secure hypervisor is
supported. The EL3 is always in the Secure world and hosts a
secure monitor that plays a role in changing security states.
The typical TrustZone-based system uses a static policy of
resource partition [55] that only allows the secure memory
to reside in a few fixed memory regions. For example, the

Table 1: Physical address access permissions on Arm CCA.
Security state Normal PAS Secure PAS Realm PAS Root PAS

Normal ✓ × × ×
Secure ✓ ✓ × ×
Realm ✓ × ✓ ×
Root ✓ ✓ ✓ ✓

TrustZone Address Space Controller, TZASC (TZC-400) [25]
supports configuring with up to eight different memory re-
gions.
Security Risk of TrustZone Mechanism. The TrustZone
mechanisms explained above require S.EL1 (trusted OS)
and S.EL2 (secure hypervisor) to be trusted. Nevertheless,
as increasing vulnerabilities are against trusted privilege in-
stances [33, 34], attackers can comprise the entire system if
they control the trusted OS or secure hypervisor. For example,
an attacker can create virtual address mapping in a controlled
trusted OS to arbitrarily access memory regions.

2.2 Arm CCA

Arm CCA introduces Realm [23], which is another security
state with virtualization support from Armv9.2 onwards. CCA
aims to retain existing system software (e.g., untrusted hyper-
visor) to manage hardware resources required by the Realm
VM while preventing software and other hardware primitives
from observing or modifying the contents of a Realm VM.
Arm RMM. To manage the execution of Realm VMs, CCA
introduces a software component called Realm Management
Monitor (RMM) [24]. The RMM running at EL2 in Realm se-
curity state (R.EL2) also uses existing hypervisor technology,
such as stage-2 translation tables, to isolate Realm VMs.
Arm RME. Realm Management Extension (RME) [28] is
the hardware component of CCA that extends the isolation
model introduced in TrustZone. CCA uses RME to isolate
EL3 to its own Root security state that becomes a separated
world depicted in Figure 1. The CCA security model [22]
recommends that a CCA system enforces required memory
encryption and integrity properties. The specification of RME
systems uses a hardware-based MPE (Memory Protection
Engine) to describe the component that provides memory
encryption and integrity services [28]. In the early stage, no
commercial hardware supporting RME is available on the
market, and only a software simulation provided by Arm
Fixed Virtual Platform (FVP) [8] supports RME. Note that
details of using MPE component are still unclear on early
RME-enabled FVP.
Granule Protection Check. When the processor performs
memory access, the RME determines whether the access is
permitted by Granule Protection Checks (GPC) [28]. RME
blocks illegal access and returns a Granule Protection Fault
(GPF) [27] under translation stages. The entire memory ac-
cess permission for different security states in CCA is shown
in Table 1. The GPC takes effect even if the translation is
disabled (e.g., MMU is turned off).
Granule Protection Table. CCA maintains a Granule Protec-

RMM

MonitorRoot

Re
al

m
 V

M
1App

OS

VM
1

OS

App App

Hypervisor

Re
al

m
 V

M
2

OS

App

Realm Normal

EL0

EL1

EL2

EL3

Monitor Hardware RME

Figure 1: Arm CCA components. The Secure world is omitted
for simplicity. RMM can access the data of Realm VMs or
Normal memory.

tion Table (GPT) [27] as the in-memory structure that speci-
fies the security state of each fine-grained physical memory
(e.g., 4KB) to cooperate with GPC. CCA supports dynami-
cally transferring memory to a new physical address space,
PAS (i.e., Normal, Secure, Realm) by issuing a Secure Mon-
itor Call (SMC) to EL3 firmware to update GPT. Note that
GPT should be in Root PAS and the GPC-related registers can
only be accessed from firmware running in EL3 Root world.

3 Overview

SHELTER is a system that aims to leverage Arm CCA hard-
ware primitive to create Normal world isolated environments
with minimal TCB on compatible platforms, including mo-
bile and server. Note that SHELTER complements Arm CCA’s
primary Realm VM-style architecture and is not intended to
outperform CCA. SHELTER is an alternative to allow third-
party developers to deploy their applications with isolation in
userspace as SHELTER Apps (SApps). More concretely, we
design SHELTER with the following goals.

G1: Security. We want to achieve secure guarantees
against possible attackers with privileges of different secu-
rity states. For example, an SApp is protected from illegal
access by other privileged software (e.g., trusted OS) that can
overwhelm prior TrustZone-based TEEs.

G2: Minimal TCB. The TCB of SHELTER should be small.
In traditional TrustZone-based systems, the trusted OS and
secure hypervisor are trusted. In our cases, SHELTER adopts a
minimal code running in the highest privileged Monitor as the
root of trust to enable SHELTER memory isolation at runtime
so that it can keep a minimal TCB.

G3: No Hardware Modification. SHELTER leverages
hardware primitives available in modern SoCs on Armv9.2
without requiring any hardware modification.

G4: Low Overhead. The overheads incurred by our design
should not be high.

Figure 2 describes the overview of SHELTER. We lever-
age the RME hardware primitives introduced from CCA to
host a Monitor, which runs at the highest privilege level (i.e.,
EL3) to provide an isolation mechanism. Unlike originally
TrustZone-based TEE, in CCA EL3 becomes a separated re-
gion called Root world, making the Monitor natively isolated

Apps SApp TA

TOS

SPM

TA

TOS

RMM

Multi-GPT Memory
Isolation (§4.1)

Shelter Memory
Management (§4.2)

Root

RealmSecureNormal

H
ig

he
r P

riv
ile

ge

Monitor

CPU Cores Root of TrustRME

Hardware

Multi-core
Management (§4.4)

Shelter Lifecycle
Management (§4.3)

R
ea

lm

V
M

R
ea

lm

V
M

SApp

Root

Memory
Allocator

OS Syscall
Services

Other OS
Services

Hypervisor

Figure 2: Overview of SHELTER. The Monitor used by SHEL-
TER and hardware are trusted.

from other privileged software abstractions. The Monitor pro-
vides a limited set of APIs via SMCs for users to deploy
SApps running in the Normal world userspace. Each SApp
is isolated from other SApps, untrusted OS/hypervisor, and
privileged software (e.g., trusted OS, SPM, and RMM).

To bring additional security guarantees (G1), we propose
a novel design that deploys Multi-GPT Memory Isolation
(§4.1) with dedicated Multi-Core Management (§4.4) to en-
force memory isolation without requiring any hardware mod-
ifications (G3). To ensure performance (G4), we introduce
SHELTER Memory Management to keep a low memory con-
sumption (§4.2), and add an improved GPT management to
speed up SHELTER’s environment creation (§4.3). Moreover,
to keep a small TCB (G2), we make the Monitor only enforce
security policies, while the non-security responsibilities (e.g.,
syscall support, scheduling, and interrupt handling) are done
by the untrusted OS. For example, the memory management
of Monitor keeps the allocated memory address and size while
forwarding SApp memory allocation to the existing untrusted
OS and checking the result to ensure multiple SApps do not
have memory overlap.

We chose to implement SHELTER’s functionality in the
Monitor instead of moving these management operations to
the RMM for several reasons. First, the isolation mechanism
of SHELTER only relies on GPT manipulation and does not
require a hypervisor technology such as stage-2 translation
tables included in RMM’s TCB to isolate Realm VMs. Sec-
ond, only EL3 has the privilege of changing GPT, and RMM
needs to issue an SMC to switch to EL3 for a GPT operation.
Since GPT operations are frequent (e.g., GPT swapping (§4.3)
during execution), providing management operations directly
in the EL3 Monitor avoids performance overhead incurred
by switching between RMM and EL3. Third, EL3 Monitor is
originally responsible for context switching in CPU execution
and managing the GPT. It can simplify the implementation by
reusing parts of the library and data structure of original EL3
firmware (e.g., GPT initialization and transition, and SApp
context structures).

Threat Model. SHELTER trusts the Monitor since it needs to
be verified by the signature of the vendor and loads securely
by secure boot. SHELTER trusts the hardware (e.g., RME)
provided by the vendor to be bug-free.

On the software side, we assume a software attacker has full
control of the untrusted OS, hypervisor, or privileged software
(e.g., trusted OS, SPM, or RMM). We assume the user code
inside SHELTER would not deliberately leak its sensitive data,
and SHELTER’s I/O data and persistent storage can be pro-
tected with secure encrypted channels [32,55,71]. An attacker
can launch an adversarial SApp. However, SHELTER enforces
two-way isolation to ensure that an SApp cannot access any
secret data of other SApps or software (e.g., untrusted/trusted
OS, SPM, and RMM), and vice versa.

On the hardware side, we currently do not consider physi-
cal attacks that affect the components inside hardware (e.g.,
fault injection [36, 38], cold-boot attacks [70] and bus snoop-
ing attacks [53]). Similar to a typical TrustZone and CCA
deployment, denial-of-service attacks are out of the scope.

Side-channel protections are out of the scope of our work.
However, existing approaches [41,49,60,62] can be applied to
SHELTER to supply side-channel resistance. Prior and future
defenses against speculative execution attacks [50, 67] can be
retrofitted into SHELTER [31, 69].

An attestation is usually required to verify the validity
of the loaded SHELTER environment. We assume that there
exists remote attestation support for SHELTER, and similar
attestation approaches [40, 61] can be applied to our system.
We also assume there exists secure boot that can initialize the
system to a correct state (e.g., the Monitor has been verified
and loaded).

4 Design

4.1 Multi-GPT Memory Isolation

To achieve memory isolation, the Monitor of SHELTER uses
GPT introduced from CCA. Note that CCA maintains a single
GPT that indicates the security state of each physical memory
page (e.g., Normal, Secure, Realm, and Root shown in Ta-
ble 2). When the processor accesses memory, RME performs
GPC that checks the current CPU security state and GPT in-
formation of the physical memory being accessed. Failing to
pass GPC generates a GPF exception (e.g., Host OS accessing
a Realm), which provides a basic isolation guarantee. Unlike
the typical TrustZone, GPT supports a minimum 4KB page
granularity to dynamically transition memory state between
Normal, Secure, and Realm world. To transition physical
memory (e.g., Normal page to Secure page), CCA needs to
update the entries of the GPT.

