SEED: Confidential Big Data Workflow Scheduling with Intel SGX Under Deadline Constraints

Ishtiaq Ahmed†, Saeid Mofrad†, Shiyong Lu†, Changxin Bai†, Fengwei Zhang*, Dunren Che*

Wayne State University, USA*

Southern University of Science and Technology, China *

Southern Illinois University, USA*

DEPARTMENT OF COMPUTER SCIENCE

Overview

- Introduction
- The Problem
- Existing Approaches and Limitations
- Our Proposed Approach
- Experimental Results
- Conclusions and future work

Introduction

- Big data workflow management systems [2] (BDWFMSs) have recently emerged as popular data analytics platforms to perform large-scale data analytics in the cloud.
- The protection of data confidentiality and secure execution of workflow applications remains an important and challenging problem.
- Monetary cost optimization of executing workflows in the cloud while satisfying a user-defined deadline is also challenging.

The problem of big data workflow scheduling in the cloud

- The Protection of the privacy of the confidential workflow's tasks in the cloud, whose proprietary algorithm implementations are intellectual properties of the respective stakeholders.
- The monetary cost optimization of executing workflows in the cloud while satisfying a user-defined deadline.

Limitation of previous approaches

- Require many VM instances.
- Operational cost is expensive.
- Scheduling algorithm that can handle confidential tasks is scarce.

What if I need low operational cost with confidentiality and integrity environment?

Challenges for scheduling algorithms

- Deadline-centric: When the deadline is fixed, how we schedule a workflow with minimal cost?
- Budget-centric: When the budget is fixed how we schedule a workflow with minimal makespan?

Contributions

- We propose a novel deadline-constrained and SGX-aware big data workflow scheduling algorithm, SEED (SGX, Efficient, Effective, Deadline Constrained) that leverage hardware-based security features such as Intel Software Guard eXtensions (SGX) [1] in the cloud hardware to protect the execution of security-sensitive workflow's tasks in the cloud environments.
- SEED features several heuristics, including exploiting the longest critical paths and reuse of extra times in existing VMs.
- The proposed SEED, as well as IC-PCP, have been tested in a modified version of DATAVIEW [2], which is one of the most usable big data workflow management systems in the community, to support confidential tasks in a workflow DAG with Intel SGX.

Planner level: Scheduling workflow

Algorithm 1: ScheduleWorkflow(G)

- 1 $startNodes \leftarrow nodesWithoutParent$ in G;
- $2 \ endNodes \leftarrow nodesWithoutChildren \ in \ G;$
- 3 connect t_{start} with startNodes;
- 4 connect t_{end} with endNodes;
- 5 determine the available virtual machines with cost and billing unit cycle;
- 6 $EST(t_{start}) \leftarrow 0;$
- 7 $LFT(t_{end}) \leftarrow \text{Deadline } \delta;$
- 8 calculate EST, EFT from t_{start} to t_{end} recursively;
- 9 calculate LFT from t_{end} to t_{start} recursively;
- 10 $G \leftarrow$ remove t_{start} , t_{end} , and edges in between from G;
- 11 AssignChildren(G);

Planner level: Assigning Children

Algorithm 2: AssignChildren(G)

```
1 list \leftarrow sort tasks in G in topological order;
2 while list \neq \emptyset do
         criticalPath \leftarrow \emptyset;
         t_i \leftarrow list[1]

    ▷ Selecting first task

         add t_i in criticalPath;
         while t_i has children do
              t_i \leftarrow criticalChild(t_i);
              add t_i in criticalPath;
8
         end
         paths \leftarrow \text{split apart } criticalPath \text{ by confidential tasks as}
10
           separators;
         foreach path \in paths do
11
               AllocateVirtualMachine(path);
12
              foreach t_i \in path do
13
                    recalculate LFT of the ancestors \{t_k : t_k \notin path\} of
14
                    recalculate EST, EFT of the descendants
15
                      \{t_k: t_k \notin path\} \text{ of } t_i;
              end
16
              G \leftarrow remove all tasks and edges involving tasks in path
17
                from G;
              list \leftarrow remove all tasks involving in path from list;
18
         end
19
20 end
```

