
RingGuard: Guard io_uring with eBPF

Wanning He∗†
Research Institute of Trustworthy Autonomous Systems,
Southern University of Science and Technology, China

hewn2019@mail.sustech.edu.cn

Hongyi Lu∗‡
Department of Computer Science and Engineering,

Southern University of Science and Technology, China
luhy2017@mail.sustech.edu.cn

Fengwei Zhang§¶
Shenzhen Key Laboratory of Safety and Security for Next
Generation of Industrial Internet, Southern University of

Science and Technology, China
zhangfw@sustech.edu.cn

Shuai Wang¶
Department of Computer Science and Engineering, Hong

Kong University of Science and Technology, China
shuaiw@cse.ust.hk

ABSTRACT
io_uring offers a flexible yet efficient asynchronous I/O paradigm
for Linux. Despite a significant performance improvement, it also
brings many security concerns to the kernel. Not only does io_uring
itself contain multiple vulnerabilities, but it can also be used to by-
pass existing security mechanisms such as seccomp. To address
these problems, this paper proposes a security mechanism named
RingGuard that safeguards io_uringwith eBPF programs. RingGuard
is carefully designed to reduce the overhead of I/O request submis-
sion and to ensure the security of inserted eBPF programs. Our
evaluation shows that RingGuard provides encouraging security
benefits with moderate overhead. For instance, the overhead of
RingGuard in file I/O scenarios is merely 7.8%.

CCS CONCEPTS
• Security and privacy → Operating systems security;

KEYWORDS
Operating system, kernel extension, eBPF, io_uring, security

ACM Reference Format:
Wanning He, Hongyi Lu, Fengwei Zhang, and ShuaiWang. 2023. RingGuard:
Guard io_uring with eBPF. In Workshop on eBPF and Kernel Extensions
(SIGCOMM ’23), September 10, 2023, New York, NY, USA. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3609021.3609304

∗Wanning He and Hongyi Lu contributed equally to this work
†Also with Department of Computer Science and Engineering, Southern University
of Science and Technology, China.
‡Also with Department of Computer Science and Engineering, Hong Kong University
of Science and Technology, China.
§Also with Research Institute of Trustworthy Autonomous Systems, Southern Univer-
sity of Science and Technology, China.
¶Fengwei Zhang and Shuai Wang are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’23, September 10, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 979-8-4007-0293-8/23/09.
https://doi.org/10.1145/3609021.3609304

1 INTRODUCTION
Asynchronous I/O significantly improves the efficiency of I/O-
bound applications. Unlike synchronous I/O, which forces appli-
cations to block on time-consuming I/O operations, asynchronous
I/O allows them to launch non-blocking I/O requests and be noti-
fied upon completion. At first, the asynchronous I/O of Linux is
provided by aio [1], which does not support network sockets and
offers only non-buffered direct I/O. These limitations significantly
impede the development of asynchronous applications on Linux.
Fortunately, a new asynchronous I/O interface named io_uring [16]
was introduced to the kernel in 2019. This new interface unifies
the previously divergent asynchronous I/O models adopted in the
kernel and also overcomes the drawbacks of aio.

Specifically, io_uring defines two queues (submission queue and
completion queue) to share data between applications and kernel.
User applications first submit their I/O requests to the submission
queue, which are then picked up and processed by the kernel. Upon
completion, the kernel then pushes the responses of these requests
back to the completion queue for user applications. This conceptual
model brings io_uring encouraging flexibility, extensibility, and
performance. The request submission of io_uring is not limited
to simple file I/O operations (e.g., read). It also supports network
operations like send and even device-specific operations such as
ioctl [4]. Moreover, the shared queues largely reduce the number
of costly context switches.

However, as pointed out by recent studies [9, 10, 12], this flexi-
bility comes at the cost of security. The requests submitted to the
queue of io_uring are not regulated by security mechanisms such
as seccomp [6], even though these requests represent a substan-
tial subset of I/O-related system calls. This loophole clearly allows
certain applications to abuse io_uring to bypass these security
mechanisms and causes potential security breaches. In addition, as
a fast-developing feature, vulnerabilities are frequently discovered
in io_uring. These vulnerabilities can lead to privilege escalation,
memory corruption, and denial of service, thus posing a serious
security threat to the kernel.

Given the increasing security threat of io_uring, we seek a re-
liable while flexible way of auditing the requests submitted via
io_uring. In particular, we leverage Berkeley Packet Filter (BPF) [2].
BPF was originally introduced as a kernel infrastructure just for
packet filtering [20], but soon became a powerful yet secure way

https://doi.org/10.1145/3609021.3609304
https://doi.org/10.1145/3609021.3609304


SIGCOMM ’23, September 10, 2023, New York, NY, USA He et al.

to extend kernel functionality. To clarify, there are two variants of
BPF, classic BPF (cBPF) and extended BPF (eBPF), and RingGuard
is based on eBPF. eBPF allows a set of user-supplied programs to
be attached to certain kernel hookpoints to extend kernel function-
ality. Moreover, an eBPF verifier [31] is adopted to perform static
analysis to ensure the safety of these user-supplied programs. With
the aid of eBPF, we present RingGuard, where users can supply
their own eBPF programs to audit the submitted I/O requests inside
io_uring or patch vulnerabilities if there is not yet an official patch
for io_uring vulnerabilities.

