
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

SecureSwitch: BIOS-Assisted Isolation and Switch between Trusted
and Untrusted Commodity OSes

Kun Sun
ksun3@gmu.edu

Jiang Wang
jwanga@gmu.edu

Fengwei Zhang
fzhang4@gmu.edu

Angelos Stavrou
astavrou@gmu.edu

Technical Report GMU-CS-TR-2011-7

Abstract

Protecting commodity desktop systems that run commercial
operating systems (OS) without adversely impacting perfor-
mance or usability remains an open problem. To make mat-
ters worse, the overall system security depends on desktop ap-
plications with complex code-bases that perform multiple and
inter-dependent tasks often dictated by Internet-borne code.
Recent research has indicated the need for context-dependent
trustworthy environments where the user can segregate differ-
ent activities in an effort to lower risk and safeguard private
information.

In this paper, we introduce a new BIOS-assisted mecha-
nism for the secure generation and management of trusted ex-
ecution environments, tailored to separate security-sensitive
activities from untrusted ones. A key characteristic of our
system is usability: the capability to quickly and securely
switch between operating environments in a single physical
machine without the need for any specialized hardware or ex-
tensive code modifications. Our goal was to eliminate any
mutable, non-BIOS codesharing while reusing existing pro-
cessor capabilities. We demonstrate that even if the untrusted
OS becomes compromised, it cannot perform an exfiltration
or inference attack on data or applications in the trusted OS.
To avoid sophisticated attacks that fake a trusted environment,
we provide visible indication to the user about the current en-
vironment. Moreover, to alternate between environments, we
require the user to physically press a button, an action that
cannot be reproduced by software. Using our prototype, we
measured the switching process to be approximately six sec-
onds. This short switching time empowers the user to fre-
quently and seamlessly switch between trusted and untrusted
environments.

1 Introduction

Nowadays, desktop computers are being employed for multi-
ple tasks from Desktop computers are being employed nowa-
days for multiple tasks ranging from pleasure to business:

web browsing, online gaming, and social web portals are ex-
amples in the former category; online banking, shopping, and
business emails belong in the latter. Unfortunately, modern
software has a large and complex code base that typically con-
tains a number of vulnerabilities [5]. To make matters worse,
modern desktop applications usually operate on foreign con-
tent that is received over the network. Current operating sys-
tem (OS) environments offer user- and process-level isolation
for different activities; however, these levels of isolation can
be easily bypassed by malware through privilege escalation
or by other attacking techniques. Researchers have pointed
out the need for trustworthy environments where, based on
context and requirements, the user can segregate different ac-
tivities in an effort to lower risk by reducing the attack space
and data exposure.

To this end, there is an ongoing effort to employ virtual
machine monitors (VMMs, also referred to as hypervisors) to
isolate different activities and applications [33, 14, 15, 22, 36,
21, 35, 16]. As long as the virtual machine monitor is not
compromised and there is no exposed path or covert channel
between the different environments, applications in different
VMs remain isolated. However, their widespread adoption
has attracted the attention of attackers towards VMM vulner-
abilities [24] and the number and nature of attacks [38, 28]
against the hypervisors are poised to grow. Researchers have
noticed this problem and have begun to improve hypervisor
security [35, 11, 34].

An alternative to software isolation is hardware isolation:
in many military and civilian installations users have to
use multiple physically-isolated computers, merely switching
controls and displays. Although attractive in terms of iso-
lation, hardware increases the operational and maintenance
cost because it requires more space, cooling, and energy. It
is inflexible and cannot support the current need for a range
of trusted environments. Moreover, it is inconvenient for
users to switch between two computers to finish their tasks.
Multi-boot supports the installation of multiple OSes on the
same machine and uses a boot loader to choose between the
OSes. Unfortunately, it is inconvenient and time consuming
to shutdown one OS and boot up another. For instance, Lock-

1



down [31] combines a hypervisor with ACPI S4 Sleep (also
known as hibernation or Suspend to Disk) to provide a secure
environment for sensitive applications. However, the switch-
ing latency is still too long, in many cases more than 40 sec-
onds, rendering the system difficult to use in practice.

In this paper, we attempt to tackle the secure OS isolation
problem without using a hypervisor or any mutable shared
code. We designed a firmware-assisted system called Se-
cureSwitch, which allows users to switch between a trusted
and an untrusted operating system on the same physical ma-
chine with a short switching time. The basic input/output sys-
tem (BIOS) is the only trusted computing base that ensures
the resource isolation between the two OSes and enforces a
trusted path for switching between the two OSes. The attack
surface in our system is significantly smaller than hypervisor-
or software-based systems; we can protect the integrity of the
BIOS code by using a hardware lock (e.g., BIOS CNTL reg-
ister [4] in Intel ICHs) to set the BIOS code as read-only, or
by using TPM to verify the integrity of the BIOS code. Fur-
thermore, our system guarantees a strong resource isolation
between the trusted and untrusted OSes. If the untrusted OS
has been compromised, it still cannot read, write, or execute
any of the data and applications in the trusted OS.

Overall, our system can ensure isolation on the following
computer components:

• Memory Isolation: All OS environments run in sepa-
rate Dual In-line Memory Modules (DIMM). A physical-
level memory isolation is ensured by the BIOS because
only the BIOS can initialize and enable the DIMMs. No
software can initialize or enable DIMMs after the system
boots up.

• CPU Isolation: The different operating systems never
run concurrently. When one OS is switched off, all CPU
state is saved and flushed. We use ACPI S3 sleep mode
to help achieve CPU suspend/restore.

• Hard Disk Isolation: Each OS can have its own dedi-
cated encrypted hard disk. We use RAM disk to save the
temporary sensitive data in the trusted OS. The untrusted
OS cannot access the RAM disk in the trusted OS due to
the memory isolation.

• Other I/O Isolation: When one OS is switched off, all
contents maintained by the device drivers (e.g, graphic
card, network card) are saved and the devices are then
powered off. This guarantees that the untrusted OS can-
not steal any sensitive data from the I/O devices.

To prevent fake OS attacks, we must enforce a trusted path
when the system switches from the untrusted OS to the trusted
OS. This guarantees that the system really suspends the un-
trusted OS and wakes up the trusted OS. Otherwise, a sophis-
ticated adversary may fake an S3 sleep in the untrusted OS
by manipulating the hardware (e.g., shutting down the moni-
tor) and then deceiving the user with a faked trusted OS en-
vironment, which is controlled by the compromised indicates
which OS should be waken up. The value of the flag can only

be manually changed by the user, and it cannot be changed
by any untrusted OS. We refer to such events as “Fake OS
attacks.” To prevent such an attack, we use the power button
and power LED to indicate to the user when the system en-
ters the BIOS after one OS is suspended. The BIOS will then
wake up one OS according to a system OS flag that indicates
which OS should be woken. The value of the flag can only be
manually changed by the user; it cannot be changed by any
software.

We harness the Advanced Configuration and Power Inter-
face (ACPI) [18] S3 sleep mode to help achieve a short OS
switching latency. Because two OSes are maintained in RAM
memory at the same time, the switching latency is only about
six seconds, which is much faster than switching between two
OSes on a multi-boot computer or switching using ACPI S4
mode [31]. It is slower than the hypervisor-based solutions;
however, we don’t need to worry about the potential vulnera-
bilities in the hypervisor. Moreover, our system can be used
as a complementary approach to existing hypervisor- and OS-
protection solutions.

In summary, we make the following contributions within
this paper:

• Secure OS switching without using any mutable software
layer. Our system depends on the BIOS and some hard-
ware properties to enforce a trusted path when switching
between the two OSes. Our solution requires no modifi-
cation of the commodity OS.

• Discernible trusted path and no data leakage between
two environments. The resource isolation enforced by
the BIOS prevents data leakage from the trusted OS to
the untrusted OS. The trusted path can prevent the dan-
gerous fake OS attacks.

