
SecDATAVIEW: A Secure Big Data Workflow
Management System for Heterogeneous

Computing Environments
Saeid Mofrad

Department of Computer Science
Wayne State University
saeid.mofrad@wayne.edu

Ishtiaq Ahmed
Department of Computer Science

Wayne State University
ishtiaq@wayne.edu

Shiyong Lu
Department of Computer Science

Wayne State University
shiyong@wayne.edu

Ping Yang
Department of Computer Science
State University of New York at

Binghamton
pyang@binghamton.edu

Heming Cui
Department of Computer Science
The University of Hong Kong

heming@hcu.hk

Fengwei Zhang∗
Department of Computer Science

Wayne State University
fengwei@wayne.edu

ABSTRACT
Big data workflow management systems (BDWFMSs) have recently
emerged as popular platforms to perform large-scale data analytics
in the cloud. However, the protection of data confidentiality and
secure execution of workflow applications remains an important
and challenging problem. Although a few data analytics systems
were developed to address this problem, they are limited to specific
structures such as Map-Reduce-style workflows and SQL queries.
This paper proposes SecDATAVIEW, a BDWFMS that leverages In-
tel Software Guard eXtensions (SGX) and AMD Secure Encrypted
Virtualization (SEV) to develop a heterogeneous trusted execution
environment for workflows. SecDATAVIEW aims to (1) provide the
confidentiality and integrity of code and data for workflows running
on public untrusted clouds, (2) minimize the TCB size for a BD-
WFMS, (3) enable the trade-off between security and performance
for workflows, and (4) support the execution of Java-basedworkflow
tasks in SGX. Our experimental results show that SecDATAVIEW
imposes 1.69x to 2.62x overhead on workflow execution time on
SGX worker nodes, 1.04x to 1.29x overhead on SEV worker nodes,
and 1.20x to 1.43x overhead on a heterogeneous setting in which
both SGX and SEV worker nodes are used.

CCS CONCEPTS
• Security and privacy;

* The corresponding author. The work was done at WSU and he is currently affiliated
with SUSTech.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’19, December 9–13, 2019, San Juan, PR, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7628-0/19/12. . . $15.00
https://doi.org/10.1145/3359789.3359845

KEYWORDS
trusted computing, Intel SGX, AMD SEV, big data workflow, het-
erogeneous cloud

ACM Reference Format:
SaeidMofrad, Ishtiaq Ahmed, Shiyong Lu, Ping Yang, Heming Cui, and Feng-
wei Zhang. 2019. SecDATAVIEW: A Secure Big Data Workflow Manage-
ment System for Heterogeneous Computing Environments. In 2019 An-
nual Computer Security Applications Conference (ACSAC ’19), December
9–13, 2019, San Juan, PR, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3359789.3359845

1 INTRODUCTION
Recently, scientific workflows increasingly use cloud computing
to provision on-demand scalable resources in computation and
storage for large-scale big data analytics [30, 37]. Cloud computing
has the advantage of being able to provision practically an unlimited
number of resources to a workflow application based on a pay-as-
you-go pricing model, enabling scientific workflows to solve larger
scientific problems and to address the big data challenges (volume,
velocity, and variety) more efficiently. This leads to the notion of big
data scientific workflows [30, 33], or big data workflows for short.

However, cloud’s hardware resources are usually shared among
different users or organizations through isolation techniques such
as virtual machines or containers. The resource sharing character-
istics and the large size of the cloud’s system software makes the
cloud vulnerable to various attacks [2, 14, 34, 45, 50, 57]. For exam-
ple, Ristenpart et al. [49] showed that an outside adversary could
extract unauthorized information inAWSEC2 instances. In addition,
big data workflows running on clouds or virtualized data centers
rely on the integrity of the OS and hypervisor code to operate cor-
rectly, which introduces a large trusted computing base (TCB) - the
quintessential software and hardware portion of the system whose
security is critical and must be ensured for the sound behavior of
the rest of the system. The vulnerabilities introduced by a large TCB
may be exploited by adversaries. Attacks could also be originated
from a malicious insider, such as a dishonest administrator or high-
privileged malicious cloud software, where the big data analytics

https://www.acsac.org/2019/
https://doi.org/10.1145/3359789.3359845
https://doi.org/10.1145/3359789.3359845
https://doi.org/10.1145/3359789.3359845

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA S. Mofrad et al.

platform is deployed. Hardware-assisted trusted execution environ-
ments (TEEs) is a promising solution to protect the execution of
big data workflows and workflow data. Intel Software Guard eXten-
sions (SGX) [5, 24, 42] and AMD Secure Encrypted Virtualization
(SEV) [29] are two widely used general purpose hardware-assisted
TEEs developed for the x86 architecture. The pros and cons of Intel
SGX and AMD SEV technologies are discussed in [43]. Intel SGX
has been used for protecting big data analytics in the cloud. For
example, Shuster et al. [9] proposed VC3, a system that leverages
SGX to protect unmodified Map-Reduce tasks written in C/C++.
Pires et al. [46] proposed a lightweight, Map-Reduce framework
with Lua [23], a high-level language that interprets the Map-Reduce
Lua scripts in Intel SGX. Zheng et al. proposed Opaque [61] that
enhanced the security of the Spark SQL with SGX. Although these
systems are the pioneers in using hardware-assisted security tech-
nologies for big data analytics, they are limited to specific domains.
For example, the systems proposed by Shuster et al. [9] and Pires
et al. [46] support only Map-Reduce-style workflows consisting
of a Map task and a Reduce task, but not workflows with more
complex structure [3, 33]. The Opaque application is limited to the
use of relational algebra based tasks with Spark SQL. Although
Opaque provides techniques for protecting the secure execution
of relational algebra expressions, the proposed system does not
support tasks whose source code is not available. In addition, each
task in Opaque is a relational operator with relations as their in-
puts and outputs. Finally, existing systems do not support tasks
with well-defined input and output ports of complex data types. In
this paper, we propose SecDATAVIEW, a secure big data workflow
management system that leverages Intel SGX and AMD SEV to
provide a heterogeneous trusted execution environment (TEE) for
big data workflows. SecDATAVIEW is transparent to users and
application-level workflow tasks, and addresses the following three
challenges.

Firstly, scientific workflows running on clouds or virtualized
data centers rely on the integrity of the OS and hypervisor code
to operate correctly, which introduces a large trusted computing
base (TCB). For instance, Linux kernel has about 35.5 million lines
of code and the latest Xen hypervisor contains 572 thousands of
lines of code [11]. This large TCB inevitably creates vulnerabilities
that can be easily exploited by attackers. The National Vulnerabil-
ity Database shows that there are 307 vulnerabilities in Xen and 6
vulnerabilities in the latest Linux kernel version 5.1.6 [1]. External
attackers may exploit such vulnerabilities to gain access to comput-
ers on which scientific workflows execute to access or modify data
and workflow tasks. To address this issue, SecDATAVIEW reduces
the size of the system’s TCB by isolating the security-sensitive mod-
ules of the system in the SGX-protected enclaves or SEV-protected
instances and by keeping the high-privileged cloud system software
outside of the TCB.

Secondly, SGX is compatible with only a limited set of C/C++
libraries. However, many workflow tasks are written in Java and use
third-party Java libraries, which is not directly supported by SGX.
To address this issue, SecDATAVIEW uses the shielding approach
proposed in [8] and the SGX-LKL library OS [15, 40] to execute
workflow tasks written in Java in the secure enclaves of the worker
nodes. Alternatively, SecDATAVIEW uses AMD Secure Encrypted

Virtualization (SEV) to provide the protected worker nodes during
the workflow runtime.

Thirdly, big data workflow tasks are often memory-intensive.
For example, 75% of the execution time of the Broadband work-
flow [20] is consumed by workflow tasks that require over 1GB
memory. Running the kernel of a workflow management system
such as DATAVIEW [30] itself also requires over 500MB memory.
As a result, in the SGX-protected workflows, when tasks require a
large amount of secure memory, the SGX enclave page cache (EPC)
memory paging could significantly increase the execution time of
a workflow. SecDATAVIEW addresses this issue with the help of
SEV-protected instances that provide a larger amount of secure
memory than SGX enclaves. Our contributions are summarized as
follows:

• We propose SecDATAVIEW, a secure big data workflowman-
agement system that leverages Intel SGX and AMD SEV for
the secure execution of big data workflows. We propose a
secure architecture and the WCPAC (Workflow Code Provi-
sioning and Communication) protocol to provision and attest
secure worker nodes, securely provision the code for the Task
Executor and workflow tasks on each participating worker
node for a workflow, establish secure communication be-
tween the master node and worker nodes, and ensure secure
file transfers among worker nodes. We leverage the SGX-
shielding approach and the SGX-LKL library OS to execute
workflow tasks written in Java to overcome the limitation of
SGX’s lack of support for Java programs.