Despite its encouraging potential, using eBPF on io_uring is not a
trivial task. RingGuard is specifically designed to overcome two ma-
jor technical obstacles. First, since asynchronous I/O is designed for
performance in the first place, RingGuard should be sufficiently effi-
cient and not impede the performance benefit brought by io_uring.
In our experiments, RingGuard incurs limited overhead to io_uring
in most cases. However, when many individual requests are sub-
mitted via io_uring, the overhead becomes noticeable due to the
repetitive initialization and destruction of eBPF programs. To solve
this hurdle, we propose a batching scheme that packs multiple
requests together for auditing to reduce these costs. Second, as
a kernel facility, RingGuard needs to ensure the security of the
eBPF programs it inserts. To achieve this goal, we extend the ex-
isting eBPF verifier to support the verification of RingGuard eBPF
programs.

To evaluate the overhead of RingGuard, we first examine the per-
formance penalty of RingGuard under typical use cases of io_uring,
such as file I/O. Second, we conduct thorough experiments to show
the performance improvement brought by our batching scheme.
Our experiments show that its worst-case performance overhead
in all these experiments is 25%, and our batching scheme brought a
12% performance improvement. We also evaluate RingGuard’s secu-
rity benefit by carefully analyzing all recent CVEs of io_uring. Our
analysis and evaluation results show that they can all be effectively
patched with RingGuard.

To summarize, we make the following contributions.
• This paper for the first time proposes addressing io_uring security
risks with the use of eBPF programs.

• RingGuard is specifically designed to achieve two key proper-
ties: an efficient auditing process and the security of its eBPF
programs.

• We implement a prototype of RingGuard on the v5.12 Linux
kernel and conduct a thorough evaluation of its performance
overhead and security benefits.

2 BACKGROUND AND RELATEDWORK
2.1 Asynchronous I/O by io_uring
The io_uring subsystem is an asynchronous I/O interface for Linux
introduced in 2019 [16]. The main components of io_uring are
two queues serving as the communication channels to transmit
I/O requests and their responses. This pair of queues are dubbed
as submission queue and completion queue. To avoid expensive
memory copying and context switching, both queues are mapped
as shared memory between user space and kernel space.

As illustrated in Fig. 1, the overall workflow of io_uring can be
divided into four steps: ➀ User program launches an I/O request

User Program

Kernel

Submission

Queue

Completion

Queue

User Space

Kernel Space

1

2 3

4

Figure 1: Workflow of io_uring.

by submitting its operation type (e.g., read) and parameters (e.g.,
source and destination) to the tail of submission queue. ➁ Ker-
nel fetches the request from the head of submission queue and
executes the corresponding operation. ➂ When the operation com-
pletes, kernel puts its result to the tail of completion queue. ➃ In
the end, user program obtains the result of the I/O request from
the head of completion queue. Note that the requests of io_uring
normally have their equivalent system calls. For example, a request
with IORING_OP_READ is equivalent to a read system call and is
processed by the same system call handler.
Operation Restriction. To clarify, io_uring also comes with a
built-in security policy [8]. The owner can specify a whitelist of per-
mitted operations for an io_uring instance. Operations are checked
based on their types, flags, and the file descriptors to be operated on.
However, recent CVEs have demonstrated that attackers can still
exploit certain I/O request parameters to launch attacks, sometimes
combining multiple operations (as shown in Sec. 4.2). Thus, after a
thorough analysis, we find that this security mechanism is insuffi-
cient in defending against most io_uring exploits. Furthermore, the
whitelist approach may reject entire sets of operations to prevent
such attacks, which results in the loss of functionality for many
legitimate requests with valid parameters. In contrast, RingGuard is
designed to address these limitations by providing flexible filtering
policies with the help of eBPF programs.

2.2 Extended Berkeley Packet Filter (eBPF)
The eBPF subsystem enables developers to run customized pro-
grams to extend kernel functionalities. Fig. 2 depicts an overview of
how eBPF programs [2] extend kernel functionalities. As shown in
the right part of Fig. 2, the Linux kernel has predefined a set of BPF
hookpoints, each of which can be attached with eBPF programs of a
specific type. For example, a socket hookpoint can only be attached
with SOCKET_FILTER eBPF programs. These hookpoints, depending
on their locations, offer extensibility to different kernel functions.
In this specific case of Fig. 2, an eBPF program is attached to the
io_uring hookpoint to log and filter out suspicious I/O requests in
the submission queue. Moreover, depending on the type of eBPF
program, it can usually call a set of relevant helper functions and
utilize BPF maps1 for data storage. For example, the eBPF program
in Fig. 2 invokes dequeue_req helper to dequeue an I/O request
from the submission queue, logs relevant information into a BPF
map, and submits it to the kernel for further processing if it is safe.