• Fast Switching Time. We implemented a prototype of
the secure switching system using commodity hardware
and both commercial and open source OSes (Microsoft
Windows and Linux). Our system can switch between
the two OSes in approximately six seconds.

2 Background

2.1 ACPI Sleeping States
The Advanced Configuration and Power Interface (ACPI) es-
tablishes industry-standard interfaces that enable OS-directed
configuration, power management, and thermal management
of computer platforms [18]. ACPI defines four global states:
G0, G1, G2, and G3. G0 is the working state wherein a ma-
chine is fully running. G1 is the sleeping state that achieves
different levels of power saving. G2 is called “Soft Off,”
wherein the computer consumes only a minimal amount of
power. In G3, the computer is completely shutdown; aside
for the real-time clock, the power consumption is zero.

G1 is subdivided into four sleeping states: S1, S2, S3, and
S4. From S1 to S4, the power saving increases, but the
wakeup time also increases. In S3, all system context (i.e.,

2



CPU, chipset, cache) aside from the RAM is lost. S3 is also
referred to as Standby or Suspend to RAM. In S4, all main
memory content is saved to non-volatile memory, such as a
hard drive, and the machine (including RAM) is powered off.
S4 is also referred to as Hibernation or Suspend to Disk. In
both S3 and S4, all of the devices may be powered off.

Not every machine or operating system supports all of the
ACPI states. For instance, neither S1 nor S2 is used by Win-
dows. S3 and S4, however, are supported by all Linux 2.4
and 2.6 series kernels and recent Windows distributions (XP,
Vista, 7). Our SecureSwitch uses S3 operations provided by
the operating system to help save the system context and later
restore it. This dramatically saves our developing efforts.

2.2 BIOS, UEFI and Coreboot
The BIOS is an indispensable component for all computers.
The main function of the BIOS is to initialize the hardware,
including processor, main memory, northbridge, southbridge,
hard disk, and some other necessary IO devices, such as key-
board. BIOS code is normally stored on a non-volatile ROM
chip built into the system on the mother board.

The BIOS is traditionally written by assembly language
and works in real-address mode. In recent years, a new gen-
eration of BIOS, referred to as Unified Extensible Firmware
Interface (UEFI) [8], has become increasingly popular in the
market. UEFI is a specification that defines the new software
interface between OS and firmware. One purpose of UEFI is
to ease the development by switching to the protected mode
in a very early stage and writing most of the code in C lan-
guage. A portion of the Intel UEFI framework (named Tiano
Core) is open source; however, the main function of the UEFI
(to initialize the hardware) is still closed source.

Coreboot [2] (formerly known as LinuxBIOS ) is an
open-source project aimed at replacing the proprietary BIOS
(firmware) in most of today’s computers. It performs a small
amount of hardware initialization and then executes a so-
called payload. In some sense, coreboot is similar to the
UEFI-based BIOS. Coreboot also switches to protected mode
in a very early stage and is written mostly in C language. Our
prototype implementation is based on coreboot V4. We chose
to use Coreboot rather than UEFI since Coreboot has done
all of the work of hardware initialization, whereas we would
need to implement UEFI firmware from scratch, including
finding out all of the data sheets for our motherboard.

2.3 DQS Settings and DIMM MASK
There are many different types of RAM, and one of the most
popular ones is the Double Data Rate Synchronous Dynamic
Random Access Memory (DDR SDRAM). One feature of
these DDR memories is that they include a special electrical
signal referred to as “data strobes” (DQS). For proper mem-
ory reads to occur, the DQS must be properly timed to align
with the data valid window of the data (DQ) lines. The data
valid window refers to the specific period of time when the
DRAM chip drives (i.e., makes active) the DQ lines for the

memory controller to read its data. If the DQS signal is not
properly aligned, the memory access will fail. For DDR1,
the parameters of DQS can be automatically set by the hard-
ware. For DDR2 and DDR3, the DQS settings should be pro-
grammed by the BIOS [10]. We use DDR2 memory in our
system.

A motherboard usually has more than one DIMM slot.
BIOS normally uses a variable named “DIMM MASK” to
enable the DIMMs. Our system assigns one DIMM to one
OS. When one OS is running, the BIOS will only enable the
DIMM assigned to that OS with the corresponding DQS set-
tings.

3 Threat Model and Assumptions
Our system operates under the assumption that an adversary
can subvert the untrusted OS using any known or zero-day at-
tacks on software applications, device drivers, user-installed
code, or operating system. We assume that the attacker cannot
access the physical machine or launch local physical attacks,
such as opening the case or removing a hard disk or a memory
DIMM.

An adversary may launch various attacks against the
trusted OS after compromising the untrusted OS. A data exfil-
tration attack aims at stealing sensitive data from the trusted
OS. Furthermore, the adversary may modify the code of
trusted OS and compromise its integrity. In a fake OS attack,
a sophisticated attacker can create a fake trusted OS environ-
ment, which is fully controlled by the attacker, and deceive
the user into performing sensitive transactions there. An at-
tacker can perform a denial-of-service (DoS) attack against
the trusted OS by crashing the untrusted OS; however, such
attacks can be easily detected and resolved. Therefore, we do
not prevent DoS attacks against our system.

We assume that the trusted OS can be trusted when the
BIOS boots it up, but this does not mean that the trusted OS is
bug-free. In other words, the trusted OS may be compromised
from network attacks using vulnerabilities within the OS or
the applications. There are several mechanisms to alleviate
these network attacks; however, they lie beyond the scope of
this paper.

We assume that the BIOS code, including the option ROMs
on devices (e.g., video cards), does not contain vulnerabili-
ties and can be trusted. The operating system must support
ACPI S3 sleeping mode, which has been widely supported by
modern OSes, such as Linux and Windows. Our system does
not require hardware virtualization support (e.g, Intel VT-x or
AMD-V).

4 SecureSwitch Framework
Figure 1 illustrates the overall architecture of the Se-
cureSwitch system. Two OSes are loaded into the RAM at
the same time. Instead of relying on a hypervisor, we mod-
ify the BIOS to control the loading, switching, and isolation
between the two OSes. Commercial OSes that support ACPI

3



S3 can be installed and executed without any changes. We
require that the computer have at least two DIMMs and two
hard disks and that the two OSes be installed on each hard
disk.

Trusted OS BIOSCPU
App1 App2 App3 Untrusted OSApp1 App2 App3

Memory Hard DiskVGA NIC Other I/O Devices
Figure 1: Architecture of SecureSwitch System

Secure Switching consists of two stages: OS loading stage
and OS switching stage. In the OS loading stage, the BIOS
loads two OSes into separated physical memory space. The
trusted OS should be loaded first and the untrusted OS second.
In the OS switching stage, the system can suspend one OS
and then wake up another. In particular, it must guarantee a
trusted path when the system switches from the untrusted to
the trusted OS.

The system must guarantee a thorough isolation between
the two OSes. Usually one OS is not aware of the other co-
existing OS in the memory. Even if the untrusted OS has been
compromised and can detect the coexisting trusted OS on the
same computer, it still cannot access any data or execute any
code on the trusted OS.

4.1 Secure OS Loading
Figure 2 shows the state machine for loading and switching
between two operating systems in the system. Two variables
are maintained to denote the respective states of two OSes.
In each parenthesis, the first and second number records the
state of OS1 and OS2 respectively. 0 means the OS has not
been loaded into the system; 1 means the OS has been loaded
and is currently running; -1 means the OS has been loaded
but switched out (i.e. is in sleep mode). For instance, (-1, 1)
means that OS1 has been loaded but switched out and that
OS2 is running. Since the system has only four valid states,
we could use two bits to record the current state of the ma-
chine.