• To support memory-intensive workflows and reduce the
overall performance overhead incurred by SGX enclaves
EPC memory paging, SecDATAVIEW enables users to se-
lectively assign confidential tasks into SGX or SEV worker
nodes. Researchers in [43] reported that SEV performs faster
than SGX for workloads that require a larger amount of
secure memory. However, SGX offers better security than
SEV due to its smaller TCB size, enclave abstraction, and
memory integrity protection. In SecDATAVIEW, users may
run the memory-intensive confidential tasks (e.g., tasks that
do not require enhanced-degree of security but require a
large amount of secure memory) in SEV worker nodes while
assigning the security-sensitive confidential tasks (e.g., tasks
that need enhanced-degree of security) to the SGX worker
nodes.

• We have implemented SecDATAVIEW and conducted ex-
periments on a real-world diagnosis recommendation work-
flow [3], Map-Reduce workflow [16], and a distributed K-
means workflow to demonstrate the feasibility and usability
of the proposed system. Our experimental results show that
SecDATAVIEW imposes a moderate overhead on the exe-
cution times of various workflows. The source code of the
SecDATAVIEW system is available on GitHub1 for further
research and improvement.

The rest of the paper is organized as follows. Section §2 provides
an overview of big data, the DATAVIEW workflow management
system, the Intel SGX and AMD SEV technologies, and adversary

1https://github.com/shiyonglu/SecDATAVIEW

https://github.com/shiyonglu/SecDATAVIEW

SecDATAVIEW: A Secure Big Data Workflow Management System for Heterogeneous Computing Environments ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

model. Section §3 presents the architecture design and communica-
tion protocol implementation of SecDATAVIEW. Section §4 presents
our experimental results. Related work is given in Section §5 and
Section §6 concludes the paper.

2 BACKGROUND AND ADVERSARY MODEL
Big dataworkflows:A big data workflow is a computerized model
for automating a data analytics process, which consists of a set of
computational tasks and their data inter-dependencies, to process
and analyze data of ever increasing in scale, complexity, and rate
of acquisition [30, 33]. A big data workflow management system
(BDWFMS) is a system that completely defines, modifies, manages,
monitors, and executes scientific workflows on the cloud in the
order that is driven by the workflow logic [30, 33]. An example of
workflow is shown in Figure 6, which is a well-known word count
(Map-Reduce) workflow.

SecDATAVIEW was developed based on the DATAVIEW sci-
entific workflow management system [30]. The architecture of
DATAVIEW is given in Figure 1. The reasonswe choseDATAVIEWas
our BDWFMS are as follows: DATAVIEW represents the state-of-
the-art big data workflow management system, and it has a strong
user base – over 700 registered worldwide. DATAVIEW has been
used in various data analytics applications, including diagnosis
recommendation [3], predicting the efficacy of therapeutic services
for autism spectrum disorder [10], analysis of vehicle data to assess
driver’s driving behavior [31], medical image processing [22], bio-
logical simulation data analysis [19], and brain fiber connectivity
analysis [36]. DATAVIEW consists of three layers: the Presentation &
Visualization Layer, the Workflow Management Layer, and the Task
Management Layer. The Presentation & Visualization module is re-
sponsible for the presentation of workflows and the visualization
of various data products and provenance metadata. TheWorkflow
design & configuration module provides intuitive GUI for users to
design and configure workflows. TheWorkflow Engine is a central
module that orchestrates the execution of workflows. TheWorkflow
Monitoring module keeps track of the status of workflow execution.
The Data Product Management module stores and manages all data
products used in workflows. The Provenance Management mod-
ule is responsible for storing, browsing, and querying workflow
provenance. The Task Management module enables the execution
of heterogeneous atomic tasks, including web services and scripts,
and tasks that are executed on VMs in the cloud. The Cloud Resource
Management module interacts with virtual resources in clouds and
data centers. Using DATAVIEW, a user can not only easily share
data and workflows with peer collaborators, but also design and run
big data scientific workflows in the cloud, including commercial
Amazon EC2 and academic clouds.2
Intel SGX: Intel SGX is a recent hardware innovation that enables
users to instantiate a secure container, called enclave, to protect the
execution of code from being altered by malicious code or exter-
nal attackers. SGX protects the integrity of the enclave code and
data, even when the high-privileged system software is compro-
mised [6]. SGX also protects against the physical memory access
class of attacks [8]. With SGX, TCB contains only the processor and
the code running inside the enclave. SGX reserves a limited size

2https://portal.futuresystems.org/

Figure 1: Architecture of the base DATAVIEW [33].

of the encrypted memory region called Enclave Page Cache (EPC),
where enclaves are created within this region. In the current SGX
release, the size of EPC is 32MB, 64MB, or 128MB [6, 13]. Although
a larger memory size can be supported through the paging mecha-
nism, it incurs up to 1, 000x performance overhead [6]. To speed up
the execution performance of parallel applications, SGX supports
multi-threads inside of the enclave.
AMD Secure Encrypted Virtualization (SEV): AMD SEV is a
security feature that is created on top of the AMD Secure Mem-
ory Encryption (SME) [29] technology and provides the protection
against attacks that usually happen in cloud system software such
as high-privileged hypervisor by encrypting the memory space of
VM instances. SEV protects a VM’s memory space with an encryp-
tion key that is protected from the hypervisor, cloud management
software or other parts of the system [4, 28, 29]. SEV protection is
transparent to the user applications that are running inside SEV-
protected instances. Protected applications are unaware of under-
lying memory encryption. AMD’s Memory Encryption Engine is
capable of using different encryption keys to protect different SEV-
protected VM’s memory spaces on the same platform.
Adversary Model: The adversary model for SecDATAVIEW is
similar to that for VC3 [9]. The attackers may control the whole
software stack in remote servers, including their system software.
The attackers may also have access to network packets and capture,
replay, and modify them. An adversary may also access or change
data after it left the processor with hardware-tapping or probing
techniques. Attacker can access any process running on a worker
node. The adversary could be a dishonest administrator who can
tap into a worker node to read user data, or an attacker who can
exploit a vulnerability in the worker node host’s system software
and access user data that is located in unprotected memory, in the

https://portal.futuresystems.org/

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA S. Mofrad et al.

network buffer, or on the physical storage medium. We assume the
attacker is not capable of modifying SGX-enabled CPU package that
resides in the remote location. Other attacks, including network
traffic-analysis [48], denial-of-service, access pattern leakage [17],
side-channel attacks [56], and fault injections [7], are out of the
scope in this paper.

3 DESIGN AND IMPLEMENTATION
We identify the following security-related requirements for Sec-
DATAVIEW:

• R1: Providing the confidentiality and integrity of code and
data for workflows running on public untrusted clouds.

• R2:Minimizing the TCB size for SecDATAVIEW.
• R3: Enabling the trade-off between security and perfor-
mance for workflows with different user requirements.

• R4: Supporting the execution of Java-based workflow tasks
in SGX nodes without tedious code refactoring.

Figure 2 gives the architecture of SecDATAVIEW, which uses a het-
erogeneous computing environment including both SGX and SEV
worker nodes. This environment provides the flexibility of trade-
off between performance and the degree of security (Requirement
R3). Based on the previous study [43], SGX offers better security
than SEV due to its smaller TCB size, enclave abstraction, and
memory integrity protection. However, SGX may impose high per-
formance overhead onmemory-intensive applications due to its lim-
ited enclave memory size. While SEV offers better performance for
memory-intensive applications and the assurance of confidentiality,
it comes with the limitations of a larger TCB size (i.e., trusting the
entire VM) and no support for memory integrity protection, which
decreases its degree of security assurance. SecDATAVIEW benefits
greatly from our proposed heterogeneous computing environment
that includes both SGX and SEV worker nodes. Security-sensitive
workflow tasks (e.g., tasks that process confidential data) are exe-
cuted on SGX nodes and memory-intensive tasks with lower secu-
rity requirement (e.g., tasks that do not process confidential data)
are executed on SEV nodes. In this way, SecDATAVIEW achieves
the degree of security with low-performance overhead.

