
c o m p u t e r s  &  s e c u r i t y  7 7  ( 2 0 1 8 )  6 1 2 – 6 2 6  

Available online at www.sciencedirect.com 

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e 

SADUS: Secure data deletion in user space for 

mobile devices 

Li Yang 

a , ∗, Teng Wei a , Fengwei Zhang 

b , Jianfeng Ma 

a 

a Xidian University, Xi’an 710071, China 
b Wayne State University, Detroit, MI 48202, USA 

a r t i c l e i n f o 

Article history: 

Received 9 February 2018 

Revised 27 April 2018 

Accepted 22 May 2018 

Available online 26 May 2018 

Keywords: 

Secure deletion 

User space 

Encrypted filesystem 

Flash memory 

Android 

a b s t r a c t 

Conventional data deletion is implemented for reclaiming storage as a rapid operation. How- 

ever, the content of the deleted file still persists on the storage medium. Secure data deletion 

is a task of deleting data irrecoverably from the physical medium. Mobile devices use flash 

memory as the internal storage. However, flash memory does not support the in-place up- 

date which is in direct opposition to efforts to securely delete sensitive data from storage. 

Previously practical secure deletion tools and techniques are rapidly becoming obsolete, and 

are rendered ineffective. Therefore, research on secure data deletion approaches for mobile 

devices has become a practical and urgent issue. 

In this paper, we study the logic structure and operation characteristics of flash memory, and 

survey related work on secure data deletion. In addition, we define the adversary capability 

and threat model, putting forward the design goals that secure data deletion scheme needs 

to meet. Then an approach in user space that uses the user space file system to provide 

secure deletion guarantees at file granularity is proposed, independent of the characteris- 

tics of the underlying file system and storage medium. The approach encrypting every file 

on an insecure medium with a unique key that can later be discarded to cryptographically 

render the data irrecoverable. Moreover, we implement our secure data deletion approach 

on Android platform named SADUS. Finally, experiments are conducted, and the results in- 

dicate that SADUS prototype ensures the secure deletion of data in flash memory on mobile 

devices with comparable overhead and it can meet the requirements of the users in daily 

use. 

© 2018 Elsevier Ltd. All rights reserved. 

1

T
d
g
d
f

j

s
t  

M
c  

A
a
e

h
0

. Introduction 

echnology trends have driven the commoditization of smart 
evices with more powerful processing capabilities and 

reater storage space for mobile computing. In contrast to tra- 
itional mobile devices, data-centric mobile smart terminals 
eature independent operating systems and the ability to in- 
∗ Corresponding author. 
E-mail addresses: yangli@xidian.edu.cn (L. Yang), okweiten

fma@mail.xidian.edu.cn (J. Ma). 

b
p

ttps://doi.org/10.1016/j.cose.2018.05.013 
167-4048/© 2018 Elsevier Ltd. All rights reserved. 
tall and run third-party software; they also provide mobile In- 
ernet services, data computing and storage services for users.
obile smart terminals have become information processing 

enters and office assistants for people’s daily work and life.
s increasingly more personal sensitive information, such as 
ddress books, browsing histories, location information, and 

ven companies’ intellectual property, is being stored on mo- 
ile devices, data must be well protected. Due to the com- 
lexity of mobile environments, in the case where a mobile 
g@gmail.com (T. Wei), fengwei@wayne.edu (F. Zhang), 

https://doi.org/10.1016/j.cose.2018.05.013
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.05.013&domain=pdf
mailto:yangli@xidian.edu.cn
mailto:okweiteng@gmail.com
mailto:fengwei@wayne.edu
mailto:jfma@mail.xidian.edu.cn
https://doi.org/10.1016/j.cose.2018.05.013


c o m p u t e r s  &  s e c u r i t y  7 7  ( 2 0 1 8 )  6 1 2 – 6 2 6  613 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

terminal is lost, stolen or sold, private personal information is
faced with a huge security threat ( Diesburg et al., 2016a ). 

With the increasing use of encryption systems, an attacker
wanting to gain access to sensitive data is directed to weaker
targets. One possible attack is the recovery of supposedly
erased data from internal storage, possibly a flash memory
card ( Albano et al., 2011 ). After a file is deleted, its data remain
stored on physical media until the actual data blocks are over-
written. Sometimes, this enables users to recover a file that
they had mistakenly deleted. Unfortunately, a malicious user
can also recover such a deleted file. Traditional mobile man-
ufacturers provide a built-in factory reset method to initialize
the device to the initial state. However, implementation flaws
in factory resets lead to successful attacks through the recov-
ery of private data directly from the flash image ( Tang et al.,
2012 ). Simon and Anderson (2015) showed that substantial
amounts of private information from second-hand electronic
storage devices can be recovered, proving that remnant flash
memory data are very common, leading to serious data secu-
rity issues. They concluded that there were approximately five
million Android phones in the market that can still have their
deleted data recovered even when restored to the original fac-
tory settings. 

To ensure data security, sensitive data stored in flash mem-
ory must be deleted securely. This is important, as reserving
obsolete data may not only endanger data owners’ privacy but
also violate the retention policies of relevant legislation ( Bajaj
and Sion, 2013; Lee et al., 2010 ). Secure deletion means that
when a file is deleted, its content does not persist on the stor-
age medium and cannot be recovered, and the device can be
re-used ( Zarras et al., 2016 ). Secure deletion is almost always
ignored in file system design largely for performance reasons.

Researchers have proposed many techniques for secure
data deletion from physical media. Conventional solutions for
secure deletion rely on either overwriting ( Bauer and Priyan-
tha, 2001; Reardon et al., 2012b; Sun et al., 2008 ) or encryp-
tion ( Lee et al., 2008; Reardon et al., 2013b ). Most work ( Bauer
and Priyantha, 2001; Gutmann, 1996; Joukov and Zadok, 2005 )
has achieved secure deletion by relying on in-place updates, in
which the data to be securely deleted are over-written by ran-
dom numbers or new data. Due to the features of flash media,
security methods based on overwriting for magnetic media
are restricted ( Wei et al., 2011 ). These special characteristics
make it prohibitively expensive to perform an in-place update
on flash. On the other hand, several works have claimed to be
able to achieve secure deletion for flash memory by relying
on encryption ( Lee et al., 2008; Reardon et al., 2012a ); however,
these works are only suitable for certain file systems and have
poor portability. 

According to the requirements imposed by the mobile de-
vices ( Huang et al., 2015 ), we propose an encrypted file system
in user space that can provide secure storage and deletion. In
contrast to previous work ( Diesburg, 2016 ), our scheme guar-
antees satisfactory irrecoverability of deleted files on different
file systems or black box storage media with unknown char-
acteristics. By extending the EncFS (2008) file system to en-
sure the confidentiality of sensitive data, we introduce a key
management module that removes the keys of the sensitive
files to make the deleted data irrecoverable. In addition to en-
suring the security of sensitive data, we significantly improve
the read and write performance to achieve an acceptable time
complexity, thereby prolonging the flash memory life-time. Si-
multaneously, we consider the scalability of secure storage. 

Considering current secure deletion limitations, in this
work, we study a method for mobile terminal storage secure
deletion from the viewpoint of storage architecture, and then,
we design and implement a mobile terminal secure deletion
file system in user space on an Android platform. The main
contributions of this paper are summarized below. 

• We conduct research on secure file deletion via an en-
crypted file system in user space on a commodity smart
device given modern NAND technology as the storage me-
dia. To this end, we present a novel secure deletion model
for flash memory located in user space. 

• We design a generic secure data deletion framework
named SADUS. In contrast to previous work, our frame-
work guarantees satisfactory irrecoverability of deleted
files on different file systems or black box storage media
with unknown characteristics. In addition, we detail our
analysis in terms of security versus performance trade-
offs. 

• Finally, we analyze the security of SADUS and prove that
our scheme can resist a strong attacker. In addition, we
implement the secure data deletion file system on a com-
modity Android device and demonstrate that it can be suc-
cessfully applied to smart mobile devices at a reasonable
performance overhead. 

The remainder of this paper is organized as follows:
Section 2 offers related research on secure deletion.
Section 3 introduces the background information and our
threat model. The design of SADUS on an Android platform is
discussed in Section 4 . In Section 5 , we analyze the security
of our approach. In Section 6 , we implement the SADUS and
present the performance results under different file system
operations, and Section 7 concludes the paper. 

2. Related works 

Various secure deletion approaches have been proposed at
different layers ( Reardon et al., 2013a; Sun et al., 2008 ). Re-
searchers have proposed many solutions to the problem of se-
curely deleting files to ensure that they remain unrecoverable
( Jia et al., 2016 ). While the proposed approaches vary widely,
they can be classified into two main groups: overwrite-based
and encryption-based methods. 

2.1. Overwrite-based secure deletion 

Sanitizing data by overwriting them is the most intuitive ap-
proach to secure deletion solutions given its analogue in the
analog world ( Shin, 2016 ). By summarizing and comparing
current methods for the secure storage and removal of data
in personal computing environments, Diesburg and Wang
(2010) propose that secure deletion and secure storage are
equally important and that we must protect the data confi-
dentiality its entire lifetime whenever we store or delete data.
The most direct method is to rewrite the file content such as by



614 c o m p u t e r s  &  s e c u r i t y  7 7  ( 2 0 1 8 )  6 1 2 – 6 2 6  

u
s
t
n
d

i
u
c
t
t
i
p
r
d
r  

fi
fi
a
b
fl
n

o
s
m
e  

W
i

m
i  

t
c
t
c
s

c
g
i
f

2

F
c
d
e
b
h

i
e
c
t
s
d

r  

(
b
t

l
o
s
e
e
e
t

i
s
l
i
t  

U
b
a
f
t

t
c
v

(
m
c
t  

a
f  

E
c
v
a
r
p
i
k
fi
b
d
s
d
s
m
p
s

E
s
t
s
e
p
e

sing the user space security methods shred ( GNU, 2012 ) and 

crub ( Ben, 2009 ); however, the premise is that the file con- 
ent must be updated in-place. Because flash memory does 
ot support in-place updates, this solution is not suitable for 
ata removal in flash memory. 

