
Yiming Zhang1,2, Fengwei Zhang1, Xiapu Luo2 , Rui Hou3, Xuhua Ding4,
Zhenkai Liang5, Shoumeng Yan6, Tao Wei6, Zhengyu He6

1Southern University of Science and Technology, 2The Hong Kong Polytechnic University, 
3Institute of Information Engineering CAS, 4Singapore Management University, 

5National University of Singapore, 6Ant Group

SCRUTINIZER: Towards Secure Forensics on Compromised TrustZone



2

Agenda

• Background
• SCRUTINIZER: Towards Secure Forensics on Compromised TrustZone
• Evaluation
• Summary



3

Trusted Execut ion Environment  (TEE)  Protects  Data  in  Use

TEE is a key technology in Confidential Computing; 
Hardware-assisted security design

TEE has been applied to the computing platforms 
and commercial products of several companies

Intel SGX/TDX

Arm 
TrustZone/CCAAMD SEV

Microsoft 
Azure Cloud Huawei Cloud

Google 
Cloud

Ant Occlum

NVIDIA H100

Keystone



4

Arm TrustZone TEE

• TrustZone was first introduced in ARMv6 and provides a hardware-based isolation of two execution 
environments (Normal World and Secure World)

• TrustZone ensure isolation two words through hardware extensions (e.g. TZASC and TZPC)
• Since Armv8.4, TrustZone was extended to support virtualization (Secure EL2)



5

TrustZone System is  Suscept ib le  to  Vulnerabi l i t ies

More than 207 vulnerabilities# have been identified in Arm 
TrustZone system* over the past five years

TEE 
System

CVE
Databases

SVE
Databases

Scientific 
Publications

Miscellaneous 
Reports

Source 
Code

Total

Qualcomm TEE 92 - - 7 - 99

Trustonic TEE 5 17 - 4 - 26
Huawei TEE 3 - - 1 - 4
Nvidia TEE 10 - - - - 10
Linaro TEE 3 - - 1 36 40

Other 11 - 15 2 - 28
Total 124 17 15 15 36 207
#Sok: Understanding the prevailing security vulnerabilities in trustzone-assisted tee systems. In IEEE SP, 2020

* We use ’TrustZone systems’ to refer to the software in Secure
World, including trusted apps, trusted OS and secure hypervisor (S.EL0 – S.EL2)



6

Mot ivat ion:  TrustZone Inspect ion

More than 207 vulnerabilities have 
been identified in Arm TrustZone
system over the past five years

It's crucial to add extra security forensics* to 
check TEE systems

TEE 
System

CVE
Databases

SVE
Databases

Scientific 
Publications

Miscellaneous 
Reports

Source 
Code

Total

Qualcomm TEE 92 - - 7 - 99

Trustonic TEE 5 17 - 4 - 26
Huawei TEE 3 - - 1 - 4
Nvidia TEE 10 - - - - 10
Linaro TEE 3 - - 1 36 40

Other 11 - 15 2 - 28
Total 124 17 15 15 36 207
#Sok: Understanding the prevailing security vulnerabilities in trustzone-assisted tee systems. In IEEE SP, 2020

*Capture snapshots of target for backend analysis, 
letting the platform owner for incident response or periodic security scans



7

E x i s t i n g  A p p ro a c h e s  P re s e n t s  L i m i t a t i o n s

External methods for TrustZone
are hindered by TrustZone’s

protection

1. Out-TEE 

TrustZone hardware features (e.g., 
TZASC) are insufficient to protect a 

inspection system

3. TZASC

Internal solutions within 
Secure World cannot be 

isolated from the compromised 
TrustZone

2. In-TEE 



8

Agenda

• Background
• SCRUTINIZER: Towards Secure Forensics on Compromised TrustZone
• Evaluation
• Summary



9

Arm Conf ident ia l  Compute  Archi tecture  (CCA)

• CCA was announced in March 2021 and introduced as supplement to Armv9.2-A 
• CCA introduces a set of new hardware features

