
Travelling the Hypervisor and SSD: A Tag-Based Approach
Against Crypto Ransomware with Fine-Grained Data Recovery

Boyang Ma
State Key Lab of ISN

School of Cyber Engineering
Xidian University

Xi’an, China

Yilin Yang
State Key Lab of ISN

School of Cyber Engineering
Xidian University

Xi’an, China

Jinku Li∗
State Key Lab of ISN

School of Cyber Engineering
Xidian University

Xi’an, China

Fengwei Zhang
Southern University of Science and

Technology
Shenzhen, China

Wenbo Shen
Zhejiang University
Hangzhou, China

Yajin Zhou
Zhejiang University
Hangzhou, China

Jianfeng Ma
State Key Lab of ISN

School of Cyber Engineering
Xidian University

Xi’an, China

ABSTRACT

Ransomware has evolved from an economic nuisance to a national
security threat nowadays, which poses a significant risk to users.
To address this problem, we propose RansomTag, a tag-based ap-
proach against crypto ransomware with fine-grained data recovery.
Compared to state-of-the-art SSD-based solutions, RansomTag
makes progress in three aspects. First, it decouples the ransomware
detection functionality from the firmware of the SSD and integrates
it into a lightweight hypervisor of Type I. Thus, it can leverage the
powerful computing capability of the host system and the rich con-
text information, which is introspected from the operating system,
to achieve accurate detection of ransomware attacks and defense
against potential targeted attacks on SSD characteristics. Further,
RansomTag is readily deployed onto desktop personal comput-
ers due to its parapass-through architecture. Second, RansomTag
bridges the semantic gap between the hypervisor and the SSD
through the tag-based approach proposed by us. Third, Ransom-
Tag is able to keep 100% of the user data overwritten or deleted
by ransomware, and restore any single or multiple user files to
any versions based on timestamps. To validate our approach, we
implement a prototype of RansomTag and collect 3, 123 recent
ransomware samples to evaluate it. The evaluation results show
that our prototype effectively protects user data with minimal scale

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3616665

data backup and acceptable performance overhead. In addition, all
the attacked files can be completely restored in fine-grained.

CCS CONCEPTS

• Security and privacy → Malware and its mitigation.

KEYWORDS

Ransomware; Hypervisor; Fine-Grained; Data Recovery

ACM Reference Format:

Boyang Ma, Yilin Yang, Jinku Li, Fengwei Zhang, Wenbo Shen, Yajin Zhou,
and Jianfeng Ma. 2023. Travelling the Hypervisor and SSD: A Tag-Based
Approach Against Crypto Ransomware with Fine-Grained Data Recovery.
In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’23), November 26–30, 2023, Copenhagen, Denmark.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3576915.3616665

1 INTRODUCTION

Over the last few years, ransomware [15] attacks have been grow-
ing more widespread due to a high and increasing yield potential.
Moreover, ransomware has evolved from an economic nuisance to
a national security threat [56]. For example, in June 2022, Costa
Rica’s government declared a “national emergency” due to ran-
somware after it had been reeling from unprecedented attacks for
two months, which sparks a new ransomware era [45]. It is no
doubt that ransomware poses a significant risk to user security,
and it is time to begin treating it as we would any other serious
threat [9].

Different from other types of malware (e.g., viruses, worms, tro-
jans, botnets, adware, spyware), the main purpose of ransomware is
to lock the victim systems (a.k.a, locker ransomware) or encrypt the
user files (a.k.a, crypto ransomware), and then it demands a ransom
for unlocking the system or releasing a decryption key to access
the files. Further, it is hard to track the transactions as ransomware
widely deploys anonymous payment mechanisms (e.g., Bitcoin)

341

https://doi.org/10.1145/3576915.3616665
https://doi.org/10.1145/3576915.3616665
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3616665&domain=pdf&date_stamp=2023-11-21

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Boyang Ma et al.

to accomplish the process [20]. Compared to locker ransomware,
crypto ransomware is more difficult to tackle as it usually encrypts
user files with strong cryptographic algorithms and enough-long
cryptographic keys. That means the data can hardly be decrypted
without the keys released from the attackers. Accordingly, we target
crypto ransomware in this paper.

The ultimate goal of defending against crypto ransomware is to
protect user data. To this end, researchers have proposed a number
of solutions. Some of them identify attacks and protect user files
in the host [10, 27–29, 31, 35, 52] or hypervisor layer [54]. How-
ever, such solutions suffer from data loss [27, 29, 52, 54], incom-
plete functionality [31, 35], or privilege escalation attacks [10, 27–
29, 31, 35, 52]. To address these limitations, several SSD-based ap-
proaches against crypto ransomware have been designed in recent
years [4, 5, 21, 43, 47, 50, 60]. These approaches leverage the intrin-
sic characteristic of SSD, i.e., out-of-place update [21], to provide
hardware-level data protection without additional overhead.

However, there are three main limitations to the existing SSD-
based approaches. First, it is hard to implement accurate and
comprehensive detection algorithms into the SSD firmware due
to insufficient context information and limited CPU power and
memory. Thus, it causes the backup data to be excessively redun-
dant [21, 47, 50] or incomplete [4, 5, 43, 60]. Second, they suffer from
potential targeted attacks on SSD characteristics [4, 5, 21, 43, 47, 60],
i.e., exhausting the available storage space (GC attack), hiding I/O
patterns (timing attack), and forcing data erasing (TRIM attack), or
introduce additional attack surface for network threats [50]. Third,
they cannot recover a specific (attacked) file to a certain version
wanted by the user, since there is no semantic information of “file”
at the SSD level. In other words, they cannot provide fine-grained
data recovery.

In this paper, we propose RansomTag, a tag-based approach
for file activity-based detection outside of the operating system
(OS) and fine-grained data recovery for SSDs, to address the above
limitations. Similar to the existing SSD-based solutions, RansomTag
leverages the intrinsic characteristic of SSD, i.e., out-of-place update,
to back up user data without additional overhead. Nevertheless,
compared to previous systems, RansomTagmakes progress mainly
in three aspects.

First, RansomTag decouples the ransomware detection func-
tionality from the firmware of the SSD and integrates it into a
hypervisor of Type I. Thus, we can leverage the powerful comput-
ing capability of the host system and the rich context information
from the OS, e.g., process and file activities, to achieve accurate and
comprehensive detection of ransomware attacks. We believe this is
necessary and important as it can resist potential targeted attacks
on SSD characteristics, i.e., GC, timing, and TRIM attacks [50] (see
details in § 5.4.2). In addition, it will significantly reduce the backup
storage overhead. Further, unlike traditional Type I hypervisors,
the hypervisor adopted by us (called thin hypervisor) is based on a
parapass-through architecture, which is designed to allow most of
the I/O accesses from the OS to pass-through the hypervisor, while
the hypervisor only intercepts the minimum file-related accesses
necessary to implement the ransomware detection functionality.
Such a thin hypervisor is readily deployed onto desktop personal
computers.

Second, RansomTag bridges the semantic gap between the hy-
pervisor and the SSD through the tag-based approach proposed by
us, which is simple but effective with minor changes to standard
SCSI protocol commands. Specifically, RansomTag precisely labels
each I/O request with a tag in the hypervisor to inform the SSD
firmware how to handle it. To achieve that, it leverages several bits
of the reserved field in the storage command transformed from the
I/O request to store various types of tags.

Third, RansomTag is able to provide complete protection and
fine-grained recovery of user data. In other words, RansomTag
will keep 100% of the user data overwritten or deleted by an iden-
tified crypto ransomware sample. Besides, RansomTag monitors
file system status in the hypervisor to back up the changes of file
metadata. By doing so, RansomTag is able to provide fine-grained
recovery of user data, which can restore any single or multiple user
files to any versions based on timestamps. Further, it can precisely
distinguish the malicious writes of ransomware from concurrent
writes issued by one or more benign applications to the user files,
and restore the files even the malicious and benign writes intersect.

Overall, to achieve RansomTag, we need to solve three main
challenges:

C1: How to precisely identify the ransomware’s I/O re-

quests in the hypervisor without losing any files? To address
this issue, we develop a lightweight introspector that only obtains
I/O-related context information (e.g., process and file activities) of
the OS in the hypervisor layer, and implement a high-precision
detection algorithm with this information. Further, we reserve all
the user data at the very beginning of the ransomware detection
algorithm to ensure that no files are lost (see details in § 3.3).

C2: How to bridge the semantic gap between the hyper-

visor and the SSD to transmit the detection results for fine-

grained backup? To address it, we propose a simple but effective
tagging approach, which travels the hypervisor and SSD, to mark
each I/O operation from ransomware. Thus, the SSD can precisely
retain the original data to be encrypted (see details in § 3.4).

C3: How to monitor the file system status in the hyper-

visor for file-level fine-grained recovery?We monitor (in the
hypervisor) and back up (in the SSD) all the changes in files’ meta-
data which are maintained by the file system in addition to the files’
raw data. With the metadata, specified files and versions can be
recovered successfully (see details in § 3.5).

To validate our approach, we develop a prototype of Ransom-
Tag with a dedicated thin hypervisor and a development board of
SSD [46]. We collect 3, 123 recent ransomware samples, including
3, 061 Windows samples and 62 Linux samples, and run them in
Microsoft Windows 10 and Ubuntu 22.04 respectively to evaluate
our prototype. The evaluation results show that our system is able
to successfully identify all the ransomware attacks and restore all
the attacked files in fine-grained. In addition, it can resist potential
targeted attacks on SSD characteristics. We further evaluate the
impact of RansomTag on the I/O performance and lifespan of the
SSD. The results show that the impact introduced by our prototype
is acceptable. To engage the community, we plan to open-source
RansomTag and release the dataset of ransomware samples in our
evaluation at https://github.com/XDU-SysSec/RansomTag.

In summary, this paper makes the following contributions:

342

A Tag-Based Approach Against Crypto Ransomware with Fine-Grained Data Recovery CCS ’23, November 26–30, 2023, Copenhagen, Denmark

• We propose a novel ransomware defense approach called
RansomTag, which is able to precisely detect and mark each
I/O request issued by crypto ransomware in the hypervisor,
and provide fine-grained user data recovery in the SSD.

• We develop a prototype of RansomTag, and implement the
ransomware detection and data recovery to a thin hypervi-
sor and a development board with modified SSD firmware,
respectively.

• We perform a comprehensive evaluation to validate our ap-
proach. The evaluation results show that our prototype ef-
fectively protects user data from crypto ransomware attacks
with minimal scale data backup and acceptable performance
overhead, and the potential targeted attacks on SSD charac-
teristics can be prevented. Meanwhile, all the attacked files
can be completely restored in fine-grained.