Reardon et al. (2013b) state that deleting files in file systems 
s generally performed through the following three methods: 
nlinking files, truncating files and updating the location of 
ontent to be deleted. The file content remains present in 

he first two deletion method, and the last method ensures 
he secure deletion of file content. However, secure deletion 

s almost always ignored in file system design, largely due to 
erformance reasons. Typically, deletion is implemented as a 
apid operation whereby a file is unlinked, meaning its meta- 
ata state that it is no longer present, while the file’s contents 
emain in the storage medium until overwritten by new data.

Trim (2008) and TrueErase ( Diesburg et al., 2012 ) enable a 
le system to notify lower level device drivers to delete the 
le content so that the file can be deleted in place. For flash 

nd solid-state storage, the trim command requires support 
y the operating system and device driver to achieve in-place 
ash content updating. Currently, most mobile terminals do 
ot provide compatibility for this option. 

Wei et al. (2011) propose scrubbing, which reprograms the 
riginal physical pages to delete data. They used the term 

crub budget to refer to the number of times that the flash 

emory has experimentally allowed multiple overwrite op- 
rations without presenting a significant risk for data errors.
hen the scrub budget for a block is exceeded, secure deletion 

s instead performed by invoking garbage collection. 
Reardon et al. (2012b) propose a user-level secure removal 

ethod. Because most embedded flash devices use the built- 
n FTL algorithm, which is a black box to the upper file system,
he device driver cannot be manipulated to perform garbage 
ollection for discarded flash pages. We can reduce the file sys- 
em’s available free space to encourage more frequent garbage 
ollection, ensuring that no deleted data can remain on the 
torage medium. 

SADUS deletes a file by filling the storage medium to its 
apacity, therein being divided into active and passive trig- 
ers. When encountering a strong adversary, garbage purging 
s passively triggered to purge the key storage area and per- 
orm a mandatory recall of the flash page. 

.2. Encryption-based secure deletion 

or encryption-based secure deletion ( Peters et al., 2015 ), de- 
ryption keys are usually stored in disks to achieve secure 
eletion. Those keys for the deleted data are removed ( Leom 

t al., 2016 ). Unlike overwrite-based method, encryption- 
ased solutions focus on which layers are to be encrypted and 

ow to handle the keys ( Lai et al., 2017; Reardon, 2016 ). 
A solution of using encryption to remove the data was orig- 

nally proposed by Boneh and Lipton (1996) ; they delete a small 
ncryption key to achieve the goal of deleting the entire en- 
rypted tape. Peterson et al. (2005) use this method to improve 
he efficiency of a multi-version backup file system for the 
ecure data removal of the disk media. They reduce the ad- 
ressing time to locate a single file using in-place updates to 
emove relationships between tags and keys. Diesburg et al.
2016b) also demonstrate TrueErase can serve as a building 
lock by cryptographic systems that securely delete informa- 
ion by erasing encryption keys. 

There are many designs and implementations at the kernel 
evel for different popular block device file systems ( Bitlocker 
verview, 2004; Czeskis et al., 2008; Teufl et al., 2014 ). These 
chemes encrypt the file data nodes in the kernel space by 
xtending the underlying file system, which supports a vari- 
ty of encryption algorithms. Users can distinguish between 

ncrypted files and ordinary files by mounting different direc- 
ories. 

Reardon et al. (2012a) propose the UBIFSec file system to 
mplement data node encryption by extending the UBIFS file 
ystem. UBIFSec provides a key for each data node and estab- 
ishes a mapping between the data node and the key stored 

n the key storage area. Due to the out-of-place update fea- 
ure of the flash memory, by modifying the FTL algorithm,
BIFSec organizes the key store area, forcing the file key to 
e deleted, and the unused key is recovered whenever the files 
re deleted. In addition, UBIFSec establishes a time checkpoint 
or each operation to maintain the consistency of file opera- 
ions. 

Because the kernel-level approaches require re-compiling 
he file system, the key and encryption mode cannot be 
hanged once it is determined. Thus, these approaches are 
ery limited in terms of portability. 

One user space encryption file system uses the FUSE 
Filesystem in Userspace) ( Szeredi, 2001 ) framework. Without 

odifying the kernel space code, it can use a user space appli- 
ation to achieve a built-in virtual file system. FUSE translates 
he VFS (Virtual File System) ( Vnodes et al., 1986 ) and calls
 redirect to the user space file system, which adds security 
eatures; then, it forwards calls to the underlying file system.
ncFS (2008) and CryptoFs ( Hohmann, 2003 ) both achieve a se- 
ure storage file system based on FUSE. The two systems are 
ery similar: 1) They store the encrypted file and file name in 

n encrypted directory. 2) The user is required to use the cor- 
ect key to mount the encrypted directory to a special mount 
oint to decrypt the encrypted file name and file. 3) The user 

s prompted to enter a password to generate the encryption 

ey. 4) Public encryption algorithms, such as AES, DES, Blow- 
sh, and Twofish, are supported. 5) The files are encrypted by 
lock. These user space encryption file systems use a stan- 
ard encryption mechanism that provides robustness, therein 

upporting a flexible security policy and permitting the use of 
ifferent encryption algorithms. However, the user space file 
ystem needs to switch between user space and kernel space 
ultiple times to perform file operations, which increases the 

erformance overhead compared with the kernel space file 
ystem. 

Wang et al. (2012) propose an approach to optimize the 
ncFs system in an Android system, mainly by modifying the 
ize of the encrypted file block and using a Direct-IO method 

o read the file based on the FUSE feature. Their experiments 
how that the read and write performance of the user space 
ncrypted file system meets user requirements and that the 
erformance overhead is acceptable for users. Because EncFs 
ncrypts the file name and content using the key generated by 



c o m p u t e r s  &  s e c u r i t y  7 7  ( 2 0 1 8 )  6 1 2 – 6 2 6  615 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the user-entered password, once the user password is compro-
mised, the entire encrypted file system file can be decrypted,
and thus, all data are exposed to the adversary. 

We present the SADUS user space file system. SADUS cre-
ates a unique key for each file and deletes the file by delet-
ing the corresponding key. Because flash memory uses out-
of-place updates, we encrypt all file keys simultaneously. Once
a strong opponent enters an incorrect user password, all file
keys in the encrypted file system will be purged. 

3. Preliminaries 

In this section, we first give some background; then, we
present our adversarial model. We also present our assump-
tions and the formal definition of secure deletion. 

3.1. Background 

3.1.1. Flash memory 
Flash memory is a electronic (solid-state) non-volatile com-
puter storage medium that can be electrically erased and
reprogrammed. The most prominent characteristic of flash
memory is that rewritten data can only be dynamically up-
dated via time-consuming erase operations. Furthermore, ev-
ery block in flash memory is subject to a maximum number
of program/erase cycles, typically 10 4 to 10 5 cycles. Because
the size of the file read and written by the block file system
is inconsistent with the size of the flash page, there are mul-
tiple copies of the modified content so that even if the file is
deleted, the discarded flash page still possesses the remain-
ing file information. The flash characteristics of out-of-place
updates are the main cause of post-removal data disclosure. 

3.1.2. Flash translation layer 
To conceal the characteristics of NAND flash, a special-
purpose firmware called the Flash Translation Layer (FTL) is
implemented inside flash-based devices. FTL allows exter-
nal computing components (e.g., file systems) to access flash
memory using a block-based interface. Most flash-based de-
vices, including USB sticks, SD cards, EMMC cards, and SSDs,
are equipped with the FTL. In embedded devices, the FTL is
a hardware implementation and is software in the raw flash
memory. In general, an FTL should at least provide the fol-
lowing functionalities: address translation, garbage collection,
and wear leveling. 

Address translation is the most basic functionality pro-
vided by an FTL. As shown in Fig. 1 , the physical addresses
corresponding to the logical addresses are determined by a
mapping algorithm of the FTL. During address translation, the
FTL looks up the address mapping table. The mapping table is
stored in SRAM, a fast but high-priced memory, which is used
for mapping logical addresses to physical addresses in units of
sectors or blocks. When issuing overwrites, the FTL redirects
the physical address to an empty location (free space), thus
avoiding the erase operations. After managing an overwrite,
the FTL changes the address mapping information in SRAM.
The outdated block can be erased later. The FTL achieves per-
formance and durability enhancement in addition to the basic
address translation. The performance enhancement refers to
the issues of reducing the number of read, write and erase op-
erations. Among the three operations, reducing the number of
erase operations is the most critical issue because the cost of
an erase operation is very high compared to that of read and
write operations. Durability enhancement refers to erasing ev-
ery physical block as evenly as possible without causing per-
formance degradation. If a block is above the program/erase
cycle limit, the block may not function correctly, thus causing
data loss. 