• New isolation boundaries for third party confidential computing (Root and Realm Worlds)
• Dynamic assignment of memory to different worlds (Granule Protection Check, GPC)



10

S C R U T I N I Z E R :  To w a r d s  S e c u r e  F o r e n s i c s  o n  C o m p r o m i s e d  Tr u s t Z o n e

SCRUTINIZER Monitor in the EL3 Root World protecting the components from compromised TrustZone

Ø CCA’s RME-based isolation; TCB and performance optimization

Three secure forensic functions with several standard hardware features (RME, PMU, ETE, GIC):

Ø ① Memory Acquisition; ② Memory Access Traps; ③ Instruction Tracing

SCRUTINIZER based on Arm CCA Platform: Targeting the TrustZone software in Secure
World, including trusted apps, trusted OS and secure hypervisor

Root

EL3

H/WRME PMU ETE GIC

EL2

EL1

EL0
! ormal SecureSecure

!  Memory 
Acquisition 

Agent  

Scrutinizer Monitor

Secure Hypervisor

TOS Forwarding

Isolation Control"  Memory Traps #  Instruction Tracing 

Client
E2EE

E2EE

Host

TA TA



11

Memor y Acquis i t ion  in  Root  Wor ld?  

! Challenge1: Memory acquisition in the Root World enlarges the Root World codebase

! Challenge2: Acquiring Secure World memory from the Root World is slower than native access

!"#$%&'()% *+,

!)(-./*

0##( 10

1/*

10

2)%345.6)%57 *$89%$.6)%57

!"#

!"$

!"%

!"& !"#$%"&

0##(

:))-.6)%57



12

S o l u t i o n 1 :  M e m o r y  A c q u i s i t i o n w i t h  TC B  O p t i m i za t i o n  

!"#$%&'$()$#*+,-".(/,0&,$12

! Memory Acquisition Agent: Decouple the memory acquisition 

functionality from the Monitor and integrate it into an agent

! Reduce the expanded codebase of Monitor and ensure 

that the Root World’s size does not grow with the 

agent’s code

" Isolation Control for Agent! Establish an execution domain 

within Secure World via dual-GPTs isolation 

! Ensure that the agent executes within Secure World yet 

remains isolated from compromised TrustZone systems

Scrutinizer Monitor

Extract

Agent 
Memory

Agent
Secure Hypervisor

TOS 

TA TA

 Secure PAS! o-access  Root PAS
Agent Core with GPTAg  
Other Cores with GPTM  

CPU Cores

Agent 
Memory

GPTAg  

GPTM



13

S o l u t i o n 2 :  M e m o r y  A c q u i s i t i o n w i t h  Pe r fo r m a n c e  O p t i m i za t i o n  

30&4,-.1(5$+6&.-'7

" Copy the first-level page table, i.e., the target’s L0 table, to the 

agent’s local mappings, and directly graft the remaining levels

! The local mappings are allocated in the agent memory, 

which is inaccessible to TrustZone systems

! This enables efficient access by the agent to the target 

memory without building additional operations (VA_TZ 

→ PA_TZ → VA_Ag)

É

1
0

511

L0 L1 L2 PA

0

É

1

511

Agent TTBR
L0Ag

Target TTBR

É É É

L1 L2 PA
É É É

Page mapping Grafting

Copy & the execution permissions are removed

 Target mappings
Local mappings

L1 L2 PA

Since agent run in the Secure EL1/EL2, enabling it to have the capability to directly use the 
TrustZone virtual address space (VA_TZ) for reading memory (infeasible at EL3 Monitor)



14

! Memor y Access  Traps

Scrutinizer monitor in the EL3 Root World protecting the components from compromised TrustZone

# CCA’s RME-based isolation; TCB and performance optimization

Three secure forensic functions with several standard hardware features (RME, PMU, ETE, GIC):

# "  Memory Acquisition; ② Memory Access Traps; #  Instruction Tracing

Root

EL3

H/WRME PMU ETE GIC

EL2

EL1

EL0
! ormal SecureSecure

!  Memory 
Acquisition 

Agent  

Scrutinizer Monitor

Secure Hypervisor

TOS Forwarding

Isolation Control"  Memory Traps #  Instruction 
Tracing 

Client
E2EE

E2EE

Host

TA TA



15

Secure Memor y  Access  Traps  with  P lat form Compat ib i l i ty

When RME-enforced GPC verification fails, a !"#$%&'()"*+',+-*$(.#%&+(/!).0 is 
generated to prevent unauthorized access. This fault can be rerouted to the 

EL3 Root world.



