
A Comparison Study of Intel SGX and AMDMemory Encryption
Technology

Saeid Mofrad, Fengwei Zhang, Shiyong Lu
COMPASS Laboratory

Department of Computer Science
Wayne State University
Detroit, Michigan, USA

{saeid.mofrad,fengwei,shiyong}@wayne.edu

Weidong Shi
Department of Computer Science

University of Houston
Houston, Texas, USA

wshi3@uh.edu

ABSTRACT
Hardware-assisted trusted execution environments are secure iso-
lation technologies that have been engineered to serve as efficient
defense mechanisms to provide a security boundary at the system
level. Hardware vendors have introduced a variety of hardware-
assisted trusted execution environments including ARM TrustZone,
Intel Management Engine, and AMD Platform Security Processor.
Recently, Intel Software Guard eXtensions (SGX) and AMDMemory
Encryption Technology have been introduced. To the best of our
knowledge, this paper presents the first comparison study between
Intel SGX and AMD Memory Encryption Technology in terms of
functionality, use scenarios, security, and performance implications.
We summarize the pros and cons of these two approaches in com-
parison to each other.

CCS CONCEPTS
• Security and privacy → Security in hardware; Systems security;
Hardware security implementation;

KEYWORDS
Intel SGX, AMD SEV, hardware-supported security

ACM Reference Format:
Saeid Mofrad, Fengwei Zhang, Shiyong Lu and Weidong Shi. 2018. A Com-
parison Study of Intel SGX and AMD Memory Encryption Technology.
In HASP ’18: Hardware and Architectural Support for Security and Privacy,
June 2, 2018, Los Angeles, CA, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3214292.3214301

1 INTRODUCTION
One of the fundamental and practical approaches to achieve se-
curity is by isolating software execution at runtime so that sen-
sitive data is processed in a trusted environment. A common ap-
proach to isolate software execution is to use Virtual Machines
(VM). Virtualization is achieved with the use of a hypervisor or
OS, thus placing them inside the Trusted Computing Base (TCB).
This greatly increases the size of the TCB as the hypervisor and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HASP ’18, June 2, 2018, Los Angeles, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6500-0/18/06. . . $15.00
https://doi.org/10.1145/3214292.3214301

OS often consist of thousands of lines of code which are vulnerable
to attacks. For instance, the latest Xen hypervisor contains 586K
lines of code [19]. Moreover, hypervisor vulnerabilities have been
frequently reported [1, 13, 40, 52, 54, 55, 61]. Other issues with
virtualization include performance slowdowns that are caused by
a large amount of underlying processes, data traffic, and context
switching between the host hypervisor and the guest VM envi-
ronment. The hypervisor or firmware is also vulnerable to rootkit
attacks, which work with the same or higher-privileged access
to the system. An alternative solution to mitigate these issues is
to leverage a hardware-assisted Trusted Execution Environment
(TEE). This technology couples the isolated execution concept with
hardware-assisted technologies. Applying hardware-assisted tech-
nologies ensure performance and security improvements by expos-
ing a smaller TCB in the environment. During past years, hardware
vendors have introduced several hardware-assisted TEEs such as
ARMTrustZone, Intel Management Engine, AMD Platform Security
Processor, and SystemManagement Mode [64]. However, almost all
of these hardware-assisted TEEs do not provide a general purpose
security solution (e.g. user-applications). Recently, Intel introduced
Intel Software Guard eXtensions (SGX) [48] and AMD released
AMD Memory Encryption Technology [37] that are designed to be
general purpose hardware-assisted TEEs. Moreover, many research
groups have successfully leveraged Intel SGX security benefits in
applications ranging frommicroservices to complex enterprise level
applications [9, 10, 12, 23, 50, 53, 57]. The increasing level of popu-
larity towards applying general purpose hardware-assisted TEEs
has motivated us to perform a comparison study between Intel SGX
and the AMD Memory Encryption Technology. We summarize our
main contributions as follows:

• To the best of our knowledge, this is the first comparison
study between AMD Memory Encryption Technology and
Intel Software Guard eXtentions (SGX).

• This paper illustrates comparison information regarding the
functionality and use cases, security, and performance of
Intel SGX and AMDMemory Encryption Technology by per-
forming different test cases ranging from executing simple
tasks to complex resource intensive workloads.

• The results of our experiments show that AMD Memory
Encryption Technology performs faster than Intel SGXwhen
a protected application requires a large amount of secure
memory resources. On the other hand, Intel SGX provides
memory integrity protection that shows better reliability
than AMD Memory Encryption Technology.

https://doi.org/10.1145/3214292.3214301
https://doi.org/10.1145/3214292.3214301

HASP ’18, June 2, 2018, Los Angeles, CA, USA S. Mofrad et al.

The paper is organized as follows: Section 2 provides a background
of Intel SGX and AMD Memory Encryption Technology. Section 3
compares these two TEEs regarding their use cases and functional-
ity, security, and performance. Finally, in Section 4we have provided
a conclusion. A technical report of this work can be found at the
COMPASS Lab Website:
http://compass.cs.wayne.edu/compass/publications.html

2 BACKGROUND
2.1 Intel Software Guard eXtensions (SGX)
The first groundbreaking general purpose hardware-assisted TEE
achievement in the x86 family architecture is Intel SGX. Intel intro-
duced SGX in late 2015 as the latest general-purpose security solu-
tion [8, 24, 47, 48]. SGX is an architectural feature that introduces a
new set of CPU instructions that allow a user application to create
and use the hardware-assisted TEE referred to as an enclave. SGX
guarantees the confidentiality and integrity of enclave code and
data at runtime, even when underlying high-privileged system soft-
ware such as the OS or hypervisor is malicious or compromised [9].
SGX also, resists against the physical memory access class of at-
tacks [10]. In the SGX security model, the TCB is considered to be
the CPU package while other parts of the system are considered un-
trusted. SGX creates a limited size of the encrypted memory region
which is called the Enclave Page Cache (EPC), where all enclaves
are created inside this region. In the current implementation, the
EPC size can be set between 32MB, 64MB, or 128MB [9, 12]. Also,
SGX provides a hardware access control mechanism that protects
the enclave memory. The result of illegally accessing the enclave
memory is a page-fault. Furthermore, SGX provides the capacity
to marshal data safely between system memory and EPC pages.
SGX uses a hardware Memory Encryption Engine (MEE) [21] to
apply encryption and decryption to the data. SGX allows the code
inside the enclave to access the memory directly outside of the EPC.
However, memory access from inside the enclave to the outside
memory is controlled by OS memory management policies. Thus,
the enclave cannot disregard OS memory access policies. This is
because the enclave code can only execute in ring 3 where the OS
handles any system calls [12]. Consequently, any illegal memory
access attempts to access memory outside of the enclave from the
code inside the enclave will result in a page-fault [12]. In addition,
SGX supports multi-threading inside of the enclave to speed up the
execution performance of parallel applications.
SGXApplication Design. Every SGX application contains at least
two distinguished parts; a trusted code that is located inside the
enclave and executed in the EPC and untrusted code that is lo-
cated and executed inside the untrusted system memory. In the
SGX framework, the enclave creation process is carried out by the
untrusted code by invoking the ECREATE, EADD and EINIT in-
structions, respectively [9, 10]. If an enclave application requires
more memory than available EPCmemory, SGX provides a memory
swapping mechanism to securely swap memory pages between
the EPC and untrusted system memory. Memory page swapping
requires both OS and system software supports and incurs perfor-
mance overhead [12]. After the enclave is initialized, the untrusted
code invokes the enclave code by calling the EENTER instruction,
which switches the processor mode from the protected mode to the