2 BACKGROUND

2.1 SSD Intrinsic Characteristic

With the speed and reliability benefits, SSDs (Solid-State Drives)
are gaining popularity for laptops, desktop personal computers,
and servers. Specifically, SSDs divide the whole storage space into
blocks, which are further divided into pages. Data is read and writ-
ten at the page level, however, it has to be erased at the block level.
Meanwhile, unlike HDDs (Hard-Disk Drives), SSDs must erase
unneeded data blocks before new data can be written, which sig-
nificantly impacts the I/O performance. To address this problem,
modern SSDs always issue write operations to free pages that have
been erased in advance (i.e., out-of-place update) rather than wait-
ing for the expensive erase operation for each write. In other words,
SSDs can only perform writes in an appending manner, leaving the
obsolete data unaltered, which will be later erased (and recycled) by
the GC (garbage collection) module [21]. In addition, the flash trans-
lation layer (FTL), which resides in the SSD controller, maintains
an address mapping table and remaps overwritten logical block
addresses (LBAs) to free physical space and marks invalid pages for
GC. This intrinsic characteristic of SSD brings inspiration for back-
ing up original data, which might be achieved by retaining those
invalid pages where old data is located by delaying GC. As crypto
ransomware always requires overwriting or deleting the original
user files after being encrypted, if the GC process is modified to
prevent erasing obsolete data, the attacked file data is naturally
protected without additional overhead.

2.2 File Systems in Windows/Linux

To back up and recover the attacked files in fine-grained, we need
to understand how a file system stores, organizes, and manages
files and directories on a storage device. We focus on NTFS and
ext4, which are the primary file systems in Windows and Linux,
respectively.

New Technology File System (NTFS). NTFS is a proprietary
journaling file system developed by Microsoft, and it is the primary
file system for recent versions of Windows. In NTFS, the fundamen-
tal unit of disk usage is a cluster. To manage the files’ information
and their data content, NTFS maintains several files (called meta-
data files or metafiles) that define and organize the file system, and
it uses names starting with ‘$’ for these internal files. For example,

the metafile $MFT represents Master File Table (MFT), a database
containing information about every file and directory on an NTFS
volume. There is at least one entry in the MFT for every file on an
NTFS file system volume, including the MFT itself. All the infor-
mation about a file, including its name, size, time and date stamps,
permissions, and data content, is stored either in MFT entries or
in the space outside the MFT indicated by MFT entries. An MFT
entry is typically 1KiB in size, and every file or directory on a disk
requires at least one MFT entry. In addition, the metafile $Bitmap
keeps track of all used and unused clusters on an NTFS volume.
Each bit in the $Bitmap represents one cluster. If that bit is set to
1, then the cluster is in use; otherwise, the cluster is free. When
a file takes up the space on the NTFS volume, the corresponding
bits in the $Bitmap are set to 1. To recover an attacked file in NTFS,
besides its data content, its meta information stored in metafiles is
also required to be backed up and recovered. Thus, the file can be
reconstructed with its meta-information.

Fourth Extended File System (ext4). Ext4 is getting included
in all the modern distributions of Linux. Particularly, ext4 allocates
the storage space in units of the block, and each block is typically
4KiB in size. A block is a group of sectors between 1KiB and 64KiB,
and a number of blocks are, in turn, grouped into larger units called
block groups. The data block bitmap tracks the usage of data blocks
within the block group. In ext4, each file and directory is associated
with an inode, which is a data structure that keeps track of all
the files and directories within ext4. Each inode is assigned an
integer known as an “inode number.” The inode bitmap records
which entries in the inode table are in use. Note that in ext4, the
filename is not directly stored in its inode. Instead, each filename is
stored in the directory file as an entry, which has the filename (a
string) and its corresponding inode number. Therefore, to recover
an attacked file in ext4, we need to back up the file’s metadata in the
corresponding inode, the path information (including the filename)
stored in each level of directory files, and the data content.

3 SYSTEM DESIGN

3.1 Assumptions and Threat Model

In this paper, we first assume that crypto ransomware leverages
all the techniques that other types of malware might use to launch
an attack. For example, ransomware can use zero-day vulnerabili-
ties to compromise user systems and propagate the malware. Also,
some crypto ransomware variants only encrypt a specific part of
a file instead of aggressively encrypting the entire file to evade
detection [27]. Moreover, certain advanced ransomware variants
attempt to bypass a defense system by various methods. For exam-
ple, they are able to escalate their privileges to the administrator
by manipulating the access token [12, 37, 54], and then bypass
the defense system in the kernel or attack the backup data in the
storage device [21]. In the meantime, by attacking the virtual ma-
chine introspection (VMI) technique [17], they could prevent a
VMI-based system from obtaining correct OS context information
for identifying malicious behaviors.

On the other hand, the hypervisor and the SSD firmware are
trusted. Thus, the defense system in the hypervisor and SSD would
be protected and cannot be tampered with. Further, as a VMI-based

343

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Boyang Ma et al.

approach, we need to introspect OS context information (e.g., pro-
cess and file activities) from the guest OS for accurate attack de-
tection. However, there is a strong semantic gap for the VMI tech-
nique [23], which is an open security problem that leads to getting
incorrect information from an untrusted OS. Since we use the OS
context information for attack detection, we need to get reliable
data from the guest OS to identify attacks correctly. Note that
to address this problem, several promising approaches have been
proposed [23]. Accordingly, we assume that one such approach is
integrated into our system. We will detailly analyze this security
issue in § 5.4.1 and § 6.

3.2 Approach Overview

In this work, our goal is to detect crypto ransomware accurately
and recover the user data in fine-grained. Traditional solutions
work at the user or kernel level, which will be easily bypassed by
advanced ransomware variants after gaining the system’s adminis-
trator privileges [21, 54]. Instead, existing SSD-based systems put
the ransomware detection functionality into the SSD firmware to
avoid being evaded, but they suffer from inaccurate detection results
due to the limited computing power and less context information,
which leads to excessive [21, 47] or incomplete [4, 5, 43, 60] backup
data. Moreover, these SSD-based systems [4, 5, 21, 43, 47, 60] hardly
resist potential targeted attacks on SSD characteristics or introduce
additional attacking surface for network threats [50].

To address the above limitations, we propose RansomTag, a hy-
pervisor/SSD co-design defense system against crypto ransomware.
Specifically, RansomTag introduces a hypervisor between the user
OS and the SSD, and puts the ransomware detection functionality
into the hypervisor. Thus, it is able to resist kernel-based attacks
launched by privileged ransomware. In addition, it is able to achieve
accurate detection results with powerful computing capability and
rich context information of the host system. Note that to reduce
the performance overhead, the hypervisor introduced by us is a
lightweight one, which is based on a parapass-through architecture
that only intercepts the interested file-related I/O operations. At
the same time, we expand the functionality of the hypervisor and
the SSD firmware to provide fine-grained data backup and recovery.
We believe this is important since users often prefer to recover
certain version files required by them quickly, rather than spending
a lot of time recovering the entire mass storage device.

The overall design of RansomTag is shown in Figure 1.
Regularly, when a user process in the OS makes an operation

to a file (e.g., open, create, read, write, close), it invokes the cor-
responding system call and switches from the user mode to the
kernel mode. Accordingly, the OS kernel creates an I/O request to
satisfy the file operation, which will then be sent to the file system.
After receiving the I/O request, the file system issues its own more
explicit request to the storage device driver [61]. The storage de-
vice driver eventually translates the request into a standard storage
protocol command (like SCSI) and accesses the hardware registers,
which are memory-mapped into systemmemory, to inform the stor-
age device (i.e., SSD) to start direct memory access (DMA) transfer.
According to the received I/O commands, the SSD completes the
data access.

Storage Driver
OS

Hypervisor

SSD

File System

Monitor
Detector

Para-Through Storage Driver

Tagger

②

I/O Interceptor①

Tag Extractor

④

⑤

⑥

Introspector

③

Data

Retainer

⑦ Data

Restorer

⑧

Figure 1: The overall design of RansomTag.

To achieve ransomware detection, we introduce two modules
into the hypervisor, i.e., ① I/O Interceptor and ② Detector, as shown
in Figure 1. Specifically, the I/O Interceptor module intercepts all the
storage I/O commands before they are issued to the SSD by captur-
ing the OS’s accesses to the SSD’s registers. The Detector module
then identifies crypto ransomware with all the information from
the intercepted commands through a ransomware detection algo-
rithm. Particularly, to reduce the false positives and false negatives
of detection, the Detector module requires as much information
about process and file activities within the OS as possible.

However, there is a big challenge to address here, since the De-
tector module works in the hypervisor layer while the ransomware
process is running in the OS kernel. Namely, there is a semantic
gap between the hypervisor and the OS [14], which means the
difference between the high-level OS abstractions from the inter-
nal OS and the hardware-level abstractions from the hypervisor.
For instance, in the OS we can see semantic-level objects such as
processes and files, while in the hypervisor, we only see memory
pages and storage protocol commands of the OS. Then, how can
we precisely identify the I/O request issued by ransomware process
in the hypervisor without losing any files (i.e., C1 as mentioned
in § 1)? To address this challenge, we introduce a newmodule in the
hypervisor, i.e., ③ Introspector as shown in Figure 1, to obtain the
context information of file operations from the CPU and memory
space in real-time, which will be sent to the Detector module for
high-precision ransomware detection.

To achieve data backup and recovery in fine-grained, we intro-
duce two modules into the SSD firmware, i.e., ⑦ Data Retainer
and ⑧ Data Restorer, as shown in Figure 1. Specifically, the Data
Retainer module leverages the SSD’s intrinsic characteristic (i.e.,
out-of-place update) to retain the original data without extra over-
head, and the Data Restorer module reads out the retained data as
needed to recover the user files.

However, due to the lack of high-level semantic information in
the SSD, we have two challenges for data backup and fine-grained
data recovery. First, it is a challenge to inform the SSD of detection
results since there is a semantic gap between the hypervisor and the
SSD, i.e., C2 as mentioned in § 1. Specifically, the hypervisor follows

344

A Tag-Based Approach Against Crypto Ransomware with Fine-Grained Data Recovery CCS ’23, November 26–30, 2023, Copenhagen, Denmark

the storage protocol when transferring data to the SSD, and the SSD
cannot receive any data other than the storage commands. There-
fore, the backup/recovery module in the SSD firmware could hardly
precisely determine whether the incoming storage commands need
to be handled to retain the original data. To address this challenge,
we propose a simple but effective tagging approach. Specifically,
we introduce two modules to interconnect the hypervisor and the
SSD, i.e., ⑤ Tagger and ⑥ Tag Extractor, as shown in Figure 1. The
Tagger module resides in the hypervisor and marks the related
I/O commands with a tag according to the ransomware detection
results, which will be sent to the SSD for further processing. Then,
the SSD can accurately identify whether each incoming command
is from ransomware or not after the Tag Extractor module in the
SSD extracts the tag. Thus, the Data Retainer module is able to back
up the data accordingly.

Second, to achieve the goal of fine-grained recovery, we need to
monitor and record the changes in the file system in the hypervisor.
However, it is another challenge to monitor the file system status in
the hypervisor, i.e., C3 as mentioned in § 1, because the concept of
“file” only exists in the OS, while we can only extract the states of
the file system from the captured I/Os in the hypervisor. Specifically,
the file’s metadata is indispensable when recovering a file since
all the attributes of the file (e.g., file name, date modified, the data
location) are recorded as a metadata entry stored in the file system’s
metafile. However, the file’s metadata will be updated at the file
system level when the file is attacked by ransomware, and the
changes of metadata can not be captured directly in the SSD for
backing up. To solve this problem, we introduce a new module in
the hypervisor, i.e., ④ File System Monitor, as shown in Figure 1,
to monitor file metadata changes by capturing the I/O commands
targeting the file system’s metafiles. Specifically, the File System
Monitor module examines the read commands among these I/O
commands for possessing the current state of the file system in the
SSD. In addition, it filters their write commands to let the Tagger
module stamp themwith a tag for backing up the previous metadata.