When the machine is powered off, the system state is (0,0).
After the system is powered on, the BIOS always boots up
the trusted OS (OS1) first. When loading the trusted OS from
non-volatile memory (e.g., hard disk, USB), BIOS constrains
the trusted OS to use only half of the physical RAM. The
trusted OS is not aware of the existence of the second half
of the physical memory. The trusted OS can be shut down
or can perform sleep/wakeup. Before loading the untrusted
OS (OS2), the trusted OS is first suspended. The BIOS then
boots up the untrusted OS into the second half of the physical

(0,0) (1,0) (-1,1)Load OS1 Load OS2 (1,-1) Switch to OS1Switch to OS2 OS2 sleep/wakeup
OS1 Sleep/wakeupOS1 Shutdown

OS2 ShutdownPower Off OS1 sleep/wakeupOS1 Shutdown
Figure 2: State Machine for OS Switching.

RAM, which has no overlap with the memory used by the
trusted OS. At this point, both OSes have been loaded into
the memory while the untrusted OS is running and the trusted
OS is suspended. When either OS is shut down, the whole
system will be shut down.

4.2 Secure OS Switching

If a user wants to switch from the untrusted to the trusted OS,
the untrusted OS will be suspended first and then the system
will wake up the trusted OS. Similarly, the user can switch
back from the trusted to the untrusted OS. To save power en-
ergy, the user can still sleep and wake up the same OS.

4.2.1 Stateful vs. Stateless Trusted OS

When the system switches into the trusted OS, there are two
options for restoring OS context.

• Stateless mode: Each time the system switches into the
trusted OS, it starts from a pristine state. A copy of the
trusted OS in its pristine state is maintained either on the
hard disk or in a reserved memory area.

• Stateful mode: When the trusted OS is switched in, it
resumes from the system context wherein it was last
switched out. All states of the trusted OS can be saved
in the memory or on the hard disk.

The stateless mode does not save any system state when the
OS is switched out. It can mitigate the impacts of network at-
tacks to the trusted OS since it will start from a pristine state
that has not been compromised. The drawback is that the user
loses the system context, so it cannot resume a previous ses-
sion or task within the trusted OS. Moreover, an adversary
can easily fake a trusted OS environment if it knows the pris-
tine state of the OS. In a stateful mode, since all of the sys-
tem states are saved and can be restored, a user may resume
sessions and tasks within the trusted OS. However, when the
trusted OS has been continuously used for a long time, the
risk of being compromised from network attacks increases.

4



4.2.2 Protecting Control Variables

In Figure 2, two variables record the system’s current states.
The system also uses these as control variables to control the
system actions on OS loading and switching. It is critical to
protect these control variables from being manipulated by an
attacker.

Malicious code may manipulate the two variables to launch
a fake OS attack. For instance, when the untrusted OS is run-
ning with system state (-1,1), the user wants to switch to the
trusted OS. The control variables should first be updated from
(-1,1) to (1,-1). To launch the attack, the untrusted OS can
keep the control variables unchanged and then suspend itself.
When the system reads the control variables, it will simply
wake up the untrusted OS, which may create a faked trusted
OS environment by installing a virtual machine similar to the
trusted OS on the untrusted OS [19]. Since all of these ac-
tions may be transparent to the user, the attacker can deceive
the user into a fake trusted OS to perform sensitive transac-
tions.

In our prototype, we define two system flags to serve as
the control variables. We could prevent the fake OS attacks
by using some common hardware components to indicate the
value of a system flag. Thus, the system flags can only be
manually set by the user and cannot be configured by any
software. The design details are described in Section 5.2.1.

4.2.3 Trusted Path

The secure switching consists of two sequential steps: OS1
Suspend and OS2 Wakeup. In x86 architecture, the suspend
step is performed entirely by the operating system without in-
volving the BIOS; the wakeup step is initiated by the BIOS,
which then hands over control to the operating system. Since
a compromised untrusted OS can gain full control of the sus-
pend step, it may fake an OS suspend (e.g., power off the
monitor) and deceive the user into a fake trusted OS.

To prevent such fake OS attacks, our system must ensure
a trusted path that guarantees that the system enter the real
trusted OS when it switches to the trusted OS. In our system,
the BIOS and some hardware are the only components that
we can trust to enforce the trusted path. We must guarantee
that one OS will be truly suspended in order to trigger the
BIOS to enforce the trusted path.

4.3 Secure OS Isolation
The system must guarantee a strong isolation between the two
OSes to protect the confidentiality and integrity of the infor-
mation on the trusted OS. According to the von Neumann
architecture, we must enforce the resource isolation on major
computer components, including CPU, memory, chipset, and
I/O devices.

4.3.1 CPU Isolation

When one OS is running directly on a physical machine, it
has full control of the CPU. Therefore, the CPU contexts of

the trusted OS should be completely isolated from that of the
untrusted OS. In particular, no data information should be left
in CPU caches or registers after one OS has been switched
out.

CPU isolation can be enforced in three steps: saving the
current CPU context, clearing the CPU context, and loading
the new CPU context. For example, when one OS is switch-
ing off, the cache is flushed back to the main memory. When
one OS is switching in, the cache is empty. The content of
CPU registers should also be saved separately for each OS
and isolated from the other.

4.3.2 Memory Isolation

It is critical to completely separate the RAM between the two
OSes so that the untrusted OS cannot access the memory allo-
cated to the trusted OS. A hypervisor can control and restrict
the RAM access requests from the OSes. Without a hypervi-
sor, our system includes a novel hardware solution to achieve
memory isolation. The BIOS allocates non-overlapping phys-
ical memory spaces for two OSes and enforces constrained
memory access for each OS with a specific hardware config-
uration (DQS and DIMM Mask) that can only be set by the
BIOS. The OS cannot change the hardware settings to enable
access to the other OS’s physical memory. Details regarding
this are included in Section 5.3.2.

4.3.3 I/O Device Isolation

Typical I/O devices include a hard disk, keyboard, mouse, net-
work card (NIC), graphics card (VGA), etc. The running OS
has full control of these I/O devices. For devices with its
own volatile memory (e.g., NIC, VGA), we must guarantee
that the untrusted OS cannot obtain any information remain-
ing within the volatile memory (e.g., pixel data in the VGA
buffer) after the trusted OS has been suspended. When a state-
ful trusted OS is switched out, the device buffer should be
saved in the RAM or hard disk and then flushed. When the
OS is switched in, the device buffer can be reloaded from the
RAM or hard disk. When a stateless trusted OS is switched
out, the device buffer is simply flushed.

For I/O devices with non-volatile memory (e.g., USB,
hard disk), the system must guarantee that the untrusted
OS cannot obtain any sensitive data information from the
I/O devices used by the trusted OS. One possible solu-
tion is to encrypt/decrypt the hard disk when the trusted
OS is suspended/woken. However, this method will in-
crease the switching time dramatically due to costly encryp-
tion/decryption operations. Another solution is to use the
RAM disk to save temporary sensitive data for the trusted OS
because the untrusted OS cannot access the trusted OS’s mem-
ory. Details regarding this can be found in Section 5.3.3.

5 System Design
We combine the BIOS and the standard ACPI S3 sleep to en-
force resource isolation between the two OSes. BIOS is the

5



control center and the only trusted computing base to enforce
a trusted path during the OS switching process. The integrity
of the BIOS can be protected by the Trusted Platform Module
(TPM) or by a signed signature from vendors.

The BIOS relies on two flags in the OS loading and switch-
ing process. The OS FLAG indicates which OS (and cor-
responding resources) should be started; the BOOT FLAG
indicates whether the untrusted OS is being woken up or
loaded.

5.1 Loading Two OSes
In the OS loading stage, the system loads both OSes in
the RAM. To enforce RAM isolation without a hypervisor,
our system requires that the motherboard have at least two
DIMMs and two hard disks, and it assigns one DIMM and
one disk to each OS. When the computer boots up from a
power-off state, the BIOS first loads the trusted OS using only
one DIMM. Because BIOS is responsible for detecting and
initializing the memory controller, it can enable and report
only half of the RAM and hard disk to each OS. The other
loading steps are the same as for a normal OS booting.