C1. The method of CCA using GPT for dividing the mem-
ory state into different worlds is not compatible with the
scenario in which memory is isolated between SApps and
other privileged software. For example, an attacker can access
an SApp’s memory in different PAS (i.e. Normal, Secure, or
Realm) if the corresponding privileged software (e.g., trusted
OS or RMM) is compromised.

Table 2: The encoding of a GPI field in GPT.
Value Description

0000 No access permitted
1000 Access permitted to Secure PAS only
1001 Access permitted to Normal PAS only
1010 Access permitted to Root PAS only
1011 Access permitted to Realm PAS only
1111 All access permitted

App

OS

CPU Core 1 CPU Core 2

Normal
PAS

Secure
PAS

Realm
PAS

Root
PAS

SApp1 SApp2

SApps
PAS SApp1 PAS SApp2 PAS

CPU Core 3 CPU Core 4

Normal RAMNo-access Secure RAM Realm RAM Root RAM

M
em

or
y

Hypervisor/SPM/RMM

H
os

t G
PT

S.
G

PT
 1

S.
G

PT
 2

Figure 3: The design of multi-GPTs; S.GPT = SHELTER GPT.

Solution to C1. We propose a new memory isolation mecha-
nism: Deploying multi-GPTs in different CPU cores to isolate
memory between SHELTER and other regions. The insight is
based on an observation that each CPU core can be configured
separately with GPC and GPT base addresses. To this end,
SHELTER repurposes GPT, similar to extended page tables of
the address translation level [43, 51, 59], to enforce memory
isolation. The difference is that multi-GPT design does not
isolate physical address space (PAS) by page mapping but
establishes an address space per core by configuring the secu-
rity state of physical memory pages related to SHELTER. The
GPT configuration makes the SApp PAS accessible only to
the CPU core running the SApp, while the software running
in other cores with different privileges (i.e., Normal, Secure,
Realm) cannot access the SApp PAS.

As an example shown in Figure 3, Core 1 and Core 2 run
other software, which together use a Host GPT. Core 3 and
Core 4 run SApp1 and SApp2, respectively, and each core
running SApp has its own GPT (i.e., SHELTER GPT 1 and
SHELTER GPT 2). The Host GPT is configured to be inac-
cessible (i.e., 0000 No-access shown in Table 2) to the PAS
of both SApps, while the SHELTER GPT 1 and SHELTER
GPT 2 are configured to access their own memory (i.e., 1001
Normal world PAS, referred to as access). All GPTs including
Host and SApps are located in Root world memory and main-
tained by the Monitor. Any access to the GPT issued by other
software will invoke a GPF and trap into the Monitor for a
further check. RME guarantees GPC will be enforced into
each level of page table translation when MMU gets a cor-
responding physical address according to the virtual address.
If the software that the CPU core currently runs is not the
corresponding SApp, any access to SApp memory will raise
a GPF exception to the Monitor. Note that even if address
translation is disabled, the RME still performs GPC according
to the physical address and raises GPF exceptions, while the
registers that control GPC and GPT base addresses can only
be modified by the Monitor. The multi-GPTs management

across cores is detailed in §4.4.
The multi-GPTs mechanism requires no hardware modi-

fication, and it provides page-granularity isolation enabling
third-party developers to run their applications in Normal
world userspace. Therefore, these benefits help to achieve our
design goals that shield portions of code and data from access
or modification, even from highly privileged software.

4.2 SHELTER Memory Management

Memory Management. To support SHELTER memory alloca-
tion and dynamically change the physical memory size of the
SApp, one straightforward solution is to rely on a buddy allo-
cator of Host OS to allocate physical memory pages and send
the address and size to the Monitor. The Monitor changes the
Host GPT entries of allocated memory pages to be inaccessi-
ble while updating the SApp GPT entries of corresponding
memory pages to be accessible. However, this solution re-
quires obtaining and passing the address of each memory
page for the Monitor to update GPTs, which may cause mul-
tiple context switches and introduce performance overhead.

To improve performance, we allocate contiguous physical
memory pages as a memory pool and then pass the base ad-
dress and length into the Monitor. This method allows the
GPTs to be updated in a single call with the base address
and length, avoiding multiple context switches. We observe
that Linux Contiguous Memory Allocator (CMA) [10] can
assign contiguous physical pages at a large scale [54]. There-
fore, when an SApp is created, the Host OS is in charge of
using CMA for memory allocation. Note that the Memory
Management in the Monitor mainly performs memory alloca-
tion forwarding and result checking as a dispatched interface.
The Monitor validates the allocation results by checking the
recorded addresses and length allocated by each SApp to
ensure all SApp regions do not overlap with each other. Af-
ter validating the allocation, the Monitor protects the SApp
memory by updating corresponding Host GPT entries without
access and SApp GPT entries with access, respectively. To dy-
namically increase SApp memory size, the Monitor forwards
to the Host OS to allocate new CMA memory pages and then
validates and records the new memory region. Finally, the
Monitor adds the new memory region with relevant GPT up-
dates and returns to the SApp. In turn, the Monitor can give
back memory to the OS by modifying the Host GPT entries
to allow CMA to access the memory pages for recycling.
Object Allocation with One-Object-Per-Page Model. Since
we reuse CMA to manage the SApp memory region as a mem-
ory pool, we must ensure that all allocated objects are from
the SApp CMA memory region. To simplify the implementa-
tion, we use the syscall mmap to map the SApp memory pool
for object allocation. Since the minimum granularity of mmap
is a page (e.g., 4KB), the object allocation is in a one-object-
per-page model. However, allocating a page for a small object
wastes a large amount of memory. Low memory utilization

makes it easier for SApps to run out of memory, and increas-
ing the memory size may require context switches for GPT
updates several times, which further increases performance
overhead.

To improve memory utilization, we utilize a united page
allocation. Specifically, we support united page allocation in a
userspace heap allocator by a library linked to SApps (SLib),
which reduces the size of the Monitor without increasing the
overall TCB. SLib assigns small objects to a single physi-
cal page. SLib enables MAP_SHARED flag in mmap to create
a new virtual page mapped into the CMA memory as page
aliasing [20]. By specifying the offset of physical memory,
the allocations can be mapped into the same physical page.
When these small objects are assigned to the same physical
page, SLib shifts the virtual base addresses of each allocated
page and returns these shifted addresses. SLib maintains the
virtual address, length, and offset for the allocated objects to
guarantee that there is no overlap within the physical page.

Furthermore, the Monitor enforces defense against
memory-based Iago attacks [35] because an OS might be
malicious and can tamper with page mappings for an SApp to
return an address that overlaps with the SApp’s memory on
stacks. The Monitor isolates the SApp page tables by copying
them into the SApp memory for its running, while OS still
manipulates the original application page tables. To update
their entries, we hook the OS control flow relating to the page
table update to invoke an SMC. The Monitor checks the up-
date to ensure that the mapped physical page is inside the
SApp’s CMA memory pool and does not overlap with other
regions (e.g. stack). If the update is valid, the Monitor syncs
the SApp page tables.

We summarize the benefits of SHELTER memory manage-
ment. First, GPT-based memory management is more flexi-
ble than the typical TrustZone that is unable to dynamically
conduct changing the security states of physical memory at
page granularity. Second, the optimization using contiguous
physical memory allocation reduces the context switches and
improves performance (§7.1.2). Lastly, we use united page
allocation to avoid memory waste when SHELTER allocates
small objects. This dynamic memory adjustment improves
overall memory utilization (§7.4).

4.3 SHELTER Lifecycle Management

In general, SHELTER goes through three distinct phases (cre-
ation, execution, destruction) in its lifecycle (Figure 4).
Creation. The user requests the OS to assign a fixed contigu-
ous physical pages as SHELTER memory to load SApp binary.
The OS finishes the requested setup and hands over control to
the Monitor for all security-related steps of SHELTER environ-
ment creation. Specifically, The Monitor validates there are
no-overlap pages among SApps as discussed earlier in §4.2.
To ensure that the SApp binary has been correctly loaded,
SHELTER updates the Host GPT to make all contents related

Creation

Execution

Processor Core

Host GPT S.GPT Host GPT S.GPT Host GPT

Exception Handling Destruction

Execution

Host OS

Monitor

Shelter

GPT Swapping

Figure 4: GPT swapping in SHELTER lifecycle.

to SHELTER runtime environment to be inaccessible, then
hashes them for integrity checking. After the checking passes,
the Monitor initializes a new SApp metadata, including SApp
memory address and size, context, thread ID, SApp page ta-
ble base address, and a copy of SApp page tables from the
OS. The Monitor also measures the page tables and verifies
whether there are invalid mappings to guarantee a unique
address mapping. Additionally, the Monitor creates a new
GPT for the SApp that contains a layout of the entire physical
memory. Only the SApp-related physical memory pages are
accessible.

C2. However, the new GPT construction causes long startup
latency for SApps. For example, Monitor needs to add granule
information containing a layout of the entire main memory
for the new GPT and measure each GPT entry.