Next, we present the design of ransomware detection, data
backup, and data recovery detailedly in § 3.3, § 3.4, and § 3.5, re-
spectively.

3.3 OS-Isolated and High-Precision Detection

The ransomware detection functionality of RansomTag resides
in a Type I hypervisor, which is isolated from the attack-prone
operating system [2, 32, 53]. However, most of the well-known
Type I hypervisors, such as VMware ESXi, Microsoft Hyper-V, and
Xen, are not suitable for our system since they are pretty large and
complex. For example, these hypervisors include numerous device
drivers and resource manager to support various devices as well
as multiple virtual machines (VMs), which cause significant per-
formance overhead. Therefore, we introduce a lightweight Type I
hypervisor, which gets rid of the functionalities of multiple VMs
support and lets most accesses pass through directly except for
storage I/O or memory-related operations.

3.3.1 Context Information Obtaining. We introduce an Introspector
module in the hypervisor to obtain the context information of the
OS. The Introspector module utilizes the VMI technique to retrieve
information about the current state of the OS. Compared to other

VMI systems [14, 16, 48], the Introspector module is a lightweight
(or thin) one, which only obtains I/O-related context information
when the I/O command is intercepted. Specifically, it examines
the physical memory of the OS and leverages detailed knowledge
of the OS’s algorithms and data structures to rebuild higher-level
I/O-related information, such as the list of the running processes,
and the files operations.

3.3.2 Ransomware Detection Algorithm. Previous studies [27, 29,
52] have demonstrated that significant changes occur and exhibit
distinctive, repetitive patterns in file system activities when the
OS suffers a ransomware attack. Therefore, RansomTag takes full
advantage of the host’s computing power and rich context infor-
mation to implement the state-of-the-art ransomware detection
algorithm [27, 52, 54], which combines the file activities (such as
read, write or overwrite, rename or delete files) and the entropy of
the file’s data as the patterns of crypto ransomware.

Specifically, the detection algorithm detects crypto ransomware
from two aspects. First, it monitors whether the process matches the
file behavior patterns. Second, it regards as a suspicious process if
the entropy of the data to be written is high. It is worth pointing out
that compressed data (e.g., zip files, video stream data, and pictures)
also tends to exhibit high entropy. To address that, we utilize a state-
of-the-art approach [13] to reliably distinguish the compressed and
encrypted data. If the above two conditions are met, the process is
immediately regarded as crypto ransomware. Unlike the existing
solutions that block the ransomware process directly, RansomTag
does not interfere with all the read and write operations of the
ransomware process. On the contrary, RansomTag transparently
marks ransomware’s write commands with a special tag. Note
that a small number of files may be encrypted (and lost) before
the ransomware attack is detected. To avoid losing data, we tag
all the write requests with high entropy data as well until the
process is determined as benign. It is worth pointing out that the
ransomware detection algorithms and the framework of our system
are orthogonal. Namely, to improve the detection accuracy, all the
existing and further advanced detection algorithms (e.g., machine
learning [47], decoy technology [35], and others [28, 52]) can be
readily deployed in our system.

3.4 Fine-Grained Data Backup

By utilizing the SSD’s intrinsic characteristic (i.e., out-of-place up-
date), RansomTag is able to back up the original data by excluding
the retained blocks from GC. Further, in RansomTag, the SSD can
accurately retain the data manipulated by crypto ransomware due
to the high-precision detection algorithm adopted by us, which
reduces the scale of data backup significantly. The details of the
data backup are shown in Figure 2. In particular, in the flash con-
troller of an SSD, the FTL maps the host side or file system logical
block addresses (LBAs) to the physical address of the flash memory
(logical-to-physical mapping). In general, a free page is allocated
to the new data from a write command, and the physical address
of the page is updated in the FTL to map to the LBA carried in the
command (❶). If the LBA has already been mapped to a physical
page (i.e., for an overwrite operation), the previous page would be
marked as invalid and erased later by GC (❺). Similarly, if a read
command arrives, the FTL searches the mapping table through the

345

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Boyang Ma et al.

SSD

Physical Page

Data

Retainer

Data

Restorer

Normal

I/O

Logical-Physical Address Translation

Valid Page

Count

Invalid Page

Count

Garbage Collection

Block

NAND Flash Memory

Flash Controller

� �

� �

�

�

�

Normal New Data

...
Encrypted

Data

Raw Data

Page Addr

...

Normal New Data

...
Encrypted

Data

Raw Data

Page Addr

...

Normal Old Data

...

Raw Data

...

Normal Old Data

...

Raw Data

...

Block

Data Field Spare FieldData Field Spare Field

Figure 2: The details of workflows in the SSD.

LBA in the command and reads the data from the corresponding
physical page (❷). As mentioned in § 3.3, the write commands
from ransomware are stamped with a special tag in the hyper-
visor. The Tag Extractor module in the SSD forwards the tagged
write commands to the Data Retainer module. Same as the regular
writes, a series of free pages are allocated to store the new incoming
(encrypted) data (❸). However, the difference is that the physical
addresses of the previous pages that mapped to the same LBA are
written into the spare fields of these new pages synchronously with
the encrypted data. Note that the commodity SSDs typically reserve
16-64 bytes out-of-band (OOB) metadata for each physical page [21],
which is also called spare field [51]. Therefore, the spare field of a
page is enough to contain the physical address of a page. In other
words, a pointer is stored in the spare field of the encrypted data
page, which points to the page of raw data before being encrypted
(❹). Regularly, these raw data pages will be marked as invalid and
erased later by GC. However, to retain these pages, we modify the
GC module to treat these pages as valid (❻). Thus, all the original
data that needs to be protected is retained in the SSD.

It is worth pointing out that with the introspected context infor-
mation, RansomTag can precisely distinguish the malicious writes
of ransomware from concurrent writes issued by other benign pro-
cesses. Thus, by tagging each write command in the hypervisor,
RansomTag can clearly inform the SSD whether each targeted logic
block data needs to be retained, which achieves fine-grained data
backup. Later, the user files are able to be successfully restored even
the malicious and benign writes intersect, and all the benign data
can be reserved.

3.5 Fine-Grained Data Recovery

3.5.1 File SystemMonitoring. To reconstruct a file from the backup
data in the SSD, the meta information of the file is indispensable
apart from the data content. As mentioned in § 2.2, in NTFS, all
the information about a file is stored in an entry of the $MFT
metafile. Thus, we only need to monitor and record the changes

of the $MFT metafile. Besides, to ensure the logic units (i.e., the
clusters) containing the protected data are not used again, we also
need to monitor the status of the $Bitmap metafile. While for ext4,
the inode table, which stores all inode entries, needs to bemonitored
and backed up. Similarly, to protect the blocks that keep the backup
data, the status of the data block bitmap must also be monitored.

To achieve the above procedures, we introduce a File System
Monitor module to recognize the write commands targeting the file
system metafiles, and inform the Tagger module to stamp a special
tag on these write commands. By doing so, the metadata of the
original files will later be retained in the SSD for fine-grained data
recovery.

3.5.2 Fine-Grained Data Recovery. As mentioned in § 2.2, two key
factors are indispensable for rebuilding a file to any version, i.e., the
raw data of the file and its metadata. In RansomTag, both of them
are retained in the SSD. To recover the files, the recovery program
designed by us reads out all the retained versions of the metafiles
(i.e., $MFT for NTFS, and inode table for ext4) from the SSD and
parses them. Then it lists all the file records, and each of them
represents a version of a file. Users can manually choose specific
versions of the files they want to retrieve according to the listed
records. In addition, users can also specify multiple versions or files
in bulk for efficiency. The recovery program eventually reads out
the data of the specified files from the SSD and rebuilds the files.

Reading File’sMetadata. The recovery program initiates a read
request targeting the metafiles. The read request is translated into
a read command by the OS and intercepted by the I/O Interceptor
module in the hypervisor. With the context information, the read
command is recognized by the Detector module and then stamped
with a special tag by the Tagger module. In the FTL of the SSD, the
command is forwarded to the Data Restorer module according to
the tag. The LBA in the read command has been mapped to the
newest data page (the latest version of metafiles). However, the
overwrites to the metafiles are captured, and the previous page has
been retained. Therefore, the physical page corresponding to the
LBA in the read command has a pointer in its spare field, which
points to the retained page (❹ in Figure 2). TheData Restorer module
eventually reads the previous version of the metafiles from the
retained page (❼ in Figure 2). The recovery program iterates the
above process until all versions of the metafiles have been read.

Reading File’s Data. For NTFS, the small files (< 1KiB) are
stored entirely within their MFT records, while the files that do not
fit within a record are allocated clusters outside the MFT. Similarly,
for ext4, the data of small files (< 60 bytes) is directly stored in
inodes [26]. Therefore, the small files can be recovered immediately
as soon as all the versions of the metafiles are read.

For large files, our recovery program first parses all the versions
of file records (MFTs or inodes) and extracts the attributes of each
file, such as filename, date modified, and logic addresses of the file
data. Particularly, since the filename is stored in a directory inode
in ext4 instead of contained in its inode, our recovery program
must traverse all directory inodes to get the files’ name for ext4
files. According to these attributes, the user chooses what files and
versions need to be restored instead of recovering the entire SSD.
After the user confirms the files and versions that they want to
restore, the recovery program initiates a series of read requests to

346

A Tag-Based Approach Against Crypto Ransomware with Fine-Grained Data Recovery CCS ’23, November 26–30, 2023, Copenhagen, Denmark

require the data located in the logic units (i.e., the clusters for NTFS
and the blocks for ext4) of the files that the user chooses. In the SSD,
the mapped physical pages of the LBAs in these read commands
store the pointers of the raw data pages (retained pages) in their
spare fields. Finally, the Data Restorer module reads the raw data
from the retained pages for recovery (❼ in Figure 2).

4 IMPLEMENTATION

To validate our approach, we develop a proof-of-concept prototype
of RansomTag. We modify and integrate an open-source Type I
hypervisor called BitVisor [53] to implement the hypervisor-side
functionalities of RansomTag. Specifically, BitVisor only supports a
single VM simultaneously running on it, which is allowed to access
the real hardware directly. The storage driver in the BitVisor, which
is called a parapass-through driver, is used to handle intercepted
I/Os for detecting ransomware. We add the lightweight Introspector
module (as shown in Figure 1) into the storage driver for obtaining
the OS context information in the course of I/Os being intercepted
and issued. Moreover, we integrate the Detector, the File System
Monitor, and the Tagger modules into the storage driver of BitVisor
to achieve crypto ransomware detection, file system monitoring,
and I/Os tagging, respectively. Furthermore, we expand BitVisor to
support floating-point arithmetic for computing the entropy of the
data to be written.