3.1 SecDATAVIEW Architecture
To protect data and prevent the execution of DATAVIEW from
being altered by attackers, one approach is to execute the whole
DATAVIEW system inside an SGX enclave or SEV-protected VM.
While this approach may work for SEV-protected VM, it is not
practical for SGX due to the following reasons. First, the code and
data that reside in a protected physical memory region inside an
enclave are called the enclave page cache (EPC). The size of the EPC
is up to 128MB. To support applications that use a large amount
of memory, SGX provides a memory paging mechanism to swap
memory pages between EPC and the memory outside the enclave;
memory pages swapped out are encrypted. Enclave memory pag-
ing is expensive and imposes performance overhead. For example,
experimental results in [6] show that, when the accessed memory
is beyond the size of the EPC, the triggered page faults may im-
pose an overhead of 1, 000x . Scientific workflow tasks are often
memory-intensive. For example, 75% of the execution time of the

Broadband workflow [20] is consumed by workflow tasks that re-
quire over 1GB memory. Running the DATAVIEW kernel itself also
requires over 500MB memory. As a result, memory paging could
significantly increase the execution time of the DATAVIEW server
and workflow tasks, which may reduce the user’s willingness to
use the proposed trusted execution environment. Secondly, SGX is
compatible with only a limited set of C/C++ libraries. Many work-
flow tasks in DATAVIEW are written in Java that use third-party
Java libraries, which are not directly supported by SGX. Although
SGX-LKL library OS supports the execution of Java code, it supports
only the execution of a single process inside the enclave (system call
fork is not supported). Moreover, putting all DATAVIEW modules
inside the enclave or SEV-protected VM increases the size of TCB,
which in turn decreases the security of the system.

To address the above challenges, we identify the components in
DATAVIEW that process confidential data and execute only such
components inside SGX enclaves; other components are executed
on the trusted premises such as private cloud computing platforms
or the user side premise as usual (Requirement R2). As different
components in DATAVIEW interact with each other, we develop
the WCPAC (Workflow Code Provisioning And Communication)
protocol to provision and attest secure worker nodes, securely pro-
vision the code for the Task Executor and workflow tasks on each
participating worker node, and establish the secure communica-
tion and file transfers between the master and worker nodes, and
among worker nodes. As a result, the confidentiality and integrity
of intermediate workflow data products are protected during their
transfer from one workflow task to another workflow task.

In DATAVIEW [32], the Workflow Engine and the Task Manage-
ment modules are security-sensitive components as they interact
with workflow tasks that may process confidential data. DATAVIEW
was not designed with security in mind and all communications
between two different modules are passed through an unencrypted
channel. In addition, although the input and output data are trans-
ferred through secure FTP (sftp) channel, they were stored in plain-
text format. SecDATAVIEW aims to protect the confidentiality and
integrity of the workflow’s code and data. To do so, we redesigned
theCloud ResourceManagement to initialize SGX/SEVworker nodes,
and added two security-related modules – Code Provisioner and
Code Provisioning Attestation – to the Task Management and Work-
flow Engine sub-systems, respectively.

Figure 2(a) visualizes the secure system architecture for Sec-
DATAVIEW in the cloud and the zoom-in view of its two compo-
nents: theWorkflow Engine and the Task Management. Figure 2(d)
provides the deployment architecture of SecDATAVIEW, which con-
sists of two parts: the master node running in a secure premise and
worker nodes running in a public cloud. The gray components in
the figure represent the redesigned components in SecDATAVIEW.
In SecDATAVIEW, the Code Provisioner and Task Executor are exe-
cuted inside SGX enclaves or SEV-protected instances.

The Workflow Executor executes on the master node in a secure
premise. Task Executors runs on each worker nodes with TEE sup-
port. AEAD AES-256 GCM symmetric cryptography [51, 52] and
SSL secure socket are used to secure the communication between
the Workflow Executor and the Task Executors. When a workflow is
initialized and before the workflow’s code is decrypted in worker
nodes, a code attestation protocol is executed.

SecDATAVIEW: A Secure Big Data Workflow Management System for Heterogeneous Computing Environments ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

Figure 2: SecDATAVIEW Architecture. (a) visualizes the secure system architecture for SecDATAVIEW and zoom-in views of
its two components: (b) Workflow Engine, and (c) Task Management. (d) provides the all-in-cloud deployment architecture of
SecDATAVIEW.

Figure 3: TheWCPACProtocol for securing the communication betweenWorkflowExecutor,CloudResourceManagement,Code
Provisioning Attestation, Code Provisioner, and Task Executor.

The Code Provisioning Attestation module running on the master
node provisions Task Executor with the help of Code Provisioner and
uses a SHA256 digest message to verify the integrity of the Code Pro-
visioner executed at a remote worker node. If the integrity of Code
Provisioner is verified, then theCode Provisioning Attestationmodule

sends the Task Executor’s decryption key, the workflow’s input data,
and the Task Executor’s SSL certificate to the Code Provisioner mod-
ule, and returns the control to theWorkflow Executor. Otherwise,
the Code Provisioning Attestation module terminates the workflow
execution and informs the user about the code attestation failure.

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA S. Mofrad et al.

The Code Provisioner module then decrypts the Task Executor and
workflow code on the SGX/SEV worker node using the received
decryption key.

The Cloud Resource Management module in SecDATAVIEW ini-
tializes SGX and SEV worker nodes upon receiving the request
from theWorkflow Executor. It implements machine-specific com-
mands to send pre-configured encrypted SGX-LKL or the SEV disk
image and communicates with the worker’s hypervisor using a ssh
bash session to launch the AMD SEV-protected instance or Intel
SGX-LKL enclave. After successfully initializing the worker node,
it returns the control to theWorkflow Executor.

The Task Executor packages all necessary code and libraries
used by workflow tasks, executes workflow tasks inside the worker
node’s TEE, and communicates with other worker nodes. This mod-
ule also interacts with the Workflow Executor and carries the secret
key for encryption and decryption of workflow data and results. In
addition, AEAD AES-256 GCM symmetric cryptography [51, 52],
SSL socket, and sftp are used to protect the communication between
worker nodes.

3.1.1 Executing workflows inside SGX enclaves. SGX-based appli-
cations were implemented with Intel SGX SDK that uses low-level
C/C++ to accomplish SGX primitives and introduces the notion of
enclave abstraction into the programming model. The enclave ab-
straction divides every SGX application into trusted and untrusted
runtime that should be designed carefully by the developers. We
identify two common SGX-based application design. One approach
is called the specialized-enclave, in which the developer follows all
the SGX rules such as code partitioning in trusted and untrusted
parts, defining Ecalls, Ocalls [26], and configuring the Enclave Def-
inition Language [25]. The specialized-enclave approach has the
advantage of the minimum TCB size since the amount of code in
the enclave runtime is minimum. The specialized-enclave is suitable
when the system depends on static components that are usually
created by skillful developers. For example, secureKeeper [13] uses
the specialized-enclave approach. However, the DATAVIEW sys-
tem uses dynamic and third-party proprietary tasks and libraries
that are not created or used by the DATAVIEW system develop-
ers. Applying the specialized-enclave approach would dramatically
decrease the usability and security of DATAVIEW system due to
the burden of learning low-level SGX-based programming on the
shoulder of its end-users. Besides, C/C++ is not a type-safe language
and user-created SGX workflow tasks may unintentionally expose
low-level defects that leak sensitive information from enclaves and
compromise the system runtime environment.

Another approach is the SGX Shield approach that executes an
unmodified application in the SGX runtime. In this approach, the un-
modified application along with its execution environment (such as
JVM) and codes that belong to the library operation system (LibOS)
entirety is executed inside the enclave. On one hand, SGX Shield
introduces a larger TCB as it puts more code inside the enclave and
may significantly decrease the memory access performance of the
enclave [13] when the enclave memory size exceeds 96MB due to
memory paging overhead. On the other hand, SGX Shield substan-
tially increases the usability of the SGX-based system by removing
the requirement of SGX-expert knowledge andmaking it possible to
execute unmodified applications in enclaves. In addition, SGX Shield

enables end-users to execute code written in type-safe languages
such as Java, which mitigates unintended memory leakage in the
program and is suitable for security-sensitive scientific workflow
applications. HAVEN [8], Graphene-SGX [55], SCONE [6], and SGX-
LKL library OS [39] use the SGX Shield approach to run unmodified
applications in enclaves. Among them, SCONE and SGX-LKL sup-
port Java. Because SGX-LKL is open-source, SecDATAVIEW uses
SGX-LKL to execute workflow tasks written in Java inside SGX
enclaves.

One limitation of SGX-LKL is that SGX-LKL supports only the
execution of a single process inside the SGX enclave. However,
complex modules in SecDATAVIEW such as Code Provisioner and
Task Executor are often run as multiple processes (e.g. SSL socket
and sftp server). To tackle the above limitation, we developed a Java-
written sftp server which is included in the SGX-LKL encrypted disk
image and is sent to the SGX worker node. The Java sftp server is
started as the only active process inside the SGX-LKL enclave. The
sftp server is capable to dynamically activate the Code Provisioner
module upon its arrival inside the enclave. The sftp server leverages
Java multi-threading, class loader, and reflection, and dynamically
extends its active process to complex Code Provisioner at enclave
runtime. In the same way, the Code Provisioner module is enabled
to activate the Task Executor inside the enclave.