3.1.3. EncFs 
EncFs is a FUSE-based cryptographic file system. It transpar-
ently encrypts files, using an arbitrary directory as storage for
the encrypted files. FUSE ( Szeredi, 2006 ) provides a framework
for implementing user space file system. EncFs uses the lib-
fuse dynamic library and the fuse kernel module to imple-
ment a full-featured user space file system without any kernel
privileges. Two directories are involved in mounting an EncFs
file system: the source directory, and the mount point. Each
file in the mount point has a specific file in the source direc-
tory to which it corresponds. The file in the mount point pro-
vides the unencrypted view of the file in the source directory.
Filenames are encrypted in the source directory. Files are en-
crypted using a volume key, which is stored encrypted in the
source directory. A password is utilized to decrypt this key. 

3.2. Threat model 

Smart phones have been a data-centric model, with the rich
set of sensors integrated within these devices; the data gath-
ered and generated present highly sensitive user privacy is-
sues.Due to the high churn rate of new devices, it is com-
pelling to create innovative security solutions that are hard-
ware agnostic. The application sandbox approach protects
application-specific data from other applications on a phone.
However, improper placement, resale or disposal of mobile de-
vices will result in the leakage of sensitive data. Mandatory ev-
idence requests by law enforcement can also result in unau-
thorized access to data. Such data can also be intentionally ex-
filtrated by malicious programs via communication channels,
and an attacker can compromise a smart phone and access
the sensitive data by technical means. To ensure the secrecy
of the data for its lifetime, we must provide robust techniques
to store and delete data while ensuring confidentiality and in-
tegrity. 

Adversarial model. We consider a scenario in which personal
data are stored in a mobile device equipped with flash mem-
ory, where users hope that the data cannot be subject to unau-
thorized access after its deletion and that the deleted data
cannot be recovered by technical means to ensure that the
data are secure and controllable forever. 

In this work, we model a novel type of attacker that we
call the peek-coercion-recovery attacker. This attacker is more
powerful than the strong coercive attacker considered in other
secure deletion works. A coercive attacker ( Chang et al., 2015 )
can, at any time, compromise both the storage medium con-
taining the data along with any secret keys or pass phrases
required to access them. The peek-coercion-recovery attacker
extends the coercive attacker to also allow the attacker to



616 c o m p u t e r s  &  s e c u r i t y  7 7  ( 2 0 1 8 )  6 1 2 – 6 2 6  

Logical sector 
number

Page-level 
mapping table 

Physic block number

Physical 
page 

number

Flash block

(a) Page-mapped FTL

Logical sector 
number

Block-level 
mapping table 

Physic block 
number

Ligical page number

Flash block

Logical block 
number

(b) Block-mapped FTL

Fig. 1 – The address translation in FTL. 

File create File r/w File delete Garbage 
collection

Keep the confidentiality and integrity

Peek attack Coercion attack Recovery attack

t1 t2 t4t3 t5

Purging

Data’ s lifetime

Fig. 2 – Peek-coercion-recovery attacker during file lifetime. 

o
t

 

T
i
i
i
a  

l  

t
o
o
i
r
t

t
w
f
b
t
p
c
o
m
p
t
t
r

i
a

3

A
t
t
t
o
m
t
l
s

p
t  

a
a
e
w  

A  

e  

i
s  

t

t

btain the content of the storage medium at some point(s) in 

ime prior to the storage medium being compromised. 
Fig. 2 shows the timeline of data storage and an attack.

ime is divided into discrete epochs. We assume that purg- 
ng is an atomic operation. The lifetime of a piece of data 
s then defined as all the epochs from the epoch in which 

t was written to the epoch in which it was deleted. Data 
re written at time t 1 and deleted at time t 4 , and the data’s
ifetime includes all times between these two points. Here,
he peek attack (read access to the entire storage medium) 
ccurs before t 1 ; then, the coercion attack (full compromise 
f the storage medium and secret keys) is performed dur- 

ng the file access. Finally, the recovery attack (attempt to 
ecover the deleted data by technical means) occurs after 
ime t 5 . 

The coercive attack model for legal subpoenas assumes 
hat that users are required to forfeit devices and reveal pass- 
ords. Because the time of the attack is arbitrary and there- 

ore unpredictable, no extraordinary sanitation procedure can 

e performed prior to the compromise time. Because the at- 
acker is given the user’s secret keys, it is insufficient to sim- 
ly encrypt the storage media ( Joukov et al., 2006 ). The peek- 
oercion-recovery attack enables an attacker who additionally 
btains temporary read access to the medium (e.g., hidden 

alware that is forced to send suicide instructions upon being 
ublicly exposed) to then subsequently perform a coercive at- 
ack. This is roughly analogous to forward secrecy in the sense 
hat a secure deletion scheme is resilient to a peek-coercion- 
ecovery attacker. This prevents recovery of deleted data even 
1

f a prior snapshot of the data on the storage medium is avail- 
ble to the attacker. 

.3. Security definitions 

 secure data deletion scheme should be able to perform 

wo security functions: a) Storing encrypted data such that 
he adversary cannot break the ciphertext within a limited 

ime in a violent manner after performing a quick delete 
peration and b) removing data from the physical storage 
edia permanently such that the adversary cannot recover 

he deleted data or have access to the data. In the fol- 
owing, we provide a formal definition of a secure deletion 

cheme. 
Let � be a deletion scheme. A flash-based block device im- 

lements �. Let � be the encrypted file life cycle stored in 

he flash memory of this block device. � = { C, A, D, G } . � is
 quaternion, in which each element represents the file cre- 
tion, file access, file deletion, and file garbage collection op- 
rations. Let A be the set of access operations (e.g., read and 

rite) performed on the flash memory of this block device.
 = { A t 1 , A t 2 , . . . , A t n } , in which A t i represents an access op-
ration at time t i , where 0 ≤ i ≤ n . The flash-based block device
s normally and safely unmounted at time t a , and the adver- 
ary obtains a complete image of the flash at time t b , where
 n < t a < t b . 

We say that � is a secure deletion scheme if and only if 
he following two conditions can be satisfied simultaneously: 
) The adversary cannot have access to any data after D in �



c o m p u t e r s  &  s e c u r i t y  7 7  ( 2 0 1 8 )  6 1 2 – 6 2 6  617 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that has been deleted before t a . 2) Let p be the probability that
the adversary can recover the deleted data after G in �; then,
p → 0. 

3.4. Security and functionality requirements 

The proposed scheme must keep the data confidential and in-
tegrated and delete files in a fine-grained manner. Moreover,
it should be easily implemented and need minimal extra re-
sources. Therefore, the proposed scheme needs to meet the
following security and functional requirements. 

3.4.1. Security requirements 
Confidentiality . Confidentiality requires that all secure storage
data are able to resist a competent attacker so that the file
contents cannot be accessed by unauthorized users Tang et al.
(2010) . 

Integrity . Integrity requires that all secure storage data are
able to withstand the ability of a competent attacker to tamper
with the file contents and keep the file complete. 

3.4.2. Functionality requirements 
Fine granularity . Fine granularity requires the secure storage
and deletion of files regardless of how small the file is. The sys-
tem must include capabilities for modifying, truncating files,
or deleting content from the database. 

Effectiveness . In resource-constrained mobile terminals, we
require secure storage and deletion operations to be efficient
because mobile resources are limited in terms of, e.g., battery
resources, computing power, storage, and equipment lifetime.

Applicability . We demand that our scheme is simple, and the
underlying file system must be easily achieved. To this end, we
directly store and delete files securely on top of the given file
system. 

Flexibility . We wish to implement our approach by minimiz-
ing the given file system and isolating the main functions and
data structures. In addition, our changes should easily be au-
dited and analyzed by security experts. Moreover, we place no
restrictions on the underlying file system features. 

4. System design 

In this section, we design a secure data storage and deletion
system for mobile terminal, ensuring that the operations of
storing and deleting files are secure. First, we describe our ex-
pected goals for the scheme; then, we detail the system design
process. 

4.1. Architecture 

We now present our secure deletion solution and show how it
fulfills the listed requirements. 

The user stores the data to the physical storage medium
generally through the following steps. Using a common inter-
face of the Virtual File System (VFS) to find the given under-
lying file system, the underlying file system calls the device
driver to transfer data to the physical media controller. Finally,
the physical controller writes data to the physical medium.
However, in the process of storing data, each level almost con-
siders the efficiency of storage and does not fully consider se-
cure storage and deletion. In addition, because the flash uses
out-of-place updates, the difficulty of secure data deletion is
significantly increased. By modifying the kernel-level file sys-
tem or device driver to achieve secure storage and deletion,
there would be numerous modifications. Most flash storage
media controllers give priority to performance instead of se-
curity, and they are black boxes to the upper drive device.
Therefore, we propose SADUS, a secure data storage and dele-
tion file system in user space using the FUSE driver. The FUSE
driver was added between the VFS and the underlying file sys-
tem, therein using the user space file system to handle file op-
erations. 

The architecture of our SADUS method, shown in Fig. 3 ,
consists of several components. The SADUS layer abstracts
the implantation details of the underlying file system and
makes it suitable for a variety of deployment scenarios. The
actual SADUS functionality requires three core components:
the Encryption module, the Key Manager module, including
the corresponding Key Manager Storage submodule, and the
Purging module. The encryption module encrypts individual
files by translating all requests for the virtual SADUS file sys-
tem into the equivalent encrypted operations on the raw file
system to ensure the confidentiality of personal data. The key
manager module manages the file key when, for example, per-
forming the store, update, and delete operations. The purging
module ensures that there are no obsolete data in the flash
memory. Finally, SADUS provides an easy interface to store
and delete files. We use different keys to encrypt different files
and add the Key Manager module to manage the key distribu-
tion in a transparent manner to effectively remove the deleted
key of the encrypted file, thus achieving file secure deletion.
The file is encrypted before writing to the storage medium and
is decrypted before reading. All operations are performed in
memory. Each file key is stored in the Key Storage Area and
managed by the Key Manager module. 