Our system uses ACPI S3 sleep for both secure switch-
ing and the normal OS sleep/wakeup. The BIOS uses the
OS FLAG to distinguish the two cases. When the trusted
OS is suspended in S3 sleep, the BIOS can either wake up
the trusted OS when OS FLAG is set to 0 or wake up the
untrusted OS when OS FLAG is set to 1. However, a prob-
lem occurs when the BIOS tries to wake up the untrusted
OS, which has not been loaded into the RAM at this time.
To solve this problem, we use the BOOT FLAG to indicate
whether the untrusted OS has been loaded. When the system
is powered on, the BOOT FLAG is reset to 0 to reflect that
the untrusted OS has not yet been loaded. When the BIOS
detects that it is trying to wake up an untrusted OS that has
not been loaded, it will load the untrusted OS and then set
BOOT FLAG to 1.

One major drawback of this method is that the granularity
for memory allocation is the size of DIMM. When one OS is
running, only a portion of the RAM in the system can be used.
We consider this the price of enhancing system security.

5.2 Switching Between Two OSes
OS switching is conducted by both the operating system and
the BIOS. After both OSes have been loaded into the mem-
ory, the switching is done to put the currently-running OS
into ACPI S3 sleep mode and then to wake up the other OS
from ACPI S3 sleep mode. We use ACPI S3 sleep/wakeup
because it has defined functionalities to save the CPU con-
text and hardware devices’ states. In ACPI S3 sleep mode,
the CPU stops executing any instruction, and the CPU con-
text is not maintained. The operating system will flush all
dirty cache to RAM and save the CPU context. The Dynamic
RAM context is maintained by placing the memory into a low-
power self-refresh state. Only those devices that reference
power resources are in the ON state. All the other devices

(e.g., VGA, NIC) are in the D3 (OFF) state while their states
are saved by the OS or the device drivers.

BIOS Untrusted OS(running)
OS_FLAG

Power Button (1) SuspendTrusted OS(ACPI S3 sleep)Trusted OS(ACPI S3 sleep) Untrusted OS(ACPI S3 sleep)Trusted OS(running) Untrusted OS(ACPI S3 sleep)(2) press button (3) read OS_FLAG (4) hardware configurationCPU, RAM, Hard Disk(5) wake up trusted OS (6) wake up
Figure 3: Switching Flow from Untrusted OS to Trusted OS.

Figure 3 shows the control flow when the system is switch-
ing from the untrusted to the trusted OS. The user first sus-
pends the untrusted OS, which is responsible for saving the
CPU context and hardware devices’ states. Afterwards, both
OSes stay in the ACPI sleep mode. The user then presses the
power button to wake up the system. This step is critical to
enforce a trusted path by making the system enter the BIOS
first. We will discuss this further at a later point. The BIOS
can distinguish OS S3 wakeup from OS booting using some
register in the southbridge. For instance, in the south bridge
VT8237R [32], the three bits of “Sleep Type” in the Power
Management Control register is set to 001 for S3 sleep.

Next, the BIOS reads the flag OS FLAG to decide which
OS should be woken. According to OS FLAG, the BIOS
programs the initial boot configuration of the CPU (e.g., the
MSR and MTRR registers), initializes the cache controller,
enables the memory controller, and jumps to the waking vec-
tor. After the BIOS forwards the system control to the OS,
the trusted OS continues to perform the ACPI S3 wakeup and
recover its CPU context and device states.

5.2.1 Integrity of System Flags

We must ensure the integrity of the system flags, OS FLAG
and BOOT FLAG, to protect the system from fake OS at-
tacks. However, the first challenge is to find a location to
save these flags. We cannot simply save the two flags in the
RAM because the BIOS uses the flags to enable the memory
DIMM(s) and cannot read the flags before the RAM has been
enabled. One solution is to save the flags in some unused
bytes in CMOS. For example, we could save the OS FLAG
at offset 125 bytes of CMOS, and the BOOT FLAG at offset
126 bytes of CMOS.

The second challenge is to ensure the integrity of the flags.
Since the OS can also access CMOS, a compromised OS can
change the flags in CMOS. For the BOOT FLAG flag, the
default value is 1, and it changes to 0 after booting the un-
trusted OS. If the untrusted OS changes the BOOT FLAG
flag to 1, the BIOS will load the untrusted OS again. Thus,

6



the adversary can gain nothing aside from rebooting the un-
trusted OS, so we save the BOOT FLAG flag in CMOS.

However, CMOS is not secure for the OS FLAG flag. By
manipulating the OS FLAG flag from the OS, the adversary
can launch the fake OS attack by waking the untrusted OS
instead of the trusted OS and then faking the trusted OS GUI
under the control of the untrusted OS.

To protect the OS FLAG flag and support the normal S3
sleep and wakeup, we can use a hardware bit to indicate the
value (0 or 1) of OS FLAG flag. This hardware bit can be
manually and physically set only by the user, while the BIOS
and OS can only read it. For example, we could use the stan-
dard parallel port to control the bit. In the D-Type 25-Pin
Parallel Port Connector, the Pin Number 15 is used to signal
an Error to the computer. The Status Port (base address +1) is
a read-only port where Bit 3 reports the Error events. When
the user connects Pin 15 (Error) and Pin 25 (the ground pin)
with a wire or switch, the bit 3 of the Status port equals 0 and
the BIOS will always wake up the trusted OS. When the user
disconnects the two pins, the bit 3 of Status port equals to 1
and the BIOS will always wake up the untrusted OS. Many
such hardware bits or devices can serve the same purpose in
a computer.

Since the user controls which OS should be woken, our
system can prevent the fake OS attacks while supporting the
normal S3 sleep/wakeup. When users want to do a normal
sleep and wakeup, they do not change the parallel port con-
nection; if they want to switch to another OS, they change the
connection. The connection correctly shows the current OS
that the user is running, and we can build a small switch with
a long wire (so that the user can reach it easily) and put the
‘TRUSTED’ and ‘UNTRUSTED’ text on the two ends of the
switch.

5.2.2 Trusted Path Enforcement

Since the BIOS is the only component that we can trust to
enforce the trusted path from the untrusted to the trusted OS,
we use the power button to ensure that the BIOS is entered
during the OS wakeup stage, as shown in the second step in
Figure 3.

Since the OS FLAG alone is not enough to enforce the
trusted path, the above-mentioned step is critical to prevent
fake OS attacks. Supposing that the untrusted OS could fake
the untrusted OS S3 sleep and trusted OS wakeup process on
the monitor, the BIOS and OS FLAG could be totally by-
passed. For such an attack, the attacker would also need to
disable the power button events so that when the user presses
the power button, the OS does not do what it is supposed
to. To prevent such an attack, the user can use the system
power LED to know the current system mode. The power
LED lights up when the user turns on the power and blinks
(or changes to another light, depending on the implementa-
tion) when the system is in sleep mode. Since the LED is
hardware-controlled, the user can trust it to reveal if the un-
trusted OS has been suspended or not. If not, then this most
likely is an attack.

5.3 Enforcing System Isolation
Our system depends on the BIOS and the ACPI S3 mode
of the trusted OS to enforce resource isolation between the
trusted and the untrusted OSes. Modern OSes (e.g., Linux
and Windows XP) support ACPI S3 suspend/wakeup mecha-
nisms, which can be used to enforce the isolation on CPU and
I/O devices (e.g., VGA and NIC), without any modification
of the OS. This dramatically lessens our need to save/recover
the CPU context and devices’ states. The BIOS must be cus-
tomized to enforce isolation on RAM and hard disk, which
cannot be thoroughly isolated by the OS alone. In the follow-
ing, we first introduce the isolation capability of the ACPI S3
on CPU, NIC, and video devices. We then present the new
mechanism using BIOS and OS to enforce the isolation of
RAM and the hard drive.