1BPF maps are data structures that are specific to eBPF programs. Depending on
implementation, they can be divided into array maps and hash maps.



RingGuard: Guard io_uring with eBPF SIGCOMM ’23, September 10, 2023, New York, NY, USA

Helpers

Verifier

Maps

call dequeue_req
...

log opcode 
ret decision

io_uring

scheduler

BPF (Runtime)
Utilities BPF Bytecode

In-kernel
BPF Hookpoint

Figure 2: BPF overview.

2.3 Related Work
2.3.1 SystemCall Filtering. Security ComputingMode (seccomp)

is a security facility in the Linux kernel [6]. It aims to restrict the
system calls a program can use and thus shares a similar goal as
RingGuard. It can also be augmented with eBPF programs (i.e.,
seccomp-BPF [5]) to flexibly filter suspicious system calls launched
by a process. However, it does not support filtering the system
calls (i.e., I/O requests) submitted via io_uring, which has been
regarded as a way to bypass seccomp for a long time [12].

2.3.2 BPF Security. BPF programs are widely used as a security
enforcement for the Linux kernel. There is a line of works [7, 11, 13–
15, 18, 29, 30, 32, 33] that utilize eBPF programs for security pur-
poses, such as memory protection [33], DDoS mitigation [7], and
access control [11, 13–15, 18]. Despite that we all leverage eBPF,
the goals of these works are orthogonal to RingGuard. For instance,
HotBPF [33] is a framework aiming to detect and isolate memory
corruption on the fly using eBPF programs. Therefore, it focuses
on a completely different subsystem (i.e., memory management)
and solves a distinct set of domain-specific challenges compared
to RingGuard. Similarly, Linux Security Module (LSM) [32] also
provides its own set of eBPF hooks (i.e., LSM-BPF) that offers ac-
cess control to various Linux subsystems. However, LSM-BPF only
allows existing modules to be replaced with eBPF programs and
does not offer new hooks within io_uring.

In themeanwhile, there are works [17, 19] focusing on enhancing
the security of BPF itself. MOAT [19] leverages hardware features
to prevent BPF from being exploited. Jia et al. [17] propose secure
BPF using memory-safe language such as Rust. We deem these
mechanisms can be used with RingGuard to further enhance secu-
rity.

3 DESIGN
3.1 Overview
RingGuard leverages eBPF programs to audit and log I/O requests
which are submitted via io_uring. Fig. 3 shows the overall work-
flow of RingGuard. In the beginning, the owner of the io_uring
instance (Owner in Fig. 3) configures and deploys the request audi-
tor and logger to the targeted io_uring in the form of eBPF programs.
When a user program utilizes this io_uring to submit I/O requests,
the auditor will check and modify (if necessary) these requests
before they are processed by the kernel. In addition, the logger here
is responsible for recording these requests for better observability.

3.2 Extending eBPF/io_uring
In this section, we introduce how we extend the current eBPF and
io_uring subsystems to support RingGuard.

User Owner

eBPF
Programs

Auditor

Logger
Req 1

Kernel

…

Validate

Deploy

Modify

RingGuard

Req n

Helpers

Maps

Verify

Log

Verifier

RingGuard 
Utilities

Figure 3: RingGuard overview.

3.2.1 eBPF Hook and Runtime Context. As described in Sec. 2,
eBPF programs are attached to predefined hookpoints upon their
deployment to the kernel. These event-driven programs are ex-
ecuted when the kernel or an application passes certain hook-
points. However, since there are no existing predefined hookpoints
in io_uring, we propose a new hookpoint that will be triggered
when the kernel thread fetches user-submitted requests from the
submission queue. The hookpoint of an eBPF program depends
on its program type. For RingGuard, we introduce a new eBPF
program type BPF_PROG_TYPE_RG. The program type not only lo-
cates the corresponding hookpoint but also specifies an eBPF run-
time context. RingGuard eBPF programs require a runtime context
with three fields, including the file descriptor (ring_fd), the cre-
dentials (ring_cred), and the runtime context (ring_ctx) of the
io_uring instance. By introducing this new hookpoint and program
type, we enable the deployment and execution of RingGuard within
the io_uring subsystem.

3.2.2 eBPF Helpers. Kernel limits the kernel functions an eBPF
program can call. Depending on its program type, an eBPF program
can usually call a group of relevant helpers. We introduce three
helpers to assist RingGuard eBPF programs. The added helpers and
their applications are listed in Table 1.

Table 1: Helper functions of RingGuard eBPF programs.