3.1.2 Executing workflows inside SEV-protected VM. AMD SEV is
designed for cloud applications and protects unmodified applica-
tions by shielding the SEV VM instances from other parts of the
system [29]. Unlike SGX, SEV does not provide memory integrity
protection but imposes lower performance overhead than SGX.
To minimize the performance overhead, SecDATAVIEW executes
memory-intensive workflow tasks that do not require enhanced-
degree of protection inside SEV-protected VMs. The end-user can
decide what task in a confidential workflow is assigned to the SEV
or SGX worker nodes. SecDATAVIEW contains a pre-created SEV
disk image. This SEV disk image is used during runtime to provision
a custom VM on a SEV worker node with an execution environ-
ment that includes the guest OS, the Java virtual machine and other
necessary components (e.g., the stand-alone Java sftp server) for
secure workflow execution.

3.2 The WCPAC Protocol
We developed a Workflow Code Provisioning And Communication
(WCPAC) protocol for securing the execution of workflow tasks in
remote worker nodes. The main functionalities of WCPAC include
(1) to provision and attest secure worker nodes, (2) to securely pro-
vision the code for the Task Executor and workflow tasks on each
participating worker node, (3) to establish the secure communica-
tion and file transfers between the master node and the worker
nodes, and (4) to establish secure file transfers among worker nodes.

Every SGX worker node is configured to execute the SGX-LKL
library. AMD servers are used to execute SEV instances. During
the worker’s launch process, an SGX-LKL-based Intel remote at-
testation similar to [38] is used by the Cloud Resource Management
subsystem to verify the trustworthiness of Intel SGX CPU and
SGX-LKL enclave and to send the application configuration (i.e.,
disk encryption key) remotely. Besides, AMD guest attestation [29]
should be used to launch and verify the SEV instances. Note that at

SecDATAVIEW: A Secure Big Data Workflow Management System for Heterogeneous Computing Environments ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

the time we wrote this paper, the Intel remote attestation feature
was not fully integrated into the release of SGX-LKL [54], and we
leave the implementation of remote attestation for future work.
Nevertheless, the WCPAC protocol assumes that such a protocol is
incorporated, and the SGX and SEV worker nodes would use and
pass the remote attestation upon the request of the Cloud Resource
Management subsystem. Besides, the WCPAC protocol assumes
that the approaches used by TEE hardware vendors (i.e., SGX-LKL
and AMD SEV) to launch and access the disk images are secure.

The SecDATAVIEW master node is deployed on a trusted on-
premises server whose security is ensured. SecDATAVIEW will
provision as many worker nodes as necessary from a given hetero-
geneous computing environment to execute a particular workflow.
During the execution, SecDATAVIEW dynamically deploys a Code
Provisioner and a Task Executor on each worker node using the WC-
PAC protocol. The remaining components of SecDATAVIEW will
run on the trusted on-premises server. Figure 3 shows the commu-
nication diagram of the WCPAC protocol. The detailed sequence
diagram of the WCPAC protocol is provided in the Appendix 7.
Firstly, the Workflow Executor activates the Cloud Resource Man-
agement module with a request specifying the machine type (i.e.
SGX/SEV) to initialize the worker nodes – Step (a) in Figure 3.
When a worker node is an SGX node, then the Cloud Resource Man-
agement module sends the SGX-LKL disk image to the worker node
and activates SGX-LKL over ssh, which runs the stand-alone sftp
server inside an SGX-LKL enclave, with the Intel remote attestation
protocol. When a worker node is a SEV, then the Cloud Resource
Management module sends the SEV disk image to the worker node,
activates the SEV over ssh, and runs the stand-alone sftp server
inside the SEV-protected VM with the AMD guest attestation pro-
tocol. Upon successful initialization, all worker nodes have active
sftp server – Step (b) in Figure 3. At this step, the Cloud Resource
Management module returns the control to the Workflow Execu-
tor. The Workflow Executor then activates the Code Provisioning
Attestation module, which computes the SHA256 digest of the Code
Provisioner file and stores the digest in its memory – Step (c) in Fig-
ure 3. Besides, the Code Provisioning Attestation module randomly
generates an encryption key and stores the key in its memory.
The Code Provisioning Attestation module then encrypts the Task
Executor with the generated key and sends the Code Provisioner, the
SSL certificates of the Code Provisioner, as well as the encrypted Task
Executor to the SGX enclave or SEV instance through sftp – Step
(d) in Figure 3. The stand-alone sftp server process dynamically ac-
tivates the Code Provisioner through Java reflection and class loader,
transfers the control to the Code Provisioner, and terminates the
sftp server. The Code Provisioner then computes the SHA256 digest
on its file (self-integrity inspection), initiates a new sftp server as
part of a new running thread for the secure file transfer, opens a
new SSL socket to communicate with the Code Provisioning Attesta-
tion module, and sends its SHA256 digest to the Code Provisioning
Attestation module through the SSL socket – Steps (e) and (f) in
Figure 3.

After the Code Provisioning Attestation module receives the Code
Provisioner’s SHA256 digest, the Code Provisioning Attestation mod-
ule compares the SHA256 digest against the digest stored in its
memory to ensure that Code Provisioner is not altered. With this

Table 1: Testbeds Configuration.

Testbed Machine SecDATAVIEWMaster Intel SGX AMD SEV
CPU Model Intel Core i7-6700T Intel Xeon E3-1275 v5 EPYC 7251
CPU Core 4 4 8
CPU Thread 8 8 16
CPU Base Clock 2.8GHz 3.6GHz 2.1GHz
CPU Boost Clock 3.6GHz 4GHz 2.9GHz
Cache Type Smart Cache Smart Cache L3
Cache Size 8MB 8MB 32MB
Motherboard Dell Inspiron 24-5459 Intel FOG GIGABYTE MZ31-AR0
Memory 12GB DDR4 Non-ECC 32GB DDR4 Non-ECC 32GB ECC
Storage Conventional HDD NVME SSD SATA SSD
Hypervisor/OS Ubuntu 16.04 LTS Ubuntu 16.04 LTS Ubuntu 18.04 LTS
Kernel Version 4.15.0-50-generic-x64 4.15.0-50-generic x64 4.20.0-sev-x64
SGX SDK Version N/A Ver 2.0 N/A
SGX-LKL N/A Hardware Mode N/A
SGX-LKL Memory N/A 2GB (Encrypted) N/A
SGX-LKL Storage N/A 2GB (Encrypted Disk Image) N/A
SEV VM Kernel N/A N/A 4.18.20-generic-x64
SEV VM Memory N/A N/A 4GB (Encrypted)
SEV VM Storage N/A N/A 32GB (Disk Image)

technique we enforce another check on the Code Provisioner to cap-
ture any possible network or other flaws during code transferring
event. If the digest does not match, the job is terminated; otherwise,
the Code Provisioning Attestation module sends the Task Executor’s
decryption key to the Code Provisioner. In addition, the Code Provi-
sioning Attestation module sends the encrypted workflow’s input
data, the Task Executor’s configuration, and the Task Executor’s
SSL certificate through sftp. After the success of attestation and
file transfer, the control is returned to the Workflow Executor from
the Code Provisioning Attestation – Steps (g) and (h) in Figure 3.

Upon receiving the Task Executor’s decryption key and all the
dependency files, the Code Provisioner module decrypts the Task
Executor, and dynamically activates the Task Executor using the
Java reflection and class loader. The Code Provisioner terminates
and the control is transferred to the Task Executor – Step (i) in
Figure 3.

The Task Executor is initialized, and a new SSL socket with its SSL
certificate is started as part of the Task Executor running threads.
At this moment, the communication between Workflow Executor
and Task Executor is secured and the Task Executor completes all
assigned tasks based on the local workflow schedule it receives from
the Workflow Executor. The output results are sent through sftp to
the children worker nodes in the workflow or send back to the user
in the encrypted form, and the Task Executor terminates – Steps
(j) and (k) in Figure 3. It is noteworthy that the workflow’s data
cryptography key is carried with the Task Executor and is used for
the encryption and decryption purpose throughout the workflow
execution. The data owner generates and encrypts the input files
with a provided cryptography tool, and the secret key is compiled
as part of the Task Executor and is securely transferred to and
decrypted in the trustworthy worker nodes. Also, all trustworthy
worker nodes share the same cryptography key, so the data received
from parent nodes could be decrypted in the children nodes in the
workflow and vice versa.