enclave mode. Then, the processor executes the callee code inside
the enclave. A call to the EEXIT instruction causes the executing
thread inside the enclave to exit the enclave and the execution
flow returns to the untrusted code [9]. In addition to the user cre-
ated enclave, SGX uses some architectural enclaves such as Quoting
enclave and Provisioning enclave to facilitate Local or Remote Attes-
tation Mechanisms [16]. Finally, SGX provides an Enclave Sealing
Mechanism that protects the enclave data at rest [8, 25].
SGX Remote Attestation. Remote Attestation is a useful feature
of SGX. Remote Attestation evaluates the enclave identity, its struc-
ture, the integrity of the code inside an enclave, and guarantees a
genuine Intel SGX processor is executing the enclave. Furthermore,
Remote Attestation provides the preliminary shared secret between
the service provider and the enclave application to help setup a
trusted communication channel through an untrusted network.
In addition, Remote Attestation is considered to be a verification
mechanism for the service provider to evaluate the health of an
enclave that is created at a remote location [8, 34, 59].
Enclave Sealing. SGX provides the Enclave Sealing Mechanism
that encrypts the enclave secret to be safely stored in an untrusted
storage medium such as a hard drive for later use. Furthermore,
Enclave Sealing allows enclave secrets to be retrieved when the
enclave is destroyed due to a power outage or by the application
itself. The seal file is encrypted by a private seal key that is unique
to each platform. Enclave Sealing helps the enclave with retrieving
data and secrets from the sealed file without performing a new
Remote Attestation [8, 25].

2.2 AMD Memory Encryption Technology
AMD Memory Encryption Technology is the most recent ground-
breaking general purpose hardware-assisted TEE achievement that
encrypts and protects system memory. AMD Memory Encryption
Technology is focused primarily on public cloud infrastructure and
specifically public infrastructure as a Service (IaaS). AMD Memory
Encryption Technology addresses two different classes of attacks;
system software level and physical access attacks [35, 37]. The for-
mer attack includes a high-privileged entity that analyses the guest
VM memory space for malicious purposes or deploying attacks
that use hypervisor vulnerabilities to apply side-channel attacks
to other co-resident guest VMs [54]. The latter attacks include hot
memory I/O tapping attacks or cold boot attacks [22, 35, 37]. AMD
Memory Encryption Technology introduces an AES 128 encryption
engine inside the System on Chip (SoC) that transparently encrypts
and decrypts the data when the data leaves or enters the SoC re-
spectively. Based on the Memory Encryption Technology, AMD
proposed two main security features referred to as Secure Mem-
ory Encryption (SME) and Secure Encrypted Virtualization (SEV).
Both SEV and SME are managed by the OS or hypervisor, and no
application software changes are needed [35, 37]. Encryption key
management such as generating, storing, and delivering the keys
are carried out by the AMD secure processor and the encryption
keys are kept hidden from untrusted parts of the platform. The
AMD secure processor utilizes a 32-bit ARM Cortex A5, and uses
its memory and storage while executing a kernel that is signed by
AMD [35, 37].
Secure Memory Encryption (SME). SME is the security feature
that addresses physical access attacks. It uses an encryption key

http://compass.cs.wayne.edu/compass/publications.html
http://compass.cs.wayne.edu/compass/publications.html

A Comparison Study of Intel SGX and AMD Memory Encryption Technology HASP ’18, June 2, 2018, Los Angeles, CA, USA

Table 1: SME, TSME, and SEV Feature Comparison [2, 35, 37].
AMD Memory Encryption Feature SME TSME SEV
Encyption Key Creation Time At boot time At boot time Upon VM owner request
Number of Encryption Key in Use One key One key One key each VM
Activation Method OS/Hypervisor BIOS VM
Software Change Requirements OS/Hypervisor No change Hypervisor and VM
Default Memory Setting Unencrypted Encrypted Encrypted with VM key
Direct Memory Access Support Each memory page Each memory page Only to unencrypted memory page
AMD Secure Processor and Kernel Direct Interaction Not required Not required Required

Table 2: Feature Comparison List [7, 16, 34, 35, 37].
Technology Highest Access Level Memory size limits SDK Software change Platform Attestation Verification Mechanism
Intel SGX Ring 3 Up to 128MB EPC Provided Required Attested through remote attestation protocol and IAS
AMD SEV Ring 0 Up to available system RAM Not required Only Hypervisor and VM kernel Attested through AMD secure processor