Helper Application

rg_bpf_nr_req Get the #requests inside submission queue.
rg_bpf_dequeue_req Dequeue a request from submission queue.
rg_bpf_submit_req Submit a validated request to kernel.

Fig. 4 shows a basic pattern of RingGuard eBPF programs. To be-
gin with, it obtains the number of requests in the submission queue
using rg_bpf_nr_req (Line 1). Next, it dequeues a request from the
request queue using rg_bpf_dequeue_req (Lines 3). RingGuard
can then check the value and type of each field of the request
to determine its validity. If the request is valid, RingGuard calls
rg_bpf_submit_req to submit it to the kernel (Line 5). Otherwise,
RingGuard has the option to either silently discard it or modify its
parameters and resubmit the modified request. It is important to
note that RingGuard can only submit io_uring requests that have
been enqueued by users, which prevents malicious programs from
abusing RingGuard to launch DoS attacks.

3.2.3 Other RingGuard APIs. We introduce two system calls
to enable the owner to attach/detach a RingGuard eBPF program
to/from an io_uring instance. rg_register takes four arguments,
involving the file descriptors of the eBPF program and targeted



SIGCOMM ’23, September 10, 2023, New York, NY, USA He et al.

1 to_submit = rg_bpf_nr_req(ring_ctx);
2 for (i = 0; i < to_submit; i++) {
3 rg_bpf_dequeue_req(ring_ctx , &req);
4 /* auditing and logging */
5 rg_bpf_submit_req(ring_ctx , &req);
6 }

Figure 4: A RingGuard eBPF program (simplified).

io_uring, as well as two parameters, threshold and timeout, for
RingGuard performance optimization. threshold specifies themin-
imum number of unprocessed I/O requests to trigger the eBPF pro-
gram, while timeout defines the maximum time to wait for the
RingGuard eBPF program’s execution. This batching mechanism
largely improves RingGuard performance when numerous requests
are submitted individually (see Sec. 3.4 for details).

3.3 Extending Verifier
Supplied by untrusted users, eBPF programs have to be verified
before being loaded into kernel. Similarly, we extend the existing
BPF verifier to ensure the security of RingGuard eBPF programs.

The security verification of an eBPF program normally consists
of two steps. The first step is control flow graph validation, which
ensures the eBPF program can terminate and has no unreachable
branches. Based on the first step, the verifier tracks the value flow
of each register and deduces the validity of the arguments of helper
functions. Since RingGuard follows the same paradigm as other
eBPF programs (i.e., we did not introduce new branch instructions),
our extension to the verifier focuses on the second step, which
involves validating the eBPF runtime context and helper arguments.

First, the verifier guarantees the safety of memory access from
an eBPF program, ensuring that it does not modify other kernel
memory. Since the runtime context is the only argument that can be
passed to an eBPF program, the verifier must ensure the security of
access to the program’s context. Fig. 5 shows the two-step validation
process for the access to RingGuard eBPF runtime context. The first
step is to validate that the offset matches a field in the context. The
second step ensures the size matches the corresponding field size.

ring_credring_fd ring_ctx

rg_bpf_ctx

Validate 
Offset

Validate 
Size Valid

Offset > 
Size of ContextInvalid

Figure 5: Access check of eBPF runtime context.

Similarly, we extend the verifier to guarantee the security of
RingGuard helper functions. Acting as the intermediate layer be-
tween eBPF programs and the kernel, helper functions might be
abused by malicious eBPF programs to launch attacks. Specifically,
we restrict each argument to its appropriate data type and value
range. For instance, rg_bpf_submit_req requires an I/O request
in the submission queue. This argument must be a pointer to an
io_uring submission queue entry (i.e., an I/O request submitted to
the io_uring).

3.4 Request Batching
To comprehensively evaluate RingGuard’s performance, we con-
duct performance evaluations on different submission strategies.
Our preliminary study shows that submitting numerous I/O re-
quests individually results in significant overhead. As depicted in
Table 2, submitting 512 requests one by one (512 ∗ 1) takes over
7x longer than submitting them all at once (1 ∗ 512). We presume
this is due to the repetitive construction and destruction of eBPF
runtime contexts as well as the overhead of context switching.

Based on this observation, we design a request batching scheme
for RingGuard. When attaching a RingGuard eBPF program to the
io_uring, the user may optionally supply a threshold and timeout
value for RingGuard. threshold specifies the minimum number
of I/O requests inside the submission queue to trigger RingGuard
execution, which avoids the overhead of repeatedly setting up and
tearing down the eBPF programs. timeout, on the other hand,
defines the maximum latency RingGuard will wait if there are not
enough I/O requests in the submission queue. Note that this waiting
process is asynchronous and thus does not block other kernel tasks.
In Sec. 4.1.2, we evaluate the performance benefits of different
threshold and timeout values.