Solution to C2. To mitigate the overhead of SHELTER cre-
ation due to costly GPT construction, we propose an improved
GPT management to speed up SHELTER creation. The new
GPT is based on a special GPT that has been created in the
Monitor, shadow GPT, which is a clean template with con-
figuring page permission (e.g., Normal world PAS have been
set to be No-access) used to boost construction. The Monitor
copies a new GPT based on the shadow GPT instead of con-
structing the GPT, which significantly reduces the overhead
of SHELTER creation (Figure 5).
Execution. Whenever the OS wants to schedule the SApp, it
cannot directly return execution to userspace, the OS has to
trigger an SMC to the Monitor. Before transferring control
to the entry point of the SApp for execution, the Monitor dy-
namically updates the SApp GPT related to the SApp PAS to
be accessible. The Monitor performs GPT swapping by con-
figuring the GPT-base register of the current core. This makes
it so that the SApp cannot access other regions except its own
memory. During execution, the execution features (e.g., ex-
ception and interrupt) are trapped to the Monitor, and then
the Monitor forwards them to the Host OS. Before switch-
ing to the Host OS, the Monitor performs a memory clean
up (§4.4), and replaces the SApp GPT with the Host GPT
that has no access to the SApp memory and allows ordinary
access to other software. The replacement is restricted to the
core executing it. After finishing exception handling, the OS
scheduling calls return and traps into the Monitor. The Moni-
tor performs checks (e.g., syscall return value) and resumes
the SApp with GPT swapping.
Destruction. The Monitor clears and frees all the SApp mem-
ory contents, its GPT, and SApp metadata before giving back
the memory to the OS. Upon a context switch, the Monitor

conducts microarchitectural maintenance (§4.4).

4.4 Multi-Core Management

Multi-core synchronization. Multi-GPT design is across
cores: Each core has its own GPT targeting different software
that it is running. We leverage spin lock in the Monitor for
multi-core synchronization in GPT modification (e.g., cre-
ation, replacement, update, and destruction). The Monitor
also uses spin lock for synchronization in the function of
SHELTER calls (e.g., creation/destruction). For example, dur-
ing SApp creation, the synchronization is added in critical
segments such as memory-overlap checking. To differentiate
multiple SApps in multi-core synchronization, we maintain a
set of SHELTER IDs for them. Since each SApp has a different
GPT, we use the GPT base address in the GPT base register,
GPTBR_EL3, as the SHELTER ID. The SHELTER ID indicates
whether the current CPU core is running a SApp and which
SApp is running. Note that GPTBR_EL3 only can be modified
by the EL3 Monitor, thereby resisting malicious ID modifica-
tion or ID collision. The Monitor leverages the SHELTER ID
to handle the interaction between SHELTER and the Host OS.
For example, for using syscall during SHELTER execution,
the Monitor records the SHELTER ID before switching to the
Host OS so that the Monitor can identify which SApp should
return after checking the return result from the Host OS.
Microarchitectural Maintenance. The Monitor constructs
a clean environment for the SHELTER (e.g., clean the SApp
memory, L1 instruction and data caches, as well as shared
L2 cache related to the corresponding SApp) during both
creation and destruction processes. Each time before entering
an SApp, the Monitor checks and disables SMP coherency.
With SMP coherency enabled, the L1 data cache on one core
can be shared with the other core’s L1 or vice versa. Before
handing over the execution to the OS, the Monitor cleans
general-purpose registers except for required ones (e.g., pass-
ing parameters, frame pointer, and link registers).

C3. We notice that GPT entries are permitted to be cached
in TLB as part of TLB entry corresponding to the page table
address, and the GPT information in a TLB is permitted to
be shared across multiple CPU cores [12]. An attacker may
control the compromised software running in another core to
use the shared TLB contained in the SHELTER GPT, thereby
possibly passing GPC and then accessing SHELTER memory.

Solution to C3. We prevent the Host from potentially
bypassing the GPC via TLB entries. Firstly, the Monitor
faithfully performs the TLB invalidation for all TLB entries
containing GPT information whenever SHELTER performs
switches or GPT modifications. We do not consider attacks by
directly writing TLB entries since there is no such instruction
in the ISA_A64 provided for users [6]. Secondly, we disable
the shareable property of TLB entries for SHELTER. Specifi-
cally, the Monitor configures the CnP bit in the TTBR registers
used for pointing the SHELTER-related page table to be zero

during SHELTER creation so that all the TLB entries related to
SHELTER memory cannot be shared among cores. Moreover,
the Monitor ensures CnP bit is zero each time before entering
the SApp. Note that the shared property in each core is inde-
pendent. Thereby the core running potentially compromised
software cannot enable the shareable property for other cores
running SApps.

5 Implementation

Functional Prototype. We implement a SHELTER prototype
on Arm Fixed Virtual Platform (FVP) [8], a software sim-
ulation with RME-support for functional validation of our
design. We added a tiny extension for Linux kernel (v5.3) to
support SHELTER: We changed the control flow in the kernel
to cope with SApp’s requests (e.g., system call) and redi-
rected the return to the Monitor; we exported kernel symbols
in the memory module to use the contiguous memory allo-
cator (CMA); we modified the page fault handler to prepare
page table update information for the Monitor.

We implemented the SHELTER kernel driver, the SApp
loader, and a library linked to SApps (SLib) to help manage
and use SApps. The driver provides an interface for Host
OS to interact with the Monitor, and allocates SApp memory
using CMA. We assigned the SMC_IDs used to make calls
to the SHELTER creation and destruction. The SApp loader
uses ioctl interfaces from the driver and provides APIs to
load the SApp. The SLib combines with modified libc to
support appropriate SHELTER functionality (e.g., united page
allocation). We implemented a fixed vector table in EL1 as an
edge interface between SApps and the Monitor. This interface
can be used to support traps from SApps to the Monitor. Each
SApp has its own vector table, and the code of the vector table
is in SApp memory, protected by multi-GPT isolation.

The Monitor is based on Trusted Firmware-A
arm_cca_v0.3 [19], an official firmware that supports
the basic functionality of CCA. The Monitor can also be
applied to other firmware which supports CCA. We detail
the implementation of specific execution features (e.g.,
syscall support, Iago attack checks, scheduling, asynchronous
exception, and multi-threaded synchronization primitive) in
Appendix B.

Performance Prototype. The FVP is not cycle-accurate and
executes all instructions in one master cycle [8]. To evaluate
the performance of SHELTER, we transplant the functional
prototype into a real development board (Armv8-A) as a per-
formance prototype, including the cache and the TLB protec-
tion (§4.4). Moreover, we implement a GPT analogue that
emulates the runtime cost related to GPT and GPC register
maintenance. The performance evaluation using our perfor-
mance prototype is detailed in §7.

Table 3: TCB breakdown of SHELTER
Description SLoC

Multi-GPT Management 229
SHELTER Memory Management 329
SHELTER Lifecycle Management 364
SHELTER Syscall Handler 901
Other 249

All 2,072

6 Security Evaluation

6.1 TCB
The Monitor residing in the Root world belongs to the
TCB of the SHELTER. To measure the size of TCB, we run
cloc [9] tool to count the number of source lines of code
(SLoC). The code size of Trusted Firmware-A arm_cca_v0.3
is around 310k SLoCs, we modify the Trusted Firmware-A
arm_cca_v0.3 with 2k SLoCs additions (Table 3) to support
our functional prototype.

6.2 CVE Mitigation Analysis
We verify the security of SHELTER in real-world scenarios
by analyzing CVEs related to our threat model. In total, we
surveyed 45 CVEs (Appendix A) that are in scope and pri-
marily aimed to fully control privileged software instances
(e.g., trusted OS/TA or hypervisor) from reports and previous
work [33,34,55]. Attackers can exploit these vulnerabilities to
execute arbitrary code in this privileged software and disclose
sensitive data from the Secure world or the Normal world.
However, none of the above cases can threaten SApps even
if attackers have controlled privileged software with vulnera-
bility exploitation. This is because SHELTER uses multi-GPT
mechanisms inside the Monitor to enforce isolation between
SApp’s memory and other regions including this privileged
software, while the compromised software cannot access the
Monitor and GPT located in the Root world.

Furthermore, we simulate attack scenarios assuming that
the attacker has controlled the secure hypervisor in S.EL2 or
Realm manager in R.EL2. For example, we run a compro-
mised Realm manager on the FVP to confirm correct function-
ality of SHELTER. The Realm manager accesses the content
of a normal world memory page belonging to SApps. As ex-
pected, the access was aborted by GPC with an GPF exception
that is taken to the Monitor.

6.3 Security Analysis
Beyond our real-world CVE mitigation analysis, we discuss
the main attacks (Table 4) that are available to different adver-
sary subjects based on our threat model (§3), and we show that
an adversary cannot compromise the security of SHELTER in
the following cases.
OS/Hypervisor. An attacker possibly attempts to access the
memory regions pertaining to SHELTER by controlling the OS
or hypervisor, including privileged software (e.g., trusted OS

Table 4: The main Security Threats and the defense mecha-
nism on SHELTER.
Adversary Subject Main Attacks Defense

OS/Hypervisor

Unauthorized memory access ❶

Invalid mapping or return value ❷

Illegal GPT modification ❸❺

GPC circumvention ❺

SHELTER app SHELTER app abuse ❶❷

Untended GPT sharing in TLB ❹

TLB/Cache Unauthorized cache access ❶❹

EL3 code cache injection ❺

Peripherals Malicious DMA ❶

❶ Multi-GPT isolation enforced by GPC; ❷ Monitor checks (e.g.,
ensuring no memory overlap between SHELTER, checking syscall
return value, verifying validity of the SHELTER runtime); ❸ Multi-
core synchronization; ❹ Microarchitectural Maintenance; ❺ Main-
taining in the highest privilege Monitor.