5.3.1 Isolation based on Trusted OS

CPU Isolation: According to ACPI standards, the CPU con-
text will be lost during the S3 sleep, and the untrusted OS can-
not get any CPU context information of the trusted OS. The
OS is responsible for saving and restoring the CPU context.
In the untrusted OS, an attacker has only two options: either
saving the CPU context or not saving it. If the attacker modi-
fies the OS and does not save the CPU context, the untrusted
OS cannot be resumed and this becomes a DoS attack. The
trusted OS always follows the standard and saves the CPU
context.

NIC Isolation: In S3 sleep, most of the devices are put
into D3 (a no-power state for devices) state, during which
the contexts for these devices are lost. Thus, there is no in-
formation leakage during the switching from the trusted OS
to the untrusted OS. According to ACPI specifications, a net-
work card may provide Wake-on-LAN functions to wake up
the computer when the card stays in D0 or D3 power state.
SecureSwitch only supports the network card in D3 state to
wake up the computer, since the device in D0 state keeps its
context that may be misused by the attacker. Fortunately,
most of the current network cards support WOL at the D3
state [?].

Video Device Isolation: In S3 sleep, the content in the
video buffer is lost. The ACPI specification does not re-
quire the BIOS to reprogram the video hardware or to save
the video buffer, so BIOS does not know how to wake up
the video card from an unprogrammed state. One easy way
around this is to execute code from the video option BIOS
in the same way as the system BIOS does. vbetool [9] is
one such small application that executes code from the video
option BIOS. It can run in the user space but may introduce
some time delay in S3 sleep and wakeup.

5.3.2 Memory Isolation

Memory isolation is physically enforced by the BIOS. Ac-
cording to the OS FLAG flag, the BIOS knows which OS
is going to be booted or woken up, and it then initializes or
wakes up the corresponding DIMM for that OS. The other

7



DIMM remains uninitialized or un-configured (though it may
still maintain its data content). Prior to having the memory
controller bring system memory out of the self-refresh mode,
the BIOS is responsible for restoring the state of the proces-
sor’s memory controller upon waking up from the S3 sleep
state.

DDR2 and DDR3 memories need the BIOS to set the DQS
settings for read and write. When the BIOS boots up the sys-
tem, it searches the best settings for DQS. In addition to set-
ting the memory controller in the north bridge, the BIOS also
saves a copy of the setting in non-volatile RAM (NVRAM)
of the south bridge. In normal S3 sleep mode, system power
is removed from the memory controller (the north bridge);
however, a copy of DQS setting is maintained in NVRAM in
the south bridge. During an S3 wakeup, the BIOS copies the
DQS settings from the south bridge to the memory controller
(the north bridge).

A normal system keeps only one set of the DQS configura-
tions, while our secure-switching system must keep two sets
of different DQS configurations to initialize/enable different
DIMMs for two OSes. To wake up one OS, the BIOS should
reset the DQS setting in the memory controller using the cor-
responding set of DQS settings.

Since we cannot save two sets of memory controller con-
figurations in the same set of chipset registers, we must store
them somewhere during the S3 sleep mode. For custom-
designed computers with specific hardware devices, we may
save the two settings in the BIOS. However, in many sce-
narios, the memory control should be dynamically adjusted
to achieve optimal performance under different voltages and
temperatures. We cannot keep them in the RAM, either, be-
cause the RAM is not accessible at that time. Our solution
is to save the other set of settings in the CMOS. We save 64
bytes of Data Strobe Signal(DQS) settings, starting from the
offset 56 of CMOS, which by default are not used according
to the CMOS layout of the motherboard (ASUS M2V-MX
SE).

In our system, the memory controller can only be reset by
the BIOS, while the untrusted OS cannot initialize/enable the
memory controller to access the DIMM for the trusted OS.
The DQS settings contain more than one hardware register.
For instance, there are 16 registers on AMD K8 and 4 regis-
ters on AMD family 10h processors. This means that there is
a transient state wherein the system cannot access any DIMM
before all the DQS settings are complete. When an attacker
exploits a short program to modify the DQS settings, the pro-
gram cannot obtain the next instruction from the main mem-
ory and the system will hang. BIOS can modify the DQS
settings because it reads the instructions from the ROM that
is not controlled by the DQS settings.

The untrusted OS can modify both DQS settings saved in
the south bridge and in the CMOS. However, besides the
DQS setting, the BIOS uses a “DIMM Mask” byte to control
which DIMM should be enabled. In our system, the BIOS
sets “DIMM Mask” according to the OS FLAG flag. We set
the DIMM Mask to 0x01 only to enable the first DIMM, and
to 0x10 only to enable the second DIMM. If the Mask con-

flicts with the DQS setting, the system will hang.
Note that another requirement for our system is that one

memory controller should control more than one DIMM. In
that case, even if there is more than one memory controller,
the BIOS can initialize all of them to use part of the DIMMs
connected with the controllers. Then the attacker still can-
not modify the memory settings. Otherwise, if memory con-
trollers are mapped one-to-one to the DIMMs, then some
memory controllers have to be in an uninitialized (i.e., un-
configured) state that must be used by the trusted OS, and the
attacker may try to initialize it by not affecting other memory
controllers and DIMMs.

5.3.3 Hard Disk Isolation

The nonvolatile storage, such as hard disks used by the trusted
OS, should be completely isolated from the untrusted OS in
order to prevent information leakage. One solution is to en-
crypt a portion or the entirety of the hard disk before sleeping
the trusted OS and to decrypt it after waking it up. However,
the encryption/decryption operations will increase the switch-
ing time, along with the size of the hard disk.

Most motherboards (e.g., ASUS M2V-MX SE, in our im-
plementation) has more than one SATA Channels to support
more than one hard disk. When each OS can have its own
hard disk, the BIOS can constrain access to the hard disk of
the trusted OS. First, some hard disks support disk lock, an op-
tional security feature defined by AT Attachment (ATA) speci-
fication [1]. This lock allows the user to set a password to lock
a hard disk. Without knowing the password, no one can ac-
cess the hard disk. The limitation of this method is that not all
hard disks are provided with this feature. Second, according
to the OS FLAG flag, the payload of BIOS (e.g., SeaBIOS),
which is responsible for hard disk initialization, can initialize
only one of the two hard disks by setting the SATA Channel
enable register (e.g., Bus0, Device15, Function0, offset0x40
on southbridge VT8237r). However, if the attacker knows the
southbridge data sheet, it may reset the SATA Channel enable
register and initialize both hard disks.

With the observation that most applications in the trusted
OS only require that a small amount of data (e.g., browser
cookies) be saved on the hard disk, our system uses RAM disk
to store the dynamic sensitive data in the RAM, which can be
better protected by the system. In the beginning, we set up
a special directory in the RAM disk and ask the user to save
sensitive data into this directory. With Linux kernel version
2.6.18, we set the ramdisk size parameter in memu.list to ini-
tialize about 256MB RAM disk. After booting into the trusted
OS, we create a directory called /ramdisk and mount RAM
disk /dev/ram0 to the directory. However, the basic solution
is not very user friendly, so we improve upon it by using a
stackable file system (e.g., aufs [25, 33]) to mount a read-
write layer of RAM disk on top of regular directories, which
are mounted as read-only. We create a home directory under
the /ramdisk directory and mount /home to /ramdisk/home.

The /home directory is mounted as read-only, and all the
files created under the /home directory will be written into

8



/ramdisk/home, which is in RAM. Since the RAM is isolated
between the trusted and untrusted OSes, the files in the RAM
disk cannot be accessed by the attacker. Moreover, the files in
RAM disk are lost after a reboot, so an attacker cannot access
the sensitive data saved on the RAM disk after rebooting. For
other binary program files, the system only needs to protect
their integrity. For example, the user can run them from a CD
or use other integrity-checking mechanisms to check those
files.