Table 2: Latency of RingGuard submitting 512 requests under differ-
ent submission strategies. The submission strategy is represented
as 𝑥 ∗ 𝑦 where 𝑥 is the number of iterations and 𝑦 is the number of
requests to be submitted per iteration.

Strategy 1 ∗ 512 4 ∗ 128 16 ∗ 32 64 ∗ 8 512 ∗ 1

Time (ms) 20.3 21.5 24.2 35.8 150.8

4 IMPLEMENTATION & EVALUATION
RingGuard adds 273 LoC to the v5.12 Linux kernel. The small code-
base indicates it can be easily customized and adapted to various
use cases.

In this section, we evaluate the performance and security of
RingGuard. In Sec. 4.1, we assess the overhead of RingGuard. In
Sec. 4.2, we demonstrate its security benefits by analyzing recent
vulnerabilities in io_uring and showing that they can indeed be
patched using RingGuard. All experiments are conducted on an
AMD 5800 8-core CPU. Each setup is run ten times to eliminate ran-
domness. Time statistics are measured using the clock_gettime
system call [3].

4.1 Performance Evaluation
4.1.1 Submission Latency. Note that RingGuard eBPF programs

are only launched when the user program submits I/O requests to
the kernel. Therefore, the main slowdown caused by RingGuard
is reflected in the submission latency, which represents the time
interval between the user enqueuing a request to the io_uring sub-
mission queue and the kernel fetching this request from the queue.
To evaluate this overhead, we measure the average submission time
of IORING_OP_NOP requests, which do not perform any actual I/O
operations. These experiments involve RingGuard eBPF programs
extracting requests from the submission queue and directly submit-
ting them all to the kernel without any examination or modification.
All requests are submitted to io_uring simultaneously, allowing



RingGuard: Guard io_uring with eBPF SIGCOMM ’23, September 10, 2023, New York, NY, USA

the eBPF program to run once and check all the requests. Fig. 6
shows the average submission latency of each request. From our
observation, RingGuard imposes a moderate overhead of about 22%
even in the worst case, which occurs in submitting 64 requests
at once. We report that RingGuard’s slowdown decreases as the
number of requests increases.

78

55

40
31 27

96

64

50
39 35

64 128 256 512 1024

A
ve

ra
ge

 S
u

b
m

is
si

on
 L

at
en

cy
 

(μ
s/

re
q

ue
st

)

Total Number of Requests

Without RingGuard With RingGuard

Figure 6: Latency of submitting one request.

4.1.2 Batching Optimization. Despite that RingGuard already
shows a reasonable overhead in Sec. 4.1.1, there still exists a huge
performance degradation when these I/O requests are submitted
individually instead of simultaneously (see Sec. 3.4 for details).
To evaluate the performance benefits of the batching mechanism
proposed in Sec. 3.4, we measure the total submission latency of
512 requests under different configurations. The threshold values
tested are 8, 32, 128, 512 and the timeout values tested are 2, 5, 10,
15ms, respectively. All these requests are submitted one by one to
better reflect the performance degradation. We report the results
in Fig. 7 and Table 3.

Fig. 7 shows the time taken by io_uring to process 512 NOP
requests under different configurations. We notice that our batching
optimization improves the performance of io_uring by nearly 17%
in this case. The improved processing time is even lower than that
of a vanilla io_uring implementation (i.e., without RingGuard). We
believe this is because batching reduces the internal processing
time of the io_uring subsystem for these requests. We also observe
that though with slight differences, the improvement brought by
the batching mechanism is not affected by the exact threshold
value. Instead, this optimization brings a notable improvement as
long as the threshold is reasonable.

The complete experiment results are listed in Table 3. It can be
seen that the timeout value also does not affect the performance
by much as long as it falls in a reasonable range.

Table 3: Latency of submitting 512 requests with different request
batching configurations (ms).

Timeout (ms)
Threshold 8 32 128 512

2 133.0 131.3 130.3 128.5
5 130.7 130.8 129.7 129.3
10 132.8 130.8 130.5 128.5
15 130.2 131.7 126.8 127.5

129 130 131
133

151

115

120

125

130

135

140

145

150

155

512 128 32 8 Without
ThresholdT

ot
al

 S
ub

m
is

si
on

 L
at

en
cy

 (
m

s)

Threshold

With RingGuard Without RingGuard (Baseline)

Figure 7: Latency of submitting 512 requests with timeout = 2 ms.
The statistic of vanilla io_uring is marked by the orange line.

