
SecLabel: Enhancing RISC-V Platform Security
with Labelled Architecture

Zhenyu Ning1,2, Yinqian Zhang3, and Fengwei Zhang2

1Wayne State University, 2Southern University of Science and Technology,
3The Ohio State University

Outline

• Introduction

• Pointer Integrity

• Memory Boundary Protection

• Dynamic Taint Analysis

• Implementation

• Conclusion

SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture 2

Outline

• Introduction

• Pointer Integrity

• Memory Boundary Protection

• Dynamic Taint Analysis

• Implementation

• Conclusion

SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture 3

Introduction

• The RISC-V architecture is well-known for its open nature.

• Open Source, No License fee

• Open to new design and extension

• Open to challenge.

• Security problems in x86 and ARM architecture remains on RISC-V platforms.

• E.g., pointer integrity, memory boundary protection, and dynamic taint
analysis.

4SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Introduction

Any effective defense on RISC-V?

5SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Outline

• Introduction

• Pointer Integrity

• Memory Boundary Protection

• Dynamic Taint Analysis

• Implementation

• Conclusion

SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture 6

Pointer Integrity

• To ensure that the pointer is not corrupted.

• Code-pointer Integrity and Data-pointer Integrity.

7SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

if *x0 = 0 then

x1 = addr1

else

x1 = addr2

jmp to x1

*x0 = 0

Pointer Integrity

• To ensure that the pointer is not corrupted.

• Code-pointer Integrity and Data-pointer Integrity.

8SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

if *x0 = 0 then

x1 = addr1

else

x1 = addr2

jmp to x1

*x0 = 0

x1 = addr1

Pointer Integrity

• To ensure that the pointer is not corrupted.

• Code-pointer Integrity and Data-pointer Integrity.

9SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

if *x0 = 0 then

x1 = addr1

else

x1 = addr2

jmp to x1

*x0 = 0

x1 = addr3
Code-pointer

Attack

Pointer Integrity

• To ensure that the pointer is not corrupted.

• Code-pointer Integrity and Data-pointer Integrity.

10SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

if *x0 = 0 then

x1 = addr1

else

x1 = addr2

jmp to x1

*x0 = 0

Pointer Integrity

• To ensure that the pointer is not corrupted.

• Code-pointer Integrity and Data-pointer Integrity.

11SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

if *x0 = 0 then

x1 = addr1

else

x1 = addr2

jmp to x1

*x0 = 2

Pointer Integrity

• To ensure that the pointer is not corrupted.

• Code-pointer Integrity and Data-pointer Integrity.

12SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

if *x0 = 0 then

x1 = addr1

else

x1 = addr2

jmp to x1

*x0 = 2

x1 = addr2
Data-pointer

Attack

Pointer Integrity: Buffer Overflow

• Start of the attack: In most cases, a buffer overflow vulnerability.

13SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Params

Return Addr

Frame Pointer

Local Var a

…

Local Var b

Local Var c

…

Stack Pointer

Pointer Integrity: Buffer Overflow

• Start of the attack: In most cases, a buffer overflow vulnerability.

14SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Params

Return Addr

Frame Pointer

Local Var a

…

Local Var b

Local Var c

…

Stack Pointer

Pointer Integrity: Buffer Overflow

• Start of the attack: In most cases, a buffer overflow vulnerability.

15SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Params

Return Addr

Frame Pointer

Local Var a

…

Local Var b

Local Var c

…

Stack Pointer

Params

Return Addr

Frame Pointer

Local Var a

…

Local Var b

Random data

…

Stack Pointer

Buffer Overflow
Attack

Pointer Integrity: Buffer Overflow

• Start of the attack: In most cases, a buffer overflow vulnerability.

16SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Params

Return Addr

Frame Pointer

Local Var a

…

Local Var b

Local Var c

…

Stack Pointer

Params

Return Addr

Frame Pointer

Local Var a

…

Random data

Random data

…

Stack Pointer

Buffer Overflow
Attack

Pointer Integrity: Buffer Overflow

• Start of the attack: In most cases, a buffer overflow vulnerability.

17SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Params

Return Addr

Frame Pointer

Local Var a

…

Local Var b

Local Var c

…

Stack Pointer

Params

Return Addr

Frame Pointer

Random data

…

Random data

Random data

…

Stack Pointer

Buffer Overflow
Attack

Pointer Integrity: Buffer Overflow

• Start of the attack: In most cases, a buffer overflow vulnerability.

18SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Params

Return Addr

Frame Pointer

Local Var a

…

Local Var b

Local Var c

…

Stack Pointer

Params

Return Addr

Random data

Random data

…

Random data

Random data

…

Stack Pointer

Buffer Overflow
Attack

Pointer Integrity: Buffer Overflow

• Start of the attack: In most cases, a buffer overflow vulnerability.

19SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Params

Return Addr

Frame Pointer

Local Var a

…

Local Var b

Local Var c

…

Stack Pointer

Params

Modified Addr

Random data

Random data

…

Random data

Random data

…

Stack Pointer

Buffer Overflow
Attack

Pointer Integrity: Canary

• Stack Canary[1]: The most widely used defense to buffer overflow attack.

20SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Params

Return Addr

Frame Pointer

Canary

…

Local Var a

Local Var b

…

Stack Pointer

Params

Modified Addr

Random data

Random data

…

Random data

Random data

…

Stack Pointer

Buffer Overflow
Attack

Pointer Integrity: Canary

• Stack Canary[1]: The most widely used defense to buffer overflow attack.

21SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Params

Return Addr

Frame Pointer

Canary

…

Local Var a

Local Var b

…

Stack Pointer

Params

Modified Addr

Random data

Random data

…

Random data

Random data

…

Stack Pointer

Buffer Overflow
Attack Canary is changed

by overflow

Pointer Integrity: Canary

• Stack Canary[1]: The most widely used defense to buffer overflow attack.

• Weakness:

• Easy to bypass[2]

• Not efficient to defend against data-pointer attack

22SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Pointer Integrity: PAC

• Pointer Authentication Code[3] is introduced in 64-bit ARMv8.3 architecture.

23SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

A pointer in 64-bit system

063

Is it really necessary to use a 64-bit address?

Pointer Integrity: PAC

Is it really necessary to use a 64-bit address?

• 264 bit = 16384 PB = 16.8 millions TB = 17.2 billions GB

• Summit: 10 PB memory

• Sunway TaihuLight: 1.32 PB memory

• Linux: Up to 128 TB virtual memory

• Windows: Up to 16 TB virtual memory

24SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Pointer Integrity: PAC

• Pointer Authentication Code[3] is introduced in 64-bit ARMv8.3 architecture.

25SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

A pointer in 64-bit system

063

Pointer Integrity: PAC

• Pointer Authentication Code[3] is introduced in 64-bit ARMv8.3 architecture.

26SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

063

Virtual Address

47

PAC

4854

• Pointer Value + 64-bit Context Value + 128-bit Secret Key => PAC

• Up to 48 bits for virtual address, and at least 7 bits for PAC

Pointer Integrity: PAC

• PAC is good, but the deployment is painful.

• The mechanism is released with ARMv8.3 architecture since 2016.

• ARM does not release any processor with ARMv8.3 till now.

• The only processors with PAC support are Apple A12 and A13.

• Closed ecosystem.

• No available to system developers.

27SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Pointer Integrity: RISC-V

• RISC-V based PAC

• A group of new hardware instructions

• Forge PAC, examine PAC, strip PAC

• New registers for storing the 128-bit secret key

• Secret keys for data pointers and code pointers

• Hardware-based crypto engine

• Generate PAC from pointer and 64-bit context value

28SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Outline

• Introduction

• Pointer Integrity

• Memory Boundary Protection

• Dynamic Taint Analysis

• Implementation

• Conclusion

SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture 29

Memory Boundary Protection

• To ensure the memory access won’t go out of its expected boundary.

30SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

a[0]

a[1]

…

a[8]

a[9]

int a[10];

…

…

a a[0]

a[1]

…

a[8]

a[9]

a[8] = 1

…

…

a

a[8]

Memory Boundary Protection

• To ensure the memory access won’t go out of its expected boundary.

31SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

a[0]

a[1]

…

a[8]

a[9]

int a[10];

…

…

a a[0]

a[1]

…

a[8]

a[9]

a[10] = 1

…

…

a

Memory Out of
Boundary

a[10]

Memory Boundary Protection: Address Sanitizer

• Address Sanitizer[4]: Use redzones to detect out-of-bound access.

32SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

a[0]

a[1]

…

a[8]

a[9]

int a[10];

…

…

a Redzone

a[0]

…

a[9]

Redzone

int a[10];

Redzone

Redzone

a

Memory Boundary Protection: Address Sanitizer

• Address Sanitizer[4]: Use redzones to detect out-of-bound access.

33SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Redzone

a[0]

…

a[9]

Redzone

int a[10];

Redzone

Redzone

a

Redzone

a[0]

…

a[9]

Redzone

a[10] = 1

Redzone

Redzone

a

a[10]Out-of-bound
access

Memory Boundary Protection: Address Sanitizer

• Address Sanitizer[4]: Use redzones to detect out-of-bound access.

• Weakness:

• Large memory overhead

• Large performance overhead

• False negative is possible

34SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Memory Boundary Protection: Intel MPX

• Intel MPX[5]: An architecture extension dedicated for memory bound

protection.

35SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Pointer Address

Base Address of
Bounds Directory

Table 0
Table 1
Table 2
Table 3
Table 4

Bound Directory

Entry 0
Entry 1
Entry 2
Entry 3
Entry 4

Bound Table 3

Pointer Address

Upper Bound

Lower Bound

Memory Boundary Protection: Intel MPX

• Intel MPX[5]: An architecture extension dedicated for memory bound

protection.

• Weakness:

• Performance overhead for two-layer translation

• Multithread not support

• Not production ready, support will be removed from GCC 9

36SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Memory Boundary Protection : RISC-V

• RISC-V based Memory Boundary Protection

37SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

063

Virtual Address

47

PAC

4854

???