5.4 Security Analysis

Our system can enforce a trusted path during secure switch-
ing and ensure a firmware-assisted resource isolation between
two OSes. The untrusted OS cannot steal data from the
trusted OS or compromise the integrity of the data in the
trusted OS. Our system can prevent the Data Exfiltration at-
tacks and the fake OS attacks. We do not prevent DoS attacks
because the user can easily notice this attack and boot the ma-
chine to recover.

Data Exfiltration Attacks. The untrusted OS cannot steal
any data information from the trusted OS using either shared
or separated devices. The two OSes have separated RAM and
hard disks. Since the untrusted OS cannot change memory
DQS settings without crashing the system, an attacker cannot
access the memory DIMM of the trusted OS. To protect the
small amount of data saved in the hard disk, we use RAM
disk to save those sensitive data in the memory.

The two OSes share all other hardware devices aside from
RAM and the hard disk. The ACPI S3 sleep guarantees that
the trusted OS won’t leave any sensitive data on those devices
to be accessed by the untrusted OS. First, the CPU context, in-
cluding registers and caches, will be flushed during S3 sleep.
In AMD K8, the north bridge is integrated in CPU and its
content is flushed, too. The NVRAM in south bridge only
records some system configuration data. Second, for hard-
ware devices with their own buffers, such as VGA and NIC,
all of the content in their buffers will be lost because those
devices lose power in S3 sleep.

Suppose that the user has started a sensitive Web transac-
tion in the trusted OS, and he/she switches to the untrusted OS
before the end of the transaction. If the remote server keeps
sending sensitive data without any encryption, the attacker
may receive this data. This problem can be solved by (1) pro-
tecting all Web transactions with encryption, or (2) closing all
Web transactions by the OS before the switching occurs.

Fake OS attacks. Our system can prevent fake OS attacks
by enforcing a trusted path during OS switching and protect-
ing the system flag OS FLAG. Another promising solution
is to employ TPM for remote attestation, wherein a trusted
remote server can verify the identify of the running OS

Network Attacks on Trusted OS. We assume that the
trusted OS is secure and can be trusted. However, because
an OS contains tens of thousands of lines of code, vulnera-
bilities exist that can be misused by attackers from the net-
work. Our system can guarantee that the trusted OS won’t
be compromised from the untrusted OS. However, if normal

users use the trusted OS for a long time, we cannot guarantee
that the trusted OS won’t be compromised from network at-
tacks. The stateless OS mode can only alleviate this attack by
restoring the trusted OS to a pristine state every time it is wo-
ken, but it cannot prevent this attack. One promising solution
is to employ some TPM- or SMM-based integrity checking
mechanisms [17, 34] to detect any OS tampering attempts by
comparing the newly-generated OS states with a clean state.
However, that is beyond the scope of this paper.

6 Implementation & Experimental Re-
sults

We implement a prototype of the SecureSwitch system using
an ASUS M2V-MX SE motherboard with VIA K8M890 as
the northbridge and VIA VT8237R as the southbridge. The
CPU is AMD Sempron 64 LE-1300. Two Kingston HyperX
1GB DDR2 memory modules and two Seagate Barracuda
7200 RPM 500GB hard disks are installed. We connect a
laptop with the prototype system through a serial port to de-
bug and collect the experimental results. We also use a POST
card to display the debugging codes from the BIOS.

We install CentOS 5.5 on one hard disk as the trusted OS,
and Windows XP SP3 on another hard disk as the untrusted
OS. Our implementation also supports two CentOS 5.5 (or
Windows XP) OSes. We use the open-source Coreboot V4 [2]
and SeaBIOS [7] as the BIOS.

6.1 Trusted Computing Base (TCB)
The BIOS provides the Trusted Computing Base (TCB) of
our system. We measure the size of our prototype using sloc-
count1, and the total lines of code(LOC) we added is just
120. This LOC is significant smaller than the 8471 LOC in
Lockdown [31], and it is also smaller than other hypervisor-
or microkernel-based methods that rely on an extra software
layer in addition to the BIOS.

6.2 OS Loading and Switching Latency
We measure two latencies during SecureSwitch: system load-
ing time and switching latency. System loading time is the
time duration for loading two OSes into the memory. We use
the real-time clock (RTC) to measure it. To record the begin-
ning time, we print out the RTC time through the serial port
console at the beginning of the BIOS code. For the ending
time, we record the time when the “rc.local” file is executed
in CentOS or when a startup application is called in Windows
XP. The loading times for both OSes are very close within
our system: 74 seconds for loading CentOS and 79 seconds
for loading Windows XP. The total loading time is 153 sec-
onds. Though the loading time is relatively long, it only oc-
curs once when the user boots up the system. Moreover, the
loading time may be reduced by using solid-state drive.

1http://www.dwheeler.com/sloccount/

9



OS Switching latency measures the time duration when
switching from one OS to another. It consists of two parts:
the time to suspend the current OS and the time to wake up
another OS. We use the system’s Time Stamp Counter (TSC)
to measure the OS wakeup time. TSC is a 64-bit register
that is present on all x86 processors since the Pentium, and
it counts the number of ticks since reset. After pressing the
power button, the TSC is reset to 0. We write a user-level pro-
gram to obtain the current TSC value continuously. We then
calculate the wakeup time as TSC*(1/CPU frequency). TSC
can be used to measure the wakeup time for both CentOS and
Windows XP. However, it is difficult to use TSC to measure
Windows XP’s suspension time without the Windows source
code. Since the OS suspend does not involve the BIOS, we
cannot use the BIOS to read the TSC value either. Instead, we
use an Oscilloscope, Tektronix TDS 220, to measure the sus-
pension time. We connect the oscilloscope to the serial port
on the motherboard. When we initiate the ACPI S3 sleep,
a customized program sends an electrical signal to the serial
port to indicate the start of S3 sleep. When the system finishes
S3 sleep, the oscilloscope receives a power-off electrical sig-
nal from the serial port. We use this method to measure the
suspension delay for both CentOS and Windows XP.

Table 1: Switching Time

Switching Operation Secure Switch(s)

Windows XP Suspend 4.41
CentOS Wakeup 1.96

Total 6.37

CentOS Suspend 2.24
Windows XP Wakeup 2.79

Total 5.03

The latency when the system switches from the trusted OS
to the untrusted one is different from the latency when the
system switches back, as shown in Table 1. We can see that
switching from Windows XP to CentOS requires 5.03 sec-
onds, which is a little faster than switching from CentOS to
the Windows XP. For both OSes, the suspend time is longer
than the wakeup time. Windows XP’s suspend and wakeup
times are longer than those of CentOS.

Table 1 only provides a rough latency measurement that
is constrained to the specific hardware and software used in
our prototype system. For instance, these measurements will
change when we use an external VGA card or execute a large
number of processes in the OS. The ASUS motherboard has
one integrated VGA card with VIA chip and 256 MB video
memory. When we insert an external VGA card with S3 chip
and 64 MB memory, the external VGA card needs less sus-
pension time than the integrated one since it has a smaller
video memory size. To our surprise, the external VGA card
requires a wakeup time that is three times longer than the in-
tegrated one due to the fact that coreboot needs to call the
option ROM of the external video card, but it encounters a
computability problem and dramatically delays the wakeup.

In addition, we run multiple while(1) programs on the
Linux to see how the CPU intensive processes affect the
switching time. When we run five while(1) programs at the
same time, the switching time is about three times longer. We
deduced that most of the increasing is due to the user space
suspend and wakeup, while the delay in kernel space does not
change much. This leads us to breakdown the operations in
BIOS, user space, and kernel space to understand the major
contributors for the time delay. Due to the closed-source na-
ture of Windows XP, we only break down the operations on
the CentOS 5.5 with Coreboot V4.