4.1.3 File Copying. To evaluate RingGuard overhead in the file
I/O scenario, we compare three file copying test suites using syn-
chronous I/O (system calls), io_uring, and io_uring with RingGuard.
These programs utilize readv and writev system calls or equiva-
lent io_uring operations to perform copying tasks. The submission
queue depth of io_uring is set large enough to accommodate all the
read or write operations required in these experiments so that the
user can queue and submit them all at once. This setting is intended
to minimize the number of system calls for request submission.
Since this case does not involve many separate I/O requests, the
batching optimization is disabled. As shown in Fig. 8, the worst
overhead incurred by RingGuard is merely 7.3%. Moreover, this
overhead gradually decreases as the copied file size increases, which
drops to merely 1% when the copied file is 400 KB. We believe that
handling I/O operations takes the largest proportion in file copying
instead of the execution of eBPF programs. Besides, RingGuard does
not impede the performance improvement brought by io_uring.
In all test cases, io_uring with RingGuard is still about 2x more
efficient than synchronous I/O and has comparable performance to
vanilla io_uring.

1465

379 264

1573

382 266

3965

800
435

4 40 400A
ve

ra
ge

 C
op

yi
ng

 T
im

e 
(μ

s/
K

B
)

File Size (KB)

Without RingGuard With RingGuard Without io_uring

Figure 8: Latency of copying file.

4.2 Security Evaluation
RingGuard reduces the attack interfaces in the io_uring subsystem
by enforcing a customized auditing process for I/O requests submit-
ted via io_uring. In io_uring, the most prevalent attack pattern is
I/O request abuse, where attackers carefully prepare the parameter
values of I/O requests to exploit io_uring vulnerabilities. This type
of attack can be effectively prevented by RingGuard, which enforces
parameter checking on all requests before they are passed to the



SIGCOMM ’23, September 10, 2023, New York, NY, USA He et al.

kernel for execution. With appropriate auditing rules, RingGuard
can secure io_uring operations from being abused.

We analyze eight io_uring-related CVEs which fall within the
application scope of RingGuard. These vulnerabilities typically
lead to local privilege escalation and thus pose a severe security
threat to the kernel. We report that all of them can be patched with
RingGuard. Their CVE IDs and mitigations are listed in Table 4.

Table 4: io_uring CVE mitigation analysis.

CVE ID Auditing Rule

2020-29534 [22] Check the provided file descriptor of FILES_UPDATE.
2021-3491 [21] Check the buffer length of PROVIDE_BUFFERS.
2021-20226 [23] Validate the existence of provided file in CLOSE.
2022-1976 [25] Block a specific string of I/O requests.
2022-2327 [26] Check the work flags of multiple I/O requests.
2022-4696 [28] Check the work flags of SPLICE.
2022-29582 [27] Block linked TIMEOUT and LINK_TIMEOUT
2022-1508 [24] Check multiple parameters in READ.

CVECase Study.To better illustrate howRingGuard patches CVEs,
we elaborate on the exploitation paths for two of them.
CVE-2021-3491 is a buffer overflow vulnerability that could lead
to privilege escalation. It is caused by assigning the length of
a user-provided I/O buffer without validating its data type and
size. This vulnerability allows local attackers to create a heap
overflow and execute arbitrary code in the kernel. To prevent
such exploits, RingGuard can be configured to check the length of
PROVIDE_BUFFERS. We report that RingGuard effectively mitigates
this vulnerability.
CVE-2022-29582 is a use-after-free flaw resulting from a race con-
dition in io_uring. By exploiting such vulnerability, an unprivileged
attacker can gain root privileges. This exploit relates to two time-
out operators in io_uring - TIMEOUT and LINK_TIMEOUT, both of
which are used to specify a timeout for io_uring tasks. If these
two operators are coupled together (i.e., using LINK_TIMEOUT to
specify a timeout for TIMEOUT), a race condition may occur, result-
ing in a use-after-free vulnerability. RingGuard can be configured
to look for such coupled TIMEOUT and LINK_TIMEOUT and remove
them in advance to protect against such exploits. Note that such
TIMEOUT and LINK_TIMEOUT coupling is rarely (if ever) used by reg-
ular io_uring applications. Thus, such mitigation does not affect
the original functionality of io_uring.

5 DISCUSSION
RingGuard for Virtual Machines. Apart from conventional sce-
narios, another use case of RingGuard is to improve the security of
io_uring in virtual machines. An io_uring instance can be shared
between guest virtual machines (or containers) and the host ma-
chine for better I/O performance. However, the existing security
mechanism is not flexible enough in restricting these virtual ma-
chines from abusing the shared io_uring instances. RingGuard, on
the other hand, can be used in this case to improve the security
of these shared io_uring instances without compromising their
efficiency.
RingGuard for Completion Queue. Although we only introduce
RingGuard to audit and log I/O requests in the submission queue,
it can also support logging I/O responses in the completion queue
with minor engineering effort. This feature can be combined with

other eBPF programs to achieve better kernel observability or to
improve the efficiency of io_uring request scheduling.
Limitations. While RingGuard enhances the security of io_uring,
it still has limitations. Patching vulnerabilities with RingGuard re-
quires prior knowledge of the exploit characteristics, which poses
a challenge for undisclosed vulnerabilities. In addition, RingGuard
focuses on I/O requests within the io_uring submission queue.
If attackers combine other kernel modules to exploit io_uring,
RingGuard is unable to defend against it. However, RingGuard eBPF
programs can detect a large number of suspicious io_uring opera-
tions, improving the security of the io_uring subsystem in general.