4 EVALUATION
This section presents the evaluation results of SecDATAVIEW. Specif-
ically, we aim to answer three research questions:
Sect. 4.1: What is the performance overhead of running workflows
inside SecDATAVIEW?

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA S. Mofrad et al.

Sect. 4.2: Does SecDATAVIEW preserve its security properties?
Sect. 4.3: How is SecDATAVIEW compared with other systems?

We used an Intel-based processor machine as the SecDATAVIEW
master node, two Intel SGX machines, and two SEV-protected VMs
that are running on one AMD EPYC server to conduct experiments.

• The SecDATAVIEW master node has Intel Core i7-6700T 3.6GHz
CPU with 4 physical cores and 8 logical threads, 8MB of smart
cache, 12GB of DDR4 non-ECC RAM, and a conventional HDD
storage, running Ubuntu 16.04 LTS with the kernel version 4.15.0-
50-generic-x64.

• The SGX machines have Intel Xeon E3-1275 v5 4GHz CPU with
4 physical cores and 8 logical threads, 8MB smart cache, 32GB
DDR4 non-ECC RAM, and an NVME SSD storage. Ubuntu 16.04
LTS with kernel version 4.15.0-50-generic x64 and SGX SDK
version 2.0 were installed on SGX machines.

• The AMD machine has an AMD EPYC 7251 2.9GHz CPU with 8
physical cores and 16 logical threads, 32MB L3 cache, 32GB of
DDR4 RAM, and 512GB SATA SSD, running Ubuntu 18.04 LTS
with kernel 4.20.0-sev. Two SEV-protected VMs were used in our
experiments. Each VMwas assigned 4GB ofmemory, 4CPU cores,
and 32GB storage. Ubuntu 18.04 LTS with 4.18.20-generic-x64
kernel was installed in each SEV-protected VM.

• We have also installed Java version 1.8 on all machines and com-
piled the latest SGX-LKL software in hardware mode on SGX
machines. All machines are connected with a 100Mb LAN inter-
face thus making a heterogeneous cluster of five nodes.

4.1 Workflow Performance Evaluation
We used three different types of workflows in our experiments: the
Diagnosis Recommendation workflow [3], the Word Count work-
flow, a.k.a. the Map-Reduce workflow [16], and the Distributed
K-means workflow [27]. We measured the performance overhead
incurred by SGX/SEV in terms of the execution time and the mem-
ory usage for each workflow in eight different configurations:

• SGX inactive without data encryption: in this configuration,
all workflow tasks are running outside of enclaves on SGXworker
nodes. Task code is encrypted and data is not encrypted.

• SGX inactive with data encryption: in this configuration, all
workflow tasks are running outside of enclaves on SGX worker
nodes. Task code and data are encrypted during network transfer
and then decrypted before their usage.

• SGX active with data encryption: in this configuration, all
workflow tasks are running inside of enclaves on SGX worker
nodes. Both task code and data are encrypted during network
transfer and then decrypted before their usage.

• SEV inactive without data encryption: in this configuration,
all workflow tasks are running on SEV worker nodes but the
SEV feature is not used. Task code is encrypted and data is not
encrypted.

• SEV inactive with data encryption: in this configuration, all
workflow tasks are running on SEV worker nodes but the SEV
feature is not used. Both task code and data are encrypted during
network transfer and then decrypted before their usage.

• SEV active with data encryption: in this configuration, all
workflow tasks are running on SEV worker nodes with the SEV

feature used. Both task code and data are encrypted during net-
work transfer and then decrypted before their usage.

• Hybrid inactive with data encryption: in this configuration,
workflow tasks are running on a mixed setting of SGX and SEV
worker nodes without using the features of SGX and SEV. Both
task code and data are encrypted during network transfer and
then decrypted before their usage.

• Hybrid active with data encryption: in this configuration,
workflow tasks are running on a mixed setting of SGX and SEV
worker nodes with the use of the features of SGX and SEV. Both
task code and data are encrypted during network transfer and
then decrypted before their usage.
All experiments were conducted with 2GB SGX heap and 4GB

SEV RAM and 1GB JVM heap memory space. Our experiments tar-
get an extreme scenario in which all workflow tasks are scheduled
on the same SGX/SEV worker node. These experiments are used to
measure the maximum possible overhead of SecDATAVIEW. In our
experiments, the memory footprint and heap size are larger than
the SGX EPC memory and communication between two workflow
tasks are encrypted. To measure the execution time, we have started
a timer in theWorkflow Executor module that is initiated before the
activation of Task Executor and ends when the workflow finishes
execution. The reported results represent the aggregated perfor-
mance and overhead incurred by SGX-LKL/SEV instance runtime,
secure network stack, read/write access inside the SGX-LKL and
SEV disk image, file encryption/decryption, file transfer between
worker nodes, and secure execution of workflow tasks.

4.1.1 The Diagnosis Recommendation workflow. The diagnosis rec-
ommendation workflow is a real-life diagnosis workflow [3] that
uses machine learning methods and raw textual dataset as a pre-
scription for a group of patients. We synthetically created 10, 000 −
100, 000 patient records with an average length of 150 characters
for an individual prescription. In our first experiment, all workflow
tasks are associated with SGXworker nodes with three different set-
tings: (a) SGX inactive without data encryption, (b) SGX inactive with
data encryption, and (c) SGX active with data encryption. In our sec-
ond experiment, all workflow tasks are associated with SEV nodes
with three settings: (a) SEV inactive without data encryption, (b) SEV
inactive with data encryption, (c) SEV active with data encryption.
Figure 4(a) shows that, when the size of the patient records in-
creases, the execution time also increases. This is because when the
size of the patient records increases, the time spent in encrypting
and decrypting the records increases and it takes a longer time for
the training and testing machine learning models in the workflow
to process larger records. Our experimental results show that SGX
and SEV impose 2.62x and 1.29x overhead on the largest dataset
containing 100, 000 patient records, respectively. It is also depicted
that SGX active with data encryption mode has higher execution
time than the SEV active with data encryption. However, while ex-
perimenting outside of SGX and SEV TEEs, the execution time of
SGX inactive with data encryption is lower than SEV inactive with
data encryption. In the hybrid approach that uses two SGX nodes
and two SEV nodes for the largest of datasets, the overhead is 1.20x
as it is depicted in Figure 5. Since Algorithm1 and Algorithm2 from
Diagnosis Recommendation workflow [3] are resource-intensive
tasks and are not highly security-sensitive, we assigned them to

SecDATAVIEW: A Secure Big Data Workflow Management System for Heterogeneous Computing Environments ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

(a) Diagnosis Recommendation Workflow.

(b) Word Count Workflow.

(c) Distributed K-means Workflow.

Figure 4: Execution time of running different workflows in
different configurations for different input datasets.

two SEV instances whereas the rest of the tasks are assigned to two
SGX enclaves. We have also experimented to obtain the memory
usage for the largest data sets. It is depicted that the SEV instances
are faster than SGX enclaves. Our experimental results also show
that 1GB heap memory and 33MB non-heap memory is consumed
when executing the diagnosis recommendation workflow, as shown
in Table 2. Table 3 depicts the encryption and decryption overhead
in hybrid active settings is 1.04x .

Figure 5: Execution time of running Diagnosis Recommen-
dation, Word Count and Distributed K-means workflows in
Hybrid inactive/active with data encryption mode for the
largest datasets.

Figure 6: The word count (Map-Reduce) workflow.

4.1.2 The Word Count workflow. Figure 6 depicts a Map-Reduce
workflow, awell-knownword-count example for theMap-Reduce [16]
operation to measure the execution times and memory overhead
of SecDATAVIEW. To conduct this experiment, we created a work-
flow with 16 tasks including one task for input processing, 3 Split-
ting and 3 Mapping tasks for map operation, 4 Shuffling and 4
Reducing tasks for reduce operation, and one task for the final
output organization. In our experiment, we randomly generated
100, 000 − 1, 000, 000 words containing 2 characters as input. Fig-
ure 4(b) compares the execution time of the word count workflow
with and without SGX/SEV. Each data point in the figure is an
average of 5 workflow iterations. The figure shows that when the
number of words increases from 100, 000 to 1, 000, 000, the exe-
cution time increases linearly. SGX and SEV impose 1.89x and
1.04x overhead for the largest dataset (i.e., the dataset containing
1, 000, 000 words), respectively. This shows that SEV imposes little
overhead on the execution time and SGX imposes higher overhead
than SEV. In our hybrid approach in which workflow tasks are
executed inside both SGX (2 nodes) and SEV (2 nodes) machines
at the same time by randomly distributing the tasks to 4 SGX/SEV
nodes, the performance overhead is 1.33x as depcited in Figure 5.