that is randomly generated by the AMD secure processor and is
loaded into the memory controller at boot time to encrypt the mem-
ory. The OS is able to leverage the SME by setting a bit in the x86
page table that is called the encrypted bit or (C-bit) [35, 37]. When
the C-bit is set, access to that memory page is directed to the AMD
Memory Encryption Engine. In the SME design, all devices can
access the encrypted memory pages through DMA.
Transparent Secure Memory Encryption (TSME). TSME is a
hardware security feature in which all memory pages are encrypted
transparently at boot time. This feature is enabled through a BIOS
setting. This encrypted memory is transparent to the underlying
OS and user software [35, 37].
AMD Secure Encrypted Virtualization (SEV). SEV is a security
feature that mainly addresses the high-privileged system software
class of attacks by providing encrypted VM isolation. It encrypts
and protects the VM’s memory space with the VM’s specific en-
cryption key from the hypervisor or other VMs on the same plat-
form [7, 35, 37]. In addition, SEV does not require any modifications
to user application software and memory encryption is transparent
to the user application software that is executed in the SEV pro-
tected VM. SEV uses the AMD Memory Encryption Engine which
is capable of working with different encryption keys for encrypting
and decrypting different VM memory spaces on the same platform.
In SEV, a unique encryption key is associated with each guest VM.
When code and data arrives into the SoC, SEV tags all of the code
and data associated with the guest VM in the cache and limits access
only to the tag’s owner VM. When data leaves the SoC, the VM
encryption key is identified by the tag value and data is encrypted
with the VM key [35, 37]. Additionally, initializing a SEV protected
VM requires direct interaction with the AMD secure processor. The
AMD secure processor provides a set of APIs for provisioning and
managing the platform in the cloud. The hypervisor’s SEV driver
can invoke these APIs. In the SEV architecture, a guest owner man-
ages her guest secrets and generates the policies for VM migration
or debugging [35]. The Diffie-Hellman key exchange protocol [17]
is used between the guest owner and the AMD secure processor to
open a secure channel between the guest owner and AMD secure
processor. The guest owner is enabled to authenticate the secure
processor and exchange information to set up the protected VM [35].
Also, the SEV architecture defines the shared page (unencrypted)
and the private page (encrypted) that can be set for each protected
guest VM. The C-bit is set to identify the private pages by the guest
OS. There are hardware rules enforcing security regarding these

Table 3: Testbeds Configuration [3, 4, 26].
Testbed Machine Intel AMD
CPU Model Core i7-6700 EPYC 7251
CPU Physical Core Number 4 8
CPU Logical Thread Number 8 16
CPU Base Clock 3.4 GHz 2.1 GHz
CPU Boost Clock 4.0 GHz 2.9 GHz
Cache Type Smart Cache L3
Cache Size 8MB 32MB
Motherboard DELL OptiPlex 7040 GIGABYTE MZ31-AR0
Memory 8GB DDR4 No-ECC 32GB DDR4 ECC
Storage 1TB HDD 7200 RPM 512GB 3D-NAND SSD
Operating System Linux 16.04 LTS Linux 16.04 LTS
OS/Hypervisor kernel 4.15.7-041507-generic 4.15.0-rc1-kvm
Virtual Machine Kernel N/A 4.14.0-rc5-tip
TEE SDK Version SGX SDK Ver 2.00 N/A

pages in the SEV architecture [35]. If a page is set as a shared page,
the hypervisor can read it in plain text. In the SEV architecture,
DMA is allowed only on shared memory pages. Table 1 summarizes
the key differences between SME, TSME, and SEV technologies.

3 COMPARISON EVALUATION
3.1 Experimental Testbeds
To perform our comparison study, we have prepared two testbed
machines. An AMD machine that uses an AMD EPYC 7251 CPU,
with 8 physical cores, 16 logical threads, 32MB L3 cache, 32GB of
DDR4 RAM and 512GB 3D-NAND SSD. The EPYC CPU has the base
clock of 2.1GHz and is boosted up to 2.9GHz. The second machine
is an Intel SGX machine consisting of an Intel Core i7 6700 CPU
with 4 physical cores and 8 logical threads, 8MB of smart cache
memory, 8GB of DDR4 RAM and 1TB 7200 RPM HDD. The base
CPU frequency in the SGX machine is 3.4GHz and is boosted up
to 4.0GHz. For the software settings, the SGX testbed uses Ubuntu
16.04 LTS OS with the kernel 4.15.7-041507-generic and the SGX
SDK version 2.0. The AMD testbed uses Ubuntu 16.04 LTS OS with
the KVM kernel version 4.15.0-rc1-kvm as our hypervisor. All guest
VMs use Ubuntu 16.04 LTS OS with the SEV-enabled 4.14.0-rc5-tip
kernel [4]. All VMs use 8GB of memory for test purposes. Table 3
summarizes our testbeds.

3.2 Function and Use Cases Comparison
Intel SGX was initially designed to secure microservices and small
applications [60] such as securing a log-in process to a banking
account or securing password manager applications [27] that inter-
act with very security-sensitive but small amounts of data. We can
confirm SGX’s initial design intentions by considering the limited
amount of EPC memory resources available to SGX and given that

HASP ’18, June 2, 2018, Los Angeles, CA, USA S. Mofrad et al.

SGX is mainly featured in commodity desktop or mobile processor
families. In spite of the initial SGX design intentions, we can iden-
tify many research works that have attempted to leverage Intel SGX
for large and complex workloads such as enterprise-level services
or even public cloud applications [9, 12, 14, 41, 42, 57]. Moreover,
leveraging Intel SGX often requires major software changes. Legacy
applications may not easily migrate to Intel SGX without applying
proper code refactoring. Inherently, Intel SGX trusted code works
in ring 3, thus Intel SGX is not a suitable TEE for applications that
require many system calls. Additionally, the limited size of the EPC
memory space degrades the execution performance of Intel SGX sig-
nificantly when a larger trusted memory space is needed at enclave
runtime. On the other hand, Intel SGX provides robust security
protections, making it a suitable TEE for applications that require
an enhanced-degree of security protection. AMD SEV is designed
for the public cloud [37] where cross-VM and hypervisor-based
attacks are major concerns. AMD SEV uses memory encryption
and AMD-V virtualization to provision encrypted VMs that are pro-
tected from such attacks. For example, a hypervisor-based attack
cannot steal data from the encrypted memory image of a SEV-
enabled VM. Also, SEV is supported in the EPYC processors that
belong to the AMD server processor family [5]. In addition, SEV
protection is transparent to user application software, making it a
suitable TEE for securing unmodified and legacy software applica-
tions. Leveraging SEV is almost effortless for its end-users since no
application software code refactoring is required. SEV protected
VMs provide ring 0 and high-privileged access that helps SEV to be
leveraged in a broader range of applications, particularly for those
that require many system calls. As SEV supports a large size for
trusted memory, SEV is a good fit for securing sophisticated and
enterprise-level applications and services. However, SEV puts the
underlying OS and hypervisor in the TCB, thus it is susceptible to a
broader class of attacks, therefore weakening its security protection
capabilities. So, SEV is not suitable as a TEE for applications which
need an enhanced-degree of security protections. Table 2 summa-
rizes the key technical differences between AMD SEV and Intel SGX.

AMD Memory Encryption Technology is suited for securing com-
plex and legacy applications. Intel SGX is suited for securing small
but security-sensitive workloads.