4.1.1. Encryption 

SADUS uses the encryption layer to ease integrating the en-
cryption and decryption functions. This layer conceals the
details of the underlying encryption scheme and MAC func-
tion implementation. The cryptography layer is mainly imple-
mented by EncFs. EncFs is a FUSE-based encrypted file sys-
tem that transparently encrypts files using any directory as
the directory for all encrypted files. Three major components
are required to make EncFs work on any platform: the kernel
FUSE library support, user space libfuse, and EncFs binaries.
To make an encrypted file system work on the Android op-
erating system, a modified bootstrapping process and pass-
word login were integrated into the operating system frame-
work. EncFs uses standard OpenSSL cryptographic libraries
in user space. This gives us various advantages over using a
kernel-based cryptographic library. Libfuse and libc can run
stably on different platforms and are rarely affected by the
device. Standard libcrypt and libssl libraries implement a vari-
ety of encryption algorithms and are reliable and compatible.
EncFs supports two block cipher algorithms: AES and Blow-
fish. Both algorithms support key lengths of 128 to 256 bits and
block sizes of 64 to 4096 bytes. We configure SADUS using the



618 c o m p u t e r s  &  s e c u r i t y  7 7  ( 2 0 1 8 )  6 1 2 – 6 2 6  

SD card

Userdata 
partition

Storage

Encryption

Memory

Purging

Encrypted 
data I/O

Encrypt

Decrypt

SADUS

File 
objectsKeyManager

Fig. 3 – Abstraction of SADUS architecture. 

A
t
s
fi
p
a
d
fi

c
m
t
fi

4
W
m
t
i
t
i
K
i
s
k
t

k
t  

W
fi
m
m
t
t
i
c
r
a
a

 

s
a
d

a
S  

a
t
t
k
u
t
l  

w
i  

i
d

4
T
a  

fi
t  

u
fi  

k
p
m  

c

t
e  

o
c
b  

i
 

a
v  

o
n
n
o
p
u  

c  

u  

W

ES-256 algorithm to encrypt file name paths and file con- 
ents, and the packet encryption mode uses CBC and CFB. To 
ave user space, the file path uses the 8-bit CFB mode. The 
le header includes a hash of the file path to prevent the file 
ath from being tampered with. Subdirectory encryption is 
chieved with parental caching encryption. Encrypting the file 
irectory prevents file directory information from revealing 
le names. 

SADUS ensures the integrity of the contents as well as file 
onfidentiality. Each encrypted block header contains the file 
essage authentication code for this block, and the initializa- 

ion vector for each encrypted file block is associated with the 
le index number. 

.1.2. Key manager 
e use an encrypted database to store all SADUS file keys, the 
odule managing all keys is called the Key Manager (KM), and 

he encrypted file storing all file keys and file system profiles 
s called Key Manager Storage (KMS). The KMS is managed by 
he KM and is isolated from the SADUS file system, belong- 
ng to the underlying file system. When a file is created, the 
MS creates a ciphertext of the corresponding file key, which 

s encrypted by the KM master key. When writing a file to the 
torage medium, it encrypts the file using the corresponding 
ey provided by the KM. When the file is deleted, we only need 

o mark the encrypted file key as deleted. 
Each new file in the KMS database has a corresponding file 

ey cipher, therein creating a mapping by the cipher text of 
he file’s full path name and the cipher text of the file key.

e encrypt the entire KMS database file to ensure the con- 
dentiality of the file. Every time we delete a file, we need to 
odify the KMS database file to delete the file key and the 
apped record. Because we use the KM master key to encrypt 

he KMS file with a strong encryption algorithm, ensuring that 
he deleted key is unable to recover the file contents given lim- 
ted resources and limited time, we achieve the objective of se- 
ure deletion. When a file is deleted, the ciphertext and the key 
emain scattered in the flash memory, and we provide manu- 
lly forced purging to ensure the ciphertext content and key 
re erased. Fig. 4 shows the complete SADUS access process. 

When a file is created, the KM generates a key for the file,
tores it in the KMS using the KM master key, and creates 
 mapping between the name and the file key in the KMS 
atabase. The operation of the KM is transparent to the upper 
pplication. Fig. 4 shows the secure write and read process in 

ADUS. The solid-line arrow represents the safe write process,
nd the dotted-line arrow represents the read operation. For 
he file write operation, SADUS first generates the ID stored in 

he KM according to the file name; then, it decrypts the file’s 
ey K’ and the initial vector IV’ according to the ID, which are 
sed to encrypt the file. Finally, it writes the encrypted data to 
he storage medium. For the file read operation, as the dotted- 
ine arrow shows, the first two steps are the same as in the
rite method: It first generates the ID stored in the KM accord- 

ng to the file name. Then, it decrypts the file’s key K’ and the
nitial vector IV’ according to the ID and reads the encrypted 

ata to memory. Finally, it decrypts the data using K and IV. 

.1.3. Key manager storage 
he Key Manager Storage is the submodule of the Key Man- 
ger. The KMS stores the keys of all the files of the user space
le system SADUS in the form of ciphertexts. The file encryp- 
ion key is generated by the KM and stored by the KMS. We
se the encryption method to store the SADUS configuration 

le and the file keys to ensure that the file ciphertext and the
ey ciphertext cannot be recovered without knowing the KMS 
assword. The keys of the files are encrypted and stored by the 
aster key of the KM. When the file is deleted, the file and its

orresponding encryption key are unlinked. 
Fig. 5 shows the change when deleting the cipher file key in 

he KMS. When SADUS receives a command to delete a file, for 
xample, File 1 , it first finds K 1 based on the ID 1 of File 1 ; then, it
verwrites the K 1 cipher, forcing the Garbage Collection pro- 
ess to copy the original block contents to the newly erased 

lock. Finally, it deletes K 1 ; thus, the cipher of K 1 cannot be
ndexed from the KMS. 

When the file system is mounted, the KMS file is opened,
nd the password for the KMS database file needs to be pro- 
ided. The storage layout is in the form of a B-tree for ease
f operation. When modified, the contents of the original leaf 
ode are copied to the new leaf node; then, the original leaf 
ode is discarded. We need to define the correct storage lay- 
ut and have the following three properties: (1) All file key ci- 
her text is mapped through the file name corresponding to a 
nique ID. (2) The ciphertext of the file key stored in the KMS
an be mapped to the ID generated by the file name and is
nique. (3) We overwrite the key ciphertext before deleting it.
hen the key ciphertext of the deleted file is overwritten, the 



c o m p u t e r s  &  s e c u r i t y  7 7  ( 2 0 1 8 )  6 1 2 – 6 2 6  619 

(1) ID = 
Gen(Filename)

File key

KeyManager

ID1 k1`
ID2 k2`
…… …

File

(3) Encrypt / 
Decrypt file

(4) Write to 
/ Read from 

storage

Encrypted file KM key

(2) File key = 
DKMkey(k`)

Flash

name

content

Fig. 4 – SADUS secure write and read process. 

Root ID1

ID7 K7

ID8 K8

ID9 K9

… …

… …

… …

… …

… …

… …

… …

… …

… …

Interior page

L1 L2

Interior page

R1 R2

(1) Delete File1

Key Manage Storage

(3) Delete K1

ID1 K1
ID2 K2

ID3 K3

… …

… …

ID2 K2

ID3 K3

… …

Fig. 5 – Delete the file key from the KMS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

block that originally stored the key ciphertext will no longer
be used. 

4.1.4. Purging 
Purging is a program running in user space to clean garbage.
The operation is designed to ensure that 1) it recycles all ob-
solete flash pages. 2) Whenever a strong adversary forces the
user to hand over the SADUS password, the purging module
deletes all file keys and recycles the memory space occupied
by the KMS, making all file irreversible for the attacker. 

The SADUS file system is a user space file system such that
users do not need to reinstall a new system. Therefore, purg-
ing is designed without relying on the underlying hardware to
provide the secure deletion in user space. User-level solutions
can only create, modify, and delete the user’s individual local
files. However, such approaches allow the users themselves
to achieve secure deletion without voiding warranties or rely-
ing on the hardware manufacturer to provide secure deletion.
The purging operation complies with the following principle:
It reduces the file system’s available free space to encourage
more-frequent garbage collection. Purging consists of filling
the storage medium to capacity, thereby erasing the deleted
keys and cipher text. As described in Algorithm 1 , the purging
operation can be triggered by typing an incorrect KMS pass-
word or by the file interface provided by SADUS such as when a
strong opponent obtain an incorrect password or when an ap-
plication with a high security level exits, triggering the cache
being cleared. 

The user can completely fill the storage medium and is not
limited by the size of the storage medium; then, most of the
erasable blocks of the storage medium are reclaimed. The stor-
age medium is able to fully fill the storage medium based on
the underlying file system pre-allocation policy of the erase
block. Before the storage medium is completely filled, there re-
main some areas that contain data that can be obtained, and
the data may be the ciphertext of the deleted key. Once the
master key is exposed, these data may be cracked; however,
the deleted content’s location must also be known. We should
be concerned with the fact that purging securely deleted files
relies on the underlying file system implementation, in par-
ticular, we require the following: If the file system informs the
algorithm that the storage space has run out, the previously



620 c o m p u t e r s  &  s e c u r i t y  7 7  ( 2 0 1 8 )  6 1 2 – 6 2 6  

Algorithm 1 Data purge operation in different modes. 