Figure 4: User Space Suspend Breakdown

Figure 5: Kernel Space Suspend Breakdown

6.2.1 Linux Suspend Breakdown

We use Ftrace [3] to trace the suspension function calls in
Linux S3 sleep. According to the function call graph gen-
erated by Ftrace, we divide the suspend operations into two
phases: user space suspend and kernel space suspend. We
use the pm-suspend script provided by the OS to trigger the
suspend. The script basically notifies the Network Manager
to shut down networking and uses vbetool [9] to call func-
tions at video option ROM to save VGA states. It then echoes
string “mem” to /sys/power/state. This jumps to the kernel
space and stops the user space. In the kernel space, the sus-
pend code goes through the device tree and calls the device

10



suspend function in each driver. The kernel then powers off
these devices. To measure the user space suspend, we record
the TSC time stamp in file /var/log/pm/suspend.log. For ker-
nel time measurement, we add printk statements between var-
ious components of the kernel.

Figure 6: Kernel Space Wakeup Breakdown

Figure 4 shows the time breakdown for user space suspend,
and Figure 5 shows the time breakdown for kernel space sus-
pend. The total suspend times for user space and kernel space
are 1517.33 ms and 722.79 ms respectively. In the user space,
by running command chvt 63, the monitor changes the GUI
terminal to /dev/tty63 as the foreground virtual terminal. In
the clock operation, the OS stops the Network Time Proto-
col Daemon and writes the current system time to RTC time
in CMOS. For the video operation, the OS uses vbetool [9]
to save current video state to the /var/run directory in mem-
ory. Other events include stopping network manager and sav-
ing the state of CPU frequency governors, etc. In the kernel
space, the most time is consumed by stopping the keyboard,
mouse, and hard disks. We use a PS/2 mouse and keyboard in
our system. The suspending functions of the mouse and key-
board drivers reset the devices, which causes the delay. For
the hard disk, delay comes from synchronizing the cache. The
two hard disks each have 16 MB caches, and cache write is
enabled by default for the SATA disk [1]. The OS also needs
to stop other devices, such as the USB and serial ports, which
takes relatively less time.

6.2.2 Linux Wakeup Breakdown

Unlike S3 suspend, S3 wakeup operations are handled by
both the BIOS and the OS. The wakeup process starts from a
hardware reset. The system enters the BIOS first, then jumps
to the OS wakeup vector. The total latency time in BIOS
is almost constant and equal to 1259.25 ms. Again, the OS
wakeup operations can be divided into two parts: kernel space
wakeup and user space wakeup. The wakeup latency in ker-
nel space and user space are 698.74 ms and 612.04 ms respec-
tively. Figure 6 shows the time breakdown for the major com-
ponents in the kernel space. The major delay contributors in

Figure 7: User Space Wakeup Breakdown

kernel space are the USB and the mouse. There are four USB
ports on the motherboard. Since coreboot doesn’t provide an
optimized support for the USB, OS needs to initialize all four
of the USB ports. The BIOS must initialize the keyboard,
but not necessarily the mouse. We discovered that the mouse
takes more time than the keyboard in kernel-space wakeup
due to the OS initialization of the mouse. Figure 7 shows
the time breakdown for wakeup in the user space. We can
see that cleaning up the files and changing the foreground’s
virtual terminal (chvt 1) take up most of the time.

6.3 Comparison with Other Methods
There is recent research on protecting the execution of
security-sensitive code on legacy systems [22, 21, 31]. We
contrasted these with SecureSwitch using the following met-
rics: trusted computing base, switching time, software com-
patibility, hardware dependency, and performance impact on
the system. Table 2 presents the comparison results.

The BIOS code is the trusted computing base (TCB) for
both SecureSwitch and Flicker [21], while Lockdown [31]
and TrustVisor [22] must also ensure the security and in-
tegrity of a hypervisor when loading it from the hard disk.
Both Flicker and TrustVisor have a very small switching time
since they can ensure a hardware-assisted, trusted execution
environment without OS sleep/wakeup. The switching delay
in SecureSwitch is small and acceptable, while Lockdown re-
quires a relatively long switching time.

In Flicker and TrustVisor, the security code must be
custom-compiled or ported to run in the secure environ-
ment, while the legacy programs can run directly on both
SecureSwitch and Lockdown without any changes. Se-
cureSwitch requires the hardware devices to support ACPI,
which has already been widely supported by hardware man-
ufactures for efficient power management. All of the other
solutions depend on TPM to protect the integrity of the hyper-
visor or to provide the Dynamic Root of Trust Measurement
(DRTM) [17] feature. The memory overhead in SecureSwitch

11



Table 2: Comparing SecureSwitch with Other systems

SecureSwitch Lockdown [31] TrustVisor [22] Flicker [21]

Trusted Computing Base BIOS BIOS+Hypervisor BIOS+Hypervisor BIOS
Switching Time (second) ≈6 40 ¡1 1
Software Compatibility High High Low Low
Hardware Dependency ACPI ACPI + TPM TPM (DRTM) TPM (DRTM)

Memory Overhead High Low Low Low
Computation Overhead Low Median Low High

is high due to the coarse physical isolation on the DIMMs.
The memory overheads in other methods are fairly low.

In SecureSwitch, Lockdown, and Flicker, when a security
code is running in the trusted environment, the applications
in the untrusted environment are fully stopped. Lockdown
requires 15-55% more computation overhead in the trusted
environment due to the NPT pages. Flicker incurs significant
computation overhead due to its frequent use of hardware sup-
port for DRTM. SecureSwitch adds no computation overhead
in the trusted environment. TrustVisor can execute the ap-
plications in the untrusted environments with little overhead
when the security code is running in the trusted environment;
however,this requires code modification. Although possible,
it would seem to be an engineering challenge to port all exist-
ing code to support this, especially for an entire commercial
OS.

7 Related Work
SecureSwitch was inspired by Lampson’s Red/Green separa-
tion idea [20]. The closest in terms of concept is the Lock-
down [31] system that places two OSes on one machine and
isolates them with help of a small hypervisor. To switch, it
hibernates one OS and then wakes up another one. If imple-
mented carefully, Lockdown can provide isolation between
two OSes. Unfortunately, it requires more than 40 seconds to
switch because hibernating requires writing the whole main
memory content to the hard disk and reading it back later on.
In contrast, SecureSwitch can accommodate two OSes into
the memory at the same time and offers switching times of
approximately 6 seconds. In addition, Lockdown relys on
mutable shared code using a light-weight hypervisor, while
SecureSwitch does not.

There is a line of research that uses hypervisors to add
an extra layer of control between the OSes and the under-
lying hardware, including HyperSpace [6], Terra [15], Safe-
fox [33], Tahoma system [14], Overshadow [12], and Net-
top [23]. Others attempt to protect the integrity of the hyper-
visor [29, 13, 11, 34, 35], or to protect the kernel [30, 27, 26].
All of these systems depend upon the integrity of the shared
hypervisor code for the isolation between two environments.
Nevertheless, attacks against the hypervisors are more and
more frequent today [24, 38, 37]. Although the hypervi-
sor may have a smaller attack surface compared to the tradi-
tional OSes, it is still vulnerable to attack. SecureSwitch em-

ploys immutable BIOS-protected code so that minimal code
is shared between the trusted and the untrusted environments.

Flicker [21] and TrustVisor [22] employ TPM to provide a
small TCB and then run security-sensitive code in a trusted
environment. Flicker is a pure hardware, TPM-based method,
while TrustVisor adds a small hypervisor to accelerate the
TPM operation. Both Flicker and TrustVisor require Dy-
namic Root of Trust Measurement (DRTM), while the Se-
cureSwitch system does not. In addition, applications must be
ported to support TPM-based methods. For Flicker, the code
running in TPM-provided, trusted environments may not take
long because the normal OS is frozen when the trusted envi-
ronment is running. The SecureSwitch system is capable of
running the legacy applications in the trusted OS for a long
time.