3.3 Security Comparison
One important characteristic of a trusted execution environment
is the amount of security that it offers. To this end, we explore
the design architectures and the attack surfaces of Intel SGX and
AMD Memory Encryption Technology in detail. One of the ar-
chitectural differences between AMD and Intel is in their Mem-
ory Encryption Engine (MEE) implementation. AMD MEE uses
AES in Electronic Codebook (ECB) mode [56] as a fast and fea-
sible approach for random memory encryption. There is a well-
known security issue with the ECB mode which leaks informa-
tion from the ciphertext [18]. In order to mitgate this informa-
tion leakage, AMD uses a physical address base tweak algorithm
that combines the base address and the plaintext before apply-
ing the AES-ECB encryption [37]. The effect of this combination
guarantees that the same plaintext in different memory locations
will produce a different ciphertext pattern. However, the AMD

Memory Encryption Technology does not provide memory in-
tegrity protection for a guest VM’s encrypted memory space in
SEV or SME. This weakens its protection capacity [18]. On the
other hand, Intel MEE [21] uses a tweaked AES Counter (CTR) [56]
mode and Intel SGX provides memory integrity protection [16].

Intel SGX provides memory integrity protection while AMD SME
and SEV do not provide memory integrity protection.

3.3.1 Intel SGX Vulnerabilities. At the base level, SGX was de-
signed to guarantee the integrity and confidentiality of trusted code
and data in ring 3. Due to this, one of the attack vectors is the De-
nial of Service (DOS) attack [12]. This is because SGX relies on the
untrusted OS to handle each system call such as storage, I/O, and
network requests, which could be required by trusted code inside
the enclave. A malicious OS can easily deny the enclave requests
or even kill enclave processes, thus initiating a DOS attack. The
dependency of the untrusted OS is problematic since it endangers
task execution integrity inside the enclave. A malicious OS can
violate a task’s execution integrity by providing stale data to the en-
clave buffer, dropping a network packet, or replying with arbitrary
data, thus causing untrustworthy final results. Assuming an honest
OS, the DOS attack can be applied by a malicious SGX application
inside the enclave thus forcing the CPU to go into lockdown mode
via violating the integrity of enclave memory access. Jang et al. [33]
showed how such an attack can be launched by a malicious SGX ap-
plication in the cloud to halt a server in a public cloud environment.
Another attack vector is possible when multi-threading is applied
inside the enclave. Although multi-threading increases overall ex-
ecution performance in an application that can leverage parallel
processing, it opens a new surface for attacks. Synchronization bug
vulnerabilities such as use-after-free and time-of-check-to-time-
of-use (TOCTTOU) in enclave trusted code can be exploited to
take the control flow of the code inside the enclave. Weichbrodt et
al. [60] showed how such an attack can successfully be initiated
against an SGX application resulting in hijacking control flow and
bypassing access controls. Another strong attack vector in SGX TEE
is side-channel attacks. In the SGX design, the TCB is considered
to be the CPU package, and data appears in plaintext inside the
CPU package. Although SGX performs some hardware protection
on cache data before the processor context switching happens, it
has been shown that careful cache access measurements can leak
enclave secrets to the attacker. Gotzfried et al. [20] demonstrated a
proof-of-concept cache-timing-attack that leaks secrets from the
enclave trusted code by an attacker with privileged access. The
most recent attack is Spectre attack, a powerful side-channel attack
discovered by Kocher et al. [39]. A Spectre attacker deceives an
application to access its memory speculatively and then through
the side-channel, the attacker captures the information from the
accessed memory in the cache. Intel SGX is vulnerable to Spectre
attack and proof-of-concepts for this attack were presented by the
LSDS group at Imperial College London [46] and by Chen et al. [15].
Many studies have been conducted on side-channel attacks and
the following is a list of papers that have successfully exploited
side-channels in Intel SGX [11, 44, 45, 49, 58, 63].

3.3.2 AMDMemory Encryption Technology Vulnerabilities. AMD
Memory Encryption Technology addresses two classes of attacks.
SME is designed to provide security against physical access attacks,

A Comparison Study of Intel SGX and AMD Memory Encryption Technology HASP ’18, June 2, 2018, Los Angeles, CA, USA

and SEV is designed to address attacks from high-privileged system
software [35, 37]. As we have mentioned earlier, SME encrypts
the OS or hypervisor memory pages with a single encryption key
that is generated at boot time by the AMD secure processor. SME
protects system memory from hot I/O tapping and cold boot at-
tacks. Furthermore, SEV protects guest VMs by encrypting their
memory spaces with an encryption key that is unique to that VM.
This unique key is generated by the AMD secure processor. As
each VM memory space uses a different encryption key, the VM
is protected from the malicious hypervisor. The confidentiality of
the memory space for each VM can thus be ensured. However, the
current SME or SEV implementation does not provide memory
integrity protection. The lack of memory integrity protection is
problematic since a malicious hypervisor with high-privileged ac-
cess can change and manipulate VM encrypted memory pages. If
the malicious hypervisor replaces the guest VM’s encrypted mem-
ory pages, the guest VM may crash or show unexpected behaviors
without being detected by the SME or SEV. Additionally, a malicious
hypervisor can initiate a DOS attack to the guest VMs [37]. Du et
al. [18] demonstrated a proof-of-concept attack that exploits the
absence of memory integrity protection in AMD TEE by moving a
SEV enabled guest VM’s encrypted memory pages with a malicious
hypervisor, thus obtaining root access to that guest VM. Recently,
CTS labs revealed a set of security vulnerabilities that affected AMD
EPYC and other AMD processors [43]. As we have mentioned ear-
lier, SME and SEV are supported by EPYC series processors, thus the
discovered vulnerabilities directly impact the SEV protected guest
VMs. According to the CTS labs report, an attacker can exploit the
set of vulnerabilities referred to as MASTERKEY and FALLOUT in
the AMD secure processor. This can allow an attacker to install
unsigned malicious software with the highest possible privileged
access inside the AMD secure processor by bypassing the Hardware
Validated Boot [43]. Consequently, a malicious application can be
used to leak encryption keys that are used by the SEV protected
VMs, thus compromising the confidentiality of the data in those
VMs. The former vulnerability is initiated by reflashing the original
BIOS with a malicious BIOS that puts malicious software inside
the AMD secure processor. The latter vulnerability is initiated by
a high-privileged local attacker that interacts with the SEV driver
installed in the OS or host hypervisor [43]. The FALLOUT vulnera-
bility provides access to SystemManagement RAM (SMRAM) of the
System Management Mode (SMM) or Windows Isolated User Mode
and Isolated Kernel Mode (VTL1) area. As a result, an attacker can
inject malicious software into the SMM or VTL1 without being no-
ticed [43]. Although theMASTERKEY and FALLOUT vulnerabilities
open a serious attack surface for a high-privileged adversary, they
are due to the firmware bug in the AMD secure processor firmware
implementation, not an architectural flaw. Therefore, mitigation
solutions can be achieved by a firmware update from AMD [6].
AMD TEE is also vulnerable to memory side-channel attacks. This
is because the data inside the SoC appears in clear text, so informa-
tion in the cache is in plaintext form and the cache access time can
be measured by a malicious high-privileged entity. Also, SEV lever-
ages the KVM [38] hypervisor to provide direct processor access to
each VM. Although having the direct access to CPU cores improves
the performance of the VM, it additionally opens the side-channel
attack surface. For example, a high-privileged adversary can obtain