Require: 
The master password ( P m 

) and the checked password ( P c ) 
entered by the user; 
The true password ( P t ) and the false password ( P f ) stored 

in the KMS. 
Ensure: 

Remove the invalid physical page/block, making the obso- 
lete data unrecoverable.

1: Initialize the file system and input P m 

and P c ; 
2: Obtain the P t and P f from the KMS; 
3: if P c == P t then 

4: User space file system mounts normally; 
5: Obtain the SADUS mount times ( T m 

) and the unmount 
times ( T u ) from the key storage area; 

6: if T m 

> T u then 

7: Call the garbage collection module and recycle 
wasted pages; 

8: end if 
9: else 

10: if P c == P f then 

11: The checked password is equal to the pre-set false 
password, performing the purging operation; 

12: Return(SUCCESS); 
13: else 
14: Re-enter the P c ; 
15: Return(FAILURE); 
16: end if 
17: end if
18: Recycle all the obsolete pages; 
19: Return(SUCCESS); 

d  

T
F
a

i
u  

W
o
w
a
s
b
a
a
u

e
c
s
t
e

a
u  

t

i
d
fi
g  

t  

a
c
a
a
s
i

5

I
a
s
c
i
p
t

 

p
i
a
c
t
e
t
r

a
m
fl
s
�

w
a
K
c  

A
t
t
s  

e

c
p
s
i
b  

W
g
t

b
r  

t
u

eleted ciphertext is no longer stored on the storage medium.
his situation holds for the Yaffs file system and the Linux 
TL, but there are differences on other underlying file systems 
nd hardware FTL algorithms. 

Purging is strongly affected by multi-threading; the purg- 
ng operation needs to continuously fill the storage medium 

ntil the storage device reports a lack of free storage space.
hen the storage medium is full, this ensures that all previ- 

usly deleted files are not recoverable. Another concern is that 
hen the storage medium is full, other applications writing 

pplication data will report that the storage medium has no 
pace available. However, the purging operation is triggered 

ecause the password is leaked; therefore, there is no space 
vailable for other applications and thereby can be ignored. In 

ddition, the user actively triggering purging has an explicit 
nderstanding of the purging feature. 

According to the user space method proposed by Reardon 

t al. (2012b) , it is possible to continue the garbage filling pro- 
ess by maintaining a certain storage capacity. We will de- 
cribe a purging experiment in the following sections to show 

hat the contents of the previously deleted files are not recov- 
rable when purging is running. 

We defined the threat model in Section 3.2 ; from file cre- 
tion to file deletion, the file is encrypted by the corresponding 
nique key, and the key is encrypted by the KMS master key,
hereby ensuring the confidentiality of the file. When delet- 
ng a file, overwriting encrypted keys ensures that the deleted 

ata cannot link to their own key, ensuring that the deleted 

le cannot be recovered. The purging operation initiates trig- 
ering of the GC process to recycle the discarded flash pages,
herein thoroughly sanitizing the flash medium. As a result,
n attacker may possess stored content at any time but only 
iphertexts and not keys. A strong opponent cannot decrypt 
nd recover stored content that has been deleted, thus en- 
bling secure storage and deletion. Overall, SADUS provides 
ecure storage and deletion to confront an attacker with lim- 
ted computational resources. 

. Security analysis 

n this section, we show that SADUS can delete sensitive data 
nd remove them from the medium permanently, thereby en- 
uring that the data cannot be recovered and is therefore se- 
urely deleted. Let � be the sensitive message, we say that �
s securely deleted if the adversary cannot recover the � when 

erforming peek-coercion-recovery attacks in the data’s life- 
ime. 

Peak attack. In Fig. 2 , the peek attacker allows the attacker to
eek into the content of the storage medium at some point(s) 

n time prior to compromise the storage medium. the peak 
ttack occurs before � is created, revealing neither the en- 
rypted data nor the encryption key. The peek attack wants to 
ake other sensitive information storing on the medium. How- 
ver, all data are encrypted before persisting to storage, what 
he adversary peaks are the ciphertext just like meaningless 
andom number. 

Coercion attack. The coercion attack occurs during the oper- 
tions of �; when the attacker obtains a snapshot of the flash 

emory between t 1 and t 4 , � is encrypted and saved to the 
ash memory. Moreover, the encryption key is encrypted and 

tored in the KMS. When performing the delete operation on 

, its encryption key is securely deleted; the � that the key 
as used to encrypt is then inaccessible, even to the user. For 
 computationally limited attacker, (s)he cannot decrypt the 
MS and link � with its corresponding key, and the adversary 
annot obtain more knowledge except for some randomness.
dditionally, if the adversary can coerce the device’s owner 

o hand over keys, the user can deliver an incorrect password 

o the attacker, which will trigger the purging operation, re- 
ulting in all the file keys in the KMS being deleted and the
ncrypted content being removed. 

Recovery attack. A recovery attack occurs after the file is 
ompletely deleted. Note that the purging operation has been 

erformed before the attack, namely, the key as well the ob- 
olete � are removed; therefore, the adversary obtains noth- 
ng about �. Although both the device and the password have 
een compromised, we present a fake password in SADUS.
hen the adversary enters the fake password, this will trig- 

er the purge module and clear all the encryption keys and 

he encrypted data, leaving only garbage content. 
SADUS provides guaranteed secure data deletion for mo- 

ile devices against a computationally limited peek-coercion- 
ecovery attacker. When an encryption key is securely deleted,
he data that it encrypts become inaccessible, even to the 
ser. Then, all invalid data and obsolete encryption keys are 



c o m p u t e r s  &  s e c u r i t y  7 7  ( 2 0 1 8 )  6 1 2 – 6 2 6  621 

SADUS

Encryption Key Manage Purging

User Application

Fuse Kernel 
Module

Yaffs

Jaffs

Ext4

Vfat

VFS

MTD/eMMC Block Device Drive

User Space

Kernel Space

Fig. 6 – SADUS modules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

securely deleted during the purging operation. Thus, the ad-
versary observes nothing but some randomness. 

We can conclude that the adversary cannot have access to
any data after D in � that has been deleted before t a , and by
observing the flash memory at time t b , the adversary cannot
recover a deleted file after G in �. Thus, p → 0 holds. 

6. Implementation and evaluation 

6.1. Implementation 

We describe the implementation details of SADUS. SADUS is
an extended version of EncFs used to achieve secure storage
and deletion for flash devices for mobile terminals. SADUS al-
locates a 256-bit key for each file, encrypts file blocks with a file
size of 512 to 4096 bytes in CBC mode, and generates MAC val-
ues for each file block. The MAC value is stored in the block of
each file and is used to verify the integrity of the file. The initial
encryption vector for each block is generated by the file name
and file block index. Our method requires an extra 96 bytes of
storage for each file, although there is a compromise option,
using the same directory encryption for files in the same di-
rectory, as discussed in Section 4.1 . SADUS, shown in Fig. 6 ,
consists of several components, and their detailed explana-
tions are as follows. 

6.1.1. Encryption 

We implement encryption by EncFs, which provides an en-
crypted file system in user space. The algorithm runs in user
space, therein using the FUSE library for the file system inter-
face. EncFs encrypts individual files by translating all requests
for the virtual EncFs file system into the equivalent encrypted
operations on the raw file system. As described in Section III,
EncFs uses robust algorithms to encrypt file names and con-
tents to ensure file confidentiality and integrity. 

6.1.2. Key manager 
The KM provides a series of management functions such as
generating a random key, creating a file and key and mapping
them, encrypting and decrypting the key of each file, and trig-
gering a purge operation. When the SADUS file system is cre-
ated, the Key Manger creates a database file that stores the
encrypted key and the configuration for SADUS. When the
user actively triggers purging or for a password input error,
the purge operation will clear all files, garbage filling is per-
formed, and the pages occupied by deleted files and keys are
recovered. 

The Key Manager Storage is a submodule of the Key Man-
ager. The KMS is a data file that stores the ciphertexts of the
SADUS profile and the mapping relationship between the file
name and the corresponding key. Consistency between the
key and file mappings is essential to file confidentiality and
secure deletion in the SADUS file system. When the purging
operation is actively triggered, the deleted files and keys are
cleared, and the mapping of other files is not covered. 

We now describe how to create the mapping between the
file and its keys. When the file system is mounted, the EncFs
password and the KMS password are needed. The EncFs pass-
word is used to encrypt the master key of the EncFs, which is
used to encrypt the file path and configuration file. The KMS
password is used to manage the keys of the files. When the file
is created, the key corresponding to the file is created by the
KM, and the mapping of the file name is established. The key
of the file is encrypted and stored in the KMS. For access to the
file, the KM decrypts the file key from the KMS and then ap-
plies it to EncFs. When the file is deleted, the KM will overwrite
the file’s key and ciphertext, forcing the original block to be-
come the new block. The original key ciphertext is used when
the erased block is not being indexed by the KMS; then, the file
key and file are deleted. Therefore, even when the password is
known, the file key cannot be restored because the ciphertext
cannot be indexed. 