or RMM). We prevent these attacks using multi-GPT isola-
tion (§4.1). An attacker may manipulate syscall return values
to launch Iago attacks [35]. To mitigate potential memory-
based Iago attacks (e.g., mapping SApp’s stack), the Monitor
protects SApp page tables and verifies whether memory is no-
overlapping during a new SHELTER page mapping (§4.2). In
addition, we add Iago attack checks to ensure that the syscall
return value does not exceed the valid range indicated by the
syscall parameter (Appendix B). Even if the attacker attempts
to modify a GPT since the GPT is stored in memory belonging
to the Root world, it is only accessible to the Monitor with the
highest privilege. Moreover, SHELTER maintains multi-core
synchronization (§4.4) to avoid illegal modification when the
Monitor is switching GPTs and updating GPT entries. The
attacker may attempt to disable memory protections through
GPC circumvention (e.g., reconfigure GPC register). How-
ever, only the Monitor running in EL3 at the Root world can
access the registers related to GPC and GPT memory. The
Monitor is protected natively from all the lower-privilege
code, so it is inaccessible to any software in Secure, Realm,
or Normal worlds.
SHELTER App. An attacker may launch a malicious SApp
to access the data of other SApps or the host. SHELTER pro-
vides mutual isolation and resists attacks from such an SApp
because the SApp cannot access any memory outside its allo-
cated CMA region due to the multi-GPT isolation. SHELTER
ensures no memory overlap between any two SApps via the
Monitor check whenever an SApp is launched (§4.2). An at-
tacker may deploy a malicious SApp that exploits the SApp
vector table. However, the Monitor can verify the validity of
the SHELTER runtime environment during SHELTER creation
(§4.3), and terminate the SApp launch process if verification
(e.g., signature of vector table) fails.
TLB/Cache. An attacker may bypass the GPC and access
SApp memory via the shared TLB of SApp GPT (See §4.4).
We defend against this attack by disabling the shareable GPT

behavior and invalidating TLB during context switches. The
attacker may leverage the cache to access other memory con-
tents from SHELTER (e.g., CITM attack [68]). We perform
microarchitectural maintenance (§4.4) to prevent sensitive
data leakage by caches. In addition, the physical address must
be obtained through the translation of MMU before access-
ing the contents of the cache [5]. This is because cache lines
are tagged using physical addresses on Arm architecture [7].
Therefore, SHELTER resists illegal cache access since GPC is
enforced in each stage of MMU translation [27]. SHELTER
also prevents attacks from EL3 code injection at the cache
level [33]. For example, in TrustZone-based systems, an at-
tacker with S.EL1 privileges can write EL3 cache lines of
exception handler tagged as Secure and trigger the malicious
handler via SMC from cache. However, an attacker cannot
modify the code of the Monitor because the cache line tagged
as Root is not permitted by access from Secure or Realm
world.
Peripherals. Since there exist several devices that can inde-
pendently access memory, like DMA controllers, an attacker
might exploit malicious peripherals to access sensitive mem-
ory contents by DMA. SHELTER is capable of resisting the
attack by leveraging the SMMU that is extended to support
GPC in the RME-enabled architecture [13]. With SMMU-
enforced GPC via SMMU_ROOT_GPT_BASE_CFG register, the
DMA can be checked and isolated from SHELTER according
to the GPT deployed by SMMU_ROOT_GPT_BASE register.

7 Performance Evaluation

At present, FVP Base RevC-2xAEMvA is the only publicly
available platform supporting RME. Since the FVP simulator
is not cycle-accurate [8], we conduct performance experi-
ments using our performance prototype with GPT-analogue
on the Armv8-A Juno R2 board, which equips with dual-core
Cortex-A72 (1.2GHz) and quad-core Cortex-A53 (950MHz)
processor running at 8GB SDRAM. The performance evalua-
tion covers the following five vectors:
• 1. Microbenchmarks (§7.1). We evaluate the detailed run-

time performance overheads of individual operations in the
entire SHELTER lifecycle.

• 2. Application Workloads (§7.2). We use several applica-
tion workloads to measure the performance overheads at
execution in SHELTER.

• 3. Impact on Performance of Normal World (§7.3). We
use a benchmark to understand how much overhead is in-
curred on the Normal world system.

• 4. Memory Consumption (§7.4). We evaluate the SHEL-
TER memory consumption to show the efforts for the im-
provement of memory utilization.

• 5. Comparison with Virtualization (§7.5). We compare
the performance of SHELTER with the CCA’s VM-based
approach and the unmodified Linux KVM.

Methodology with GPT-analogue. Since the GPT is in-
memory structure, we faithfully estimate the overhead of all
GPT management (e.g., GPT construction, update, replace-
ment, delete) in the EL3 Secure world maintained by the Mon-
itor. Since the Armv8-A processor does not support GPC con-
figuration and GPT base address setup, we estimate the over-
head by using other idle EL3 registers (i.e., ACTLR_EL3 and
AFSR0_EL3) to replace the GPC control register (GPCCR_EL3)
and the GPT base register (GPTBR_EL3) in the code. More-
over, the TLB maintenance instructions that invalidate all
cached GPT information on TLBs (e.g., TLBI PAALLOS) are
not available on Armv8-A. We replace these instructions with
the TLB maintenance instructions that invalidate the entire
TLB cache. All maintenance operations (e.g., SMP disabled)
as described in §4.4 are included in the performance eval-
uation. We measure the overhead by counting CPU cycles
through the Performance Monitoring Unit (PMU). To accu-
rately convert the cycles to time with the 1.2GHz frequency,
we make all the Cortex-A72 cores run at the maximal fre-
quency and disable all Cortex-A53 cores (950MHz). We re-
peat the measurements 30 times and take the average values
as results.

We note that the performance of SHELTER on real hardware
supporting RME might be different in the future, since the
performance prototype cannot include the real GPC effect and
hardware-based memory encryption. However, we believe
that the performance result is an approximated overhead of
SHELTER with our GPT-analogue methodology.

7.1 Microbenchmarks

The specific running of SHELTER, excluding exact application,
can be divided into four individual operations, including Allo-
cation, Creation, Release, and Destruction. We run an empty
application that directly returns in main() as the smallest
SApp to extensively measure the detailed performance. First,
we carefully measure the overhead of these operations and the
switch time between the SHELTER and the Host OS (§7.1.1).
Second, to further understand the detailed overhead of Cre-
ation and our efforts of optimization, we add additional testing
(§7.1.2). Moreover, to understand more about the overhead
of SHELTER Destruction, we divide the detailed operation
of Destruction to test the specific overhead (§7.1.3). Lastly,
we further perform an extensive experiment combined with a
performance comparison of related work [32] to understand
the performance of Creation and Destruction with different
memory sizes (§7.1.4).

7.1.1 SHELTER Operation Breakdown

Table 5 contains the measurements of individual operations in
the entire lifecycle of SHELTER. The first two operations of
Allocation and Release, indicate how long it takes to allocate
and release the SHELTER memory. The allocated memory is

Table 5: Performance of operation breakdown on SHELTER
Operation Description Time(µs)

Allocation Allocate 4MB contiguous memory 3,189
Release Release the allocated memory 769
Creation Create a SHELTER 4,925
Destruction Destruct the SHELTER 1,054
Exit Exit from SHELTER to Host OS 391
Switch Switch between SHELTER and Host OS 3

Table 6: Performance of detailed SHELTER Creation
Operation Description Time(µs)

Construction Construct a new GPT 2,953
Transition GPT Granules Transition 9
Verification Verify the signature of the smallest SApp 1,566
Setup Setup the configuration 7
Clean Clean cache and invalidate TLB 390
All 4,925

initialized to zero. The other two operations of Creation and
Destruction show the time of SHELTER creation and destruc-
tion. Since SHELTER supports allocating different memory
sizes for the SApp by leveraging CMA from the Host OS,
the time of Allocation and Release depends on SHELTER
memory’s size. The results are under the setup with 4 MB
SHELTER memory size. The exit time on SHELTER to Host
OS is 391 µs, which is mainly due to the cache clean.

The switch is not direct since it should go through the Mon-
itor to transfer the control. As shown in Table 5, the switch
time between Host OS and SHELTER is 3 µs. In comparison,
the switch time between an app and Linux is 0.243 µs. The
switch time in SHELTER is higher since additional overhead
is introduced from the GPT operation and TLB protection
(§4.4).

7.1.2 Creation

To further understand the performance of SHELTER Creation,
we measure the time of each part inside the Creation. As
shown in Table 6, the Creation can be divided into five parts.
We evaluate with 4 MB allocated memory, and the memory
size only influences the performance of Transition and Clean
among five parts. In the whole SHELTER Creation, the GPT
Construction takes the largest time around 2,953 µs. Recall
that we use a shadow GPT to abbreviate the time of GPT
Construction (described in §4.3). To show the optimization
efforts, we perform the comparison evaluation using a con-
figuration with shadow GPT and without shadow GPT to
construct a new GPT. Note that the GPT Construction is re-
lated to the entire physical memory size of the device (i.e.,
GPT needs to hold the entire Physical Address Space, PAS, to
indicate the security state of memory). We set different PAS
(2 GB, 4 GB, 8 GB, and 16 GB) contained in the GPT and
measure the performance in all configurations. As shown in
Figure 5, we reduced the overhead on average of 77.5% of
GPT construction in all configurations.

After GPT construction, the Monitor transitions the gran-
ules of the SHELTER memory for isolation. The transition
time depends on the size of allocated memory and the struc-
ture of GPT. For example, transitioning Granules Descriptor

2GB 4GB 8GB 16GB
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e(
μs

)

×104

3,353
6,658

13,269

26,490

777 1,503 2,953
5,812

w/o shadow GPT
w/ shadow GPT

Figure 5: Improvement in GPT construction using shadow
GPT with varying physical memory size.

in L1 table can take more time than transitioning Block De-
scriptor in L0 table for the same memory size. In the current
implementation of SHELTER, we use Granules Descriptor to
record the GPT of SHELTER memory. We notice that the latest
version of TF-A (v2.8) that supports RME, only provides an
API to transition one granule at once. The implementation
can bring heavy overhead if we need to keep invoking such
API when we transition all the granules. To improve perfor-
mance, we extend new functions in the Monitor to transition
all granules of continuous SHELTER memory allocated by
leveraging CMA at once. As the result shown in Table 6, the
overhead of granules transition (9 µs) is acceptable since it
only takes a small part of the whole creation time (4,925 µs).