Additionally, we integrate the Tag Extractor, Data Retainer, and
Data Restorer modules into an open-source FTL project called Open-
NFM [19]. Then, we port the modified FTL to a development board,
i.e., LPC-H3131 [46], equipped with 180MHz ARM microcontroller,
512MiB NAND flash, and 32MiB SDRAM as the evaluation SSD.
Besides, we develop a Python program tool to recover the attacked
files in fine-grained. Overall, the prototype of RansomTag consists
of about 4, 200 lines of C code and 1, 690 lines of Python code.

4.1 Key Techniques in the Hypervisor

4.1.1 Context Information Obtaining. The Introspector module of
RansomTag is used to obtain the context information of the OS for
precise detection, including file-related operations, process struc-
ture, file object, etc. The paths to obtain the process and file informa-
tion of 64-bit Windows 10 and 64-bit Linux are shown in Figure 3.

Particularly, in 64-bit Windows 10, it obtains the process context
by directly accessing the thread pointer stored in the CPU as long
as the I/O commands are intercepted. It is because a thread is a
basic unit to which Windows allocates processor time [39], and it
is the entity within a process that Windows schedules for execu-
tion [61]. Thus, the process context of Windows can be obtained
from a thread since one or more threads run in the context of the
process. As shown in Figure 3(a), in 64-bit Windows 10, each pro-
cess represented by an executive process (EPROCESS) structure has
one or more threads, and each thread is represented by an exec-
utive thread (ETHREAD) structure [61]. Meanwhile, an I/O request
packet (IRP), which is represented by an IRP structure, is where the
I/O system stores the information that it needs to process an I/O
request [61]. The IRP structure contains a FILE_OBJECT structure
used by the system to represent a file object, and a file object rep-
resents an open instance of a file [41] and contains the file-related
information we need. In addition to an EPROCESS structure, the

Struct EPROCESS

Process

Information

File

Information

Struct

FILE_OBJECT

Struct IRP

Struct ETHREAD

Struct KPRCB

Struct KPCR

GS Register of CPU

(a) 64-bit Windows 10

GS Register of

CPU

Process

Information

File

Information

RDI, RSI, RDX,

R10, R8, and R9

Registers

Capture System Call

Clear SCE bit in EFER

Cause #UD Exception

(b) 64-bit Linux

Figure 3: The path to obtain the OS context information.

ETHREAD structure also includes an IRP list to represent the IRP
sequence of the process. When an I/O command is intercepted, the
processor has not yet switched and still stays in the context of the
process that issued the I/O. Therefore, we can obtain the context
information (e.g., process, file object) associated with the incom-
ing I/O commands, as long as the pointer of the current ETHREAD
structure is obtained. The pointer of the current ETHREAD structure
can be obtained in the kernel processor control block (KPRCB), a
member of the kernel processor control region (KPCR) structure.
The address of the KPCR structure can be read from the GS register
in the kernel mode (ring 0), since in the kernel mode the value in
the GS register is swapped from the KernelGSBase model specific
registers (MSRs) by the SWAPGS instruction [11].

In 64-bit Linux, however, the above method is not applicable
since the processes and threads in Linux are implemented differ-
ently from Windows. Specifically, in Linux kernel space, processes
and threads are implemented through a universal structure, called
a task (hence the struct task_struct) [6, 25]. Thus, we can only
obtain a task structure pointer from the CPU register, which could
be either a user process or a kernel thread. However, since the
Linux kernel uses a set of kernel threads (called flusher threads) to
sync dirty pages to the disk [33], the current CPU context when an
incoming I/O command is intercepted may be a kernel task of the
flusher thread instead of the user process that initiates I/O requests.
To address this problem, RansomTag captures file-related system
calls (e.g., open, read, write, close, mmap, rename) and correspond-
ing process structure (i.e., the struct task_struct) to identify the
ransomware-like behaviors, and marks the I/O commands issued
by the detected process. The details are shown in Figure 3(b). To
capture system calls of the guest OS in the hypervisor, we need to
make those system calls trap to the hypervisor. Note that on the
x64 platform, system calls are implemented by SYSCALL/SYSRET
instructions [11]. This feature is controlled by the SCE bit of the
Extended Feature Enable Register (EFER). If we clear this bit, when
a system call is invoked, the OS will cause an Undefined Opcode Ex-
ception (#UD) and trap to the hypervisor for handling the exception.
Thus, we can capture the system call and obtain the system call num-
ber from the RAX register. If the system call is file-related, we obtain
the file operation details from the system call’s parameters stored in
RDI, RSI, RDX, R10, R8, and R9 registers [57], including file descrip-
tor, filename, read/write length, data buffer, etc. Meanwhile, the
struct task_struct pointer can be obtained from the GS register.

347

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Boyang Ma et al.

A Tagged CDB

7 6 5 4 3 2 1 0Bit
Byte

0

1

2-5

6

7-8

9

Operation Code

Command Parameters

Logical Block Address (LBA)

Reserved

 Length

Control

Recover Tag Retain Tag

2 bits 2 bits

Figure 4: The location of the tags in a CDB.

After introspection, the hypervisor emulates the SYSCALL/SYSRET
operations and returns to the OS.

4.1.2 Tagging Approach. To bridge the semantic gap between the
hypervisor and the SSD, we propose the tagging approach (see § 3.2).
Specifically, the Tagger module in the hypervisor sets the reserved
field of an incoming storage command as a meaningful tag, while
the Tag Extractor module in the SSD extracts the tag from the
received command and issues it to the corresponding module. In
the prototype, we implement two types of tags, i.e., the “retain”
tag and the “recover” tag. In particular, the write commands with
a “retain” tag indicate that the related data must be retained, and
the “recover” tag is dedicated to the read commands issued by our
recovery process for data restoration.

In RansomTag, the tags are labeled on the SCSI protocol com-
mands. In the SCSI standards, the commands are sent in a command
descriptor block (CDB) which is 10 bytes long generally. The de-
tails of the CDB structure are shown in Figure 4. The byte 0 of a
CDB contains an Operation Code identifying the operation type
(e.g., read or write) being requested by the CDB. We choose the
reserved byte 6 of CDB to store the tags. Specifically, the “retain”
tag is represented by bits 0 and 1 of byte 6, and the “recover” tag
is represented by bits 2 and 3. Note that since the tagging is per-
formed transparently in the hypervisor layer, it is difficult for the
ransomware process in the OS to tamper with the tags or bypass
this step.

4.1.3 Entropy Calculation of Data Transferred via DMA. As men-
tioned in § 3.3.2, RansomTag requires to calculate the entropy of
the written data to each file for ransomware detection. Particurlaly,
the Shannon entropy is computed as: 𝐻 =

∑
𝑖 −𝑝𝑖 log2 𝑝𝑖 , where

𝑝𝑖 is the frequency of the value of the 𝑖-th byte in the array. How-
ever, it is not easy to determine that the written data belongs to
a certain file since the data is transferred through direct memory
access (DMA), which is a mechanism to transfer the data between
the devices and the memory without processor intervention. In
other words, a process switch may occur in the CPU at the stage
of data transfer, and the ransomware process may be replaced by
another process, which means it is hard to determine which file
the data transferred via DMA came from due to the uncertainty
of context information. To address this issue, RansomTag parses
the intercepted write command, extracts the starting LBA stored in
bytes 2-5 of the CDB, and calculates the ending LBA based on the
transfer length stored in bytes 7-8 of the CDB (as shown in Figure 4).
With the exact context information obtained at the arrival time of
the write command, RansomTag records the file object and the LBA
range of the written data. At the data transfer stage, RansomTag

compares the targeting LBA of the data to be transferred. If the tar-
geting LBA is within the starting and ending range of the recorded
LBA, the frequency of the byte value in the data is accumulated. In
contrast, if the targeting LBA is out of range, RansomTag considers
the data transfer of the previous file completes, and it calculates
the final entropy value of that file.

4.1.4 File System Monitoring. As mentioned in § 3.5.1, the file’s
metadata is indispensable for rebuilding the file. Specifically, the
changes of the $MFT and $Bitmap metafiles for NTFS, as well as the
inode table and block bitmap for ext4, must be backed up. To back
up the changes of $MFT or inode table, the Tagger module directly
tags the write commands targeting the $MFT metafile or inode
table. Thus, the data of the $MFT or inode table to be overwritten
can be retained in the SSD. However, it is complex to monitor the
operations of the $Bitmap metafile of NTFS and the block bitmap
of ext4. Specifically, the File System Monitor module maintains a
bitmap to record the clusters for NTFS or the blocks for ext4 that
need to be protected. First, the initial usage status of the $Bitmap
metafile or block bitmap must be recorded when the SSD is loaded
at the boot time. To achieve it, the File System Monitor module
intercepts the OS’s read commands targeting them when the SSD is
loaded. Thus, RansomTag can obtain the initial version of the two
bitmaps. Next, the File System Monitor continuously monitors the
changes of them and records all changes in the bitmap it maintains.
Second, the File System Monitor module double-checks the write
commands identified as normal by the Detector module. If the write
commands aim at the protected clusters/blocks recorded in the
bitmap, they are also labeled with the “retain” tag by the Tagger
module.

4.2 Key Techniques in the SSD

4.2.1 Traveling Back to the Raw Pages. In RansomTag, for data
recovery, the SSD needs to map the raw pages to be overwritten by
the encrypted data and the pages storing the encrypted data. As
illustrated in § 3.4, the Data Retainer module leverages the spare
field of a page to store the physical page address (PPA), which needs
to be retained.

For instance, as shown in Figure 5, a part of the original data of
a user file is stored in the LBA 05, which has been mapped to the
PPA P0. Crypto ransomware attempts to overwrite the file with the
encrypted data. The write command, which carries the encrypted
data to LBA 05 is detected by the Detector module in the hypervisor
and is tagged with the “retain” tag by the Tagger module. In the
SSD, the FTL allocates a new physical page (P8) for the incoming
write command, and the mapping of the LBA 05 in the L2P mapping
table is set to P8. When the encrypted data is written to the data
field of P8, the address of page 0 (P0) is synchronously written to
the spare field of P8.

4.2.2 Delaying Garbage Collection. To prevent the retained pages
from being erased by GC, we modify the GC module to exclude
these pages. Specifically, in OpenNFM, the GC module maintains
two counts, i.e., the invalid page count and the valid page count, to
record the validity of pages in each block. When the GC is triggered,
it scans the counts to find all the blocks with invalid pages as the
erasing candidates. Since the unit for erasing is the block, the valid

348

A Tag-Based Approach Against Crypto Ransomware with Fine-Grained Data Recovery CCS ’23, November 26–30, 2023, Copenhagen, Denmark

L2P Mapping Table

Original Data

LBA PPA

05

00...
...

P0

P8

...
...

Current Mapping

New Mapping

Encrypted Data P0

P0

P8

Data Field Spare Field

Physical Page

Physical Page

Figure 5: Travelling back to the raw pages.

pages in the candidate blocks to be erased are copied to new blocks.
In RansomTag, the blocks which have pages to be retained by us
are excluded from GC.

5 EVALUATION

5.1 Experimental Setup

In our experiments, we run the crypto ransomware samples in 64-bit
Microsoft Windows 10 and 64-bit Ubuntu 22.04 (with Linux kernel
5.15), respectively. It is because Windows has been the most widely
used and attacked operating system in the world [18], while Linux
is becoming an increasingly popular target for ransomware authors
due to the high value of the devices it powers [36]. We utilize two
desktop personal computers (PCs) with Intel 10700k CPU running
at 4.0GHz and 32GB DRAM. One is used to run the samples, called
the experimental PC. The other is dedicated to data recovery, called
the recovery PC. The development board [46] with the modified
FTL is plugged into the experimental PC as the evaluation SSD.