Figure 1: Floating Point Intensive Workloads Comparison.
Time unit is Nanoseconds.

direct access to the cache and measure the cache access time of a
victim process to apply a cache-timing attack. We have success-
fully executed the original Spectre attack [39] proof of concept
in our SEV protected VM. When we compare the degree of secu-
rity provided by two TEEs, although both TEE share side-channel
vulnerabilities, AMD TEE provides weaker security protections
than Intel SGX. SGX separates the trusted and untrusted bound-
aries carefully by designing hardware policies to enforce memory
access control and memory integrity protection. Moreover, SGX
carefully marshals data through a narrow interface between the
untrusted and trusted environments and checks the integrity of the
buffer being marshaled between the two environments. Further-
more, both Intel and AMD provide an enhanced implementation
of their current TEEs referred to as SGX2 [62] and SEV-ES [7, 36]
respectively. We leave our analysis of these features for our future
work and will report on our findings within our technical report.

Intel SGX carefully separates the trusted and untrusted environ-
ments, provides a narrow and protected enclave gateway, enforces
memory access control, and applies memory integrity protection,
thus making it a suitable TEE for protecting workloads that interact
with security-sensitive data.

3.4 Performance Comparison
Performance is an important aspect of a TEE since it defines the do-
main of applications in which a particular TEE can be leveraged. For
example, the performance overhead of a TEE determines whether
it can be used in a real-time application or not. We were curious to
understand how these TEEs perform in action. To implement our
benchmark, we have developed several benchmark applications
to be compatible with both the SGX and AMD testbeds and used
standard C/C++ library functions to keep the same codebase to
make a fair benchmark environment. We are particularly curious to
see the performance overhead of the Intel Memory Encryption En-
gine (MEE), AMD MEE and other architectural components when
we supply both TEEs with a similar codebase. Toward this goal,
we classify our benchmarks in three categories. The first category
analyses the TEEs’ execution capacity by executing several floating
point intensive operations without marshaling the data. We call it
Floating Point Intensive Workload Comparison. The second cate-
gory intends to evaluate Memory Encryption Engine performance
for both TEEs by marshaling data through the Memory Encryption
Engine. We call this test Memory Encryption Engine Performance

HASP ’18, June 2, 2018, Los Angeles, CA, USA S. Mofrad et al.

Table 4: Performance Comparison of AMD SEV and Intel
SGX with Quicksort Algorithm and MD5 Hash Function.
Time unit for Quicksort is Seconds and time unit for MD5
is Microseconds.

SEV Unprotected SGX Unprotected SGX Overhead SEV Overhead
QuickSort 109s 103s 185s 58s 3.19x 1.06x
MD5 SGXSSL - - 4.03µs 1.01µs 3.99x -
MD5 OpenSource 3.06µs 3.04µs 5.05µs 1.01µs 5x 1.01x

Comparison. The third category has a broader scope and reflects
the performance of the TEEs as a complete entity while following
a secure protocol with a complex application which is used in the
public cloud environment. We call this test Comprehensive Work-
load Comparison.
Floating Point Intensive Workload Comparison. In this test
no data is passed into the TEE. The code inside the TEE gener-
ates data points and then executes the computational intensive
workload. In our implementation, with the TEE only using a single
executing thread, we generate one-billion random numbers inside
the TEE and record the average length of execution time for apply-
ing the floating point intensive operation. The length of execution
is reported in nanoseconds. Figure 1 shows the test results in which
every floating point intensive operation is executed.

The SGX results in Figure 4 show a 19.31x performance slow-
down on average when an enclave executes the floating point inten-
sive workload. Likewise, the average SEV performance slowdown
in Figure 4 indicates 1x, or identical performance, to the AMD un-
protected VM. When we compare the results, we see a considerable
performance gap of about 19x between SGX and SEV. There are
several valid reasons for this performance gap. One of the reasons
is that the implementation of the SGX benchmark requires a call
to a secure SGX API to generate the random numbers [30]. This is
because the standard C/C++ random generator function is not avail-
able in the enclave environment due to its reliance on system calls.
We believe that the use of different random number generators
causes part of SGX’s slowdown in this benchmark. Another factor
is the overhead introduced by the SGX CPU context switching be-
tween the protected mode and the enclave mode. Furthermore, SGX
context switching happens before and after each Ecall [28] when
the execution flow enters the enclave and returns to the untrusted
code of the benchmark application, respectively. On the other hand,
the AMD processor does not need to perform CPU context switch-
ing or special treatment for generating a random number while
the SEV protected benchmark is executed. We need to emphasize
that all testbeds use 8GB of RAM. Furthermore, the SEV protected
VM, and SGX enclave protected workload use a single executing
thread. In SEV, we enforce a single executing thread by creating a
single CPU core SEV protected VM. In this way, we provide a fair
comparison environment and have trustworthy results since our
SGX enclave uses a single thread to execute our test applications
as well.
Memory Encryption Engine Performance Comparison. In or-
der to have a better understanding of the Memory Encryption En-
gines’ performance, we designed a memory intensive benchmark
test. In our design, we generate a large untrusted buffer and fill it
with randomly generated numbers. Then, we start the timer and
pass the pointer of the untrusted buffer to a trusted function inside
the TEE. A local trusted buffer inside the TEE is created and all the

Figure 2: Secure Data ProvisioningAndWorkload Execution
Protocol.