The third measurement in Table 6, verification, shows how
long it takes to verify the signature of an SApp. Since the
SApp is implementation-specific, we only use local attestation
to measure the performance in verifying the smallest SApp
and the vector table that is independent of a specific SApp.
Developers can verify a SApp’s integrity using remote attes-
tation, which has already been widely supported [32, 40, 61].

The fourth measurement in Table 6, shows how long it
takes to setup the configuration for SHELTER. Specifically, it
involves receiving the parameters from the Host OS, checking
the validity of the parameters, and recording the sensitive
information of the SApp. The last measurement in Table 6,
shows how long it takes to clean the environment for the
SHELTER before entering the SApp.

For a relative comparison, we also measure the creation of a
Realm VM based on our CCA performance prototype (§7.5),
which is 205 ms (i.e., Initializing the Realm VM structure and
setup environment before entering the VM).

7.1.3 Destruction

The performance of Destruction depends on the size of allo-
cated memory. Figure 6 contains the measurements for the
operations inside Destruction with different memory sizes.
Specifically, Destruction contains two parts: (a) Clean indi-
cates that the Monitor zeros all allocated SHELTER memory
and clean the cache to ensure no content leakage; (b) Transi-
tion changes the SHELTER memory to be accessible in Host
GPT so that CMA can recycle the memory for Host OS usage.

The performance result shows that the Clean takes up most
of the whole destruction time. If we compare the performance
of Transition between Creation and Destruction with 4 MB

1MB 4MB 16MB 64MB 256MB
Shelter memory size

100

102

104

106
Ti

m
e(

μs
)

265
1,050

4,188
16,742

66,986

4 4 6 9 26

Clean
Transition

Figure 6: Performance of SHELTER destruction with varying
SHELTER memory size

Shelter
(4MB)

Shelter
(16MB)

Shelter
(64MB)

Shelter
(256MB)

Sanctuary
(w/ L2)

Sanctuary
(w/o L2)

105

107

109

C
yc

le

Creation
Destruction

Figure 7: Performance comparison between SHELTER and
Sanctuary. For Sanctuary, with L2 and without L2 mean active
and deactivated L2 cache.

allocated memory, we observe that it takes less time to transi-
tion granules at the Destruction. This is because the Monitor
only transitions the granules of SHELTER memory in the Host
GPT and directly deletes the SHELTER GPT. On the contrary,
at SHELTER creation, the Monitor needs to transition both the
Host and the SHELTER GPT.

7.1.4 Performance comparison

We compare the performance in our prototype with the most
related state-of-the-art (Sanctuary [32]), which also provides
userspace isolation in the Normal world based on TrustZone.
Since the source code of Sanctuary is not public, we did an
alternative best-effort qualitative comparison focused on the
performance results from the Sanctuary published paper [32].
Sanctuary performs the evaluation on the HiKey 960 develop-
ment board, which is equipped with four Cortex-A73 cores
(up to 2.3GHz) and four Cortex-A53 cores (up to 1.8GHz). To
fairly compare the performance, we convert the Sanctuary’s
time to cycles with the 2.3GHz frequency.

Figure 7 contains the comparison of the performance over-
heads of Creation and Destruction. Note that Sanctuary needs
to Shutdown/Restart cores during Creation and Destruction,
which takes a lot of overhead. These operations are not re-
quired by SHELTER. We take Sanctuary’s overhead of Shut-
down/Restart core out of the performance comparison. Then
we only use its Lock & verify and Start Sanctuary as Sanc-
tuary Creation, while using Sanctuary shutdown and Unlock
Sanctuary as Sanctuary Destruction. All the results of these
operations are described in the Sanctuary paper. Since it is
unclear how much memory Sanctuary allocates from its evalu-
ation Setup, we extensively test the overhead of the SHELTER
at different memory sizes for the comparison. From Figure 7,
we observe that our prototype achieves better performance
in both Creation and Destruction. The performance overhead
with 256 MB allocated memory in SHELTER is still lower than

Table 7: Real-world Application Workloads
Name Description

OTP [1] Computing HMAC-based OTPs for provided data

AES [4] Using AES to encrypt provided data

LeNet [2] Running LeNet to infer provided data

Squeezenet [3] Running Squeezenet to infer provided data

Apache [15]

Apache Web server v2.4.54 using the
ApacheBench v2.3 to handle 100 concur-
rent requests on the remote client serving the
4KB default index.html

Memcached [16]
Memcached v1.6.17 using the twemperf bench-
mark v0.1.1 with 100 concurrent requests on the
remote client

Nginx [17]

Nginx Web server v1.16.1 using the
ApacheBench v2.3 to handle 100 concur-
rent requests on the remote client serving the
4KB default index.html

the Sanctuary with active L2 cache, 79.5% at creation and
24.0% at destruction. We consider this memory size can be
sufficient for most applications while keeping an acceptable
performance overhead.

7.2 Application Workloads

To understand how SHELTER can be used for a varied set of
workloads, we build and run seven applications with bench-
marks on top of our prototype listed in Table 7. They cover
common real-world scenarios such as encryption, machine
learning, multi-threading, networking, memory-intensive and
I/O-intensive situations. To show the execution performance
and comparison, we perform the evaluation on the SHELTER
and Linux, respectively. We allocated at least 32MB SHELTER
memory for these applications.

Figure 8 shows the measurements for the application work-
loads on the two systems. We use the performance result in
Linux as the baseline. The results demonstrate that SHELTER
incurs a modest overhead versus running real-world appli-
cation workloads in Linux. The reason is that the SApp is
seen as an alternative to Linux processes. The majority of
performance overhead comes from the additional processing
requested by syscalls. SHELTER leverages the Monitor to
transfer requests to the Host OS and switch the GPT at the
current core.

We observe that AES completes the majority of computa-
tion in userspace, while the invoked syscall allocating objects
brings 5.2% overhead. The overhead with syscalls is neg-
ligible for Squeezenet, which runs a long computation in
userspace. OTP and LeNet incur no overhead at execution
since they invoke no syscall during computation. Apache has
the highest performance overhead (15.0%) on these appli-
cations, while Memcached and Nginx incur 8.3% and 11.8%
performance overhead, respectively. Compared to the first
four small applications, the three large-scale applications have
more intensive processing requested by complex operations,
causing more context switches between SHELTER and the OS
with additional microarchitectural maintenance and security
checks.

AES OTP
LeNet

Squeezenet
Apache

Memcached
Nginx

0.90

0.95

1.00

1.05

1.10

1.15

1.20
N

or
m

al
iz

ed
 o

ve
rh

ea
d Linux

Shelter

Figure 8: Performance overhead of application workloads.

Execl

File
Copy

(1KB)
File

Cop

y(256B)
File

Copy

(4KB)
Pipe

Throughput
Contex

t

 Switch
ing

Proces
s

 Crea
tio

n

Shell
Scri

pts

(1 th
rea

d)

Shell
Scri

pts

(8 th
rea

d)

Syste
m Call

10−1

100

101

102

of

 o
ve

rh
ea

d
(%

) 1000 (ms)
100 (ms)
10 (ms)

Figure 9: Performance of UnixBench when concurrently run-
ning an SApp in different intervals.

7.3 Impact on Performance of Normal World
We select an open-source benchmark UnixBench [48] to mea-
sure the system slowdown caused by SHELTER, which is
widely used to measure the performance of a Unix-like sys-
tem in the Normal world [42]. To demonstrate the system
overhead, we execute UnixBench in Linux with default con-
figuration while concurrently running an SApp repeatedly
at different intervals like previous work [33] (10, 100, and
1,000 ms). The SApp runs to invoke a syscall and returns to
the Normal world, which involves three phases in a SHEL-
TER lifecycle, including Creation, Execution, and Destruction.
Figure 9 shows the performance results. When the interval
is 1,000 ms, the average performance overhead is 0.37%,
with no single benchmark exceeding 1.4% overhead. With a
shorter interval of 100 ms, the average performance overhead
becomes 1.87%, with the highest performance overhead of
3.29%. In the most intensive scenario with an interval of 10
ms, the average performance overhead is 7.68%, and the high-
est performance overhead is 16.9%. The overhead increases
when concurrently running the SApp in the intensive scenario
because there are more context switches and microarchitec-
tural maintenance operations. Overall, the security benefits of
SHELTER incur a reasonable overhead to system-wide perfor-
mance.

7.4 Memory Consumption
To evaluate how united page allocation (§4.2) on SHELTER
can optimize memory consumption for object allocation, we
use a home-brewed benchmark Numeration to simulate the
stress scenarios where users dynamically allocate many ob-
jects in a larger order of magnitude. Additionally, we measure

Table 8: Object Physical Memory Consumption
#alloc #objects (<4KB) RSS (MB) Prop.

Numeration 200,000 200,000 20 98.5%
Apache 121,660 21,685 56 17.6%
Nginx 57,035 52,200 46 68.6%
Memcached 76 56 42 34.8%

Prop. means memory utilization improvement using united page allocation. RSS is
the Resident Set Size.

three large-scale applications shown in Table 7 with bench-
marks. The baseline is the default allocation of one-object-
per-page model without united page allocation.

As Table 8 shows, Numeration leads to allocating the most
objects and has the largest improvement in memory utiliza-
tion (98.5% compared with the baseline). The reason is that
200,000 objects allocated by the Numeration are small ob-
jects (50,000 objects of 16B, 32B, 64B, and 128B, respec-
tively), which are allocated in the same physical memory page
by united page allocation. We observe that although Apache
and Nginx allocate many objects, the memory utilization im-
provement using united page allocation (17.6% and 68.6%,
respectively) is smaller than the Numeration because most
of the objects allocated by Apache and Nginx are 4KB and
1KB, respectively. The Memcached has less number of object
allocation because it usually allocates large chunks of mem-
ory as the memory pool. Overall, SHELTER improves memory
utilization across our evaluated applications, especially when
allocating small objects.