Since crypto ransomware encrypts user files for extortion, we
build a user document directory consisting of various types of
files, including documents, media files, archive files, etc. It is worth
pointing out that the files in the directory are collected from real-
world users’ computers and do not contain any sensitive personal
data. Further, to run the malware samples successfully, we turn off
the anti-virus software, firewall, and any other security policies in
the OS. At the same time, the OS can access the Internet freely so
that the samples are able to communicate with their remote servers.

To evaluate that RansomTag can detect crypto ransomware
from malware samples in the real world, we collect 3, 123 recent
ransomware samples (including 3, 061 Windows samples and 62
Linux samples) from VirusTotal [59] and VirusShare [58] by using
ransomware-related search terms (e.g., ransomware, ransom, etc.)
or known variant names. For each sample, we first copy the user
directory to the experimental PC, and then we run the sample for
at least 30 minutes. After a round of the experiment, we reset the
experimental PC and the SSD. Then, we recopy the user directory
to the SSD for the next round.

To verify the effectiveness of file recovery, we perform four
types of recovery experiments (see § 5.3). In addition, we analyze
the attack surface of RansomTag and evaluate its effectiveness
of resisting potential attacks (see § 5.4). Further, to evaluate the
impact of RansomTag on I/O performance, we perform several
micro-benchmark and macro-benchmark experiments, respectively
(see § 5.5). Finally, we calculate the wear leveling inequality to
evaluate the impact of RansomTag on the SSD’s lifespan (see § 5.6).

5.2 Effectiveness of Detection

The results of the experiment in 64-bit Windows 10 show that Ran-
somTag successfully identifies 1, 332 crypto ransomware samples
from 24 families in our 3, 061 malware dataset for Windows. Mean-
while, the results of the experiment in 64-bit Ubuntu 22.04 show
that RansomTag successfully identifies 19 crypto ransomware sam-
ples from 6 families in our 62malware dataset for Linux. In addition,
in the experiments in both OSes, all the write commands initiated
by these samples for encrypted data are tagged. The detected crypto
ransomware families and the detected numbers in these families
are shown in Table 1. Note that even if a sample is labeled as ran-
somware by one or more anti-virus software, it does not mean that
the sample is active crypto ransomware and will encrypt user files.
For instance, the sample may be screen locker ransomware that
extorts the user by locking the OS, or it cannot encrypt user files
due to the failure to receive the symmetric key from the remote
server.

Table 1: The list of detected crypto ransomware families and

numbers.

Windows Samples Linux Samples

Family Number Rate Family Number Rate

REvil 478 35.89% REvil 6 31.58%
Cerber 316 23.72% AvosLocker 6 31.58%
Djvu 312 23.42% HelloKitty 4 21.06%
Conti 68 5.11% Cylance 1 5.26%
Razy 63 4.73% Buhti 1 5.26%

FileCoder 27 2.03% IceFire 1 5.26%
CryptoLocker 13 0.98%

Kryptik 10 0.75%
Mikey 9 0.68%

GenericKD 7 0.53%
Kazy 7 0.53%

AgentWDCR 3 0.23%
Ranapama 3 0.23%

Zusy 3 0.23%
WannaCryptor 3 0.23%

VirLock 2 0.15%
Others (8 families) 8 0.60%
Total (24 families) 1, 332 - Total (6 families) 19 -

False Positives. As our sample dataset is not a ground truth
set of crypto ransomware, we need to confirm whether each de-
tected sample is a true or false positive. However, re-executing each
sample is not feasible to evaluate false positives since a sample
may fail to encrypt files again because of the network or remote
server problem [27]. To address this issue, we check the user files
in the SSD after each sample runs. If the sample is detected as ran-
somware, and at least one file is encrypted, we consider the sample
to be true positive. On the contrary, if the detected sample does
not encrypt any user file, it is considered as a false positive. We
leverage a Python script to automatically check whether a user file
in the SSD is encrypted. Specifically, the script first calculates the
entropy of the file. If the entropy is high, it further distinguishes
the compressed and encrypted data by utilizing a state-of-the-art
approach [13] since the compressed data (including zip files, video
stream data, pictures, etc.) also exhibits high entropy. By doing so,
the script can find out the encrypted files in the SSD. Eventually,
we find all the detected samples encrypt at least one file. It indi-
cates that there is no false positive in our results. In addition, for
each true positive sample, which has encrypted the user files, we
perform full drive recovery to evaluate the recovery capability of
RansomTag. The results show that all the attacked files can be

349

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Boyang Ma et al.

recovered completely, which means the success rate of file recovery
is 100% (see details in § 5.3).

False Negatives. The experiment results show that the rest
1, 772 samples from our sample set are treated as non-crypto ran-
somware by RansomTag. To verify if these samples have false
negatives, we calculate the hash value of every file in the user
document directory after each sample runs, and then compare the
calculated results with the hash values of their original files. The
results show that all the files’ hash values are not changed, which
means all these files are not tampered with. Therefore, the false
negative rate is approximated to zero. Note that it is an approxi-
mation because the samples treated as non-crypto ransomware by
RansomTag may be crypto ransomware, while they do not per-
form any behaviors of crypto ransomware in our experiment. As
described early, there are many reasons for this. For example, the
sample may be screen locker ransomware, or it cannot encrypt
user files due to the failure of the network. However, as a dynamic
detecting system, RansomTag can identify attacks immediately as
long as the sample exhibits crypto ransomware behaviors.

5.3 Effectiveness of File Recovery

To evaluate the effectiveness of fine-grained file recovery, we per-
form four types of recovery experiments, i.e., files recovery of full
drive, specified files recovery, specified file versions recovery, and
file recovery under concurrent benign writes, after each detected
sample has successfully encrypted user files. After each attack, we
plug the SSD into the recovery PC and run the recovery program to
perform the experiments. To confirm the integrity of the recovered
files, we use a python script to calculate the hash values for each
recovered file and its original one, and compare the two calculated
hash values. If the two values are equal, then we think that the
recovered file is the same as the original one.

Files Recovery of Full Drive. This experiment is designed to
evaluate whether RansomTag can fully recover all the attacked
files on the drive. For each true positive ransomware sample, we
perform a full drive recovery after it successfully encrypts the files.
The recovery program reads and parses all the retained metadata
entries (i.e., MFT records for NTFS or inodes for ext4) of the files
in the list from the SSD. For small files (< 1KiB in NTFS or < 60
bytes in ext4), as mentioned in § 3.5.2, their data is directly stored
in their metadata entries. Hence, these files are rebuilt as long as
the retained metadata entries are read out. While for large files
whose data is stored in the data area (the clusters for NTFS or the
blocks for ext4), their data is read out after the data addresses are
parsed. Finally, the recovery program calculates the hash value of
each recovered file and compares the result with its original one.
The results show that the hash values of all recovered files are
the same as their original ones. Thus, it indicates that RansomTag
successfully recovers all attacked files in the SSD.

Specified Files Recovery. In this experiment, we run the recov-
ery program after the attacks, and randomly specify 100 files among
all the files in the SSD to be recovered. As a result, the 100 files we
specified can be integrally recovered. It indicates that RansomTag
can recover specified files instead of the entire drive.

Specified File Versions Recovery. In this experiment, we
choose 100 detected crypto ransomware samples that repeatedly

overwrite the original file multiple times, and run the samples again
in turn. After each sample attack, we run the recovery program and
rebuild each tampered version of a file. By confirming manually,
the part that has not yet been encrypted in each file version is
completely recovered. It indicates that RansomTag can recover not
only the entire file, but also a portion of the file. This feature allows
RansomTag to cope with more complex scenarios.

File Recovery under Concurrent Benign Writes. As men-
tioned in § 3.4, RansomTag achieves fine-grained data backup, and
it can restore the user files even when malicious and benign data
writes intersect. To evaluate it, we leverage a Python script to in-
voke three benign applications (i.e., 7zip, Notepad, MySQL) and
let them issue concurrent write operations during the ransomware
sample attack. After the attack, we recover the attacked files on
the drive. The experiment results show that all the attacked files
are completely restored, including the original data and the new
written data by the benign applications. It indicates that our system
is able to recover user files in fine-grained, even under concurrent
benign write circumstances.

Regarding the recovery time, as our recovery program can re-
cover one or more single files, compared to those SSD-based ap-
proaches that need to scan all the retained data pages, the recovery
time of RansomTag is flexible. In other words, it depends on the
number of files the user wants to recover and the read performance
of the storage device.

5.4 Security Analysis and Evaluation

In this subsection, we analyze the attack surface of RansomTag
and evaluate its effectiveness of resisting potential attacks.

5.4.1 Attack Surface. First, it is worth pointing out that since Ran-
somTag resides in the hypervisor and the firmware of the SSD, our
system is naturally immune to the widely spread privilege escala-
tion attacks inside the OS, which attempt to bypass the defense by
obtaining administrator privileges of the OS [21, 54]. Second, for the
existing SSD-based solutions, an attacker may evade their detection
algorithms which only monitor the I/O stream patterns [4, 5, 60]
or compute the entropy of data content [43, 47]. For example, a
ransomware variant may intentionally issue modified I/O patterns
to evade the I/O pattern-based detection algorithm [47]. Similarly,
an advanced attacker could also designedly diminish the entropy
value of the data by encrypting only a part of the file or inserting
low-entropy data at regular intervals. However, RansomTag can
defeat these evading attacks since it adopts a comprehensive detec-
tion algorithm that monitors multiple indicators simultaneously,
including file-related operations, data entropy, etc. In addition, rely-
ing on the powerful computing capability of the host, RansomTag
can introduce new advanced detection algorithms if needed.

Theoretically, based on the functionality and components of our
system, RansomTag faces three potential attack vectors, i.e., tar-
geted attacks on the detection functionality, targeted attacks on the
tagging mechanism, and target attacks on the backup and recovery
module. Next, we analyze these potential attacks respectively.

Targeted Attacks on the Detection Functionality. The first
type of potential attack on the detection functionality is that privi-
leged ransomware may compromise the OS by targeted attacks on

350

A Tag-Based Approach Against Crypto Ransomware with Fine-Grained Data Recovery CCS ’23, November 26–30, 2023, Copenhagen, Denmark

VMI to prevent the Introspector module of RansomTag from get-
ting the correct context information of the OS. Such attacks include
kernel object hooking attacks, dynamic kernel object manipulation
attacks, and direct kernel structure manipulation attacks [23]. Since
bridging the semantic gap between the hypervisor and an adver-
sarial, untrusted OS is still an open security problem, the Detector
module of RansomTag may produce false detection results under
such attacks. To address this problem, we need to integrate one
mitigation approach into our system. We will detailly explore the
promising mitigations for this issue in § 6.

The second type of potential attack on the detection functionality
is the time-of-check-to-time-of-use (TOCTOU) attack. However,
our system is immune to such an attack. This is because the data
flow is constrained in the trusted hypervisor from the data being
introspected to being used by the Detector module.

