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Trusted Execut ion Environment  (TEE)  Protects  Data  in  Use

TEE is a key technology in Confidential Computing; 
Hardware-assisted security design

TEE has been applied to the computing platforms 
and commercial products of several companies

Intel SGX/TDX

Arm 
TrustZone/CCAAMD SEV

Microsoft 
Azure Cloud Huawei Cloud

Google 
Cloud

Ant Occlum

NVIDIA H100

Keystone
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Arm TrustZone TEE

• TrustZone was first introduced in ARMv6 and provides a hardware-based isolation of two execution 
environments (Normal World and Secure World)

• TrustZone ensure isolation two words through hardware extensions (e.g. TZASC and TZPC)
• Since Armv8.4, TrustZone was extended to support virtualization (Secure EL2)
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TrustZone System is  Suscept ib le  to  Vulnerabi l i t ies

More than 207 vulnerabilities# have been identified in Arm 
TrustZone system* over the past five years

TEE 
System

CVE
Databases

SVE
Databases

Scientific 
Publications

Miscellaneous 
Reports

Source 
Code

Total

Qualcomm TEE 92 - - 7 - 99

Trustonic TEE 5 17 - 4 - 26
Huawei TEE 3 - - 1 - 4
Nvidia TEE 10 - - - - 10
Linaro TEE 3 - - 1 36 40

Other 11 - 15 2 - 28
Total 124 17 15 15 36 207
#Sok: Understanding the prevailing security vulnerabilities in trustzone-assisted tee systems. In IEEE SP, 2020

* We use ’TrustZone systems’ to refer to the software in Secure
World, including trusted apps, trusted OS and secure hypervisor (S.EL0 – S.EL2)
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Mot ivat ion:  TrustZone Inspect ion

More than 207 vulnerabilities have 
been identified in Arm TrustZone
system over the past five years

It's crucial to add extra security forensics* to 
check TEE systems

TEE 
System

CVE
Databases

SVE
Databases

Scientific 
Publications

Miscellaneous 
Reports

Source 
Code

Total

Qualcomm TEE 92 - - 7 - 99

Trustonic TEE 5 17 - 4 - 26
Huawei TEE 3 - - 1 - 4
Nvidia TEE 10 - - - - 10
Linaro TEE 3 - - 1 36 40

Other 11 - 15 2 - 28
Total 124 17 15 15 36 207
#Sok: Understanding the prevailing security vulnerabilities in trustzone-assisted tee systems. In IEEE SP, 2020

*Capture snapshots of target for backend analysis, 
letting the platform owner for incident response or periodic security scans
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E x i s t i n g  A p p ro a c h e s  P re s e n t s  L i m i t a t i o n s

External methods for TrustZone
are hindered by TrustZone’s

protection

1. Out-TEE 

TrustZone hardware features (e.g., 
TZASC) are insufficient to protect a 

inspection system

3. TZASC

Internal solutions within 
Secure World cannot be 

isolated from the compromised 
TrustZone

2. In-TEE 
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Arm Conf ident ia l  Compute  Archi tecture  (CCA)

• CCA was announced in March 2021 and introduced as supplement to Armv9.2-A 
• CCA introduces a set of new hardware features

• New isolation boundaries for third party confidential computing (Root and Realm Worlds)
• Dynamic assignment of memory to different worlds (Granule Protection Check, GPC)
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S C R U T I N I Z E R :  To w a r d s  S e c u r e  F o r e n s i c s  o n  C o m p r o m i s e d  Tr u s t Z o n e

SCRUTINIZER Monitor in the EL3 Root World protecting the components from compromised TrustZone

Ø CCA’s RME-based isolation; TCB and performance optimization

Three secure forensic functions with several standard hardware features (RME, PMU, ETE, GIC):

Ø ① Memory Acquisition; ② Memory Access Traps; ③ Instruction Tracing

SCRUTINIZER based on Arm CCA Platform: Targeting the TrustZone software in Secure
World, including trusted apps, trusted OS and secure hypervisor

Root

EL3

H/WRME PMU ETE GIC

EL2

EL1

EL0
! ormal SecureSecure

!  Memory 
Acquisition 

Agent  

Scrutinizer Monitor

Secure Hypervisor

TOS Forwarding

Isolation Control"  Memory Traps #  Instruction Tracing 

Client
E2EE

E2EE

Host

TA TA
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Memor y Acquis i t ion  in  Root  Wor ld?  

! Challenge1: Memory acquisition in the Root World enlarges the Root World codebase

! Challenge2: Acquiring Secure World memory from the Root World is slower than native access
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S o l u t i o n 1 :  M e m o r y  A c q u i s i t i o n w i t h  TC B  O p t i m i za t i o n  

!"#$%&'$()$#*+,-".(/,0&,$12

! Memory Acquisition Agent: Decouple the memory acquisition 

functionality from the Monitor and integrate it into an agent

! Reduce the expanded codebase of Monitor and ensure 

that the Root World’s size does not grow with the 

agent’s code

" Isolation Control for Agent! Establish an execution domain 

within Secure World via dual-GPTs isolation 

! Ensure that the agent executes within Secure World yet 

remains isolated from compromised TrustZone systems

Scrutinizer Monitor

Extract

Agent 
Memory

Agent
Secure Hypervisor

TOS 

TA TA

 Secure PAS! o-access  Root PAS
Agent Core with GPTAg  
Other Cores with GPTM  

CPU Cores

Agent 
Memory

GPTAg  

GPTM
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S o l u t i o n 2 :  M e m o r y  A c q u i s i t i o n w i t h  Pe r fo r m a n c e  O p t i m i za t i o n  