7.5 Performance comparison with Virtualiza-
tion

Recall that SHELTER is a complement to CCA’s primary
Realm VM-style architecture. Although SHELTER is not in-
tended to outperform CCA, we evaluate the relative perfor-
mance of SHELTER and CCA’s VM-based approach. Since
there is no available CCA hardware, we implement a basic
CCA VM-based performance prototype on the Armv8-A Juno
R2 board with the same GPT-analogue methodology and a
Realm-context simulation to perform a fairly approximated
performance comparison. The implementation details of our
CCA performance prototype and TCB comparison are in
Appendix C.

We run the three large-scale applications (Apache,
Memcached, and Nginx) from Table 7 with benchmarks in
Realm VM. We also perform the evaluation in the unmodified
Linux KVM (as a Vanilla VM). We use the performance re-
sult in Linux as the baseline. The Realm VM and the Vanilla
VM are configured with 2 vCPUs and 512 MB memory. Note
that neither the CCA performance prototype nor the SHELTER
prototype includes attestation and hardware-based encryption.

As shown in Figure 10, compared with Linux, the Realm
VM has an average overhead of 32.0% on these applications,
while the average overhead of Vanilla VM is 29.8%. We ob-
serve that SHELTER achieves better performance than both
VMs with an average overhead of 11.7%, showing SHEL-
TER’s gains over virtualization approaches. The result can be

Apache Memcached Nginx
0.8

0.9

1.0

1.1

1.2

1.3

1.4
Pe

rf
or

m
an

ce
Linux
Shelter
Realm VM
Vanilla VM

Figure 10: Performance comparison with virtualization

explained by the fact that SHELTER is based on userspace
and the overhead mainly comes from the invoked syscalls.
In contrast, the Realm VM and the Vanilla VM bring non-
negligible overhead from the hypervisor-based virtualization
(e.g., VM exits and virtualization I/O operations). Compared
to the switch time between Vanilla VM and the Linux KVM
(0.41 µs), the additional context switches among RMM, EL3
Monitor, and KVM introduce overhead to the Realm VM.
Specifically, the switch time between Realm VM and CCA
KVM is 1.886 µs, including VM to RMM (0.813 µs), RMM
to EL3M (0.872 µs), and EL3M to CCA KVM (0.201 µs).

8 Discussion

Memory Encryption. Currently, we do not support memory
encryption since there is still no Memory Protection Engine
(MPE) component on early RME-enabled FVP released by
Arm. Nevertheless, SHELTER can benefit from enforcing en-
crypted protection for the SHELTER memory in the later avail-
able update. We expect enabling MPE would influence the
performance and not conflict with the SHELTER design.
Effects of SHELTER’s Monitor. Using the GPT in the Mon-
itor to implement SHELTER does not jeopardize the usage
of these components for their original purposes. As long as
the GPT is preserved, Realm or Secure software can use the
Host GPT with other services, e.g., being able to run Realm
VMs or typical TA for other purposes. The design of SHEL-
TER adds functionality to the Monitor, expanding the most
privileged Root execution state in the system. Note that the
expanded size is orders of magnitude smaller than original
EL3 firmware.
Full-fledged Memory Management. The Monitor provides
memory management interfaces with forwarding and result
checking for SApps. Since supporting applications with com-
plex operations may stress the memory management interface,
we can rely on a trusted OS to support full-fledged memory
management to minimize the codebase of the Monitor.
Iago Attack Protection. There are Iago attacks launched
in other ways that SHELTER may not cover. To further im-
prove Iago attack protection, SHELTER can deploy known
approaches [63, 65] that provide formally proof-check APIs
but cost a larger TCB.
Scalability. SHELTER supports SApps that execute on mul-
tiple cores via scheduling. The number of SApps that can
launch simultaneously is limited by the storage allocated to

SHELTER in EL3 Root memory. The number can be extended
since we can transition the memory from Normal to Root by
updating the GPT, which is our future work.

9 Related Work

Sanctum [37], Keystone [54], and CURE [30] are recent
TEEs proposed on the RISC-V architecture. Sanctum aims
to provide the same or higher security features as Intel
SGX [29, 58, 65]. Keystone supports customizable TEEs on
RISC-V platforms. CURE [30] modifies the hardware primi-
tives (e.g., CPU core and the system bus) to support flexible
enclaves with memory and peripheral access control. Both
SHELTER and these systems use a design of trusted monitor
in the highest privilege. SHELTER is inspired by these sys-
tems for TEE designs, such as supporting syscall with shared
buffer and using CMA memory for enclave lifecycle manage-
ment. In comparison, Keystone uses PMP (physical memory
protection) based memory isolation, while SHELTER uses
multi-GPTs for memory isolation. Compared with Sanctum
and CURE, which require specific hardware changes, SHEL-
TER extends CCA on commodity platforms without hardware
modifications.

On the Arm platform, several TEEs focus on explor-
ing virtualization-based isolation [44, 55, 56]. For example,
vTZ [44] creates secure VMs as guest TEEs by leveraging
TrustZone to nest a thin isolated monitor and a Normal world
hypervisor to virtualize functionality of guest TEE, while
SHELTER is designed for CCA to provide userspace enclaves.
SHELTER and vTZ have a similar level of minimal TCB within
the Monitor. Note that SHELTER does not rely on any vir-
tualization support and does not require emulation, which
has performance gains over virtualization approaches (Fig-
ure 10). Sanctuary [32] creates enclaves in the Normal world
by TZASC for providing the SGX specification. Recent work
such as REZONE [33] focuses on TEE privilege reduction
using peripheral controller units other than the TZASC to iso-
late multiple trusted OSes. CCA [23] is based on a single GPT
to provide security properties of virtualization-based Realm
VMs. In comparison, SHELTER maintains the multi-GPTs to
achieve isolation in userspace, which complements CCA’s
primary Realm VM-style architecture.

AMD SEV [21] and Intel TDX [45] enable confidential
VMs similar to CCA. HyperEnclave [47] runs SGX programs
on AMD server with a VMX-root-mode monitor written in
Rust. The multi-GPT isolation of SHELTER is similar to EPT-
based enforcement [43, 51, 59]. EPT is usually reserved for
higher privileged hypervisors as a hardware virtualization
technology. In comparison, SHELTER does not require hard-
ware virtualization, and GPT is only accessible to the Monitor
with the highest privilege. Prior studies [52,66] provide mem-
ory isolation for efficient intra-process isolation using Intel
MPK. In contrast, SHELTER aims at userspace isolation for
whole application.

10 Conclusions

SHELTER is a complement to CCA that deploys a novel multi-
GPT design cooperating with Arm RME available in modern
hardware to provide isolation in the Normal world userspace
with a minimal TCB. We have implemented and evaluated
SHELTER, and the results demonstrated that SHELTER not
only guarantees the security of applications but also incurs
no more than 15% performance overhead on real-world work-
loads.

Acknowledgments

We would like to thank the anonymous reviewers for their
insightful comments. This work is partly supported by the Na-
tional Natural Science Foundation of China under Grant No.
62002151 and No. 62102175, Shenzhen Science and Technol-
ogy Program under Grant No. SGDX20201103095408029
and No. ZDSYS20210623092007023, PolyU Grant (ZVG0)
and Hong Kong RGC Project (No. PolyU15222320).

References

[1] DigisparkHOTP. https://github.com/Akasurde/
DigisparkHOTP, 2016.

[2] LeNet-5. https://github.com/fan-wenjie/
LeNet-5, 2017.

[3] SqueezeNet. https://github.com/royliuyu/
squeezenet.git, 2019.

[4] AES algorithm implementation. https://github.
com/dhuertas/AES, 2020.

[5] AArch64 memory management, 2021.

[6] Arm A-profile A64 Instruction Set Architecture.
https://developer.arm.com/documentation/
ddi0602/latest, 2021.

[7] Arm Architecture Reference Manual for A-profile
architecture. https://developer.arm.com/
documentation/ddi0487/latest, 2021.

[8] Arm fixed virtual platforms. https://
developer.arm.com/tools-and-software/
simulation-models/fixed-virtual-platforms.,
2021.

[9] cloc: Count lines of code. https://github.com/
AlDanial/cloc, 2021.

[10] Deep dive into cma. https://lwn.net/Articles/
486301/, 2021.

[11] Secure platform. http://www.trustonic.com/
secure-platform/., 2021.

[12] The Realm Management Extension (RME) for Armv9-
A. https://developer.arm.com/documentation/
ddi0615/latest, 2021.

[13] The Realm Management Extension (RME), for
SMMUv3. https://developer.arm.com/
documentation/ihi0094/latest/, 2021.

[14] Unlocking the power of data with Arm CCA, 2021.

[15] Apache http server. https://www.apache.org/,
2022.

[16] Memcached. https://github.com/memcached/
memcached, 2022.

[17] Nginx. https://github.com/nginx/nginx, 2022.

[18] TF-RMM, released date 2022/11/09. https://
git.trustedfirmware.org/TF-RMM/tf-rmm.git/,
2022.

[19] Trusted-Firmware-A. https://
git.trustedfirmware.org/TF-A/
trusted-firmware-a.git/, 2022.

[20] Adil Ahmad, Sangho Lee, Pedro Fonseca, and Byoungy-
oung Lee. Kard: lightweight data race detection with
per-thread memory protection. In ASPLOS, 2021.

[21] AMD. Secure encrypted virtualization, 2018.

[22] ARM. Arm CCA Security Model 1.0.
https://developer.arm.com/documentation/
DEN0096/latest, 2021.