Planner level: Allocating virtual machines

Algorithm 3: AllocateVirtualMachine(path)

```
1 VMI^c \leftarrow existing-VM-instances;
2 if secure environment is required for path then
        launch a new instance vmi^{SGX} for path:
        VMI^c \leftarrow vmi^{SGX}:
        return:
6 foreach existing VM instance vmi \in VMI^c in ascending order of
        oldAssignment \leftarrow assignment(vmi);
7
        Q \leftarrow assignment(vmi);
                                                    \triangleright queued tasks at vmi
                                  \triangleright Case 1: Insert path into middle of Q
        if there exists a task t_k \in Q such that t_k
10
          \in path[last].children then
             insert path into Q before t_k and recalculate EST, EFT,
11
              LFT of affected tasks in Q;
             if assignment(vmi) is valid then
12
13
                  return;
                                       \triangleright keep current assignment(vmi)
             else
14
                  assignment(vmi) \leftarrow oldAssignment;
15
             end
16
        end
17
                                       \triangleright Case 2: Insert path at head of Q
18
        insert path at head Q and recalculate EST, EFT, LFT of
19
         affected tasks in Q;
        if assignment(vmi) is valid then
20
             return:
                                       \triangleright keep current assignment(vmi)
21
        else
22
             assignment(vmi) \leftarrow oldAssignment;
23
        end
24
                                        \triangleright Case 3: Insert path at end of Q
25
        insert path at end of Q and recalculate EST, EFT, LFT of
26
         affected tasks in Q;
        if assignment(vmi) is valid then
27
                                       \triangleright keep current assignment(vmi)
28
             return;
        else
29
             assignment(vmi) \leftarrow oldAssignment;
30
31
        end
32 end
                      No existing VM instance can accommodate path
33
34 launch a new cheapest but capable VM instance vmi^c for executing
     the tasks in path before their LFT;
35 VMI^c \leftarrow vmi^c;
36 return
```


Туре	Start	End	Duration	Interval	Cost	Selected
				cycle		task
VMI_1^3 VMI_1^2	0	66	66	3	15	$\{t_1, t_4, t_7, t_6\}$
VMI_1^2	0	51	51	2	16	$\{t_2, t_5, t_8\}$
VMI_2^3	8	58	50	2	10	$\{t_3, t_9, t_{10}\}$

Туре	Start	End	Duration	Interval	Cost	Selected
				cycle		task
VMI_1^3	0	66	66	3	15	$\{t_1, t_4, t_7, t_6\}$
$VMI_1^{\bar{2}}$	0	51	51	2	16	$\{t_2, t_5, t_8\}$
$VMI_2^{\c 3}$	0	9	9	1	5	$\{t_3\}$
$VMI_2^{\c 3} \ VMI_1^{SG}$	X 17	24	7	1	25	$\{t_9\}$
$VMI_3^{\bar{3}}$	25	50	25	1	5	$\{t_{10}\}$

(a) Schedule generated by SGX-E2C2D on non-confidential workflow.

(b) Schedule generated by IC-PCP on non-confidential workflow.

(c) Schedule generated by SGX-E2C2D on confidential workflow.