6.1.3. Purging 
The purpose of purging is to trigger the garbage collection pro-
cess and recycle the pages of the deleted files and their cor-
responding ciphertext, ensuring that the files are completely
deleted and cannot be recovered. Purging has two triggering
modes. One mode is initially triggered by users, and the other
mode is passively triggered by the strong adversary. When re-
moving a more sensitive file from the storage device, the user
can actively trigger purging to force the deleted file to be re-
claimed. Because SADUS uses the password to decrypt the
EncFs and the file key in the KMS, it is possible to hand over
the password when encountering a strong adversary. In this
case, when the user enters an incorrect password, the KMS
performs mandatory removal after purging; therefore, all the
keys are completely deleted under the SADUS file system, en-
suring that the files cannot be recovered. 

SADUS effectively ensures file integrity and confidential-
ity. SADUS allocates a unique key for each file to provide



622 c o m p u t e r s  &  s e c u r i t y  7 7  ( 2 0 1 8 )  6 1 2 – 6 2 6  

Table 1 – Disk I/O and file system performance of SADUS compared to EncFs. Benchmark results on an unencrypted device 
are also presented as a baseline. 

No encryption EncFs SADUS 

Overhead vs. Overhead vs. 

Operation Performance Performance No enc. Performance No enc. EncFs 

Read 30720.00 KB/s 11673.60 KB/s 60.01% 11264.00 KB/s 63.33% 3.51% 

Write 2252.80 KB/s 1945.60 KB/s 13.64% 1925.12 KB/s 14.55% 1.05% 

fi
i
q
g
p

6

W
a  

w
u

k
a
e  

a
t
s
s  

r
fl
s
m  

W
s
p
b
fi

6
T
d
u
p
a
o
r
s

o
f
1
c
c
t

s  

W

t
Y

e
a  

F
p
t
t
t
u
t
p
o
q
s
o
m
b
s
a
f

6
T
a
t
s
t
m  

t
a
(

l  

w
o  

u
t  

W  

fi
s

o
e
e
p
p

ne-grained secure storage and deletion. The storage space 
s used effectively, and the amount of additional storage re- 
uired to store keys is much lower than the file. The two trig- 
ering modes of purging ensure that files are deleted in a com- 
letely irreversible manner. 

.2. Experimental evaluation 

e have ported SADUS to a rooted Android phone and created 

 directory for SADUS as the system directory. In this section,
e conduct experiments with the Android phone and a sim- 
lator. 

Because SADUS encrypts not only the files but also the 
eys, it can easily cause serious resource consumption issues 
nd result in intolerable delays. We therefore experimentally 
valuate the throughput performance, power consumption,
nd computing time on an Android phone and compare with 

he EncFs and Yaffs2 file systems. EncFs is an encrypted file 
ystem running in user space, whereas Yaffs2 is the initial file 
ystem of the phone, which is specifically designed to be fast,
obust and suitable for embedded use with NAND and NOR 

ash storage. Our experiment measured the overhead of our 
ystem: the extra power consumption, the throughput perfor- 
ance, and the resource consumption of the purging module.
e used a simulator to simulate the file lifecycle. For the ba- 

ic file operations, we used the Android phone to measure the 
erformance. We further measured the time consumption of 
oth read and write operations caused by the EncFs and Yaffs2 
le systems. 

.2.1. Throughput performance 
o observe how SADUS impacts the I/O performance of the un- 
erlying storage device, we first put our system under stress 
sing the dd command; we configure the dd command to re- 
eat the writing and reading of a 100 Mb file. All tests are 
lso repeated using EncFs. Although our experiment focuses 
n comparing SADUS with EncFs, we also provide benchmark 
esults obtained without running either as a baseline. The re- 
ults are shown in Table 1 . 

The results reveal that when performing reads and writes 
n a small number of large files, SADUS achieves similar per- 
ormance to EncFs, with the overhead remaining as 3.51% and 

.05%, respectively, as expected. Once SADUS obtains the en- 
ryption key for the processed file, the remaining task of en- 
rypting and decrypting the file blocks on the fly is nearly iden- 
ical to how EncFs performs files encryption. 

We also present the throughput performance results for 
equential read and write operations with different file sizes.
e also used the dd file operation command to calculate the 
hroughput of sequential read and write operations under the 
affs2, EncFs, and SADUS file systems. 

Fig. 7 compares the throughput for two typical file I/O op- 
rations, namely, sequential read and write. The experiments 
re run on the original Yaffs2, EncFs and SADUS file systems.
ig. 7 (a) illustrates that the encrypted file system through- 
ut is significantly lower than the non-encrypted file system 

hroughput. Because the file size is too small, the initializa- 
ion time of the dd test program affects the test results. When 

he file size is larger than 1 Mb, because EncFs and SADUS 
se the same configuration decryption algorithm, the file read 

hroughputs are similar. Fig. 7 (b) illustrates that the through- 
ut rate of the encrypted file system for the sequential write 
peration presents an obvious decrease compared to the se- 
uential read operation, typically reduced by 15%. Under the 
ame configuration of the encryption algorithm, the write rate 
f SADUS is slightly lower than that of EncFs because the for- 
er uses different keys for each file, and the keys need to 

e initialized when performing a write operation. Our analy- 
is shows that encryption/decryption contributes an overhead 

nd presents the expected trade-off between security and per- 
ormance, which is acceptable for users. 

.2.2. Power consumption 

o test if our system has acceptable power consumption, we 
nalyzed the power consumption of write and read opera- 
ions. We disabled other applications, but some power con- 
umption is required to maintain the basic functionality of 
he system. We record the current phone power, denoted as 
 1 , start the timing, and keep the phone idle for t minutes. We

hen denote the later phone power as m 2 ; therefore, the aver- 
ge idle power consumption per minute for mobile phones is 
m 1 − m 2 ) /t. 

To measure the power consumption, we repeatedly read a 
arge file and mount the file system in read-only mode. Then,
e re-mount the file system to be read again. The purpose 
f this is to clear the cache of the underlying file system. We
sed the dd file operation command to read random charac- 
ers from the device file / dev / urandom and then write to a file.

hen the file is full, we record the time and write the same
le again. Each read and write operation lasts 10 minutes. The 
tatistical results are summarized in Fig. 8 . 

From Fig. 8 , the battery consumption is relatively similar 
n the three different file systems when read and write op- 
rations last for 10 min. However, EncFs and SADUS involved 

ncryption and decryption operations; when running an ap- 
lication in user space, they need to consume more power 
er GB. Compared with EncFs, SADUS included an additional 



c o m p u t e r s  &  s e c u r i t y  7 7  ( 2 0 1 8 )  6 1 2 – 6 2 6  623 

1K 10K 1M 10M 100M
0

5

10

15

20

25

30

35

40)s/
B

M(tuphguorht
dae

R

Yaffs2
EncFs
Sadus

(a) Read operation throughput

1K 10K 1M 10M 100M
0.0

0.5

1.0

1.5

2.0

2.5

3.0)s/
B

M(tuph guorh t
eti r

W

Yaffs2
EncFs
Sadus

(b) Write operation throughput

Fig. 7 – SADUS throughput performance. 

Read Write
0

10

20

30

40

50

60

70)sni
m01/

h
A

m(
no itp

musnoc re
woP

 Yaffs2
 EncFs
 Sadus

(a) Per 10 minutes

Read Write
0

10

20

30

40

50

60

70)
B

G/
h

A
m(

noitp
musn ocre

wo P

 Yaffs2
 EncFs
 Sadus

(b) Per GB

Fig. 8 – Power consumption in three different file systems. 

 

 

 

 

 

 

 

 

 

 

 

Table 2 – Time consumption for four different operations. 

Operation EncFs SADUS 

Algorithm initialization 0.05 ms 0.05 ms 
Key initialization / 0.07 ms 
Encryption 0.91 ms 0.91 ms 
Decryption 0.92 ms 0.92 ms 

 

 

 

initialization operation for accessing the keys; therefore, they
have almost the same power consumption. 

6.2.3. Time analysis 
SADUS provides the same encryption/decryption algorithm
and key length, including the purging and Key Manager
modules. We modify the encrypted file systems EncFs and
SADUS to record the time needed to initialize the encryp-
tion/decryption algorithm and the key as well as perform the
encrypt and decrypt operations. We record the time required
to generate the file key, read the key, and perform encryption
and decryption on the same flash page. 

Table 2 shows presents no differences in performance, but
SADUS prepares a different key for each file, and the key needs
to be initialized when the file is read. This can also explain the
similarities in the sequential read and write throughputs of
the two encrypted file systems in Fig. 7 . 

6.2.4. Purging analysis 
We first analyze the effectiveness of the purging operation. We
take a snapshot of the storage device before the experiment,



624 c o m p u t e r s  &  s e c u r i t y  7 7  ( 2 0 1 8 )  6 1 2 – 6 2 6  

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

)s(
e

mit
gnigruP

SDcard capacity (GB)

Fig. 9 – SADUS purging time. 

a
c
i
t
i
t
c
s
i

s
p
t
i
m
w
t
o
w
c

w
t
b
e
i
e
y
p
a

6

T
p
s
d
w

p
p  

q
k
t  

a
i
s

6
I  

e
d
i
w
t
t
e
o

6
T
i
g
t  

w
i  

W
p
c

6

6
A
m
t
i

nd then, we copy the raw snapshot to an external memory 
ard. We write a random string to the storage medium that 
s unique on the storage device; then, we take a snapshot of 
he storage device again to ensure that the random string ex- 
sts on the storage device. We then delete the string and take 
he snapshot of the storage device again to confirm that the 
haracter remains in the storage device. Next, we perform per- 
istent garbage filling on the storage device until its capacity 
s reached. 