6 CONCLUSION
This paper presents RingGuard, an efficient and secure mechanism
for regulating I/O requests within the io_uring subsystem using
eBPF programs. We show that RingGuard effectively mitigates
various I/O-related attacks with moderate performance overhead.
Despite some limitations, RingGuard is a valuable tool for strength-
ening the security of the io_uring subsystem by providing flexible
policies for auditing requests. Future research can explore ways to
address the disclosed limitations and further extend RingGuard’s
capabilities to adapt to evolving threats in the io_uring subsystem.
Overall, RingGuard demonstrates the promising potential of eBPF
programs to secure I/O operations and defend against sophisticated
attacks in modern computing environments.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their in-
sightful comments. This work is partly supported by the National
Natural Science Foundation of China under Grant No. 62002151
and Shenzhen Science and Technology Program under Grant No.
SGDX20201103095408029 and No. ZDSYS20210623092007023.

REFERENCES
[1] 2023. aio(7) - Linux Manual Page.
[2] 2023. BPF Documentation — The Linux Kernel Documentation.
[3] 2023. clock_gettime(3) — Linux manual page.
[4] 2023. Linux Manual Page.
[5] 2023. Seccomp BPF (SECure COMPuting with filters) - The Linux kernel user-space

API guide.
[6] 2023. seccomp(2) - Linux Manual Page.
[7] Gilberto Bertin. 2017. XDP in practice: integrating XDP into our DDoS mitigation

pipeline. https://netdevconf.info/2.1/papers/Gilberto_Bertin_XDP_in_practice.
pdf

[8] Jonathan Corbet. 2020. Operations restrictions for io_uring. https://lwn.net/
Articles/826053/. (2020).

[9] Jonathan Corbet. 2021. Auditing io_uring. https://lwn.net/Articles/858023/.
(2021).

[10] Jonathan Corbet. 2022. Security requirements for new kernel features. https:
//lwn.net/Articles/902466/. (2022).

[11] Nicholas DeMarinis, KentWilliams-King, Di Jin, Rodrigo Fonseca, and Vasileios P.
Kemerlis. 2020. sysfilter: Automated System Call Filtering for Commodity
Software. In 23rd International Symposium on Research in Attacks, Intrusions
and Defenses (RAID 2020). USENIX Association, San Sebastian, 459–474. https:
//www.usenix.org/conference/raid2020/presentation/demarinis

[12] Jake Edge. 2020. Seccomp and deep argument inspection. https://lwn.net/Articles/
822256/. (2020).

[13] William Findlay, David Barrera, and Anil Somayaji. 2021. BPFContain: Fixing
the Soft Underbelly of Container Security. (2021). arXiv:cs.CR/2102.06972

[14] William Findlay, Anil Somayaji, and David Barrera. 2020. Bpfbox: Simple Pre-
cise Process Confinement with EBPF. In Proceedings of the 2020 ACM SIGSAC
Conference on Cloud Computing Security Workshop (CCSW’20). Association for
Computing Machinery, New York, NY, USA, 91–103. https://doi.org/10.1145/
3411495.3421358

https://netdevconf.info/2.1/papers/Gilberto_Bertin_XDP_in_practice.pdf
https://netdevconf.info/2.1/papers/Gilberto_Bertin_XDP_in_practice.pdf
https://lwn.net/Articles/826053/
https://lwn.net/Articles/826053/
https://lwn.net/Articles/858023/
https://lwn.net/Articles/902466/
https://lwn.net/Articles/902466/
https://www.usenix.org/conference/raid2020/presentation/demarinis
https://www.usenix.org/conference/raid2020/presentation/demarinis
https://lwn.net/Articles/822256/
https://lwn.net/Articles/822256/
http://arxiv.org/abs/cs.CR/2102.06972
https://doi.org/10.1145/3411495.3421358
https://doi.org/10.1145/3411495.3421358


RingGuard: Guard io_uring with eBPF SIGCOMM ’23, September 10, 2023, New York, NY, USA

[15] SeyedhamedGhavamnia, Tapti Palit, ShacheeMishra, andMichalis Polychronakis.
2020. Temporal System Call Specialization for Attack Surface Reduction. In
29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
1749–1766. https://www.usenix.org/conference/usenixsecurity20/presentation/
ghavamnia

[16] Axboe Jens. 2023. Efficient IO with io_uring. https://kernel.dk/io_uring.pdf.
(2023).

