C Gl (DN 52

AUTOMATION P

7

Raven: A Novel Kernel
Debugging Tool on RISC-V

Fengwel Zhang
COMPASS Lab
Southern University of Science and Technology

Outline

Motivation

Design & Implementation
Case Study

Performance Evaluation
_imitations

~uture Directions
Conclusion

a

AUTOMATION

Existing Debugging Approaches on RISC-V

Software Debugging Hardware Debugging
Require Hypervisor Vendor Restriction on JTAG
QEMU, KVM, etc. No debugging port
Intrusive Injecting ebreak Divergent Implementation
Breaks integrity JLink, CKLink, etc.
Tied to Specific OS Expensive Debugger
kGDB, WInDBG, etc. JLink: ~500 USD

CKLink: ~300 USD

a

AUTOMATION

Example: Nezha D1

A RISC-V SoC with XuanTie C906
single core 64-bit CPU

Special debugging probe called
CKLink (incompatible to JLINK)

Debugging port is hidden in SD
slot (special adapter needed)

o DESIGN

AUTOMATION
CONFERENCE

Design Overview

Non-invasive Debugging
Use PMP instead of ebreak

No Hypervisor
Based on baremetal firmware

No Special Hardware
Software does the heavy lifting

>

\
addi a0 ©x10 Application Application
csrw satp ao
— 0S Kernel
sfence.vma)
Serial Debug
ret .
Firmware Raven <€ ctiork Client
/ Hardware
o T Set PMP
R/W/X Permission Tntrospection
User Supervisor Machine

a

AUTOMATION

What is PMP?

A physical memory protection mechanism of RISC-V.
Granularity: 4 bytes~4 kilobytes
Permission: R/W/X restrictions in S/U modes

Violation =) Exception

a

AUTOMATION

PMP as Debugging Primitives

Breakpoint _
. . 0x1000 .
Set instruction as non-executable t0 o ja1r oxices | ¢ loxdeadbee oxceadveet
trap into firmware 0x1004 ———
0x1006 11 1 ox1002 . @xdeadbeef Oxdeadbeef
ox1008 [-
Watchpoint _
Set data as non-readable/non- sreakpoint (R/W) [| Read Watchpoint (w/x) | | Write Watchpoint (R/X)

writable to have R/W watchpoints

a

AUTOMATION

Page Table Synchronization

. . (- Oxffff 1000 —» O0x8000 1000
PMP only recognizes physical DREFEE 9000 —» 0%000 95000
addreSS_ - Oxffff 8000 —p 0x8000 8000
We leverage TVM (Trap Virtual :
Memory) to perform synchronization |
L Oxfffa 000 —» 0x8000 2000
TVM will trap sfence.vma and | Raven 0S Kernel
page table updates.
Raven uses this trap to look up t TVM Trap Update page table

physical address and config PMP.

Hardware

a

AUTOMATION

Coarse Granularity Solution

Granularity varies, not all can be used as breakpoints
Fallback to ebreak without breaking integrity

QEMU Virtboard
HiFive Unleashed
HiFive Unmatched
HiFive Rev B
Allwinner Nezha D1

0 0 O O0o

4 byte
4 byte
4 kilobyte
4 byte
4 kilobyte

0x1000
0x1002
0x1004
0x1006
Ox1008

c.li a@ ox12

addi a@ oxi

c.jr a@

Breakpoint Location

c.li a@ ex12

addi a@ oex1

ebreak

a

Integrity Checker

AUTOMATION

Primitives to Single Stepping

Normal Instruction
Setup breakpoints following PC

Jump Instruction
Decode and predict its destination

©x1000
0x1002
@xl1lee4
0x1006
0x1668

Program Counter

addi a® ex1e

1i a@ ox1600

1i al ox1ee2

1i a2 ox1e04

addi a@ 9x10

1i a0 ox1060
1i al ex1ee2

1i a2 ox1004

Normal Instruction

beqz a@ ©x1008 beqz a@ ©x1008
1li a6 ox1e60 1i a0 9x1000
1i al oexl1ee2 1i al ex1ee2
1i a2 oxlee4 1i a2 oxlee4

Control Transfer
Instruction

Breakpoint Location

a

AUTOMATION

Hidden Instructions

Finest granularity: 4 bytes
Ox1000 c.li a@ ex12 } c.li a@ ox12 c.li a@ ox12 c.1li a@ ox12
0x1002 PMP
] 0x1004 [addi a@ ox1 addi a@ ox1 addi a0 ox1 addi a@ ox1
Instruction length: 2 bytes i T } R i a0
("C” Extension ISA) } }
Program Counter Executed Instruction

This leads to the “hidden”
Instructions

a

AUTOMATION

Look-ahead Technique

Look-ahead happens when
Instruction & PMP misaligned
The Instruction is a jump

Similar tricks can be used for
asynchronous events like IRQ.

