
Raven: A Novel Kernel
Debugging Tool on RISC-V

Fengwei Zhang

COMPASS Lab

Southern University of Science and Technology
1

Outline

• Motivation

• Design & Implementation

• Case Study

• Performance Evaluation

• Limitations

• Future Directions

• Conclusion 2

Existing Debugging Approaches on RISC-V

Software Debugging

• Require Hypervisor
• QEMU, KVM, etc.

• Intrusive Injecting ebreak
• Breaks integrity

• Tied to Specific OS
• kGDB, WinDBG, etc.

Hardware Debugging

• Vendor Restriction on JTAG
• No debugging port

• Divergent Implementation
• JLink, CKLink, etc.

• Expensive Debugger
• JLink: ~500 USD

• CKLink: ~300 USD 3

Example: Nezha D1

A RISC-V SoC with XuanTie C906
single core 64-bit CPU

• Special debugging probe called
CKLink (incompatible to JLINK)

• Debugging port is hidden in SD
slot (special adapter needed) 4

Design Overview

• Non-invasive Debugging
• Use PMP instead of ebreak

• No Hypervisor
• Based on baremetal firmware

• No Special Hardware
• Software does the heavy lifting

5

What is PMP?

A physical memory protection mechanism of RISC-V.

• Granularity: 4 bytes~4 kilobytes

• Permission: R/W/X restrictions in S/U modes

• Violation Exception 6

PMP as Debugging Primitives

• Breakpoint
• Set instruction as non-executable to

trap into firmware

• Watchpoint
• Set data as non-readable/non-

writable to have R/W watchpoints

7

Page Table Synchronization

• PMP only recognizes physical
address.
• We leverage TVM (Trap Virtual

Memory) to perform synchronization

• TVM will trap sfence.vma and
page table updates.
• Raven uses this trap to look up

physical address and config PMP. 8

Coarse Granularity Solution

Board # PMP Granularity

QEMU Virtboard 16 4 byte

HiFive Unleashed 8 4 byte

HiFive Unmatched 8 4 kilobyte

HiFive Rev B 8 4 byte

Allwinner Nezha D1 8 4 kilobyte 9

• Granularity varies, not all can be used as breakpoints

• Fallback to ebreak without breaking integrity

Primitives to Single Stepping

• Normal Instruction
• Setup breakpoints following PC

• Jump Instruction
• Decode and predict its destination

10

Hidden Instructions

• Finest granularity: 4 bytes

• Instruction length: 2 bytes

(“C” Extension ISA)

This leads to the “hidden”
instructions

11

Look-ahead Technique

Look-ahead happens when

1. Instruction & PMP misaligned

2. The instruction is a jump

Similar tricks can be used for
asynchronous events like IRQ.

12

Functions of Raven

• Raven supports most debugging
function of a hardware debugger.

• Making it easy to integrate
Raven with frontends like GDB

13

Case Study: Buggy Device Tree

Steps

1. Craft a buggy device tree

2. Boot Linux -> kernel crash

3. Using Raven to locate & fix

14

Overhead

15

We use Lmbench to evaluate Raven’s performance overhead.

Both experiments are tested with one dummy breakpoint (which does not halt the kernel).

Limitations

• May interfere regular usage of
PMPs
• TEE, Isolation, etc

• No instruction-level precision
• Misalignment -> Hidden instruction

• There exists bypass to PMPs
• DMAs, co-processor, etc

16

What else?

• Trace on multi-core
• Each core has its own PMP

• Cooperation with GDB
• Use GDB as debugging client for better usability

• Integration with PMU like Ninja did
• More transparency

17

Conclusion

We summarize our work as follows

1. We propose a new approach to debug kernel on RISC-V with PMP

2. We implement its prototype and prove that it is largely equivalent to a
hardware debugger

3. Raven is a non-invasive debugger without external hardware
18

19

COMPASS Research Interests:

◆TEE on Arm/x86/RISC-V

◆Arm Debugging Security

◆Plausible Deniability encryption

◆Hardware-assisted Security

◆Transparent Malware Analysis

◆Transportation Security

20

Thank You!

21

Contact:

zhangfw@sustech.edu.cn

	默认节
	幻灯片 1: Raven: A Novel Kernel Debugging Tool on RISC-V
	幻灯片 2: Outline
	幻灯片 3: Existing Debugging Approaches on RISC-V
	幻灯片 4: Example: Nezha D1
	幻灯片 5: Design Overview
	幻灯片 6: What is PMP?
	幻灯片 7: PMP as Debugging Primitives
	幻灯片 8: Page Table Synchronization
	幻灯片 9: Coarse Granularity Solution
	幻灯片 10: Primitives to Single Stepping
	幻灯片 11: Hidden Instructions
	幻灯片 12: Look-ahead Technique
	幻灯片 13: Functions of Raven
	幻灯片 14: Case Study: Buggy Device Tree
	幻灯片 15: Overhead
	幻灯片 16: Limitations
	幻灯片 17: What else?
	幻灯片 18: Conclusion
	幻灯片 19
	幻灯片 20
	幻灯片 21

