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I. ABSTRACT

ARM architecture has dominated the mobile device market
since the born of smart phones. In recent years, the ARM
architecture is further deployed in Internet of Things (IoT)
devices [1], [13], [16] and commercial cloud platforms [20].
With the rapid growth of the market share, the security of the
ARM platforms is still a critical problem.

In the world of security, there exist some common security
problems in both x86 and ARM architectures. For example,
the integrity of the pointers is a big concern. In real-world
devices, the adversaries have demonstrated a series of attacks
to manipulate the pointers at runtime [6], [8]. To defend
against the data and code pointer attacks, security researchers
present different solutions [7], [19]. However, these solu-
tions are either targeting a specific scenario or introducing
a large performance overhead. To solve the problem with
a low-performance penalty, ARMv8.3 architecture proposes
the hardware-based Pointer Authentication Code (PAC) [2],
[12]. However, the only available ARMv8.3 processor on the
market at this moment is the Apple A12, which is not open to
researchers. Thus, the pointer integrity problem on the ARMv8
architecture, which is the mainstream ARM architecture, is
still not solved.

Another common security concern is the memory bound-
aries. Buffer overflow attack and its variations are frequently
used to as the first step of a sophisticated attack. To solve
the problem, software-based solutions such as AddressSan-
itizer [17], SAFECode [5], and SoftBound [14] have been
proposed. Similar to the pointer integrity problem discussed
above, these software-based solutions introduce high overhead.
Intel introduces Memory Protection Extension (MPX) as a
hardware-based solution to verify the memory boundaries
before access it via additional bound registers. However, the
Intel MPX is not production ready [15], [18], and the support
of Intel MPX will be removed from GCC compiler and Linux
kernel [10], [11].

Dynamic taint analysis is typical used to detect the in-
formation leakage at runtime. Normally, it is achieved by
compile-time instrumentation or runtime monitoring. The
instrumentation-based solution requires fine-grain instruction
instrumentation to propagate the taint tags between different
hardware registers, and thus introduces high performance over-
head. In regard to the monitoring-based solution, the problem

Figure 1: Address in 64-bit ARMv8 architecture.

would be how to monitor the executed instructions with a low-
performance overhead and solve the taint-tag dependencies in
real-time. Although both ARM and Intel proposed hardware-
based instruction trace solutions [3], [9], the design of the
hardware solutions determines that it is not easy to implement
a synchronous dynamic taint analysis mechanism with a low
runtime performance overhead.

In this poster, we propose SECTAG to solve the above
problems with hardware tags in 64-bit ARMv8 architecture.
Specifically, we use hardware tags to enable the following
three security features on ARM platforms: 1) Pointer Integrity,
2) Memory Boundary Protection, and 3) Dynamic Taint Anal-
ysis. In the 64-bit ARMv8 architecture, each memory address
contains 64 bits. However, not all these bits are actually used
during CPU addressing.

Figure 1 shows the 64-bit address in ARMv8 architecture.
The VA_SIZE means the actual size of the virtual address
used in the system, whose maximum value is 48. The bits
{0...VA_SIZE-1} are used as the virtual address during CPU
addressing. The bits {54...VA_SIZE} is reserved in ARMv8
architecture and used as PAC bits in ARMv8.3 architecture.
The top byte (bits {63...56}) is ignored during CPU addressing
if the corresponding Top Byte Ignored (TBI) bit in TCR
register 1 is set, while the bit 55 determines which TBI bit
(TBI0 or TBI1) in TCR register should be used. Once the
corresponding TBI bit is set, we can use the top byte of a
64-bit address as the address tag.
Pointer Integrity. As aforementioned, ARM introduces PAC
to protect the pointer integrity since ARMv8.3 architecture.
Although PAC is not available in the ARMv8 platforms, the
address tag feature is deployed in these platforms. Thus,
we can use the address tag to simulate the PAC to protect
the pointer integrity in ARMv8 architecture. Other than the
PAC bits in a 64-bit address, ARM also introduces additional
instructions to perform QARMA [4] encryption to calculate
the PAC. To reduce the performance overhead of additional

1In ARM architecture, the Translation Control Register (TCR) is used to
configure the address translation.



Figure 2: Design of SECTAG.

software implementation of the encryption algorithm, we pro-
pose to use the hardware-based AES introduced in ARMv8
architecture instead of QARMA as the encryption algorithm.
Memory Boundary Protection. Inspired by Intel MPX, we
may also use the address tag to indicate the high- and low-
boundary of a pointer. The boundary is calculated while
the pointed memory region is allocated and verified before
any usage of the pointer. Unlike the Intel MPX, which uses
additional registers and memory to store the boundary, the
address tag sticks to the pointer. Thus, the tag-based boundary
would not suffer from the Intel MPX issues such as multi-
threading problem and heavy performance overhead in bounds
table lookup.
Dynamic Taint Analysis. Taint tag and its propagation are
critical to dynamic taint analysis. Intuitively, the address tag
can also play the role of taint tag in dynamic taint analysis.
Since the address tag will be automatically transferred between
registers while executing the data processing instructions,
we can save a large amount of instruction instrumentation
for the taint tag propagation. With the elimination of the
additional propagation instructions, the performance of the
instrumentation-based dynamic taint analysis would be greatly
improved.

Figure 2 shows the design of SECTAG. Specifically, we
plan to leverage compiler-level instrumentation to achieve the
proposed system, and the LLVM and GCC compiler would be
supported with a dedicate compiler plugin. The source code
of the application/kernel is first compiled by the LLVM/GCC
compiler frontend, and SECTAG will perform instruction
instrumentation based on the resulting compiler Intermediate
Representation (IR). The backend of the compiler will further
transfer the instrumented IR to the executable binary.

In summary, SECTAG would enhance the security of ARM
platforms via using the hardware address tags. In particular,
it provides novel security functions such as Pointer Integrity,
Memory Boundary Protection, and Dynamic Taint Analysis.
We consider this hardware-based solution will bring a per-
formance boost on existing security-related protection and
detection mechanisms. Moreover, since SECTAG is based on
the widely deployed 64-bit ARMv8 devices, it will be practical
to deploy our solution on existing product devices.
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