[23] ARM. Arm Confidential Compute Ar-
chitecture. https://www.arm.com/
architecture/security-features/
arm-confidential-compute-architecture,
2021.

[24] ARM. Arm Confidential Compute Ar-
chitecture Software Stack Guide. https:
//developer.arm.com/documentation/den0127/
a/Software-components, 2021.

[25] ARM. ARM CoreLink TZC-400 TrustZone Ad-
dress Space Controller Technical Reference Manual.
https://developer.arm.com/documentation/
ddi0504/latest/, 2021.

[26] ARM. Arm TrustZone Technology. https://
developer.arm.com/ip-products/security-ip/
trustzone, 2021.

https://github.com/Akasurde/DigisparkHOTP
https://github.com/Akasurde/DigisparkHOTP
https://github.com/fan-wenjie/LeNet-5
https://github.com/fan-wenjie/LeNet-5
https://github.com/royliuyu/squeezenet.git
https://github.com/royliuyu/squeezenet.git
https://github.com/dhuertas/AES
https://github.com/dhuertas/AES
https://developer.arm.com/documentation/ddi0602/latest
https://developer.arm.com/documentation/ddi0602/latest
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms.
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms.
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms.
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://lwn.net/Articles/486301/
https://lwn.net/Articles/486301/
http://www.trustonic.com/secure-platform/.
http://www.trustonic.com/secure-platform/.
https://developer.arm.com/documentation/ddi0615/latest
https://developer.arm.com/documentation/ddi0615/latest
https://developer.arm.com/documentation/ihi0094/latest/
https://developer.arm.com/documentation/ihi0094/latest/
https://www.apache.org/
https://github.com/memcached/memcached
https://github.com/memcached/memcached
https://github.com/nginx/nginx
https://git.trustedfirmware.org/TF-RMM/tf-rmm.git/
https://git.trustedfirmware.org/TF-RMM/tf-rmm.git/
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/
https://developer.arm.com/documentation/DEN0096/latest
https://developer.arm.com/documentation/DEN0096/latest
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://developer.arm.com/documentation/den0127/a/Software-components
https://developer.arm.com/documentation/den0127/a/Software-components
https://developer.arm.com/documentation/den0127/a/Software-components
https://developer.arm.com/documentation/ddi0504/latest/
https://developer.arm.com/documentation/ddi0504/latest/
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone

[27] ARM. Learn the architecture - Realm Manage-
ment Extension. https://developer.arm.com/
documentation/den0126/latest, 2021.

[28] ARM. Arm Realm Management Extension (RME)
System Architecture. https://developer.arm.com/
documentation/den0129/ad, 2022.

[29] Sergei Arnautov and Trach. Scone: Secure linux con-
tainers with intel sgx. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2016.

[30] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky,
Patrick Jauernig, Matthias Klimmek, Ahmad-Reza
Sadeghi, and Emmanuel Stapf. Cure: A security ar-
chitecture with customizable and resilient enclaves. In
30th USENIX Security Symposium (USENIX Security),
2021.

[31] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo
Zhang, and Srinivas Devadas. Mi6: Secure enclaves in
a speculative out-of-order processor. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2019.

[32] Ferdinand Brasser, David Gens, Patrick Jauernig,
Ahmad-Reza Sadeghi, and Emmanuel Stapf. Sanctuary:
Arming trustzone with user-space enclaves. In The Net-
work and Distributed System Security Symposium 2019
(NDSS), 2019.

[33] David Cerdeira, José Martins, Nuno Santos, and Sandro
Pinto. ReZone: Disarming TrustZone with TEE privi-
lege reduction. In 31st USENIX Security Symposium
(USENIX Security), 2022.

[34] David Cerdeira, Nuno Santos, Pedro Fonseca, and San-
dro Pinto. Sok: Understanding the prevailing security
vulnerabilities in trustzone-assisted tee systems. In 2020
IEEE Symposium on Security and Privacy (SP), 2020.

[35] Stephen Checkoway and Hovav Shacham. Iago attacks:
Why the system call api is a bad untrusted rpc interface.
2013.

[36] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward
Dean, David Oswald, and Flavio D. Garcia. Voltpillager:
Hardware-based fault injection attacks against intel sgx
enclaves using the svid voltage scaling interface. In
30th USENIX Security Symposium (USENIX Security),
2021.

[37] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanc-
tum: Minimal hardware extensions for strong soft-
ware isolation. In 25th USENIX Security Symposium
(USENIX Security), 2016.

[38] Ang Cui and Rick Housley. Badfet: Defeating modern
secure boot using second-order pulsed electromagnetic
fault injection. In WOOT, 2017.

[39] Rongzhen Cui, Lianying Zhao, and David Lie. Emilia:
Catching iago in legacy code. In The Network and
Distributed System Security Symposium (NDSS), 2021.

[40] Andrew Ferraiuolo, Andrew Baumann, Chris Haw-
blitzel, and Bryan Parno. Komodo: Using verification
to disentangle secure-enclave hardware from software.
In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP), 2017.

[41] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser.
A survey of microarchitectural timing attacks and coun-
termeasures on contemporary hardware. 2018.

[42] Xinyang Ge, Ben Niu, and Weidong Cui. Reverse de-
bugging of kernel failures in deployed systems. In 2020
USENIX Annual Technical Conference (USENIX ATC),
2020.

[43] Mohammad Hedayati, Spyridoula Gravani, Ethan John-
son, John Criswell, Michael L Scott, Kai Shen, and
Mike Marty. Hodor: Intra-process isolation for high-
throughput data plane libraries. In 2019 USENIX An-
nual Technical Conference (USENIX ATC), 2019.

[44] Zhichao Hua, Jinyu Gu, Yubin Xia, Haibo Chen, Binyu
Zang, and Haibing Guan. vtz: Virtualizing armtrust-
zone. In 26th USENIX Security Symposium (USENIX
Security), 2017.

[45] Intel Corporation. Intel trust domain extensions, 2014.

[46] Jinsoo Jang and Brent Byunghoon Kang. 3rdpartee:
Securing third-party iot services using the trusted exe-
cution environment. IEEE Internet of Things Journal,
2022.

[47] Yuekai Jia, Shuang Liu, Wenhao Wang, Yu Chen,
Zhengde Zhai, Shoumeng Yan, and Zhengyu He. Hyper-
enclave: An open and cross-platform trusted execution
environment. In 2022 USENIX Annual Technical Con-
ference (USENIX ATC), 2022.

[48] kdlucas. byte-unixbench, 2022. https://github.
com/kdlucas/byte-unixbench.

[49] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe,
Srinivas Devadas, and Joel Emer. Dawg: A defense
against cache timing attacks in speculative execution
processors. In 2018 51st Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO),
2018.

https://developer.arm.com/documentation/den0126/latest
https://developer.arm.com/documentation/den0126/latest
https://developer.arm.com/documentation/den0129/ad
https://developer.arm.com/documentation/den0129/ad
https://github.com/kdlucas/byte-unixbench
https://github.com/kdlucas/byte-unixbench

[50] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre
attacks: Exploiting speculative execution. In 2019 IEEE
Symposium on Security and Privacy (SP), 2019.

[51] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida,
and Elias Athanasopoulos. No need to hide: Protecting
safe regions on commodity hardware. In Proceedings of
the Twelfth European Conference on Computer Systems
(EuroSys), 2017.

[52] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and
Arkaprava Basu. Faastlane: Accelerating function-as-
a-service workflows. In USENIX Annual Technical
Conference (USENIX ATC), 2021.

[53] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia che Tsai,
and Raluca Ada Popa. An off-chip attack on hardware
enclaves via the memory bus. In 29th USENIX Security
Symposium (USENIX Security), 2020.

[54] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanović, and Dawn Song. Keystone: An open frame-
work for architecting trusted execution environments. In
Proceedings of the Fifteenth European Conference on
Computer Systems (EuroSys), 2020.

[55] Dingji Li, Zeyu Mi, Yubin Xia, Binyu Zang, Haibo Chen,
and Haibing Guan. Twinvisor: Hardware-isolated confi-
dential virtual machines for arm. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles (SOSP), 2021.

[56] Wenhao Li, Yubin Xia, Long Lu, Haibo Chen, and Binyu
Zang. Teev: virtualizing trusted execution environments
on mobile platforms. In Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, 2019.

[57] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu,
Jason Nieh, Yousuf Sait, and Gareth Stockwell. Design
and verification of the arm confidential compute archi-
tecture. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2022.

[58] Joshua Lind, Christian Priebe, Divya Muthukumaran,
Dan O’Keeffe, Pierre-Louis Aublin, Florian Kelbert,
Tobias Reiher, David Goltzsche, David Eyers, Rüdiger
Kapitza, et al. Glamdring: Automatic application par-
titioning for intel sgx. In USENIX Annual Technical
Conference (USENIX ATC), 2017.

[59] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and
Yubin Xia. Thwarting memory disclosure with effi-
cient hypervisor-enforced intra-domain isolation. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2015.

[60] Meni Orenbach, Andrew Baumann, and Mark Silber-
stein. Autarky: Closing controlled channels with self-
paging enclaves. In Proceedings of the Fifteenth Eu-
ropean Conference on Computer Systems (EuroSys),
2020.

[61] Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald
Aigner, Jeremiah Cox, Paul England, Chris Fenner, Kin-
shuman Kinshumann, Jork Loeser, Dennis Mattoon, et al.
ftpm: A software-only implementation of a tpm chip. In
25th USENIX Security Symposium (USENIX Security),
2016.

[62] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus
Peinado. T-sgx: Eradicating controlled-channel attacks
against enclave programs. In NDSS, 2017.

[63] Shweta Shinde, Shengyi Wang, Pinghai Yuan, Aquinas
Hobor, Abhik Roychoudhury, and Prateek Saxena.
Besfs: A posix filesystem for enclaves with a mech-
anized safety proof. In 29th USENIX Security Sympo-
sium (USENIX Security), 2020.