data from the untrusted buffer is marshalled and copied to the TEE
trusted buffer. We record the elapsed time of this operation. To have
a fair comparison, our SGX version defines the Ecall [28] buffer
pointer attribute to the [user_check] [31] in the Enclave Definition
Language (EDL) [29] file. We define it since SEV does not provide
similar security features. The [user_check] attribute speeds up the
data marshaling rate between the untrusted code and the enclave
code in SGX TEE by removing the requirement of creating an in-
termediate buffer inside the SGX TEE. Figure 4 shows the Memory
Encryption Engine performance results when the untrusted buffer
size is 2.8GB. When comparing the results, we notice that the SEV
protected VM performs 5.53x slower than the unprotected VM. In
the same way, SGX incurs a 9.45x performance overhead in com-
parison with its unprotected workload. SGX is slower than SEV
because the usable SGX EPC memory is up to 96MB [16] and for
every buffer greater than 96MB, memory pages should be safely
swapped between the untrusted system memory and the enclave,
thus resulting in a significant performance overhead. We need to
emphasize that within our SEV protected VM, the entirety of the
VMmemory image is encrypted thus our SEV protected VM always
uses AMD MEE. On the other hand, only the SGX enclave runtime
uses Intel MEE and the rest of the memory is not encrypted. In our
SEV protected VM, the Memory Encryption Engine is always used,
so even our memory benchmark application copies an encrypted
untrusted buffer to a trusted encrypted local buffer. Our results
show that AMD SEV marshals data faster than Intel SGX when the
buffer size is large.

Our test results show that AMD SEV marshals encrypted memory
data faster than Intel SGX when the buffer size is large.

Comprehensive Workload Comparison. We designed another
benchmark to measure a computationally intensive workload while
a secure protocol for public cloud data provisioning and workload
execution is followed. Assuming a public cloud environment, we
design our workflow protocol as follows. First, the encrypted data
is provisioned for the untrusted platform. Next, the encrypted data
is passed inside the platform’s TEE. Inside the TEE, the data is
decrypted with a key known only to the data owner and the TEE.
Then, the intended task is executed and the result is encrypted.
Finally, the encrypted results leave the TEE. We do not implement
the code to exchange the encryption key between the data owner
and the TEE and we assume the TEE has received the encryption
key through a secure key exchange protocol. Figure 2 visualizes
our secure data provisioning and workload execution protocol. In
the SGX benchmark, the untrusted code generates a 1.9GB buffer
and fills it with randomly generated numbers, then encrypts it with
a predefined key that is applied with simple bitwise XORing. Next,
the untrusted code initializes the timer and invokes an Ecall func-
tion that transfers the encrypted data into the enclave. The received
buffer is copied to another trusted buffer inside the enclave and

A Comparison Study of Intel SGX and AMD Memory Encryption Technology HASP ’18, June 2, 2018, Los Angeles, CA, USA

Figure 3: Comprehensive Workload Comparison Result
With Quicksort Task and Different Input Size.
is decrypted, and then the Quicksort algorithm is executed on the
enclave local decrypted data. The sorted data is encrypted and then
returned to the untrusted code where the elapsed time is calcu-
lated. In order to have similar workflow execution, the SEV edition
benchmark mimics the whole process identically to the SGX edition
and executes both untrusted code and trusted code to mimic the
SGX enclave in the SEV protected VM. In addition, we implement
another complex task which performs the MD5 message digest
algorithm for a 256-byte buffer. We use an OpenSSL compatible
implementation of the MD5 message digest algorithm [51] and
make sure that both SGX and SEV use the same code to provide a
trustworthy and fair result. In addition to the Open Source MD5
implementation, we report the performance result based on the
Intel supplied SGX SSL Library [32] since it could be considered as
a hardware-software solution in the SGX design. The MD5 bench-
mark skips the data encryption and decryption phase and only
measures the MD5 message digest calculation time in the TEE. The
reported result is generated based on the average elapsed time of
30 Million MD5 calculations in each TEE. Table 4 shows the results
of the Quicksort task with 1.9GB of input data and MD5 with 256
bytes of input data, respectively. When we compare Quicksort re-
sults, we notice that Intel SGX incurs a 3.19x overhead, and AMD
SEV imposes a 1.06x overhead relative to unprotected workloads.
Figure 3 visualizes the performance slowdown for Intel SGX and
AMD SEV when the Quicksort workload is executed with different
sizes of input between 76MB to 2059MB. Likewise, for the MD5 cal-
culation, we notice that Intel SGX has a 5x overhead with the Open
Source MD5 implementation, and AMD adds a 1.01x overhead with
the Open Source MD5 implementation. Finally, we notice that SGX
performs better when the MD5 message digest function in the SGX
SSL library is incorporated and the resulting performance overhead
is around 3.99x. Figure 4 visualizes the performance overheads.
When a complex workload involves interacting with a large buffer,
our test results show that AMD SEV out-performs Intel SGX.

4 CONCLUSIONS
In this paper, we have studied the design details of Intel Software
Guard eXtensions and AMDMemory Encryption Technology as the
most recent general purpose x86 family trusted execution environ-
ment technologies. Additionally, we have compared these two TEEs
regarding their functionality, use cases, security implications, per-
formance overheads, and complexity of their deployment. We con-
clude that Intel SGX provides strong memory integrity protection
and it is suited for small but highly security-sensitive applications

Figure 4: AMD SEV and Intel SGX Performance Slowdown
Comparison.
due to the limited amount of secure resources by design. Although
AMD SME and SEV do not provide memory integrity protection,
they provide a greater amount of secure resources to applications
and perform faster than Intel SGX when an application requires
a large amount of secure memory, thus making them suitable for
complex or legacy applications and services. We hope this paper
can shed light on the characteristics and key differences of these
two available general purpose TEEs and help the community to
identify the best TEE for their use cases.
ACKNOWLEDGMENTS
We would like to thank Jacob Bednard for his help in preparing
this paper. Also, we would like to thank the anonymous reviewers
for their insightful comments that helped improve this paper. This
work is supported by the National Science Foundation Grant No.
CICI-1738929 and IIS-1724227. Weidong Shi is supported by NATO
Science for Peace and Security Programme (G4919) and National
Science Foundation DGE 1433817. Opinions, findings, conclusions,
and recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the US Government.

REFERENCES
[1] Secunia Advisory. 2013. Xen pv kernel decompression multiple vulnerabilities.
[2] AMD. 2017. AMD64 architecture programmer manual volume 2: System pro-

gramming. https://support.amd.com/TechDocs/24593.pdf
[3] AMD. 2018. AMD EPYC 7251 Processor. https://www.amd.com/en/products/

cpu/amd-epyc-7251.
[4] AMD. 2018. AMD Secure Encrypted Virtualization. https://github.com/AMDESE/

AMDSEV.
[5] AMD. 2018. AMD Server Family Processor. https://www.amd.com/en/products/

servers-processors.
[6] AMD. 2018. Initial AMD Technical Assessment of CTS Labs Re-

search. https://community.amd.com/community/amd-corporate/blog/2018/03/
21/initial-amd-technical-assessment-of-cts-labs-research.