We test flash storage devices with different capacities. As- 
uming that the devices are almost empty, where the total 
urging time is shown in Fig. 9 ; this figure demonstrates that 
he purging time is proportional to the flash storage capac- 
ty. Because the purging time is equal to the flash write speed 

ultiplied by the size of the file being deleted. When the flash 

rite speed is Almost constant, the purging time is propor- 
ional to the flash capacity. Unless a large number of file write 
perations are needed, deleting the content of the deleted file 
ill take a long time. Purging in user space forces the garbage 

ollection operation to be performed. 
The main drawback of purging is in increasing the extra 

ear suffered by the storage medium because the user ini- 
iates purging operations, thereby increasing the number of 
lock erasures. However, we conservatively estimate that each 

rase block can be erased approximately 10 4 times, and a typ- 
cal flash block erase number is between 10 4 and 10 5 . We 
stimate the flash media lifetime as being up to almost 10 
ears, which is far longer than the average time to replace a 
hone. Therefore, the purging operation is certainly accept- 
ble to users. 

.3. Optimization 

o achieve better performance, we optimize SADUS. The first 
arameter that we tuned is the file system block size. EncFs 
upports block sizes of 64–4096 bytes, while 1024 bytes is the 
efault. We create SADUS and use 4096 bytes as the block size; 
e also use the Director-IO mechanism to gain an increase in 
erformance of 15% for sequential read. In addition, we em- 
loy a caching strategy for the KM so that the keys for fre-
uently accessed files are available in memory. A dedicated 

ernel thread periodically synchronizes dirty cache entries to 
heir disk blocks and evicts old cache entries. Having a cache,
s opposed to always reading the keys from the disk, results 
n a significant performance gain. Moreover, we improve our 
cheme in the following two aspects. 

.3.1. File key distribution policy 
n our scheme, we assign a random key to each file, which is
ncrypted and stored in the Key Manager Storage area. We can 

istribute the key according to the file sensitivity. By provid- 
ng an interface, users can customize the encrypted file pass- 
ord, which would be utilized to generate the file key. Unlike 

he KSA policy, we can reduce the number of key assignments 
hrough insensitive files using the same key or choose to not 
ncrypt the file to improve throughput of the read and write 
perations. 

.3.2. Purging policy 
he timing of a purge is entirely controlled by the user, and 

t is a continuous operation. Under a strong opponent, the 
arbage fill purge time is limited. We use a hybrid approach 

o enhance the situation. After the file system is mounted,
hen the system is idle, garbage filling is performed, ensur- 

ng that the available space of the storage medium is constant.
hen triggering the purging operation, garbage collection is 

erformed at the highest speed possible so that users are more 
onfident that the deleted files cannot be recovered. 

.4. Discussion 

.4.1. Prior purging-based secure deletion work 
s mentioned in Section 4.1 , Reardon et al. (2012b) imple- 
ented a user-level secure deletion on log-structured file sys- 

ems that utilized file overwriting called purging and balloon- 
ng. We also include a purging module in SADUS. However, a 



c o m p u t e r s  &  s e c u r i t y  7 7  ( 2 0 1 8 )  6 1 2 – 6 2 6  625 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

significant difference between their prototype and SADUS lies
in our focus on encrypting the files and managing the file keys,
and the purging module is an enhancement module for the
SADUS of secure data deletion. 

First, although the adversary in Reardon’s scheme can ac-
quire a full copy of the flash image, the deleted data cannot be
recovered. The attacker can access the data on the flash image
because these data are not encrypted. In our scheme, SADUS
can resist a peek-coercion-recovery attacker. Even when the
attacker has acquired a full copy of the flash image, what
(s)he obtains is simply some randomness for a computation-
ally limited attacker because the files have been encrypted.
Compared with Reardon et al. (2012b) , SADUS not only ensures
that the deleted data cannot be restored but also guarantees
the safe storage of the data. 

Next, Reardon’s work leverages purging, which ensures
that all data are deleted, and ballooning, which reduces the
expected deletion latency for the deleted data. However, those
two operations are explicitly executed across the entire flash
memory. In SADUS, because the data are encrypted, the secure
deletion operation is directed to the KMS area. Because the
KMS area is relatively small, there is no need for a full-scale
purging operation. When the file is deleted, SADUS unlinks
the index between the file and the corresponding key, thereby
achieving the goal of secure deletion for rivals with less com-
puting power. The purging module is an enhancement module
for SADUS against an attacker without a limited computing
capacity for removing obsolete data permanently. The mod-
ule runs when the phone is idle, clearing all discarded pages,
including obsolete files and discarded keys. 

6.4.2. File deletion granularity 
In SADUS, we implement the secure data deletion process
with file-level granularity. However, we note that file-level se-
cure deletion is not necessarily the optimal granularity in all
cases. For instance, Android applications may store and ma-
nipulate all their data in a single, file-backed database; in such
cases, encryption and secure deletion at the database-entry
granularity may be a more appropriate approach ( Spahn et al.,
2014 ). We leave exploration of this venue as future work. 

7. Conclusion 

In this paper, we presented SADUS, a flexible and novel en-
crypted file system running in user space. SADUS is able to
provide effective security storage and guaranteed data re-
moved for mobile flash devices by (1) using different keys to
encrypt individual files against computationally limited peek-
coercion-recovery attackers and (2) purging all available space
to guarantee that the keys and ciphertext cannot be recov-
ered when encountering strong adversaries. SADUS protects
the files with fine granularity, where every file has a unique
key. After deleting a file, SADUS unlinks the file and its con-
tent, deletes the corresponding key and performs a purge op-
eration to guarantee that the file is deleted securely. 

Experiments with our prototype implementation show
that SADUS has an acceptable computing time and that the
wear on the flash device is minimized. Our security analy-
sis demonstrates that our method can defend against pas-
sive and active adversaries. SADUS is easy to install and con-
figure across all Android platforms, including mobile phones,
tablets, and small notebooks, without any user-perceivable de-
lay for most typical Android applications. Indeed, we expect
that SADUS will improve the efficiency, flexibility, and security
of state-of-the-art alternatives for data storage and deletion. 

Acknowledgments 

We would like to thanks the reviewers for their care-
ful reading and useful comments. This work was sup-
ported by the National Natural Science Foundation of China
( 61671360 ,61672415 ), the Key Program of NSFC-Tongyong
Union Foundation under Grant (U1636209),the Key Program
of NSFC Grant (U1405255), the Natural Science Basic Research
Plan in Shaanxi Province of China (2017JM6082) and the China
111 Project (B16037). 

R E F E R E N C E S  

Albano P , Castiglione A , Cattaneo G , De Santis A . A novel 
anti-forensics technique for the android OS. Proceedings of 
the international conference on broadband and wireless 
computing, communication and applications (BWCCA). IEEE; 
2011. p. 380–5 .

Bajaj S , Sion R . Ficklebase: Looking into the future to erase the 
past. Proceedings of the IEEE 29th international conference on
data engineering (ICDE),. IEEE; 2013. p. 86–97 .

Bauer S , Priyantha NB . Secure data deletion for Linux file 
systems.. Proceedings of the USENIX security symposium, 
2001 .

Ben, G, (2009). Diskscrub. https://sourceforge.net/projects/ 
diskscrub .

Bitlocker, (2004). Encryption, Bitlocker overview. 
https://technet.microsoft.com/en-us/library/cc732774.aspx .

Boneh D , Lipton RJ . A revocable backup system.. Proceedings of 
the USENIX security; 1996. p. 91–6 .

Chang B , Wang Z , Chen B , Zhang F . Mobipluto: File system 

friendly deniable storage for mobile devices. Proceedings of 
the 31st annual computer security applications conference. 
ACM; 2015. p. 381–90 .

Czeskis A , Hilaire DJS , Koscher K , Gribble SD , Kohno T , Schneier B .
Defeating encrypted and deniable file systems: Truecrypt v5. 
1a and the case of the tattling OS and applications. 
Proceedings of the HOTSEC, 2008 .

Diesburg S , Feldhaus CA , Fardan MA , Schlicht J , Ploof N . Is your 
data gone? Measuring user perceptions of deletion. 
Proceedings of the 6th workshop on socio-technical aspects in
security and trust. ACM; 2016a. p. 47–59 .

Diesburg S , Meyers C , Stanovich M , Mitchell M , Marshall J , Gould J ,
Wang A-IA , Kuenning G . Trueerase: per-file secure deletion for
the storage data path. Proceedings of the 28th annual 
computer security applications conference. ACM; 2012. 
p. 439–48 .

Diesburg S , Meyers C , Stanovich M , Wang A-IA , Kuenning G . 
Trueerase: leveraging an auxiliary data path for per-file secure
deletion. ACM Trans. Storage 2016b;12(4):18 .

Diesburg, S. M. (2016). Ghosts of deletions past: new secure 
deletion challenges and solutions. arXiv: 1611.04216 .

Diesburg SM , Wang A-IA . A survey of confidential data storage 
and deletion methods. ACM Comput. Surv 2010;43(1):2 .

EncFS, (2008). Vgough, EncFS: an encrypted filesystem. 
https://vgough.github.io/encfs .