Targeted Attacks on the Tagging Mechanism. Since Ran-
somTag marks the I/O commands in the hypervisor to send the
retaining or restoring operation instructions to the SSD, an adaptive
attacker may attempt to bypass or distort our system by attacking
the tagging mechanism. For example, they may tamper with the
tagged commands before the SSD extracts the tags from the incom-
ing commands. However, such attacks are virtually impossible to
implement in our system. The reason is that RansomTag marks
the I/O commands within the trusted hypervisor and extracts the
tags in the trusted SSD.

Targeted Attacks on the Backup/Recovery Module. Since
RansomTag retains and recovers the attacked data by leveraging the
SSD intrinsic characteristic (i.e., out-of-place update), this intrinsic
characteristic is also a point that can be used by ransomware to
perform targeted attacks. There are three potential attacks, namely
the GC attack, the timing attack, and the TRIM attack [50].

For the GC attack, an attacker can exhaust the SDD’s free space
and force it to wipe the retained data by GC. However, such an
attack will not succeed in our system since RansomTag blocks the
I/O requests from the detected ransomware process if the SSD’s
available space is insufficient. Thus, the ransomware has no chance
of triggering GC, and the retained data will not be released.

For the timing attack, certain advanced ransomware can deliber-
ately slow down encryption in order to hide its I/O patterns to evade
detection. Such an attack will bypass the SSD-based defenses that
detect ransomware by only monitoring the I/O patterns. However,
RansomTag makes this evading strategy in vain because it imple-
ments a comprehensive detection algorithm based on high-level
context information (e.g., process, file activities, and file data). Previ-
ous studies [27, 54] have demonstrated that this dynamic behavior-
based detection algorithm is able to identify ransomware as long
as it performs crypto ransomware behaviors. In addition, with the
powerful computing capability of the host system, RansomTag is
able to integrate advanced algorithms to improve detection effi-
ciency.

For the TRIM attack, ransomware attackers can utilize the SSD
TRIM command to destroy the retained data. Specifically, a TRIM
command, which is known as TRIM in the ATA command set and
UNMAP in the SCSI command set, allows an operating system
to inform an SSD that blocks of data are no longer considered to
be in use and can be erased internally. Unlike HDDs (Hard Disk
Drives), an SSD cannot overwrite a page of flash storage before

erasing the entire block of storage in which the page is located. This
behavior introduces a performance issue for I/Owrites to previously
used blocks of data when compared with I/O writes to unused or
erased blocks [22]. To improve the performance, the file system
can issue a TRIM command to the SSD to notify which blocks of
data are no longer in use and can therefore be erased. By issuing
the TRIM command after encryption, ransomware can speed up
the reclamation of the original data blocks to prevent the original
data from being retained. However, RansomTag can defend against
this attack. It is because, in RansomTag, a ransomware process
will be quickly detected as long as it encrypts user files. Thus, if
the ransomware process issues a TRIM command, RansomTag will
block it.
5.4.2 Effectiveness of Resisting Targeted Attacks on SSD Character-
istics. To evaluate the effectiveness of resisting targeted attacks on
SSD intrinsic characteristics, we develop three ransomware pro-
totypes for each attack by modifying an open-source project [62].
Specifically, these prototypes not only encrypt the user files like
other crypto ransomware, and each of them performs one of the
three attacks.

In the first experiment, we leverage the ransomware prototype
to launch a GC attack by writing amounts of non-encrypted data
after encryption. Nevertheless, when the storage space is running
out, all of the write commands issued by the ransomware prototype
process are blocked by RansomTag, since the process has already
been detected as ransomware. Therefore, the retained data is intact
under the GC attack.

To evaluate the effectiveness of resisting timing attack by Ran-
somTag, we utilize the second prototype to deliberately slow down
encryption. Specifically, it encrypts one file every five minutes to
avoid I/O pattern matching. However, the experiment result shows
that the prototype process has been identified as crypto ransomware
by RansomTag as long as it encrypts the first few files. Therefore,
no matter how it subsequently adjusts the encryption speed, the
original data it intends to overwrite is retained.

In the third experiment, the last ransomware prototype performs
a TRIM attack by calling the related API after file encryption. It
sends the TRIM command directly to the SSD drive to speed up
the reclamation of the original data blocks. However, the TRIM
command issued by the prototype process is blocked as the process
has already been detected by RansomTag when it encrypts files.
Thus, it indicates that our system is able to defend against the TRIM
attack.

5.5 Impact on I/O Performance

To evaluate the impact of RansomTag on I/O performance, we
perform micro-benchmark and macro-benchmark in three environ-
ments: (1) in a bare OS environment (Windows or Ubuntu) (E1); (2)
in an OS running on the hypervisor with RansomTag disabled (E2);
(3) in an OS running on the hypervisor with RansomTag enabled
(E3).

Micro-Benchmark.We utilize DISKSPD, a storage performance
tool from Microsoft [38], to test the I/O throughput (i.e., micro-
benchmark) in Windows. Similarly, we leverage FIO [3], a pop-
ular tool to benchmark storage in Linux, to perform the micro-
benchmark in Ubuntu. By setting the different parameters of FIO or
DISKSPD, we test four categories of I/O throughput (i.e., sequential

351

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Boyang Ma et al.

S e q u e n t i a l W r i t e S e q u e n t i a l R e a d R a n d o m W r i t e R a n d o m R e a d
0
1
2
3
4
5

I/O
 Th

rou
ghp

ut
(M

B/s
) E 1 : O S E 2 : O S + H y p e r v i s o r E 3 : O S + H y p e r v i s o r + R A N S O M T A G

(a) 64-bit Windows 10

S e q u e n t i a l W r i t e S e q u e n t i a l R e a d R a n d o m W r i t e R a n d o m R e a d
0
1
2
3
4
5

I/O
 Th

rou
ghp

ut
(M

B/s
)

(b) 64-bit Ubuntu 22.04

Figure 6: The I/O performance of Micro-benchmark.

write, sequential read, randomwrite, and random read) in the above
three environments. The results inWindows and Ubuntu are shown
in Figure 6(a) and Figure 6(b), respectively. The three bars from left
to right represent E1, E2, and E3, respectively. For random write
and read in Windows and Ubuntu, the I/O throughput is not much
different in E1, E2, and E3. It indicates that the I/O performance
overhead on random write and read introduced by RansomTag is
acceptable. However, the I/O throughput of sequential write and
read in E2 and E3 is slightly lower than that in E1, but there is almost
no difference between the throughput in E2 and E3. It indicates
that the overheads on sequential write and read are mainly intro-
duced by the hypervisor instead of RansomTag. The main reason
is that the hypervisor intercepts Memory-Mapped I/Os (MMIOs)
using shadow paging, which may cause performance degradation
by intercepting numerous I/Os.

Macro-Benchmark.We further perform a macro-benchmark
experiment to evaluate the impact of RansomTag on common real-
world Windows and Linux applications, respectively. We choose a
number of widely used Windows applications (including Notepad,
Microsoft Word, 7zip, AES, MySQL, Google Chrome, and Microsoft
Edge) and Linux applications (including Gedit, LibreOffice Writer,
7zip, OpenSSL, MySQL, Google Chrome, and Firefox), and execute
the same workflows in the above three environments by using
the AutoIt [55] tool in Windows and a bash script in Ubuntu, re-
spectively. By recording the running time and CPU utilization of
each application in every environment, we get the impact of Ran-
somTag on these applications. The results are shown in Figure 7
and Figure 8. In the figures, the running time and CPU utilization
of Windows and Ubuntu applications’ workflows are almost flat in
the three environments. It indicates that the impact of RansomTag
on real-world applications is acceptable. Particularly, to precisely
evaluate the time consumption of OS introspection, we add several
lines of code into RansomTag to get high-resolution time before
and after the introspection by reading the current value of the pro-
cessor’s time-stamp counter (TSC) [11]. Thus, we can get the time
overhead of the introspection. The results show that the average
time consumption of the introspection is 78 nanoseconds (about 4%
of the overall overhead) in Windows and 57 nanoseconds (about
6% of the overall overhead) in Ubuntu, respectively.

N o t e p a d M i c r o s o f t
W o r d

7 z i p A E S M y S Q L G o o g l e
C h r o m e

M i c r o s o f t
E d g e

0
4 0
8 0

1 2 0

Ru
nni

ng
Tim

e (s
eco

nds
) E 1 : O S E 2 : O S + H y p e r v i s o r E 3 : O S + H y p e r v i s o r + R A N S O M T A G

(a) 64-bit Windows 10

G e d i t L i b r e O f f i c e
W r i t e r

7 z i p O p e n S S L M y S Q L G o o g l e
C h r o m e

F i r e f o x
0

4 0
8 0

1 2 0

Ru
nni

ng
Tim

e (
sec

ond
s)

(b) 64-bit Ubuntu 22.04

Figure 7: The running time of real-world applications.

N o t e p a d M i c r o s o f t
W o r d

7 z i p A E S M y S Q L G o o g l e
C h r o m e

M i c r o s o f t
E d g e

0
2 5
5 0
7 5

1 0 0

CP
U U

tili
zat

ion
 (%

) E 1 : O S E 2 : O S + H y p e r v i s o r E 3 : O S + H y p e r v i s o r + R A N S O M T A G

(a) 64-bit Windows 10

G e d i t L i b r e O f f i c e
W r i t e r

7 z i p O p e n S S L M y S Q L G o o g l e
C h r o m e

F i r e f o x
0

2 5
5 0
7 5

1 0 0

CP
U U

tili
zat

ion
 (%

)

(b) 64-bit Ubuntu 22.04

Figure 8: The CPU utilization of real-world applications.

5.6 Impact on SSD’s Lifespan

We utilize wear leveling effectiveness to evaluate the impact of
RansomTag on the SSD’s lifespan. The wear leveling effectiveness
can be measured by Hoover economic wealth inequality indica-
tor [7, 24, 49]. It calculates an appropriately normalized sum of the
difference of each measurement to the mean [60]. The wear leveling
inequality (WLI) is computed as:𝑊𝐿𝐼 = 1

2
∑𝑛
𝑖=1

𝑒𝑖
𝐸
− 1

𝑛

. In the
equation, 𝑒1, 𝑒2, ..., 𝑒𝑛 are erasure counts of all the 𝑛 erase blocks,
and 𝐸 =

∑𝑛
𝑖=1𝑒𝑖 .

We erase and write the blocks of the SSD 500, 000 times with
RansomTag disabled and enabled, respectively. The values of WLI
are respectively 3.088% and 3.104%. In other words, the value of
WLI only increased by 0.016% with RansomTag enabled, which
means the impact of RansomTag on SSD’s lifespan is negligible.