[7] AMD. 2018. Secure Encrypted Virtualization API Version 0.16. https://support.
amd.com/en-us/search/tech-docs.

[8] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative
technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13.

[9] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark Still-
well, et al. 2016. SCONE: Secure Linux Containers with Intel SGX. InOSDI, Vol. 16.
689–703.

[10] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding applications
from an untrusted cloud with haven. ACM Transactions on Computer Systems
(TOCS) 33, 3 (2015), 8.

[11] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software grand exposure: SGX cache
attacks are practical. arXiv preprint arXiv:1702.07521 (2017), 33.

[12] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias Lorenz,
Christof Fetzer, Peter R Pietzuch, and Rüdiger Kapitza. 2016. SecureKeeper:

https://support.amd.com/TechDocs/24593.pdf
https://www.amd.com/en/products/cpu/amd-epyc-7251
https://www.amd.com/en/products/cpu/amd-epyc-7251
https://github.com/AMDESE/AMDSEV
https://github.com/AMDESE/AMDSEV
https://www.amd.com/en/products/servers-processors
https://www.amd.com/en/products/servers-processors
https://community.amd.com/community/amd-corporate/blog/2018/03/21/initial-amd-technical-assessment-of-cts-labs-research
https://community.amd.com/community/amd-corporate/blog/2018/03/21/initial-amd-technical-assessment-of-cts-labs-research
https://support.amd.com/en-us/search/tech-docs
https://support.amd.com/en-us/search/tech-docs

HASP ’18, June 2, 2018, Los Angeles, CA, USA S. Mofrad et al.

Confidential ZooKeeper using Intel SGX. In Middleware. 14.
[13] Sven Bugiel, Stefan Nürnberger, Thomas Pöppelmann, Ahmad-Reza Sadeghi, and

Thomas Schneider. 2011. AmazonIA: when elasticity snaps back. In Proceedings
of the 18th ACM conference on Computer and communications security. ACM,
389–400.

[14] Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In 2017 USENIXAnnual Technical
Conference (USENIX ATC 17). USENIX Association, Santa Clara, CA, 645–658.
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai

[15] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H Lai. 2018. SgxPectre Attacks: Leaking Enclave Secrets via Speculative
Execution. arXiv preprint arXiv:1802.09085 (2018).

[16] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. http://eprint.
iacr.org/2016/086.

[17] Whitfield Diffie and Martin Hellman. 1976. New directions in cryptography. IEEE
transactions on Information Theory 22, 6 (1976), 644–654.

[18] Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai, Phoebe Wang, Jesse Liu, and
Jesse Fang. 2017. Secure Encrypted Virtualization is Unsecure. arXiv preprint
arXiv:1712.05090 (2017).

[19] Black Duck. 2018. Black Duck Open Hub. Black Duck Software, Inc. https:
//www.openhub.net/p?ref=homepage&query=xen.

[20] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.
Cache attacks on Intel SGX. In Proceedings of the 10th European Workshop on
Systems Security. ACM, 2.

[21] Shay Gueron. 2016. A Memory Encryption Engine Suitable for General Purpose
Processors. IACR Cryptology ePrint Archive 2016 (2016), 204.

[22] J Alex Halderman, Seth D Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A Calandrino, Ariel J Feldman, Jacob Appelbaum, and Edward W
Felten. 2009. Lest we remember: cold-boot attacks on encryption keys. Commun.
ACM 52, 5 (2009), 91–98.

[23] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
Del Cuvillo. 2013. Using innovative instructions to create trustworthy software
solutions. HASP@ ISCA 11 (2013).

[24] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
Del Cuvillo. 2013. Using innovative instructions to create trustworthy software
solutions.. In HASP@ ISCA. 11.

[25] Intel. 2013. Innovative Technology for CPU Based Attes-
tation and Sealing. https://software.intel.com/en-us/articles/
innovative-technology-for-cpu-based-attestation-and-sealing.

[26] Intel. 2015. Intel Core i7-6700 Processor. https://ark.intel.com/products/88196/
Intel-Core-i7-6700-Processor-8M-Cache-up-to-4_00-GHz.

[27] Intel. 2016. Introducing the Intel Software Guard Exten-
sions Tutorial Series. https://software.intel.com/en-us/articles/
introducing-the-intel-software-guard-extensions-tutorial-series.

[28] Intel. 2018. Intel Software Guard Extensions SDK (ECALL-OCALL Functions).
https://software.intel.com/en-us/node/709001.

[29] Intel. 2018. Intel Software Guard Extensions SDK (EDL). https://software.intel.
com/en-us/node/708968.

[30] Intel. 2018. Intel Software Guard Extensions SDK (SGX Random Generator).
https://software.intel.com/en-us/node/709094.

[31] Intel. 2018. Intel Software Guard Extensions SDK (user_check Attribute). https:
//software.intel.com/en-us/node/708978.

[32] Intel. 2018. Intel Software Guard Extensions SGX SSL. https://github.com/intel/
intel-sgx-ssl.

[33] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-Bomb:
Locking Down the Processor via Rowhammer Attack. In Proceedings of the 2nd
Workshop on System Software for Trusted Execution. ACM, 5.

[34] Simon Johnson, Vincent Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mckeen.
2016. Intel software guard extensions: EPID provisioning and attestation services.
ser. Intel Corporation (2016).

[35] David Kaplan. 2016. AMD x86 Memory Encryption Technologies. USENIX
Association, Austin, TX.

[36] D Kaplan. 2017. Protecting vm register state with sev-es. White paper, Feb (2017).
[37] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory encryption.

White paper, Apr (2016).
[38] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. kvm:

the Linux virtual machine monitor. In Proceedings of the Linux symposium, Vol. 1.
225–230.

[39] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. ArXiv e-prints (Jan.
2018). arXiv:1801.01203

[40] Kostya Kortchinsky. 2009. Cloudburst: A VMware guest to host escape story.
Black Hat USA (2009), 19.

[41] Kubilay Ahmet Küçük, Andrew Paverd, Andrew Martin, N Asokan, Andrew
Simpson, and Robin Ankele. 2016. Exploring the use of Intel SGX for secure
many-party applications. In Proceedings of the 1st Workshop on System Software
for Trusted Execution. ACM, 5.