The architecture of DATAVIEW Task Executor with SGX support

Experimental settings

Testbed Machine	Intel SGX	AWS		
CPU Model	Xeon E3-1275 V6	Intel(R) Xeon(R) CPU E5-2676 v3		
CPU Physical Core Number	4	8		
CPU Logical Thread Number	8	16		
CPU Base Clock	3.8GHz	2.4GHz		
CPU Boost Clock	4.2GHz	3.2GHz		
Cache Type	Smart Cache	Smart Cache		
Cache Size	8MB	20MB		
Motherboard	Supermicro X11SSW-F	AWS		
Memory	32GB DDR4 ECC	1GB DDR4 ECC		
Storage	HDD	EBS		
Operating System	CentOS 7.0	Linux 16.04 LTS		
Kernel Version	3.10.0-862.9.1.el7.x86_64 x86_64	4.4.0-1060-aws		
SGX SDK Version	SGX SDK Ver 2.2	SGX SDK Ver 2.0		
AMI family	N/A	General purpose		
AMI type	N/A	t2.micro		
AMI Assigned CPU Core	N/A	1		

Performance analysis Montage Workflow (10sec)

$$\mathbf{C} = \begin{cases} 0.5 + 0.5 * \frac{(maxcost - cost)}{maxcost}, & if \ makespan \leq \delta \\ 0.5 - 0.5 * \frac{(makespan - \delta)}{(maxmakespan - \delta)}, & otherwise \end{cases}$$

Performance analysis Montage Workflow (60s)

Performance analysis of algorithm1 in the diagnosis recommendation workflow[3]

SGX overhead reported a range of 1.24x to 1.31x overhead compared with the base line with 96k-150k labeled and 24k-37.5k unlabeled instances, respectively

Performance overhead of LIGO workflow

The average performance overheads for the LIGO workflow shows a range between 1.81x in 10% and increases to 2.50x in 50% confidential task assignments.

LIGO Workflows

Performance overhead of Montage workflow

The average performance overheads for the Montage workflow shows a range between 1.34x in 10% and increases to 2.50x in 50% confidential task assignments.

Montage Workflows

Conclusions and future work

- This paper presents an efficient, cost-effective deadline constrained algorithm SEED for scientific workflows in IaaS clouds.
- To the best of our knowledge, this is one of the first scheduling algorithms that can handle confidential workflow tasks.
- The primary intention is to schedule confidential tasks and achieve a low-cost scheduling algorithm within the given deadline while the complexity remains feasible for running large-scale workflows.
- For future works, we intend to protect the security of big data workflows in the heterogeneous cloud environments, including Intel SGX, AMD SEV [5], and GPU accelerators.

SEED Demo

SecDATAVIEW Introduction

- SecDATAVIEW [4] system is our advance design of DATAVIEW that protects the confidentiality and privacy of big data workflows in the heterogeneous cloud environments.
- SecDATAVIEW can leverage hardware-based security features such as Intel SGX [2] and AMD SEV [5] and guarantee the secure execution of confidential workflow in the untrusted cloud environments.
- Access DATAVIEW and SecDATAVIEW:
- https://github.com/shiyonglu/DATAVIEW
- https://github.com/shiyonglu/SecDATAVIEW
- DATAVIEW YouTube Channel:
- https://www.youtube.com/channel/UCrIEBUmju-NMKFMIFbsKBYw

DATAVIEW TEAM

World-Class Education in the Real World™

arriors

Thank You.

Questions?

References:

- ▶ [1] McKeen *et al.*, "Innovative instructions and software model for isolated execution.," in HASP@ISCA, 2013, p. 10.
- [2] A. Kashlev, S. Lu, and A. Mohan, "Big Data Workflows: a Reference Architecture and the DATAVIEW System," Serv. Trans. Big Data, vol. 4, no. 1, pp. 1-19, 2017.
- ▶ [3] Ahmed et al., "Diagnosis Recommendation using Machine Learning Scientific Workflows," in *Big Data Congress, 2018 IEEE International Conference on*, 2018.
- ▶ [4] Mofrad, S., Ahmed, I., Lu, S., Yang, P., Cui, H., & Zhang, F. (2019, December). SecDATAVIEW: a secure big data workflow management system for heterogeneous computing environments. In *Proceedings of the 35th Annual Computer Security Applications Conference* (pp. 390–403).
- [5] Kaplan, D., Powell, J., & Woller, T. (2016). AMD memory encryption. *White paper*.