[64] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Haining
Wang. Trustice: Hardware-assisted isolated computing
environments on mobile devices. In 2015 45th Annual
IEEE/IFIP International Conference on Dependable Sys-
tems and Networks, 2015.

[65] Chia-Che Tsai, Donald E Porter, and Mona Vij.
Graphene-sgx: A practical library os for unmodified ap-
plications on sgx. In 2017 USENIX Annual Technical
Conference (USENIX ATC), 2017.

[66] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. Erim: Secure, efficient in-process isolation with
protection keys mpk. In 28th USENIX Security Sympo-
sium (USENIX Security), 2019.

[67] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silber-
stein, Thomas F Wenisch, Yuval Yarom, and Raoul
Strackx. Foreshadow: Extracting the keys to the intel
sgx kingdom with transient out-of-order execution. In
27th USENIX Security Symposium (USENIX Security),
2018.

[68] Jie Wang, Kun Sun, Lingguang Lei, Shengye Wan,
Yuewu Wang, and Jiwu Jing. Cache-in-the-middle (citm)
attacks: Manipulating sensitive data in isolated execu-
tion environments. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security (CCS), 2020.

[69] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam
Morrison, Christopher Fletcher, and Josep Torrellas. In-
visispec: Making speculative execution invisible in the

cache hierarchy. In 51st Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2018.

[70] Salessawi Ferede Yitbarek, Misiker Tadesse Aga, Reetu-
parna Das, and Todd Austin. Cold boot attacks are still
hot: Security analysis of memory scramblers in modern
processors. In 2017 IEEE International Symposium
on High Performance Computer Architecture (HPCA),
2017.

[71] Jason Zhijingcheng Yu, Shweta Shinde, Trevor E Carl-
son, and Prateek Saxena. Elasticlave: An efficient mem-
ory model for enclaves. In 31st USENIX Security Sym-
posium (USENIX Security), 2022.

[72] Shijun Zhao, Qianying Zhang, Yu Qin, Wei Feng, and
Dengguo Feng. Sectee: A software-based approach to
secure enclave architecture using tee. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2019.

A CVE List

Table 9: The CVEs that are surveyed for mitigation analysis
Type CVEs

Trusted OS (TO)
2014-9979, 2015-8999, 2015-9070, 2015-9071,
2015-9072, 2015-9073, 2016-2431, 2016-10432,
2017-6290, 2017-6292, 2018-3588, 2018-5870

TO/TA

2014-9932, 2014-9935, 2014-9936, 2014-9937,
2014-9945, 2014-9948, 2014-9949, 2015-8995,
2015-8996, 2015-8997, 2015-8998, 2015-9005,
2015-9007, 2016-2432, 2016-10297,2017-6289,
2017-14913, 2017-18293, 2017-18297, 2018-5866,
2015-4422, 2015-6639, 2018-5210, 2018-5885

Hypervisor
2019-6974, 2019-14821, 2021-22543, 2018-10901,
2020-3993, 2018-18021, 2020-36313, 2019-7222,
2017-17741

B Implementation of Execution Features

Syscall Support. The Monitor receives a syscall and sends it
to the OS, checks the return values, and transfers control to
the SApp. Most syscall parameters are not related to SApp
memory (e.g., getpid). The Monitor forwards them directly
without any modification. To support syscalls that pass a
pointer of SApp memory as the parameter, the Monitor creates
a shared buffer between the SApp and the OS. Specifically,
we allocate a buffer in the Host OS memory space and pass
its range to the Monitor. To defend against potential TOC-
TOU attacks, the Monitor updates the Host GPT to make the
buffer to be inaccessible for Host OS before performing result
checking. Since the GPT transition targets physical addresses,
we leverage an AT instruction (i.e., ats12e0r) in the Monitor
to translate the buffer’s virtual address to the physical address
and then finish the GPT updates. When receiving such a
syscall from SApp, the Monitor adjusts the parameters to the
shared buffer. Before switching to the OS, the Monitor clears

the general-purpose registers not required by OS. After syscall
handling completes, the Monitor copies the results from the
shared buffer to the original SApp memory if necessary. The
implemented prototype handles about 50 of these types of
syscalls, covering all the applications in the experiments.
Iago Attack Checks. To keep the Monitor’s TCB size small,
we mainly consider the following Iago attacks: Many syscalls
can be tampered by length return value to cause SApp buffer
overflow [39]. For example, readlink(path, buf, size)
fills the buf provided by the caller. The third parameter value
specifies the max length of the buf. There is a return value
to indicate the length OS has written, while a malicious OS
may tamper the return value to larger than the max length,
causing the buffer overwriting. Therefore, we add additional
Iago attack checks to ensure that the syscall return length does
not exceed valid buffer size indicated by the parameter.
Scheduling. We rely on OS for SApp scheduling. When
the OS scheduling returns to the SApp, the control flow is
changed to the Monitor. The Monitor switches the SApp GPT
and returns to the SApp. Note that, although running an SApp
requires switching the corresponding GPT at the current core,
the scheduling policy can help make a number of SApps to
run concurrently.
Asynchronous Exception. An asynchronous interrupt (e.g.,
timer interrupt) is also intercepted by the Monitor and handed
over to OS, and the switch procedure is similar to other ex-
ceptions. Additionally, the signal handling mechanism al-
lows SApps to register custom exception handlers. The signal
delivery allows OS to interrupt SApp’s execution in a non-
deterministic location, and setup_frame requires the SApp
memory to save the signal context information, while the OS
has no permission for this context setting. To support the sig-
nal handing, we use a shared signal frame buffer for OS to
set up a separate signal stack. The Monitor also records the
handler address when transferring signal registration syscalls
such as rt_sigaction. When handling a signal, the Monitor
first verifies that the address has been registered to ensure that
the control flow will be entering a valid handler. Then the
Monitor makes the shared signal frame buffer inaccessible to
the OS by updating Host GPT. After the handler completes
and returns via rt_sigreturn, the Monitor opens the per-
mission of the signal frame buffer and lets the OS restore the
original execution.
Multi-threaded Synchronization Primitive. Linux uses Fast
Userspace Mutex (Futex) as a synchronization primitive. The
Futex value is in the SApp memory. To support synchroniza-
tion primitive, we make OS invoke an SMC when conducting
futex syscall to request the Monitor for getting the Futex
value, rather than accessing the SApp memory directly.

C Comparison with CCA

Implementation of CCA performance prototype. An of-
ficial reference implementation of CCA RMM specification

(TF-RMM) [18] was released in November 2022. However,
the corresponding Linux hypervisor and CCA-enabled hard-
ware are not yet available at the time of writing. Therefore, we
implemented a basic CCA VM-based performance prototype
on the Armv8-A Juno R2 board with the same GPT-analogue
methodology and a Realm-context simulation to perform a
fairly approximated performance comparison. This proto-
type includes ported RMM (referred to as RMM), compatible
KVM (referred to as CCA KVM), and EL3 Monitor (referred
to as EL3M).

(a) RMM. We implemented the RMM based on the CCA-
related manuals [23, 24, 28] and public code [18, 55]. Since
Juno R2 board does not provide Realm world hardware, we
create a new Realm context in the Normal world to simulate
the performance costs of Realm world. The context switch-
ing between the Normal and Realm worlds is mimicked by
modifying EL3M to switch between two contexts in the Nor-
mal world. We implemented the RMM on the Juno R2 board
that supports various Realm Management Interface (RMI)
commands. The RMI commands we supported follow the
CCA manuals, including creating and managing Realm VMs,
creating and updating stage-2 page tables, and transitioning
granules. The RMM leverages stage-2 page tables to manage
the accessible memory of each Realm VM. In addition, the
RMM records the transitioning status and current usage of
each granule in a Granule Status Table (GST) [57], which

helps it check the validity of RMI commands.
(b) CCA KVM. We modified the Linux KVM as CCA

KVM to support sending RMI commands to communicate
with RMM. The CCA KVM is responsible for the dynamic
allocation of hardware resources for Realm VMs.

(c) EL3M. The EL3M is responsible for the communi-
cations between the KVM and the RMM. We use the GPT-
analogue methodology to allow EL3M to play a role in up-
dating the GPT in the memory, thus introducing GPT-related
overhead.
TCB comparison with CCA. The TCB of CCA consists
of TF-A [19] and TF-RMM [18]; in contrast, the TCB of
SHELTER only contains the Monitor. As shown in Table 3,
SHELTER’s Monitor is based on TF-A with 2k SLoCs addi-
tional code.

To show the difference in TCB between SHELTER and
CCA, we run cloc [9] tool to count the SLoC of the TF-RMM.
TF-RMM(v0.2.0) contains 9.1k SLoCs. Since SHELTER has
not supported attestation, to fairly compare the TCB, we re-
move attestation-related code from the TF-RMM, which is
around 0.9k SLoCs, so TF-RMM contains 8.2k SLoCs without
attestation. The distinction is reasonable since the isolation
mechanism of SHELTER only relies on multi-GPT manipu-
lation and does not require a hypervisor technology such as
stage-2 page tables used by RMM to isolate Realm VMs.

	Introduction
	Background
	Arm TrustZone Mechanisms
	Arm CCA

	Overview
	Design
	Multi-GPT Memory Isolation
	Shelter Memory Management
	Shelter Lifecycle Management
	Multi-Core Management

	Implementation
	Security Evaluation
	TCB
	CVE Mitigation Analysis
	Security Analysis

	Performance Evaluation
	Microbenchmarks
	Shelter Operation Breakdown
	Creation
	Destruction
	Performance comparison

	Application Workloads
	Impact on Performance of Normal World
	Memory Consumption
	Performance comparison with Virtualization

	Discussion
	Related Work
	Conclusions
	CVE List
	Implementation of Execution Features
	Comparison with CCA