0x1000
0x10082
0x10064
0x1006
0x1008

Program Counter

c.li ae ex12

addi a@ exi

-}PMP

c.jr ae

o Raven <destination> PMP
c.li a@ ox12 | e

addi a@ ex1 Lookahead addi a@ ex1
PMP
c.jr ae c.jr ae

Lookahead Location Executed Instruction

a

AUTOMATION

Functions of Raven

Raven supports most debugging o
function of a hardware debugger. _CommandFormat Description

b <address> Set a breakpoint at <address>
w <address> Set a watch point at <address>
pr (pw) <address> Read(Write) memory content at <address>

Makl ng |t easy tO |nteg rate 1T (rw) <reg> Read(Write) register content of <reg>

]) map <address> View the memory mapping of <address>
Raven Wlth fro ntends ||ke G D B csrr (csrw) <csr> Read(Write) control status register of <csr>
S Single-step execution
c Continue execution after a breakpoint
<GPIO Switch> Send an external interrupt to halt the kernel

13

a

AUTOMATION

Case Study: Buggy Device Tree

Steps
Craft a buggy deV|Ce tree ?;a32§?22r21232 3§§§§ﬁ§?°3 pxffffffe0002011e8| Exception Handler

[Raven] Input command: c
At OxffffffeC002011e8 Ox804011e8

[Raven] Input command: csrr $sepc
$sepc: OxFfffffe000017d96 Current Instruction y
[Raven] Input command: csrr $scause Relevant _Informatlon
. k I h $scause: 5 Exception Cause of Exception
Boot Llnux -> erne Cras [Raven] Input command: csrr $stval
$stval: OxFffffffe0000O2080 Exception Address

[Raven] Input command: map Oxffffffe00OOO2080

[Raven] Map of virtual address Oxffffffe000002080 is Buggy Address
[Raven] Input command: pr Oxffffffe000017d96 (should be 0xc002080)
[Raven] [*(OxFFFFFfe000017d96)=0x420c]| Current Instruction: Id a0 0(a2)

USIng Raven to IOcate & fiX [Raven] Input command: rr a® (driver/irgchip/irg-sifive-plic.c)

14

A

P) AUTOMATION

Overhead

We use Lmbench to evaluate Raven’s performance overhead.
Both experiments are tested with one dummy breakpoint (which does not halt the kernel).

w
o
o

200.0

168.7169.1
—_ 23.2 23.9 . 1800 I
E ' 20.9 22 223 2 1600
g 18. 1ael 12 L 2 1400
g 200 161 171175 1 T I g
2 ' = 120.0
S 4 13. = - g99.2103.5
= 150 120 1 £ 1000 826825 0
e 10.4 S 300 - 721723 6780
Z 10.0 T 2 T
I O 60.0 4730
g 50 = 400 =
g 20.0
“ 00 0.0
2p/0k 2p/16k 2p/64k 8p/16k 8p/6ak 16p/16k 16p/G4k Create Delete Create Delete Read (Scaled)
Context Switch Parameter (process count/size) OK File 10K File 8M File
Base M Raven Base M Raven

DESIGN
AUTOMATION

Limitations

- May interfere regular usage of
PMPs

- TEE, Isolation, etc

* No Instruction-level precision
+ Misalignment -> Hidden instruction

* There exists bypass to PMPs
- DMASs, co-processor, etc

16

What else?

Trace on multi-core
Each core has its own PMP

Cooperation with GDB
Use GDB as debugging client for better usability

Integration with PMU like Ninja did
More transparency

a

AUTOMATION

Conclusion

We summarize our work as follows
We propose a new approach to debug kernel on RISC-V with PMP

We implement its prototype and prove that it is largely equivalent to a
hardware debugger

Raven Is a non-invasive debugger without external hardware

a

AUTOMATION

COMPASS Lab

] COMPuter And System Security Lab
THEMWE AL FERE

COMPASS Research Interests:

€ Hardware-assisted Security
€ Transparent Malware Analysis

€ Transportation Security

€ TEE on Arm/x86/RISC-V
¢ Arm Debugging Security
€ Plausible Deniability encryption

O L\ DESIGN
) AUTOMATION

19

.i'; }&}

a_

COMPASS Lab

COMPuter And System Security Lab
THEMWE AL FERE

DESIGN
AUTOMATION

20

DESIGN
AUTOMATION

Thank You!

Contact:

zhangfw@sustech.edu.cn

	默认节
	幻灯片 1: Raven: A Novel Kernel Debugging Tool on RISC-V
	幻灯片 2: Outline
	幻灯片 3: Existing Debugging Approaches on RISC-V
	幻灯片 4: Example: Nezha D1
	幻灯片 5: Design Overview
	幻灯片 6: What is PMP?
	幻灯片 7: PMP as Debugging Primitives
	幻灯片 8: Page Table Synchronization
	幻灯片 9: Coarse Granularity Solution
	幻灯片 10: Primitives to Single Stepping
	幻灯片 11: Hidden Instructions
	幻灯片 12: Look-ahead Technique
	幻灯片 13: Functions of Raven
	幻灯片 14: Case Study: Buggy Device Tree
	幻灯片 15: Overhead
	幻灯片 16: Limitations
	幻灯片 17: What else?
	幻灯片 18: Conclusion
	幻灯片 19
	幻灯片 20
	幻灯片 21