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA S. Mofrad et al.

Table 2: Memory usage of experimental workflows.

Workflow Max heap Max non-heap Total
Diagnosis Recommendation 1GB 33MB 1, 057MB
Word Count 1GB 31MB 1, 055MB
Distributed K-means 1GB 30MB 1, 054MB

Table 3: Encryption decryption performance overhead of
Hybrid active.

Workflow Including Excluding Overhead
Diagnosis Recommendation 50, 481ms 48, 132ms 1.04X
Word Count 99, 59ms 96, 11ms 1.03X
Distributed K-means 26, 551ms 24, 591ms 1.07X

We have also measured the memory usage of SecDATAVIEW. Our
experimental results show that SecDATAVIEW uses 1GB heap and
31MB non-heap memory, as depicted in Table 2. Table 3 shows the
encryption and decryption imposes 1.03x overhead in hybrid active
settings.

4.1.3 The Distributed K-means workflow. We measured the execu-
tion time and memory usage of SecDATAVIEW using a Distributed
K-means workflow 3, where several clusters and the number of
splits of datasets are designed dynamically. In this experiment, we
randomly generated 100, 000 to 1, 000, 000 points, each of which
has an x and a y coordinate. Figures 4(c) and 5 give the execu-
tion time of SecDATAVIEW, which shows that SGX, SEV, and our
hybrid approach impose 1.69x , 1.29x and 1.43x overhead on the
largest dataset (1, 000, 000 points), respectively. Also, running the
distributed K-means workflow uses 1GB heap and 30MB non-heap
memory, which is represented in Table 2.

4.2 Security Analysis
SecDATAVIEW architecture and TCB: The SecDATAVIEW ar-
chitecture provides the smallest software and hardware TCB for
deploying big data workflow management system in the cloud.
For SGX nodes, the software component of TCB is the LibOS, the
JVM, the Code Provisioner, and the Task Executor. For SEV worker
nodes, the software component of TCB is the guest OS, the JVM,
the Code Provisioner, and the Task Executor. The hardware com-
ponent of the TCB is the CPU package for the SGX workers and is
AMD SoC and AMD secure processor for the SEV worker nodes.
The SecDATAVIEW architecture excludes all the underlying and
high-privileged cloud system software (i.e., hypervisor and cloud
management software), from the TCB. Besides, SecDATAVIEW is
protected against memory corruption vulnerabilities (e.g., buffer
overflow) since memory access is protected by type-safe languages
like Java and JVM.
Workflow code and data confidentiality and integrity: Sec-
DATAVIEW architecture protects the confidentiality and integrity
of the workflow’s code and data at the booting time and runtime
with the help of TEEs. TEEs are attested with the help of hard-
ware attestation method that is provided by TEE hardware vendors
(i.e., Intel Attestation Server and AMD Guest Attestation). Besides

3https://www.flickr.com/photos/waynestateise/47529826741/

TEEs, SecDATAVIEW security protection is guaranteed with dif-
ferent security primitives such as AEAD scheme, one-way hash
functions, SSL/TLS, and SFTP network connectivity. Specifically,
SecDATAVIEW uses authenticated encryption with associated data
(AEAD). The associated data is validated, but not combined in the
ciphertext. However, the Initialization Vector (IV) that is used to
generate the AEAD is implicitly integrated within the ciphertext.
We assume that AEAD is secure [18], implying that without the
secret key, and given the ciphertexts for any elected plaintexts and
associated data, it is computationally infeasible to form another
pair of ciphertext and associated data to decrypt the ciphertext.
WCPAC protocol: SecDATAVIEW uses the WCPAC protocol to 1)
provision and attest worker nodes, 2) provision the code for the Task
Executor and workflows tasks on each participating worker node,
3) establish the secure communication and file transfers between
the master node and worker nodes, and 4) ensure the secure file
transfers among worker nodes. The WCPAC protocol protects the
SecDATAVIEW network connectivity by establishing an SSL socket
connection for messaging and the SFTP for file transferring be-
tween active nodes. WCPAC is protected against eavesdropping,
the man-in-the-middle attack, and the replay attack.
Attacks against network channel: Assume an adversary actively
eavesdrop on the communication among different nodes. The ad-
versary can learn the source, the destination, the number of trans-
mitting packets, the time of message sent, and the total size of
the transferred message. Conversely, the adversary cannot know
the content carried by the packet’s payload due to our multi-layer
protection mechanisms. First, the communication is protected with
the SSL/TLS protection. Even if the adversary breaks the SSL/TLS
cryptography protection, the payload is protected with the AEAD
encryption and the adversary needs to break the second layer of
cryptography protections, which decreases the chance of successful
attack.
The denial of service (DoS) attack: SecDATAVIEW is vulnerable
to the DoS attack, but this attack also presents in SGX and SEV
TEE. For SGX, it is mainly caused by a malicious host that refuses
to launch the enclave. In SEV it could be caused by a malicious hy-
pervisor that refuses to start the SEV-protected VM or by attackers
who modify the SEV-protected memory image due to the lack of
the SEV memory integrity protection, causing the VM to crash or
exhibit unexpected behavior.
The side-channel attack: SecDATAVIEW is vulnerable to the side-
channel attack that is present in every SGX [12, 21, 35, 44, 53, 56,
58, 59] and SEV [43] TEE.

4.3 Comparison with Existing Systems
Table 4 compares SecDATAVIEW against several representative big
data systems including VC3 [9], Opaque [61], and the lightweight
Lua Map-Reduce system [46].
Functionality: SecDATAVIEW has two main advantages com-
pared to the existing systems: 1) it is compatible with many forms
of data structures/formats and is also capable of executing a vari-
ety type of workflows by leveraging a heterogeneous computing
setting (i.e., SGX and SEV). VC3, the lightweight Lua Map-Reduce,
and Opaque are limited to Map-Reduce and SQL query workflows,
respectively. Besides, they only support SGX TEE to protect their

SecDATAVIEW: A Secure Big Data Workflow Management System for Heterogeneous Computing Environments ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

Table 4: Comparisons with existing TEE-based big data systems.

Feature SecDATAVIEW VC3 [9] Opaque [61] Lua Map/Reduce [46]
Data confidentiality AES-GCM-256 AES-GCM-128 AES-GCM-128 AES-CTR-128
Data integrity Authenticated Encryption Authenticated Encryption Authenticated Encryption No
Intel SGX Yes Yes Yes Yes
AMD SEV Yes No No No
Data structure compability All types of workflow Map-Reduce SQL query Map-Reduce
Job integrity verification No Yes Yes No
Access pattern leakage protection No No Yes No
Access pattern leakage overhead N/A N/A 1.6X-46X (oblivious mode) N/A
Job performance overhead 1.2X-1.43X (hybrid mode) 1.04X-1.08X (base-encrypted mode) 0.52X-3.3X (encrypted mode) 1.3X-2X (encrypted mode)

computation.
Security: SecDATAVIEW and the lightweight Lua Map-Reduce use
the managed code (Java/Lua) that are protected against memory
corruption vulnerabilities (e.g., buffer overflow). VC3 uses C/C++
and offers an execution mode in which the integrity of the enclave
memory region is evaluated. However, when this feature is acti-
vated, the performance overhead is increased up to 1.27x . Among
the compared systems, Opaque and VC3 offer job execution verifi-
cation. In SecDATAVIEW, since the structure of workflows and the
size of input files do not need to follow a pre-defined data structure
(i.e., Map-Reduce or query), having a general verification model to
be applied in many forms of workflow is an open research challenge.
Among the compared systems, only Opaque provides the protection
against access pattern leakage attack. However, it is based on the
oblivious computation, which imposes up to 46x overhead on the
job execution time in Opaque.
Performance: SecDATAVIEW imposesmoderate overhead, a range
between 1.20x-1.43x in a hybrid approach. Among compared sys-
tems, VC3 is fastest when it works with its fastest mode and without
enclave memory region checking. However, when VC3 activates
the enclave memory region checking, its performance is competi-
tive with SecDATAVIEW (i.e., VC3 imposes up to 1.27x overhead
and SecDATAVIEW imposes up to 1.43x overhead). Additionally,
SecDATAVIEW (1.43x) outperforms Opaque (3.3x overhead) and
the lightweight Lua Map-Reduce (2x overhead).