8 Conclusions

The increasing number, size, and complexity of the applica-
tions running on desktop computers, coupled with their ca-
pability to operate on content and code generated by differ-
ent sources, brought forward the need for context-dependent,
trustworthy environments. Having such environments will en-
able the user to segregate different activities and lower the
attack surface while maintaining system usability.

To that end, we propose a novel firmware-assisted mech-
anism to foster the secure management of execution envi-
ronments, tailored to segregate security-sensitive applications
from untrusted ones. A design tenet of our system was the
ability to quickly and securely switch between operating en-
vironments without extensive code modifications or a need
for specialized hardware. At the same time, we wanted to
minimize the code attack surface and prevent mutable, non-
BIOS code from controlling the switching process. Finally,
the system had to offer protection against attacks that aim to
deceive the user’s perception of the operating environment
he/she is currently in. We believe that the proposed frame-
work achieves all of these goals. In our prototype implemen-
tation, the switching process takes approximately six seconds.
Moreover, the user can clearly discern the state of the system
and seamlessly switch between untrusted and trusted OSes to
perform sensitive transactions.

12



References
[1] AT Attachment specification, http://www.t13.org/.

[2] Coreboot, http://coreboot.org/.

[3] Ftrace, http://elinux.org/Ftrace.

[4] Intel Corp. Intel I/O Controller Hub 9 (ICH9) Family
Datasheet (2008) .

[5] Mitre cve vulnerability database.

[6] Phoenix hyperspace. http://en.wikipedia.
org/wiki/Phoenix_Technologies.

[7] Seabios, http://www.coreboot.org/seabios.

[8] Unified Extensible Firmware Interface,
http://www.uefi.org/home/.

[9] vbetool, http://linux.die.net/man/1/vbetool.

[10] ADVANCED MICRO DEVICES, INC. BIOS and Kernel
Developer’s Guide (BKDG) For AMD Family 10h Pro-
cessors, April 22, 2010.

[11] AZAB, A. M., NING, P., WANG, Z., JIANG, X.,
ZHANG, X., AND SKALSKY, N. C. Hypersentry: en-
abling stealthy in-context measurement of hypervisor
integrity. In Proceedings of the 17th ACM conference
on Computer and communications security (2010), CCS
’10, pp. 38–49.

[12] CHEN, X., GARFINKEL, T., LEWIS, E., SUBRAH-
MANYAM, P., WALDSPURGER, C., BONEH, D.,
DWOSKIN, J., AND PORTS, D. Overshadow: a
virtualization-based approach to retrofitting protection
in commodity operating systems. In Proceedings of
the 13th international conference on Architectural sup-
port for programming languages and operating systems
(2008), ACM, pp. 2–13.

[13] COKER, G. Xen security modules (xsm). Xen Summit
(2006).

[14] COX, R., HANSEN, J., GRIBBLE, S., AND LEVY, H.
A safety-oriented platform for web applications. In Se-
curity and Privacy, 2006 IEEE Symposium on (2006),
IEEE, pp. 15–364.

[15] GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM,
M., AND BONEH, D. Terra: A virtual machine-based
platform for trusted computing. ACM SIGOPS Operat-
ing Systems Review 37, 5 (2003), 193–206.

[16] GARFINKEL, T., AND ROSENBLUM, M. A virtual ma-
chine introspection based architecture for intrusion de-
tection. In In Proc. Network and Distributed Systems
Security Symposium (2003), pp. 191–206.

[17] GROUP, T. C. Trusted platform module main specifica-
tion. version 1.2, revision 103, 2007.

[18] HEWLETT-PACKARD, INTEL, MICROSOFT, PHOENIX,
AND TOSHIBA. ACPI, http://www.acpi.info/.

[19] KING, S., AND CHEN, P. SubVirt: implementing mal-
ware with virtual machines. In Security and Privacy,
2006 IEEE Symposium on, IEEE, pp. 14–pp.

[20] LAMPSON, B. Privacy and security: Usable security:
how to get it. Commun. ACM 52 (November 2009), 25–
27.

[21] MCCUNE, J., PARNO, B., PERRIG, A., REITER, M.,
AND ISOZAKI, H. Flicker: An execution infrastruc-
ture for TCB minimization. In Proceedings of the 3rd
ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2008 (2008), ACM, pp. 315–328.

[22] MCCUNE, J. M., LI, Y., QU, N., ZHOU, Z., DATTA,
A., GLIGOR, V., AND PERRIG, A. TrustVisor: Effi-
cient TCB reduction and attestation. In Proceedings of
the IEEE Symposium on Security and Privacy (2010).

[23] MEUSHAW, R., AND SIMARD, D. Nettop-commercial
technology in high assurance applications. VMware
Tech Trend Notes (2000).

[24] NATIONAL INSTITUTE OF STANDARDS, NIST. Na-
tional vulnerability database, http://nvd.nist.gov.

[25] OKAJIMA, J. R. Aufs, http://aufs.sourceforge.net/.

[26] PAYNE, B. D., CARBONE, M., SHARIF, M., AND LEE,
W. Lares: An architecture for secure active monitoring
using virtualization. IEEE Symposium on Security and
Privacy (2008), 233–247.

[27] RILEY, R., JIANG, X., AND XU, D. Guest-transparent
prevention of kernel rootkits with vmm-based memory
shadowing. In Recent Advances in Intrusion Detection
(2008), Springer, pp. 1–20.

[28] RUTKOWSKA, J. Beyond the CPU: Defeating hardware
based RAM acquisition. Proceedings of BlackHat DC
2007 (2007).

[29] SAILER, R., JAEGER, T., VALDEZ, E., CACERES, R.,
PEREZ, R., BERGER, S., GRIFFIN, J. L., AND VAN
DOORN, L. Building a mac-based security architecture
for the xen open-source hypervisor. Computer Security
Applications Conference, Annual 0 (2005), 276–285.

[30] SESHADRI, A., LUK, M., QU, N., AND PERRIG, A.
SecVisor: A tiny hypervisor to provide lifetime kernel
code integrity for commodity OSes. In Proceedings of
twenty-first ACM SIGOPS symposium on Operating sys-
tems principles (2007), ACM, p. 350.

[31] VASUDEVAN, A., PARNO, B., QU, N., GLIGOR, V.,
AND PERRIG, A. Lockdown: A Safe and Practical En-
vironment for Security Applications (CMU-CyLab-09-
011). Tech. rep., 2009.

13



[32] VIA TECHNOLOGIES, I. VT8237R South Bridge, Re-
vision 2.06, December 2005.

[33] WANG, J., HUANG, Y., AND GHOSH, A. SafeFox: A
Safe Lightweight Virtual Browsing Environment. In
System Sciences (HICSS), 2010 43rd Hawaii Interna-
tional Conference on (2010), IEEE, pp. 1–10.

[34] WANG, J., STAVROU, A., AND GHOSH, A. Hyper-
Check: A hardware-assisted integrity monitor. In Re-
cent Advances in Intrusion Detection (2010), Springer,
pp. 158–177.

[35] WANG, Z., AND JIANG, X. Hypersafe: A lightweight
approach to provide lifetime hypervisor control-flow in-
tegrity. In Proceedings of the 2010 IEEE Symposium on
Security and Privacy (2010), SP ’10, pp. 380–395.

[36] WANG, Z., JIANG, X., CUI, W., AND NING, P. Coun-
tering kernel rootkits with lightweight hook protec-
tion. In Proceedings of the 16th ACM conference on
Computer and communications security (2009), ACM,
pp. 545–554.

[37] WOJTCZUK, R. Adventures with a certain Xen
vulnerability (in the PVFB backend). http://
www.invisiblethingslab.com/resources/
misc08/xenfb-adventures-10.pdf.

[38] WOJTCZUK, R. Subverting the Xen hypervisor, 2008.

14