16

Chal lenge  of  GPC-based Memor y  Traps  

! The granule protection information (GPI) of GPT corresponds to a page (typically 4KB) is coarse

! GPT cannot support page-like permissions, i.e., execution-only or read-only



17

Solut ion:  F ine-gra ined Memor y  Access  Traps  

mov x0! x2

add x0! sp! #0

É

0x2000

Target PAS No-access

0x2004

0x3000

!  Unset Access; 
PMI Deactived

"  Enable Access; 
PMI-trap Actived

Monitoring Address

#  Re-unset Access;
       PMI Deactived

$  Enable Access; 
Target Address Match 

Program Counter

add x0! sp! #0

É

0x2004

0x2008

0x3000

É

0x2008

mov x0! x2

É
0x2000

É É

add x0! sp! #0

É

0x2004

0x2008

0x3000

mov x0! x2

É
0x2000

É

mov x0! x2

add x0! sp! #0

É

0x2000

0x2004

0x3000

É

0x2008

É

mov x1! x0 mov x1! x0 mov x1! x0 mov x1! x0

! !"# $%&'()*'(+,-./0*/-&1'*23.4.3,3*5-&4,6&-./0*78*74(*1&5(9*:;<=

! >.4($5-&.4()*.31-7?(3(4/@*A(?(-&5(*"BC*&4)*!DE*F&-)G&-(*8(&/,-('*/7*(4F&4+(*/-&1'*/7*.4'/-,+/.74$6(?(6*5-&4,6&-./0

! D'76&/.74*+74/-76*87-*"BC*&4)*!DE@*BBDH*.'76&/.74*&4)*'0'/(3*-(5.'/(-*-('/-.+/.74



18

Agenda

• Background
• SCRUTINIZER: Towards Secure Forensics on Compromised TrustZone
• Evaluation
• Summary



19

Evaluat ion

!"#$%#&'()"*+,'-.'/0%(*1'2"3*%(*/4"*5#&,6*7.(%*89*:%'#3*;0/4*<!=>'('-%?."*@*AB!*0(2/#.)/0%(*)%.(/2

A.()/0%('-*!#%/%/CD"E*5#&*AB!*:'2"*8",F>9G5+H,5*;0/4*8H+*"('1-"3

*NINJA: Towards Transparent Tracing and Debugging on ARM, USENIX Security 2017

!"#$%&'()*")+,- ./%0'()#'#"&1)%234505*5"6)7898:;<=>)?!@AB989C+@)50)5#$&"D'()/1)EFG

?!@AB989C+@H0)#'#"&1)*&%$)"D'&I'%()50)&'(42'()/1)JKLMN



20

Agenda

• Background
• SCRUTINIZER: Towards Secure Forensics on Compromised TrustZone
• Evaluation
• Summary



21

Conc lus ions

! !"#$%&'&()#*+,-./012*3*2145,1*6-,172/42*6,3819-,:*6-,*4-8+,-8/210*%,52;(-71
! <1.1,3=1*;>1*>3,093,1*613;5,12*-6*?,8*""?*;-*4,13;1*37*/2-@3;10*6-,172/4*

17./,-7817;
! A+;/8/B1*;>1*%"C*370*+1,6-,83741
! )725,1*+@3;6-,8*4-8+3;/D/@/;E

! !-5,41*"-01*
! >;;+2FGG=/;>5DH4-8G"-8+322I?@@G!"#$%&'&()#

https://github.com/Compass-All/SCRUTINIZER