5 RELATEDWORK
In this section, we survey the state-of-the-art solutions regarding
big data security. Brenner et al. proposed Securekeeper [13] that
uses Intel SGX to protect the confidentiality of ZooKeeper coordina-
tion service. Considering the enclave programming spectrum, the
Securekeeper used the specialized enclave with Java JNI approach
to call the SGX primitives in native C/C++ that helped it to maintain
a small size of TCB. SecureKeeper imposes 32.18% overhead on the
base ZooKeeper. Schuster et al. proposed VC3 [9] that works with
unmodified Hadoop and uses Intel SGX to protect Map-Reduce
code and job execution. In VC3, all Map-Reduce jobs run inside the
enclave with one executing thread (No multi-threading applied).
Additionally, all data traffic of intermediate Map-Reduce results
is kept encrypted during the job execution. VC3 results show a
performance overhead between 4.3% to 24.5% when the enclave
self-integrity checking mode is used. Pires et al. [46] proposed a
lightweight, secure Map-Reduce framework that leveraged Intel
SGX. Their system is integrated with a lightweight virtual machine
for Lua language [23], which is a high-level language that interprets

the Map-Reduce Lua scripts, and a Secure Content Based Routing
System (SCBR) [47], which is a secure publish/subscribe system
for the message passing and data distribution in the distributed
system between the client and worker nodes. In this system, three
main entities, client, SCBR, and worker nodes collaborate to exe-
cute a Map-Reduce workflow. All message routing as well as the
map and reduce Lua scripts execution happens inside the secure
enclave. The reported results showed up to 2x performance over-
head. Zheng et al. [61] proposed Opaque that enhanced the security
of the Spark SQL with SGX. One of the execution modes referred
to as the encryption mode provides the confidentiality protection
on the data and the results. In this mode, the Opaque’s code at the
client side is transferred to the enclave and with the help of Intel
attestation protocol, the code is verified and the secret keys are
distributed inside the enclave. Their experimental results show that
the Opaque’s encryption mode imposes 3.3x performance overhead
on the execution time. Moreover, Opaque uses the oblivious mode
and the oblivious pad mode to provide protection against the access
pattern leakage and the size leakage with the help of oblivious com-
putations. Opaque’s experimental results showed that the oblivious
mode imposes 1.60x to 46x overhead on the execution time.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we present SecDATAVIEW, an efficient and secure big
data workflowmanagement system that protects the confidentiality
and integrity of Java-written tasks and data in the workflow with
the help of SGX/SEV worker nodes. SecDATAVIEW significantly
reduces the TCB size of the worker node, and protects the Task Ex-
ecutor and individual workflow tasks by executing them inside the
SGX enclave or the SEV-protected instance. Our experiments with
different types of workflows show the usability of the system with a
low-performance overhead while securing the confidential task exe-
cution at SGX enclave/SEV instance runtime. We plan to investigate
the security issues of collaborative scientific workflows [41, 60] in
the future, in which multiple users design and execute a workflow
in the cloud collaboratively.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers for their insightful
comments that helped improve this paper. This work is supported
by National Science Foundation under grant NSF OAC-1738929.

REFERENCES
[1] [n.d.]. National institute of standards, national vulnerability database. https:

//nvd.nist.gov/.

https://nvd.nist.gov/
https://nvd.nist.gov/

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA S. Mofrad et al.

[2] Secunia Advisory. 2013. Xen pv kernel decompression multiple vulnerabilities.
[3] Ishtiaq Ahmed, Shiyong Lu, Changxin Bai, and Fahima Amin Bhuyan. 2018.

Diagnosis Recommendation using Machine Learning Scientific Workflows. In
Big Data Congress, 2018 IEEE International Conference on. IEEE.

[4] AMD. 2018. Secure Encrypted Virtualization API Version 0.16. https://support.
amd.com/en-us/search/tech-docs.

[5] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative
technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13.

[6] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’keeffe, and Mark L
Stillwell. 2016. SCONE: Secure Linux Containers with Intel SGX. In OSDI, Vol. 16.
689–703.

[7] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache. 2012.
Fault injection attacks on cryptographic devices: Theory, practice, and counter-
measures. Proc. IEEE 100, 11 (2012), 3056–3076.

[8] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding applications
from an untrusted cloud with haven. ACM Transactions on Computer Systems
(TOCS) 33, 3 (2015), 8.

[9] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. VC3: Trustworthy
data analytics in the cloud using SGX. In IEEE Symposium on Security and Privacy
(SP), 2015. IEEE, 38–54.

[10] Fahima Bhuyan, Shiyong Lu, Ishtiaq Ahmed, and Jia Zhang. 2017. Predicting
efficacy of therapeutic services for autism spectrum disorder using scientific
workflows. In 2017 IEEE International Conference on Big Data (Big Data). IEEE,
3847–3856.

[11] inc Black Duck Software. [n.d.]. Black Duck Open Hub. https://www.openhub.
net/p?query=xen&sort=relevance.

[12] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software grand exposure: SGX cache
attacks are practical. arXiv preprint arXiv:1702.07521 (2017), 33.

[13] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias Lorenz,
Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza. 2016. SecureKeeper: Confi-
dential ZooKeeper using Intel SGX. In Middleware. 14.

[14] Sven Bugiel, Stefan Nürnberger, Thomas Pöppelmann, Ahmad-Reza Sadeghi, and
Thomas Schneider. 2011. AmazonIA: when elasticity snaps back. In Proceedings
of the 18th ACM conference on Computer and communications security. ACM,
389–400.

[15] Jon Crowcroft. 2018. Description of SGX-LKL by Peter Pietzuch - Imperial College
London. https://www.cl.cam.ac.uk/~jac22/talks/ox-strachey-6.3.2018.pptx.

[16] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[17] Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang, Beng Chin Ooi, and Chun-
wang Zhang. 2015. M2R: Enabling Stronger Privacy in MapReduce Computation..
In USENIX Security Symposium. 447–462.

[18] Paul DâĂŹAvilar, Jeremy DâĂŹErrico, Ken Berends, and Michael Peck. 2004.
Reading Guide 3: Authenticated Encryption. (2004).

[19] Xubo Fei and Shiyong Lu. 2010. A dataflow-based scientificworkflow composition
framework. IEEE Transactions on Services Computing 5, 1 (2010), 45–58.

[20] Robert W Graves and Arben Pitarka. 2010. Broadband ground-motion simulation
using a hybrid approach. Bulletin of the Seismological Society of America 100, 5A
(2010), 2095–2123.

[21] Marcus Hähnel, Weidong Cui, and Marcus Peinado. 2017. High-resolution Side
Channels for Untrusted Operating Systems. In Proceedings of the 2017 USENIX
Conference on Usenix Annual Technical Conference (USENIX ATC ’17). USENIX
Association, Berkeley, CA, USA, 299–312. http://dl.acm.org/citation.cfm?id=
3154690.3154719

[22] Hajar Hamidian, Shiyong Lu, Satyendra Rana, Farshad Fotouhi, and Hamid
Soltanian-Zadeh. 2014. Adapting Medical Image Processing Tasks to a Scalable
Scientific Workflow System. In 2014 IEEE World Congress on Services. IEEE, 385–
392.

[23] Ashwin Hirschi. 2007. Traveling light, the Lua way. IEEE software 24, 5 (2007).
[24] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan

Del Cuvillo. 2013. Using innovative instructions to create trustworthy software
solutions.. In HASP@ ISCA. 11.

[25] Intel. 2018. Intel Software Guard Extensions SDK (EDL). https://software.intel.
com/en-us/sgx-sdk-dev-reference.

[26] Intel. 2019. Intel Software Guard Extensions SDK (ECALL-OCALL Functions).
https://software.intel.com/en-us/node/702973.

[27] Geetha Jagannathan and Rebecca N Wright. 2005. Privacy-preserving distributed
k-means clustering over arbitrarily partitioned data. In Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining.
ACM, 593–599.

[28] David Kaplan. 2016. AMD x86 Memory Encryption Technologies. USENIX
Association, Austin, TX.

[29] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory encryption.
White paper, Apr (2016).

[30] Kashlev et al. 2014. A system architecture for running big data workflows in the
cloud. In Proc. of the 2014 IEEE International Conference on Services Computing
(SCC). IEEE, 51–58.

[31] Andrey Kashlev and Shiyong Lu. 2014. A system architecture for running big
data workflows in the cloud. In Services Computing (SCC), 2014 IEEE International
Conference on. IEEE, 51–58.

[32] Andrey Kashlev and Shiyong Lu. 2014. A system architecture for running big
data workflows in the cloud. In Services Computing (SCC), 2014 IEEE International
Conference on. IEEE, 51–58.

[33] Andrey Kashlev, Shiyong Lu, and Aravind Mohan. 2017. Big Data Workflows: a
Reference Architecture and the DATAVIEW System. Services Transactions on Big
Data (STBD) 4, 1 (2017), 1–19.