6 DISCUSSION

First, RansomTag detects ransomware in the hypervisor and pro-
vides hardware-level protection for user data in the SSD. Thus,
with SSDs widely used in cloud computing platforms, it is natu-
rally suitable for cloud environments. In addition, it is also read-
ily deployed on desktop PCs. Recently, the virtualization-assisted

352

A Tag-Based Approach Against Crypto Ransomware with Fine-Grained Data Recovery CCS ’23, November 26–30, 2023, Copenhagen, Denmark

technique has been widely used in system security. For example,
virtualization-based security (VBS) [42] is a security feature starting
with Windows 10 and Windows Server 2016. It uses the Windows
hypervisor to create a virtual secure mode. Hypervisor-Enforced
Code Integrity (HVCI), which is commonly referred to as memory
integrity, is an application example of using VBS to significantly
strengthen code integrity policy enforcement [40]. Therefore, we
believe a virtualization-based ransomware defense solution is prac-
tical and feasible on desktop PCs.

Second, we are not committed to developing a new ransomware-
detecting algorithm in this paper. Instead, we leverage the state-
of-the-art approaches that have proven effective to achieve a high-
precision detection rate. As mentioned in § 3.3.2, the ransomware
detection algorithms and the framework of our system are orthog-
onal. Moreover, compared to the existing SSD-based approaches,
RansomTag has a more powerful computing capability. Therefore,
through several APIs designed by us, all the existing and further
advanced detection algorithms (e.g., machine learning [47], decoy
technology [35], and others [28, 52]) can be readily deployed in our
system for continually improving the detection accuracy.

Third, RansomTag is an architecture-free system since it nei-
ther depends on any SSD vendor-specific technology nor needs to
modify the OS or add any modules to the OS. Instead, RansomTag
leverages tagging on the standard storage protocol to solve the
issue of limited semantic information in the SSD. Besides the Win-
dows/NTFS and Linux/ext4 implementation in our prototype, we
believe it is not difficult to migrate the approach to other OSes and
file systems. To achieve the migration, it requires two aspects of
information, i.e., the OS abstractions for precise detection and the
knowledge of the target file system for fine-grained data backup
and recovery.

Fourth, our current prototype leverages the OS context informa-
tion obtained by the VMI technique to precisely detect ransomware.
As analyzed in § 5.4.1, it is possible to get incorrect data when
introspecting from a compromised OS. Fortunately, this limitation
can be mitigated in two ways. On the one hand, several promising
approaches have been proposed to address the limitation of the
semantic gap for VMI [23], e.g., (1) paraverification, (2) building
trust area by fine-grained memory protection and monitoring hard-
ware, or (3) detecting OS inconsistencies over the lifetime. Thus, we
can integrate such an approach into our system. We leave it as one
future work. On the other hand, besides the context-based detection
algorithms, RansomTag supports to introduce various detection
algorithms due to the powerful computing capability of the host
system. Therefore, we can adopt VMI-independent approaches (e.g.,
AI-based algorithms) for attack detection outside of the OS when
they are mature.

Fifth, as for the period of data retaining, we set the period as long
as possible in our current prototype depending on the storage space
of the SSD. Since our ultimate goal is to completely protect user
data against crypto ransomware, even if the SSD is fully occupied,
RansomTag refuses to purge any retained data. Considering that
the capacity of modern SSDs is several terabytes, we think it is
worthwhile to trade a small portion of storage capacity for data
security. In addition, we can add security level settings to Ran-
somTag, and users are responsible for setting the period of data
retaining by themselves.

Sixth, users might leverages hardware-based or software-based
encryption techniques to secure important data in the storage drives.
For example, self-encrypting drives (SEDs) [30] use an onboard
AES encryption chip that encrypts data before it is written and de-
crypts data before it is read directly from the NAND media. In such
hardware-based encryption drives, the encryption and decryption
are transparent to the upper layers, e.g., the OS or hypervisor, and
it does not interfere with the RansomTag’s attack detection. There-
fore, our system will not introduce extra storage overhead. As for
software-based encryption programs, their encryption behaviors
are generally different from crypto ransomware. For example, they
do not overwrite, delete, or rename the original files by default.
Thus, RansomTag is able to easily identify them as benign pro-
cesses. However, if users choose the option to delete the original
files after encryption, the behaviors of the encryption programs
would match one pattern of crypto ransomware. In this case, the
detection may cause a false positive, which introduces an extra
storage overhead. To mitigate this issue, one potential solution is to
improve the detection algorithm by monitoring extortion messages.
If any message about ransom extorting is found after encryption,
RansomTag considers it as a crypto ransomware attack.

7 RELATEDWORK

With the increasingly severe impact, a number of approaches of
ransomware detection and data recovery have been proposed in
recent years.

To avoid user data being encrypted, some solutions try to iden-
tify attacks as early as possible by monitoring the file (and network)
I/O activities in the host [27, 29, 52] or hypervisor layer [54]. Un-
fortunately, some user files have already been encrypted when
ransomware is detected by these defense systems. Due to the lack
of data backup and recovery functionalities on these systems, the
victim still has to pay a ransom to access those files. To address this
problem, PayBreak [31] and RWGuard [35] strive to decrypt the
attacked files with captured symmetric keys by hooking specific
cryptographic APIs, e.g., Microsoft’s CryptoAPI library, when en-
cryption operations are performed by ransomware. However, they
cannot recover encrypted files using ransomware’s custom-written
cryptographic library. Other solutions (such as ShieldFS [10], Re-
demption [28]) protect the original file from being encrypted by
file-shadowing or redirecting access requests when a process ac-
cesses it. Such solutions avoid the original files being attacked.
However, in addition to the introduction of large performance over-
head, they are easily disabled or bypassed by kernel-level attacks
launched by ransomware with administrator privileges [21, 54].

To tackle the aforementioned limitations, a number of SSD-
based approaches against crypto ransomware have been pro-
posed [4, 5, 21, 43, 47, 50, 60]. These approaches leverage the intrin-
sic characteristic of SSD, i.e., out-of-place update, to back up user
data efficiently. However, due to the lack of high-level context infor-
mation, these SSD-based approaches can only detect ransomware
by identifying encrypted data [43, 47], modeling the I/O stream pat-
terns of ransomware [4, 5, 60], or examining the validity of SSD’s
physical pages [21, 50], thus they cannot achieve accurate attack
detection. For example, FlashGuard [21] adopts a conservative pol-
icy that identifies attacks if a physical page is marked invalid after

353

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Boyang Ma et al.

Table 2: Comparison results of RansomTag with representative related approaches.

Name Location Self-security

Computing

Power

Detection

Indicators

Data

Loss

Recovery

Capability

File-level

Recovery

Backup

Security

UNVEIL [27] OS Weak Strong File Activity + Data Entropy Yes No N/A N/A
CryptoDrop [52] OS Weak Strong File Activity + Data Entropy Yes No N/A N/A
PayBreak [31] OS Weak Strong Encryption Key Yes Partial Yes N/A
RWGuard [35] OS Weak Strong Decoy Files + Encryption Key Yes Partial Yes N/A
ShieldFS [10] OS Weak Strong File Activity + Data Entropy No Yes Yes Weak

Redemption [28] OS Weak Strong File Activity + Data Entropy No Yes Yes Weak
RansomSpector [54] Hypervisor Strong Strong File/Network Activity + Data Entropy Yes No N/A N/A
FlashGuard [21] SSD Strong Weak SSD Pages’ Validity Yes Yes No Weak
SSD-Insider [4] SSD Strong Weak I/O Pattern Yes Yes No Strong

SSD-Insider++ [5] SSD Strong Weak I/O Pattern Yes Yes No Strong
RansomBlocker [47] SSD Strong Weak Data Entropy No Yes No Strong
MimosaFTL [60] SSD Strong Weak I/O Pattern No Yes No Strong
AMOEBA [43] SSD Strong Weak Data Entropy Yes Yes No Strong
RSSD [50] SSD Strong Weak SSD Pages’ Validity No Yes No Strong

RansomTag Hypervisor + SSD Strong Strong File Activity + Data Entropy No Yes Yes Strong

being read by the host. It keeps all such data until no ransomware
attack is guaranteed. On the contrary, SSD-Insider [4] leverages a
jacobinical strategy that only monitors the I/O request headers to
detect whether a host is under attack or not within a small fixed
time window, i.e., the first 10 seconds. Moreover, according to the
experiments by AMOEBA [43], these systems [4, 21, 43] fail to fully
recover all infected pages due to a certain ratio of false negatives.
Even worse, some of them might break data integrity during the
restoring process [4, 5], or disturb the system’s regular deployment
by setting up the SSD to read-only immediately after the attack is
detected [60].

To better understand our system, we compare RansomTag with
14 representative related approaches, and the results are shown
in Table 2. Particularly, we make the comparison from eight aspects,
i.e., the location where the system works (Location), the security of
the system itself (Self-security), the computing power for detection
algorithms (Computing Power), the indicators to detect attacks
(Detection Indicators), the possibility of data loss (Data Loss), the
data recovery capability (Recovery Capability), the file-level fine-
grained recovery capability (File-level Recovery), and the security
of backup data (Backup Security). Overall, compared to OS-based
solutions, RansomTag has higher self-security and backup security,
as it locates in the hypervisor and backs up data in the SSD instead
of the OS. Compared to the hypervisor-based solution, RansomTag
has no data loss and achieves file-level fine-grained data recovery.
While compared to SSD-based solutions, RansomTag is able to
obtainmuchmore context information (i.e., detection indicators) for
precise detection with powerful computing power, and it provides
file-level fine-grained data recovery.

In addition, a number of studies on ransomware from other
perspectives have been proposed. Huang et al. [20] develop a set
of methodologies that enable an end-to-end analysis of the ran-
somware ecosystem and perform a large-scale, two-year measure-
ment study of ransomware payments, victims, and operators. Ci-
cala et al. [8] analyze the encryption model and the encryption
key generation process of ransomware samples from different fam-
ilies, and discuss algorithms and functions used in modern crypto
ransomware. Moussaileb et al. [44] provide a systematic review
of ransomware countermeasures starting from its deployment on
the victim machine until the ransom payment via cryptocurrency.
McIntosh et al. [34] propose a set of unified metrics to evaluate

published studies on ransomware mitigation and forecast future
trends of ransomware evolution and future research directions.
Alqahtani et al. [1] conduct a survey devoted to exploring and an-
alyzing the state-of-the-art in ransomware attack detection, and
critically and comprehensively analyze these solutions with the
focus on the methods, means, and techniques used at every phase
of the detection model. Compared to these studies, RansomTag has
a different goal, which aims to achieve accurate crypto ransomware
detection and fine-grained data backup and recovery.

8 CONCLUSION

In this paper, we propose RansomTag, a tag-based approach against
crypto ransomware with fine-grained data recovery. In particu-
lar, it decouples the ransomware detection functionality from the
firmware of the SSD and integrates it into a lightweight hypervisor
of Type I, which is readily deployed onto desktop personal comput-
ers. Thus, it can leverage the powerful computing capability of the
host system and the rich context information, which is introspected
from the OS, to achieve accurate detection of ransomware attacks
and defense against potential targeted attacks on SSD character-
istics. In addition, we propose a tag-based approach to bridge the
semantic gap between the hypervisor and the SSD. Thus, Ransom-
Tag can precisely back up user data without additional overhead
by leveraging the intrinsic characteristic of SSD, i.e., out-of-place
update. Further, RansomTag can provide complete protection and
fine-grained recovery of user data, which can restore any single or
multiple user files to any versions based on timestamps. The exper-
imental results show that RansomTag can effectively detect crypto
ransomware and recover all the attacked files with an acceptable
performance overhead.