[42] Dmitrii Kuvaiskii, Somnath Chakrabarti, and Mona Vij. 2018. Snort Intrusion
Detection Systemwith Intel Software Guard Extension (Intel SGX). arXiv preprint
arXiv:1802.00508 (2018).

[43] CTS Lab. 2018. Severe Security Advisory on AMD Processors. https://
safefirmware.com/amdflaws_whitepaper.pdf.

[44] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho
Choi, Taesoo Kim, Marcus Peinado, and Brent ByungHoon Kang. 2017. Hacking
in Darkness: Return-oriented Programming against Secure Enclaves. In 26th
USENIX Security Symposium (USENIX Security 17). USENIX Association, Van-
couver, BC, 523–539. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/lee-jaehyuk

[45] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. In 26th USENIX Security Symposium, USENIX Security. 16–18.

[46] LSDS. 2018. Spectre attack against SGX enclave. https://github.com/lsds/
spectre-attack-sgx.

[47] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson,
Rebekah Leslie-Hurd, and Carlos Rozas. 2016. Intel® Software Guard Extensions
(Intel® SGX) Support for Dynamic Memory Management Inside an Enclave. In
Proceedings of the Hardware and Architectural Support for Security and Privacy
2016. ACM, 10.

[48] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instructions
and software model for isolated execution.. In HASP@ ISCA. 10.

[49] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. Cachezoom:
How SGX amplifies the power of cache attacks. In International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 69–90.

[50] Olga Ohrimenko, Michael T Goodrich, Roberto Tamassia, and Eli Upfal. 2014.
The Melbourne shuffle: Improving oblivious storage in the cloud. In International
Colloquium on Automata, Languages, and Programming. Springer, 556–567.

[51] OpenWall. 2016. A portable, fast, and free implementation of the MD5 Message-
Digest Algorithm (RFC 1321). http://openwall.info/wiki/people/solar/software/
public-domain-source-code/md5.

[52] Diego Perez-Botero, Jakub Szefer, and Ruby B Lee. 2013. Characterizing hy-
pervisor vulnerabilities in cloud computing servers. In Proceedings of the 2013
international workshop on Security in cloud computing. ACM, 3–10.

[53] Rafael Pires, Daniel Gavril, Pascal Felber, Emanuel Onica, and Marcelo Pasin.
2017. A lightweight MapReduce framework for secure processing with SGX. In
Cluster, Cloud and Grid Computing (CCGRID), 2017 17th IEEE/ACM International
Symposium on. IEEE, 1100–1107.

[54] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.
Hey, you, get off of my cloud: exploring information leakage in third-party
compute clouds. In Proceedings of the 16th ACM conference on Computer and
communications security. ACM, 199–212.

[55] Francisco Rocha and Miguel Correia. 2011. Lucy in the sky without diamonds:
Stealing confidential data in the cloud. In Dependable Systems and Networks
Workshops (DSN-W), 2011 IEEE/IFIP 41st International Conference on. IEEE, 129–
134.

[56] Bruce Schneier. 2007. Applied cryptography: protocols, algorithms, and source code
in C. john wiley & sons.

[57] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
data analytics in the cloud using SGX. In IEEE Symposium on Security and Privacy
(SP), 2015. IEEE, 38–54.

[58] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware guard extension: Using SGX to conceal cache attacks. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 3–24.

[59] Hiie Vill. 2017. SGX attestation process. https://courses.cs.ut.ee/MTAT.07.022/
2017_spring/uploads/Main/hiie-report-s16-17.pdf.

[60] NicoWeichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. 2016. Async-
Shock: Exploiting synchronisation bugs in Intel SGX enclaves. In European Sym-
posium on Research in Computer Security. Springer, 440–457.

[61] Rafal Wojtczuk, Joanna Rutkowska, and Alexander Tereshkin. 2008. Xen 0wning
trilogy. Invisible Things Lab (2008).

[62] Bin Cedric Xing, Mark Shanahan, and Rebekah Leslie-Hurd. 2016. Intel® Soft-
ware Guard Extensions (Intel® SGX) Software Support for Dynamic Memory
Allocation inside an Enclave. In Proceedings of the Hardware and Architectural
Support for Security and Privacy 2016. ACM, 11.

[63] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In Security
and Privacy (SP), 2015 IEEE Symposium on. IEEE, 640–656.

[64] Fengwei Zhang and Hongwei Zhang. 2016. SoK: A Study of Using Hardware-
assisted Isolated Execution Environments for Security. In Proceedings of the
Hardware and Architectural Support for Security and Privacy 2016. ACM, 3.

https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
http://eprint.iacr.org/2016/086
http://eprint.iacr.org/2016/086
https://www.openhub.net/p?ref=homepage&query=xen
https://www.openhub.net/p?ref=homepage&query=xen
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://ark.intel.com/products/88196/Intel-Core-i7-6700-Processor-8M-Cache-up-to-4_00-GHz
https://ark.intel.com/products/88196/Intel-Core-i7-6700-Processor-8M-Cache-up-to-4_00-GHz
https://software.intel.com/en-us/articles/introducing-the-intel-software-guard-extensions-tutorial-series
https://software.intel.com/en-us/articles/introducing-the-intel-software-guard-extensions-tutorial-series
https://software.intel.com/en-us/node/709001
https://software.intel.com/en-us/node/708968
https://software.intel.com/en-us/node/708968
https://software.intel.com/en-us/node/709094
https://software.intel.com/en-us/node/708978
https://software.intel.com/en-us/node/708978
https://github.com/intel/intel-sgx-ssl
https://github.com/intel/intel-sgx-ssl
http://arxiv.org/abs/1801.01203
https://safefirmware.com/amdflaws_whitepaper.pdf
https://safefirmware.com/amdflaws_whitepaper.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://github.com/lsds/spectre-attack-sgx
https://github.com/lsds/spectre-attack-sgx
http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
https://courses.cs.ut.ee/MTAT.07.022/2017_spring/uploads/Main/hiie-report-s16-17.pdf
https://courses.cs.ut.ee/MTAT.07.022/2017_spring/uploads/Main/hiie-report-s16-17.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Intel Software Guard eXtensions (SGX)
	2.2 AMD Memory Encryption Technology

	3 Comparison Evaluation
	3.1 Experimental Testbeds
	3.2 Function and Use Cases Comparison
	3.3 Security Comparison
	3.4 Performance Comparison

	4 Conclusions
	Acknowledgments
	References