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0001
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0002
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0003
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0003
https://sourceforge.net/projects/diskscrub
https://technet.microsoft.com/en-us/library/cc732774.aspx
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0004
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0005
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0006
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0007
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0008
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0009
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0009
http://arxiv.org/abs/1611.04216
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0010
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0010
https://vgough.github.io/encfs


626 c o m p u t e r s  &  s e c u r i t y  7 7  ( 2 0 1 8 )  6 1 2 – 6 2 6  

G

G

H

H

J

J

J

L

L  

L

L

P

P

R

R

R

R

R

S

S

S

S

S

S

T

T

T

T
V

W

W

Z

L
S
s
t
i
R  

a
v
l
p

T
X
c
c
t

F
g  

H  

w  

d
n

J
N
i
d
b
i
m

NU, (2012). Shred: remove files more securely. 
http://www.gnu.org/software/coreutils/manual/html _ node/ 
shred-invocation.html .

utmann P . Secure deletion of data from magnetic and 

solid-state memory. Proceedings of the sixth USENIX security 
symposium, san jose, CA, vol. 14; 1996. p. 77–89 .

ohmann, B.C., (2003). CryptoFS. 
http://http://reboot.github.io/cryptofs .

uang N , He J , Zhao B . Secure data sanitization for android 

device users. Int. J. Secur. Appl 2015;9(5):61–8 .
ia S , Xia L , Chen B , Liu P . NFPS: Adding undetectable secure 

deletion to flash translation layer. Proceedings of the 11th 

ACM on asia conference on computer and communications 
security. ACM; 2016. p. 305–15 .

oukov N , Papaxenopoulos H , Zadok E . Secure deletion myths, 
issues, and solutions. Proceedings of the second ACM 

workshop on storage security and survivability. ACM; 2006. 
p. 61–6 .

oukov N , Zadok E . Adding secure deletion to your favorite file 
system. Proceedings of the third IEEE international security in 

storage workshop SISW. IEEE, 2005 . 8–pp 

ai J , Xiong J , Wang C , Wu G , Li Y . A secure cloud backup system 

with deduplication and assured deletion. Proceedings of the 
International conference on provable security. Springer; 2017. 
p. 74–83 .

ee J , Heo J , Cho Y , Hong J , Shin SY . Secure deletion for nand flash
file system. Proceedings of the ACM symposium on applied 

computing. ACM; 2008. p. 1710–14 .
ee J , Yi S , Heo J , Park H , Cho Y . An efficient secure deletion 

scheme for flash file systems. J. Inf. Sci. Eng 2010;26(1):27–38 .
eom MD , Choo K-KR , Hunt R . Remote wiping and secure deletion 

on mobile devices: a review. J. Forensic Sci 2016;61(6):1473–92 .
eters, T. M., Gondree, M. A., & Peterson, Z. N. J. (2015). Defy: a 

deniable, encrypted file system for log-structured storage. 
Network and Distributed System Security Symposium.

eterson ZNJ , Burns RC , Herring J , Stubblefield A , Rubin AD , vol. 5; 
2005 .

eardon J . Robust key management for secure data deletion. 
Proceedings of the secure data deletion. Springer; 2016. 
p. 143–74 .

eardon J , Basin D , Capkun S . Sok: Secure data deletion. 
Proceedings of the IEEE symposium on security and privacy 
(SP). IEEE; 2013a. p. 301–15 .

eardon J , Capkun S , Basin D . Data node encrypted file system: 
Efficient secure deletion for flash memory. Proceedings of the 
21st USENIX conference on security symposium. USENIX 

Association, 2012a . p. 17–17.
eardon J , Marforio C , Capkun S , Basin D . User-level secure 

deletion on log-structured file systems. Proceedings of the 7th 

ACM symposium on information, computer and 

communications security. ACM; 2012b. p. 63–4 .
eardon J , Ritzdorf H , Basin D , Capkun S . Secure data deletion 

from persistent media. Proceedings of the ACM SIGSAC 

conference on computer & communications security. ACM; 
2013b. p. 271–84 .

hin I . Supporting reliable data deletion for NAND-based gadgets 
with limited memory. Int. J. Appl. Eng. Res 2016;11(9):6381–6 .

imon L , Anderson R . Security analysis of android factory resets. 
Proceedings of the 4th mobile security technologies workshop 

(MoST), 2015 .
pahn R , Bell J , Lee M , Bhamidipati S , Geambasu R , Kaiser GE . 

Pebbles: fine-grained data management abstractions for 
modern operating systems. Proceedings of the OSDI; 2014. 
p. 113–29 .
un K , Choi J , Lee D , Noh SH . Models and design of an adaptive 
hybrid scheme for secure deletion of data in consumer 
electronics. IEEE Trans. Consumer Electron 2008;54(1):100–4 .

zeredi, M. (2001). Avfs: a virtual file system. 
https://sourceforge.net/projects/avf.

zeredi, M. (2006). Fuse: file system in user space. 
http://fuse.sourceforge.net .

ang Y , Ames P , Bhamidipati S , Bijlani A , Geambasu R , Sarda N . 
CleanOS: limiting mobile data exposure with idle eviction. 
Proceedings of the OSDI; 2012. p. 77–91 .

ang Y , Lee PPC , Lui JCS , Perlman R . Fade: Secure overlay cloud 

storage with file assured deletion. Secur. Privacy Commun. 
Netw 2010:380–97 .

eufl P , Fitzek A , Hein D , Marsalek A , Oprisnik A , Zefferer T . 
Android encryption systems. Proceedings of the international 
conference on privacy and security in mobile systems 
(PRISMS). IEEE; 2014. p. 1–8 .

rim. (2008). https://en.wikipedia.org/wiki/Trim _ (computing) .
nodes SRK , et al . An architecture for multiple file system types 

in sun UNIX. Proceedings of the USENIX summer conference 
proceedings; 1986. p. 238–47 .

ang Z , Murmuria R , Stavrou A . Implementing and optimizing 
an encryption filesystem on android. Proceedings of the IEEE 
13th international conference on mobile data management 
(MDM). IEEE; 2012. p. 52–62 .

ei MYC , Grupp LM , Spada FE , Swanson S . Reliably erasing data 
from flash-based solid state drives. Proceedings of the FAST, 
vol. 11; 2011. p. 105–17 .

arras A , Kohls K , Dürmuth M , Pöpper C . Neuralyzer: flexible 
expiration times for the revocation of online data. 
Proceedings of the sixth ACM conference on data and 

application security and privacy. ACM; 2016. p. 14–25 .

i Yang received the B.S. degree in Instructional Technology from 

haanxi Normal University in 1999, and M.S. degree in computer 
cience from Xidian University in 2005, and Ph.D. degree in cryp- 
ography from Xidian University, Xin, China in 2010. He was a visit- 
ng post-doctoral researcher in the Complex Networks & Security 
esearch (CNSR) Lab at Virginia Tech from 2013 to 2014. Now he is
n associate professor in School of Computer Science, Xidian Uni- 
ersity. His research interests include applied cryptography, wire- 
ess network security, cloud computing security, and trusted com- 
uting. 

eng Wei received the Bachelor’s degree in computer science from 

idian University in 2011. He is Pursuing the master’s degree in ar- 
hitecture of computer system in Xidian University. He has been 

ommitted to the mobile cloud computing and mobile data dele- 
ion research. 

engwei Zhang earned his Ph.D. in Computer Science from An- 
elos Stavrou’s group at George Mason University in April 2015.
is primary research interests are in the areas of systems security,
ith a focus on trustworthy execution, mobile malware analysis,
ebugging transparency, transportation security, and plausible de- 
iability encryption. 

ianfeng Ma received his B.S. degree in mathematics from Shaanxi 
ormal University in 1985, and obtained his M.E. and Ph.D. degrees 

n computer software and communications engineering from Xi- 
ian University in 1988 and 1995 respectively. Since 1995 he has 
een with Xidian University as a professor. His research interests 

nclude information security, coding theory and network manage- 
ent. 

http://www.gnu.org/software/coreutils/manual/html_node/shred-invocation.html
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0011
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0011
http://http://reboot.github.io/cryptofs
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0012
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0013
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0014
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0015
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0016
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0017
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0018
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0019
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0020
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0021
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0022
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0024
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0025
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0026
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0027
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0028
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0029
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0029
https://sourceforge.net/projects/avf
http://fuse.sourceforge.net
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0030
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0031
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0032
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0032
https://en.wikipedia.org/wiki/Trim_(computing)
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0033
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0034
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0035
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0036
http://refhub.elsevier.com/S0167-4048(18)30068-3/sbref0036

	SADUS: Secure data deletion in user space for mobile devices
	1 Introduction
	2 Related works
	2.1 Overwrite-based secure deletion
	2.2 Encryption-based secure deletion

	3 Preliminaries
	3.1 Background
	3.1.1 Flash memory
	3.1.2 Flash translation layer
	3.1.3 EncFs

	3.2 Threat model
	3.3 Security definitions
	3.4 Security and functionality requirements
	3.4.1 Security requirements
	3.4.2 Functionality requirements


	4 System design
	4.1 Architecture
	4.1.1 Encryption
	4.1.2 Key manager
	4.1.3 Key manager storage
	4.1.4 Purging


	5 Security analysis
	6 Implementation and evaluation
	6.1 Implementation
	6.1.1 Encryption
	6.1.2 Key manager
	6.1.3 Purging

	6.2 Experimental evaluation
	6.2.1 Throughput performance
	6.2.2 Power consumption
	6.2.3 Time analysis
	6.2.4 Purging analysis

	6.3 Optimization
	6.3.1 File key distribution policy
	6.3.2 Purging policy

	6.4 Discussion
	6.4.1 Prior purging-based secure deletion work
	6.4.2 File deletion granularity


	7 Conclusion
	 Acknowledgments

	Reference

