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Introduction

• The RISC-V architecture is well-known for its open nature. 

• Open Source, No License fee

• Open to new design and extension

• Open to challenge.

• Security problems in x86 and ARM architecture remains on RISC-V platforms.

• E.g., pointer integrity, memory boundary protection, and dynamic taint 
analysis.
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Introduction

Any effective defense on RISC-V?

5SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture



Outline

• Introduction

• Pointer Integrity

• Memory Boundary Protection

• Dynamic Taint Analysis

• Implementation

• Conclusion

SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture 6



Pointer Integrity

• To ensure that the pointer is not corrupted.

• Code-pointer Integrity and Data-pointer Integrity.
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*x0 = 0
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Pointer Integrity

• To ensure that the pointer is not corrupted.

• Code-pointer Integrity and Data-pointer Integrity.
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Pointer Integrity: Buffer Overflow

• Start of the attack: In most cases, a buffer overflow vulnerability.
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Pointer Integrity: Buffer Overflow

• Start of the attack: In most cases, a buffer overflow vulnerability.
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Pointer Integrity: Canary

• Stack Canary[1]: The most widely used defense to buffer overflow attack.
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Pointer Integrity: Canary

• Stack Canary[1]: The most widely used defense to buffer overflow attack.
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Pointer Integrity: Canary

• Stack Canary[1]: The most widely used defense to buffer overflow attack.

• Weakness:

• Easy to bypass[2]

• Not efficient to defend against data-pointer attack
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Pointer Integrity: PAC

• Pointer Authentication Code[3] is introduced in 64-bit ARMv8.3 architecture.
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A pointer in 64-bit system
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Pointer Integrity: PAC

Is it really necessary to use a 64-bit address?

• 264 bit = 16384 PB = 16.8 millions TB = 17.2 billions GB

• Summit: 10 PB memory

• Sunway TaihuLight: 1.32 PB memory

• Linux: Up to 128 TB virtual memory

• Windows: Up to 16 TB virtual memory
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Pointer Integrity: PAC

• Pointer Authentication Code[3] is introduced in 64-bit ARMv8.3 architecture.
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Pointer Integrity: PAC

• Pointer Authentication Code[3] is introduced in 64-bit ARMv8.3 architecture.
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Pointer Integrity: PAC

• PAC is good, but the deployment is painful.

• The mechanism is released with ARMv8.3 architecture since 2016.

• ARM does not release any processor with ARMv8.3 till now.

• The only processors with PAC support are Apple A12 and A13.

• Closed ecosystem.

• No available to system developers.
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Pointer Integrity: RISC-V

• RISC-V based PAC

• A group of new hardware instructions

• Forge PAC, examine PAC, strip PAC

• New registers for storing the 128-bit secret key

• Secret keys for data pointers and code pointers

• Hardware-based crypto engine

• Generate PAC from pointer and 64-bit context value
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Memory Boundary Protection

• To ensure the memory access won’t go out of its expected boundary.
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Memory Boundary Protection

• To ensure the memory access won’t go out of its expected boundary.
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Memory Boundary Protection: Address Sanitizer

• Address Sanitizer[4]: Use redzones to detect out-of-bound access.

32SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

a[0]

a[1]

…

a[8]

a[9]

int a[10];

…

…

a Redzone

a[0]

…

a[9]

Redzone

int a[10];

Redzone

Redzone

a



Memory Boundary Protection: Address Sanitizer

• Address Sanitizer[4]: Use redzones to detect out-of-bound access.
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Memory Boundary Protection: Address Sanitizer

• Address Sanitizer[4]: Use redzones to detect out-of-bound access.

• Weakness:

• Large memory overhead

• Large performance overhead

• False negative is possible
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Memory Boundary Protection: Intel MPX

• Intel MPX[5]: An architecture extension dedicated for memory bound 

protection.
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Memory Boundary Protection: Intel MPX

• Intel MPX[5]: An architecture extension dedicated for memory bound 

protection.

• Weakness:

• Performance overhead for two-layer translation

• Multithread not support

• Not production ready, support will be removed from GCC 9

36SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture



Memory Boundary Protection : RISC-V

• RISC-V based Memory Boundary Protection
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• Use the head bits for memory bounds

• 9 bits if PAC is implemented

• 16 bits if PAC is not implemented

• More bits in 128-bit RISC-V architecture[6]
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Dynamic Taint Analysis

• Analysis the information flow of specific objects.

• Example scenario: Privacy leakage detection
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Dynamic Taint Analysis

• Analysis the information flow of specific objects.

• Example scenario: Privacy leakage detection
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Dynamic Taint Analysis
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• Heavy instrumentation

• Add tons of instructions to monitor the data flow



Dynamic Taint Analysis

• Labelled RISC-V Architecture[7]: Every hardware request is attached 

with a label.

44SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Core 0 Core 1 Core N…

Shared Last Level Cache

I/O Chipset Memory 
Controller

Disk Disk Disk NIC

DS-id DS-id DS-id

DS-id DS-id DS-id DS-id

CL

CLCL



Dynamic Taint Analysis

• Labelled RISC-V Architecture[7]: Every hardware request is attached 

with a label.

• Use the label to represent taint flag

• Automatically propagation via hardware support

• No instrumentation required

• Use the Control Logic (CL) to achieve detection
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Dynamic Taint Analysis

What about the propagation outside of hardware request?

• Allocate a few bits from the unused bits in 64-bit pointer

• In coarse-gained analysis, 1 bit is sufficient

• This bit automatically transfers during the execution of data operation 

instructions.

• Feed to the DS-id register during hardware request
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Implementation

• SecLabel: Enchancing RISC-V Platform Security
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Conclusion

• In light of the PAC in ARMv8.3, we can leverage the open feature of 

RISC-V and implement similar mechanism for pointer integrity.

• With addition bits in the head of a pointer address in 64-bit or 128-bit 

RISC-V architecture, an enhanced memory boundary protection can be 

deployed.

• Combining the labelled RISC-V architecture and unused bits in an 

address, we are able to facilitate the existing dynamic taint analysis.
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