• Use the head bits for memory bounds

• 9 bits if PAC is implemented

• 16 bits if PAC is not implemented

• More bits in 128-bit RISC-V architecture[6]

Outline

• Introduction

• Pointer Integrity

• Memory Boundary Protection

• Dynamic Taint Analysis

• Implementation

• Conclusion

SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture 38

Dynamic Taint Analysis

• Analysis the information flow of specific objects.

• Example scenario: Privacy leakage detection

39SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

……
char* password = getInput();
char* copied = copy(password);
printf(“copied: %s\n”, copied);
……

getInput

Taint Source

printf

Taint Sink

Dynamic Taint Analysis

• Analysis the information flow of specific objects.

• Example scenario: Privacy leakage detection

40SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

……
char* password = getInput();
char* copied = copy(password);
printf(“copied: %s\n”, copied);
……

getInput

Taint Source

printf

Taint Sink

password

Tainted Variable

Dynamic Taint Analysis

• Analysis the information flow of specific objects.

• Example scenario: Privacy leakage detection

41SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

……
char* password = getInput();
char* copied = copy(password);
printf(“copied: %s\n”, copied);
……

getInput

Taint Source

printf

Taint Sink

password

Tainted Variable

copied

Dynamic Taint Analysis

• Analysis the information flow of specific objects.

• Example scenario: Privacy leakage detection

42SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

……
char* password = getInput();
char* copied = copy(password);
printf(“copied: %s\n”, copied);
……

getInput

Taint Source

printf

Taint Sink

password

Tainted Variable

copied

Taint Path Founded!

Dynamic Taint Analysis

43SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

……
char* password = getInput();
char* copied = copy(password);
printf(“copied: %s\n”, copied);
……

getInput

Taint Source

printf

Taint Sink

password

Tainted Variable

copied

• How to learn the taint propagation from “password” to“copied” ?

• Heavy instrumentation

• Add tons of instructions to monitor the data flow

Dynamic Taint Analysis

• Labelled RISC-V Architecture[7]: Every hardware request is attached

with a label.

44SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Core 0 Core 1 Core N…

Shared Last Level Cache

I/O Chipset Memory
Controller

Disk Disk Disk NIC

DS-id DS-id DS-id

DS-id DS-id DS-id DS-id

CL

CLCL

Dynamic Taint Analysis

• Labelled RISC-V Architecture[7]: Every hardware request is attached

with a label.

• Use the label to represent taint flag

• Automatically propagation via hardware support

• No instrumentation required

• Use the Control Logic (CL) to achieve detection

45SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

What about the propagation outside of hardware request?

Dynamic Taint Analysis

What about the propagation outside of hardware request?

• Allocate a few bits from the unused bits in 64-bit pointer

• In coarse-gained analysis, 1 bit is sufficient

• This bit automatically transfers during the execution of data operation

instructions.

• Feed to the DS-id register during hardware request

46SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Outline

• Introduction

• Pointer Integrity

• Memory Boundary Protection

• Dynamic Taint Analysis

• Implementation

• Conclusion

SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture 47

Implementation

• SecLabel: Enchancing RISC-V Platform Security

48SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Source Code

Compiler IR

Modified IR

Binary
SecLabel-Enabled

RISC-V
Platform

Compiler

Compiler
Frontend

Compiler
Backend

SecLabel Instruction-level
Instrumentation

Outline

• Introduction

• Pointer Integrity

• Memory Boundary Protection

• Dynamic Taint Analysis

• Implementation

• Conclusion

SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture 49

Conclusion

• In light of the PAC in ARMv8.3, we can leverage the open feature of

RISC-V and implement similar mechanism for pointer integrity.

• With addition bits in the head of a pointer address in 64-bit or 128-bit

RISC-V architecture, an enhanced memory boundary protection can be

deployed.

• Combining the labelled RISC-V architecture and unused bits in an

address, we are able to facilitate the existing dynamic taint analysis.

50SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Reference

[1] Cowan, Crispan, et al. "Stackguard: Automatic adaptive detection and prevention of buffer-overflow attacks." USENIX Security Symposium. Vol.
98. 1998.

[2] Richarte, Gerardo. "Four different tricks to bypass stackshield and stackguard protection." World Wide Web 1. 2002.

[3] Liljestrand, Hans, et al. "PAC it up: Towards pointer integrity using ARM pointer authentication." 28th USENIX Security. 2019.

[4] Serebryany, Konstantin, et al. "AddressSanitizer: A fast address sanity checker." Presented as part of the 2012 USENIX Annual Technical
Conference. 2012.

[5] Oleksenko, Oleksii, et al. "Intel MPX explained: An empirical study of intel MPX and software-based bounds checking approaches." arXiv
preprint arXiv:1702.00719. 2017.

[6] Wallach, Steve. “128-bit addressing in RISC-V and security.“ 5th RISC-V Workshop. 2016.

[7] Yu, Zihao, et al. "Labeled RISC-V: A new perspective on software-defined architecture." CARVV. 2017.

51SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

52SecLabel: Enhancing RISC-V Platform Security with Labelled Architecture

Thanks!

ningzy2019@mail.sustech.edu.cn