30&4,-.1(5$+6&.-'7

" Copy the first-level page table, i.e., the target’s L0 table, to the 

agent’s local mappings, and directly graft the remaining levels

! The local mappings are allocated in the agent memory, 

which is inaccessible to TrustZone systems

! This enables efficient access by the agent to the target 

memory without building additional operations (VA_TZ 

→ PA_TZ → VA_Ag)

É

1
0

511

L0 L1 L2 PA

0

É

1

511

Agent TTBR
L0Ag

Target TTBR

É É É

L1 L2 PA
É É É

Page mapping Grafting

Copy & the execution permissions are removed

 Target mappings
Local mappings

L1 L2 PA

Since agent run in the Secure EL1/EL2, enabling it to have the capability to directly use the 
TrustZone virtual address space (VA_TZ) for reading memory (infeasible at EL3 Monitor)
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! Memor y Access  Traps

Scrutinizer monitor in the EL3 Root World protecting the components from compromised TrustZone

# CCA’s RME-based isolation; TCB and performance optimization

Three secure forensic functions with several standard hardware features (RME, PMU, ETE, GIC):

# "  Memory Acquisition; ② Memory Access Traps; #  Instruction Tracing

Root

EL3

H/WRME PMU ETE GIC

EL2

EL1

EL0
! ormal SecureSecure

!  Memory 
Acquisition 

Agent  

Scrutinizer Monitor

Secure Hypervisor

TOS Forwarding

Isolation Control"  Memory Traps #  Instruction 
Tracing 

Client
E2EE

E2EE

Host

TA TA
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Secure Memor y  Access  Traps  with  P lat form Compat ib i l i ty

When RME-enforced GPC verification fails, a !"#$%&'()"*+',+-*$(.#%&+(/!).0 is 
generated to prevent unauthorized access. This fault can be rerouted to the 

EL3 Root world.
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Chal lenge  of  GPC-based Memor y  Traps  

! The granule protection information (GPI) of GPT corresponds to a page (typically 4KB) is coarse

! GPT cannot support page-like permissions, i.e., execution-only or read-only
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Solut ion:  F ine-gra ined Memor y  Access  Traps  

mov x0! x2

add x0! sp! #0

É

0x2000

Target PAS No-access

0x2004

0x3000

!  Unset Access; 
PMI Deactived

"  Enable Access; 
PMI-trap Actived

Monitoring Address

#  Re-unset Access;
       PMI Deactived

$  Enable Access; 
Target Address Match 

Program Counter

add x0! sp! #0

É

0x2004

0x2008

0x3000

É

0x2008

mov x0! x2

É
0x2000

É É

add x0! sp! #0

É

0x2004

0x2008

0x3000

mov x0! x2

É
0x2000

É

mov x0! x2

add x0! sp! #0

É

0x2000

0x2004

0x3000

É

0x2008

É

mov x1! x0 mov x1! x0 mov x1! x0 mov x1! x0

! !"# $%&'()*'(+,-./0*/-&1'*23.4.3,3*5-&4,6&-./0*78*74(*1&5(9*:;<=

! >.4($5-&.4()*.31-7?(3(4/@*A(?(-&5(*"BC*&4)*!DE*F&-)G&-(*8(&/,-('*/7*(4F&4+(*/-&1'*/7*.4'/-,+/.74$6(?(6*5-&4,6&-./0

! D'76&/.74*+74/-76*87-*"BC*&4)*!DE@*BBDH*.'76&/.74*&4)*'0'/(3*-(5.'/(-*-('/-.+/.74
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Evaluat ion

!"#$%#&'()"*+,'-.'/0%(*1'2"3*%(*/4"*5#&,6*7.(%*89*:%'#3*;0/4*<!=>'('-%?."*@*AB!*0(2/#.)/0%(*)%.(/2

A.()/0%('-*!#%/%/CD"E*5#&*AB!*:'2"*8",F>9G5+H,5*;0/4*8H+*"('1-"3

*NINJA: Towards Transparent Tracing and Debugging on ARM, USENIX Security 2017

!"#$%&'()*")+,- ./%0'()#'#"&1)%234505*5"6)7898:;<=>)?!@AB989C+@)50)5#$&"D'()/1)EFG

?!@AB989C+@H0)#'#"&1)*&%$)"D'&I'%()50)&'(42'()/1)JKLMN
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Conc lus ions

! !"#$%&'&()#*+,-./012*3*2145,1*6-,172/42*6,3819-,:*6-,*4-8+,-8/210*%,52;(-71
! <1.1,3=1*;>1*>3,093,1*613;5,12*-6*?,8*""?*;-*4,13;1*37*/2-@3;10*6-,172/4*

17./,-7817;
! A+;/8/B1*;>1*%"C*370*+1,6-,83741
! )725,1*+@3;6-,8*4-8+3;/D/@/;E

! !-5,41*"-01*
! >;;+2FGG=/;>5DH4-8G"-8+322I?@@G!"#$%&'&()#

https://github.com/Compass-All/SCRUTINIZER