[17] Jinghao Jia, Raj Sahu, Adam Oswald, Dan Williams, Michael V. Le, and Tianyin
Xu. 2023. Kernel Extension Verification is Untenable. In Proceedings of the 19th
Workshop on Hot Topics in Operating Systems (HOTOS ’23). Association for Com-
puting Machinery, New York, NY, USA, 150–157. https://doi.org/10.1145/3593856.
3595892

[18] Taesoo Kim and Nickolai Zeldovich. 2013. Practical and Effective Sandboxing for
Non-root Users. In 2013 USENIX Annual Technical Conference (USENIX ATC 13).
USENIX Association, San Jose, CA, 139–144. https://www.usenix.org/conference/
atc13/technical-sessions/presentation/kim

[19] Hongyi Lu, Shuai Wang, Yechang Wu, Wanning He, and Fengwei Zhang. 2023.
MOAT: Towards Safe BPF Kernel Extension. (2023). arXiv:cs.CR/2301.13421

[20] Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Ar-
chitecture for User-Level Packet Capture. In Proceedings of the USENIX Win-
ter 1993 Conference Proceedings on USENIX Winter 1993 Conference Proceedings
(USENIX’93). USENIX Association, USA, 2.

[21] MITRE. 2021. CVE-2021-3491. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-3491. (2021).

[22] MITRE. 2022. CVE-2020-29534. https://nvd.nist.gov/vuln/detail/CVE-2020-29534.
(2022).

[23] MITRE. 2022. CVE-2021-20226. https://nvd.nist.gov/vuln/detail/CVE-2021-20226.
(2022).

[24] MITRE. 2022. CVE-2022-1508. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2022-1508. (2022).

[25] MITRE. 2022. CVE-2022-1976. https://nvd.nist.gov/vuln/detail/CVE-2022-1976.
(2022).

[26] MITRE. 2022. CVE-2022-2327. https://nvd.nist.gov/vuln/detail/CVE-2022-2327.
(2022).

[27] MITRE. 2022. CVE-2022-29582. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2022-29582. (2022).

[28] MITRE. 2022. CVE-2022-4696. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2022-4696. (2022).

[29] Chengyu Song, Chao Zhang, Tielei Wang, Wenke Lee, and David Melski. 2015.
Exploiting and Protecting Dynamic Code Generation. In Network and Distributed
System Security Symposium.

[30] Dave Jing Tian, Grant Hernandez, Joseph I. Choi, Vanessa Frost, Peter C. Johnson,
and Kevin R. B. Butler. 2019. LBM: A Security Framework for Peripherals within
the Linux Kernel. In 2019 IEEE Symposium on Security and Privacy (SP). 967–984.
https://doi.org/10.1109/SP.2019.00041

[31] Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana, and Santosh
Nagarakatte. 2021. Semantics, Verification, and Efficient Implementations for
Tristate Numbers. CoRR abs/2105.05398 (2021). arXiv:2105.05398 https://arxiv.
org/abs/2105.05398

[32] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and
Greg Kroah-Hartman. 2002. Linux Security Modules: General Secu-
rity Support for the Linux Kernel. In 11th USENIX Security Sympo-
sium (USENIX Security 02). USENIX Association, San Francisco, CA.
https://www.usenix.org/conference/11th-usenix-security-symposium/
linux-security-modules-general-security-support-linux

[33] Zhenpeng Li Yueqi Chen. 2022. HotBPF - An On-demand and On-the-fly Memory
Protection for the Linux Kernel. (2022). Linux Security Summit Europe.

https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
https://kernel.dk/io_uring.pdf
https://doi.org/10.1145/3593856.3595892
https://doi.org/10.1145/3593856.3595892
https://www.usenix.org/conference/atc13/technical-sessions/presentation/kim
https://www.usenix.org/conference/atc13/technical-sessions/presentation/kim
http://arxiv.org/abs/cs.CR/2301.13421
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3491
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3491
https://nvd.nist.gov/vuln/detail/CVE-2020-29534
https://nvd.nist.gov/vuln/detail/CVE-2021-20226
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-1508
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-1508
https://nvd.nist.gov/vuln/detail/CVE-2022-1976
https://nvd.nist.gov/vuln/detail/CVE-2022-2327
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-29582
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-29582
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-4696
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-4696
https://doi.org/10.1109/SP.2019.00041
http://arxiv.org/abs/2105.05398
https://arxiv.org/abs/2105.05398
https://arxiv.org/abs/2105.05398
https://www.usenix.org/conference/11th-usenix-security-symposium/linux-security-modules-general-security-support-linux
https://www.usenix.org/conference/11th-usenix-security-symposium/linux-security-modules-general-security-support-linux

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Asynchronous I/O by io_uring
	2.2 Extended Berkeley Packet Filter (eBPF)
	2.3 Related Work

	3 Design
	3.1 Overview
	3.2 Extending eBPF/io_uring
	3.3 Extending Verifier
	3.4 Request Batching

	4 Implementation & Evaluation
	4.1 Performance Evaluation
	4.2 Security Evaluation

	5 Discussion
	6 Conclusion
	References