[34] Kostya Kortchinsky. 2009. Cloudburst: A VMware guest to host escape story.
Black Hat USA (2009), 19.

[35] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. In 26th USENIX Security Symposium, USENIX Security. 16–18.

[36] Cui Lin, Shiyong Lu, Xubo Fei, Artem Chebotko, Darshan Pai, Zhaoqiang Lai,
Farshad Fotouhi, and Jing Hua. 2009. A reference architecture for scientific
workflow management systems and the VIEW SOA solution. IEEE Transactions
on Services Computing 2, 1 (2009), 79–92.

[37] Xiao Liu, Dong Yuan, Gaofeng Zhang, Wenhao Li, Dahai Cao, Qiang He, Jinjun
Chen, and Yun Yang. 2011. The design of cloud workflow systems. Springer Science
& Business Media.

[38] LSDS. 2018. SGX-LKL,Remote Attestation. https://github.com/lsds/sgx-lkl/wiki/
Remote-Attestation-and-Remote-Control.

[39] LSDS. 2019. The Allan Turing Institute SGX-LKL Library. https:
//www.turing.ac.uk/research/publications/sgx-lkl-library-os-running-java-
applications-intel-sgx-enclaves.

[40] LSDS. 2019. LSDS SGX-LKL Library. https://github.com/lsds/sgx-lkl.
[41] Shiyong Lu and Jia Zhang. 2009. Collaborative scientific workflows. In 2009 IEEE

International Conference on Web Services. IEEE, 527–534.
[42] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,

Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instructions
and software model for isolated execution.. In HASP@ISCA. 10.

[43] Saeid Mofrad, Fengwei Zhang, Shiyong Lu, andWeidong Shi. 2018. A Comparison
Study of Intel SGX and AMD Memory Encryption Technology. In Proceedings
of the 7th International Workshop on Hardware and Architectural Support for
Security and Privacy (HASP ’18). ACM, New York, NY, USA, Article 9, 8 pages.
https://doi.org/10.1145/3214292.3214301

[44] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. Cachezoom:
How SGX amplifies the power of cache attacks. In International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 69–90.

[45] Diego Perez-Botero, Jakub Szefer, and Ruby B Lee. 2013. Characterizing hy-
pervisor vulnerabilities in cloud computing servers. In Proceedings of the 2013
international workshop on Security in cloud computing. ACM, 3–10.

[46] Rafael Pires, Daniel Gavril, Pascal Felber, Emanuel Onica, and Marcelo Pasin.
2017. A lightweight MapReduce framework for secure processing with SGX. In
Cluster, Cloud and Grid Computing (CCGRID), 2017 17th IEEE/ACM International
Symposium on. IEEE, 1100–1107.

[47] Rafael Pires, Marcelo Pasin, Pascal Felber, and Christof Fetzer. 2016. Secure
content-based routing using Intel Software Guard Extensions. In Proceedings of
the 17th International Middleware Conference. ACM, 10.

[48] Jean-François Raymond. 2001. Traffic analysis: Protocols, attacks, design issues,
and open problems. InDesigning Privacy Enhancing Technologies. Springer, 10–29.

[49] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.
Hey, you, get off of my cloud: exploring information leakage in third-party
compute clouds. In Proceedings of the 16th ACM conference on Computer and
communications security. ACM, 199–212.

[50] Francisco Rocha and Miguel Correia. 2011. Lucy in the sky without diamonds:
Stealing confidential data in the cloud. In Dependable Systems and Networks
Workshops (DSN-W), 2011 IEEE/IFIP 41st International Conference on. IEEE, 129–
134.

[51] Phillip Rogaway. 2002. Authenticated-encryption with Associated-data. In Pro-
ceedings of the 9th ACM Conference on Computer and Communications Security
(CCS ’02). ACM, New York, NY, USA, 98–107. https://doi.org/10.1145/586110.
586125

[52] Bruce Schneier. 2007. Applied cryptography: protocols, algorithms, and source code
in C. john wiley & sons.

[53] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware guard extension: Using SGX to conceal cache attacks. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 3–24.

[54] Cloud Research Security. 2018. SGX-LKL,SCONE,Graphene-SGX-Remote Attes-
tation status. https://github.com/lsds/sgx-lkl/issues/13.

https://support.amd.com/en-us/search/tech-docs
https://support.amd.com/en-us/search/tech-docs
https://www.openhub.net/p?query=xen&sort=relevance
https://www.openhub.net/p?query=xen&sort=relevance
https://www.cl.cam.ac.uk/~jac22/talks/ox-strachey-6.3.2018.pptx
http://dl.acm.org/citation.cfm?id=3154690.3154719
http://dl.acm.org/citation.cfm?id=3154690.3154719
https://software.intel.com/en-us/sgx-sdk-dev-reference
https://software.intel.com/en-us/sgx-sdk-dev-reference
https://software.intel.com/en-us/node/702973
https://github.com/lsds/sgx-lkl/wiki/Remote-Attestation-and-Remote-Control
https://github.com/lsds/sgx-lkl/wiki/Remote-Attestation-and-Remote-Control
https://www.turing.ac.uk/research/publications/sgx-lkl-library-os-running-java-applications-intel-sgx-enclaves
https://www.turing.ac.uk/research/publications/sgx-lkl-library-os-running-java-applications-intel-sgx-enclaves
https://www.turing.ac.uk/research/publications/sgx-lkl-library-os-running-java-applications-intel-sgx-enclaves
https://github.com/lsds/sgx-lkl
https://doi.org/10.1145/3214292.3214301
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://github.com/lsds/sgx-lkl/issues/13

SecDATAVIEW: A Secure Big Data Workflow Management System for Heterogeneous Computing Environments ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

[55] Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-SGX: A practical
library OS for unmodified applications on SGX. In 2017 USENIX Annual Technical
Conference (USENIX ATC).

[56] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. 2017. Leaky cauldron
on the dark land: Understanding memory side-channel hazards in SGX. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2421–2434.

[57] Rafal Wojtczuk, Joanna Rutkowska, and Alexander Tereshkin. 2008. Xen 0wning
trilogy. Invisible Things Lab (2008).

[58] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang. 2017. Stacco:
Differentially analyzing side-channel traces for detecting SSL/TLS vulnerabilities
in secure enclaves. In Proceedings of the 2017 ACM SIGSACConference on Computer
and Communications Security. ACM, 859–874.

[59] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In Security
and Privacy (SP), 2015 IEEE Symposium on. IEEE, 640–656.

[60] Jia Zhang, Daniel Kuc, and Shiyong Lu. 2012. Confucius: A tool supporting
collaborative scientific workflow composition. IEEE Transactions on Services
Computing 7, 1 (2012), 2–17.

[61] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E
Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed
Analytics Platform.. In NSDI. 283–298.

7 APPENDIX
The WCPAC protocol’s main functionality includes: 1) to provision
and attest secure worker nodes, 2) to provision securely the code
for the Task Executor and workflow tasks on each participating
worker node, 3) to establish the secure communication and file

transfers between the master node and worker nodes, and 4) to
ensure secure file transfers among worker nodes. Figure 7 shows
the steps of WCPAC and relations between different entities in the
SecDATAVIEW. In the following, we define SecDATAVIEW naming
conventions for the sequence diagram.
machineLaunchRequest(machineType, IP): This function is to
call Cloud Resource Management for launching the remote worker
node (SEV or SGX machines). It accepts machineType and the IP
address from the workflow executor and initializes the remote
machines based on the given parameters, machineTypes are cate-
gorized as "AMD" or "SGX".
send(file): This function is responsible for sending a corresponding
file from source to destination. Sending file is implemented by SFTP.
message(content): This function is responsible for sending mes-
sage through SSL socket from source to destination. This message
is used for sending various signals. The content type is a string.
sha256(file): This function is responsible for generating the SHA256
digest of a given file.
keyGen(): This function is responsible for generating a random
password.
encrypt(key, AD, file): This function AEAD encrypts the input
file based on the given secret key and AD (Associated Data).
decrypt(key, AD, file): This function AEAD decrypts the provided
encrypted file based on the given secret key and AD.

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA S. Mofrad et al.

Figure 7: The Sequence Diagram of the WCPAC Protocol.

	Abstract
	1 Introduction
	2 Background and Adversary Model
	3 Design and Implementation
	3.1 SecDATAVIEW Architecture
	3.2 The WCPAC Protocol

	4 Evaluation
	4.1 Workflow Performance Evaluation
	4.2 Security Analysis
	4.3 Comparison with Existing Systems

	5 Related work
	6 Conclusions and Future Work
	Acknowledgments
	References
	7 Appendix