ACKNOWLEDGMENTS

The authors would like to thank all reviewers for the insightful com-
ments. Those comments helped to re-shape this paper. This work
is partially supported by the National Natural Science Foundation
of China (Key Program Grant No. 62232013, Grant No. 62002151,
U21A20464, and 62372218), by the Foundation for Innovative Re-
search Groups of the National Natural Science Foundation of China
(Grant No. 62121001), by the Key R&D Program of Shaanxi Province
of China (Grant No. 2019ZDLGY12-06), by the Shenzhen Science
and Technology Program (Grant No. SGDX20201103095408029).

354

A Tag-Based Approach Against Crypto Ransomware with Fine-Grained Data Recovery CCS ’23, November 26–30, 2023, Copenhagen, Denmark

REFERENCES

[1] Abdullah Alqahtani and Frederick T Sheldon. 2022. A Survey of Crypto Ran-
somware Attack Detection Methodologies: An Evolving Outlook. Sensors 22, 5
(2022), 1837.

[2] Kurniadi Asrigo, Lionel Litty, and David Lie. 2006. Using VMM-based sensors to
monitor honeypots. In Proceedings of the 2nd international conference on Virtual
execution environments. 13–23.

[3] Jens Axboe. 2023. FIO. https://github.com/axboe/fio.
[4] SungHa Baek, Youngdon Jung, Aziz Mohaisen, Sungjin Lee, and DaeHun Nyang.

2018. SSD-insider: Internal defense of solid-state drive against ransomware with
perfect data recovery. In 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS). 875–884.

[5] SungHa Baek, Youngdon Jung, David Mohaisen, Sungjin Lee, and DaeHun Nyang.
2021. SSD-Assisted Ransomware Detection and Data Recovery Techniques. IEEE
Trans. Computers 70, 10 (2021), 1762–1776.

[6] Daniel P Bovet and Marco Cesati. 2005. Understanding the Linux Kernel: from I/O
ports to process management. “ O’Reilly Media, Inc.”.

[7] Bo Chen, Shijie Jia, Luning Xia, and Peng Liu. 2016. Sanitizing data is not enough!
Towards sanitizing structural artifacts in flash media. In Proceedings of the 32nd
Annual Conference on Computer Security Applications. 496–507.

[8] Fabrizio Cicala and Elisa Bertino. 2022. Analysis of Encryption Key Generation
in Modern Crypto Ransomware. IEEE Trans. Dependable Secur. Comput. 19, 2
(2022), 1239–1253.

[9] CNN. 2021. Ransomware is a national security risk. https://tinyurl.com/4he7utk9.
[10] Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro, Giulio De Pasquale,

Alessandro Barenghi, Stefano Zanero, and Federico Maggi. 2016. ShieldFS: A
Self-Healing, Ransomware-Aware Filesystem. In Proceedings of the 32nd Annual
Conference on Computer Security Applications. 336–347.

[11] Intel Corporation. 2022. Intel® 64 and IA-32 Architectures Software Developer’s
Manual (2022). https://tinyurl.com/mt58w3a9.

[12] The MITRE Corporation. 2022. Access Token Manipulation. https://attack.mitre.
org/techniques/T1134/.

[13] Fabio De Gaspari, Dorjan Hitaj, Giulio Pagnotta, Lorenzo De Carli, and Luigi V
Mancini. 2020. Encod: Distinguishing compressed and encrypted file fragments.
In Network and System Security: 14th International Conference, NSS 2020. 42–62.

[14] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke
Lee. 2011. Virtuoso: Narrowing the semantic gap in virtual machine introspection.
In 2011 IEEE symposium on security and privacy. IEEE, 297–312.

[15] FBI. 2022. Ransomware. https://tinyurl.com/2rnmxrzn.
[16] Yangchun Fu and Zhiqiang Lin. 2013. Space Traveling across VM: Automatically

Bridging the semantic gap in virtual machine introspection via online kernel data
redirection. ACM Transactions on Information and System Security 16, 2 (2013),
586–600.

[17] Tal Garfinkel, Mendel Rosenblum, et al. 2003. A virtual machine introspection
based architecture for intrusion detection. In NDSS, Vol. 3. 191–206.

[18] GlobalStats. 2021. Desktop Windows Version Market Share Worldwide - June
2021. https://tinyurl.com/4zrfxp9j.

[19] GoogleCode. 2011. OpenNFM. https://code.google.com/p/opennfm/.
[20] Danny Yuxing Huang, Maxwell Matthaios Aliapoulios, Vector Guo Li, Luca

Invernizzi, Elie Bursztein, Kylie McRoberts, Jonathan Levin, Kirill Levchenko,
Alex C Snoeren, and Damon McCoy. 2018. Tracking ransomware end-to-end. In
2018 IEEE Symposium on Security and Privacy (SP). 618–631.

[21] Jian Huang, Jun Xu, Xinyu Xing, Peng Liu, and Moinuddin K Qureshi. 2017.
FlashGuard: Leveraging intrinsic flash properties to defend against encryption
ransomware. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. 2231–2244.

[22] IBM. 2022. IBM Spectrum Scale with TRIM-supporting NVMe SSDs. https:
//shorturl.at/hzCHS.

[23] Bhushan Jain, Mirza Basim Baig, Dongli Zhang, Donald E Porter, and Radu Sion.
2014. Sok: Introspections on trust and the semantic gap. In 2014 IEEE symposium
on security and privacy. IEEE, 605–620.

[24] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. 2017. Deftl: Implementing plausibly
deniable encryption in flash translation layer. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. 2217–2229.

[25] The kernel development community. 2021. Processes and threads. https://linux-
kernel-labs.github.io/refs/heads/master/lectures/processes.html.

[26] kernel.org. 2022. Inline Data. https://tinyurl.com/ynrd68ju.
[27] Amin Kharaz, Sajjad Arshad, CollinMulliner,William Robertson, and Engin Kirda.

2016. UNVEIL: A Large-Scale, Automated Approach to Detecting Ransomware.
In 25th USENIX Security Symposium (USENIX Security 16). 757–772.

[28] Amin Kharraz and Engin Kirda. 2017. Redemption: Real-time protection against
ransomware at end-hosts. In Research in Attacks, Intrusions, and Defenses: 20th
International Symposium, RAID 2017. 98–119.

[29] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and Engin
Kirda. 2015. Cutting the gordian knot: A look under the hood of ransomware
attacks. In Detection of Intrusions and Malware, and Vulnerability Assessment: 12th
International Conference, DIMVA 2015. 3–24.

[30] Kingston. 2021. What is SSD encryption and how does it work? https://www.
kingston.com/en/blog/data-security/how-ssd-encryption-works.

[31] Eugene Kolodenker, William Koch, Gianluca Stringhini, and Manuel Egele. 2017.
Paybreak: Defense against cryptographic ransomware. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security. 599–611.

[32] Kenichi Kourai and Shigeru Chiba. 2005. Hyperspector: Virtual distributed
monitoring environments for secure intrusion detection. In Proceedings of the 1st
ACM/USENIX international conference on Virtual execution environments. 197–207.

[33] Robert Love. 2013. Linux system programming: talking directly to the kernel and
C library. “ O’Reilly Media, Inc.”.

[34] Timothy McIntosh, ASM Kayes, Yi-Ping Phoebe Chen, Alex Ng, and Paul Watters.
2021. Ransomware mitigation in the modern era: A comprehensive review,
research challenges, and future directions. ACM Computing Surveys (CSUR) 54, 9
(2021), 1–36.

[35] Shagufta Mehnaz, Anand Mudgerikar, and Elisa Bertino. 2018. Rwguard: A real-
time detection system against cryptographic ransomware. In Research in Attacks,
Intrusions, and Defenses: 21st International Symposium, RAID 2018. 114–136.

[36] Trend Micro. 2017. Erebus Linux Ransomware: Impact to Servers and Counter-
measures. https://tinyurl.com/3tjtcjw6.

[37] Microsoft. 2021. Access Tokens. https://tinyurl.com/5vnyhhh7.
[38] Microsoft. 2021. DISKSPD. https://github.com/microsoft/diskspd.
[39] Microsoft. 2021. Processes and Threads. https://tinyurl.com/3sa395yy.
[40] Microsoft. 2022. Enable virtualization-based protection of code integrity. https:

//tinyurl.com/3dx9u2r4.
[41] Microsoft. 2022. FILE_OBJECT structure. https://tinyurl.com/5356jbuy.
[42] Microsoft. 2022. Virtualization-based Security. https://tinyurl.com/4eeh6fhd.
[43] Donghyun Min, Yungwoo Ko, Ryan Walker, Junghee Lee, and Youngjae Kim.

2022. A Content-Based Ransomware Detection and Backup Solid-State Drive for
Ransomware Defense. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41, 7
(2022), 2038–2051.

[44] Routa Moussaileb, Nora Cuppens, Jean-Louis Lanet, and Hélène Le Bouder. 2021.
A survey on windows-based ransomware taxonomy and detection mechanisms.
ACM Computing Surveys (CSUR) 54, 6 (2021), 1–36.

[45] NBC News. 2022. Costa Rica, ’under assault’ is a troubling test case on ran-
somware attacks. https://tinyurl.com/5n9338ye.

[46] Olimex. 2019. LPC-H3131. https://tinyurl.com/38fwkekd.
[47] Jisung Park, Youngdon Jung, Jonghoon Won, Minji Kang, Sungjin Lee, and Ji-

hong Kim. 2019. RansomBlocker: A low-overhead ransomware-proof SSD. In
Proceedings of the 56th Annual Design Automation Conference 2019. 1–6.

[48] Jonas Pfoh, Christian Schneider, and Claudia Eckert. 2011. Nitro: Hardware-based
system call tracing for virtual machines. In Proceedings of the 2011 International
Conference on Advances in Information and Computer Security. 96–112.

[49] Joel Reardon, Srdjan Capkun, and David A Basin. 2012. Data node encrypted file
system: Efficient secure deletion for flashmemory. InUSENIX Security Symposium.
333–348.

[50] Benjamin Reidys, Peng Liu, and Jian Huang. 2022. RSSD: defend against ran-
somware with hardware-isolated network-storage codesign and post-attack anal-
ysis. In Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. 726–739.

[51] SAMSUNG. 2019. K9K8G08U1M datasheet. https://tinyurl.com/jcm3uswa.
[52] Nolen Scaife, Henry Carter, Patrick Traynor, and Kevin R. B. Butler. 2016. Cryp-

toLock (and Drop It): Stopping Ransomware Attacks on User Data. In 2016 IEEE
36th International Conference on Distributed Computing Systems (ICDCS). 303–312.

[53] Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazumasa Omote, Shoichi
Hasegawa, Takashi Horie, Manabu Hirano, Kenichi Kourai, Yoshihiro Oyama, Eiji
Kawai, et al. 2009. Bitvisor: a thin hypervisor for enforcing i/o device security. In
Proceedings of the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments. 121–130.

[54] Fei Tang, Boyang Ma, Jinku Li, Fengwei Zhang, Jipeng Su, and Jianfeng Ma. 2020.
RansomSpector: An introspection-based approach to detect crypto ransomware.
Computers & Security 97 (2020), 101997.

[55] AutoIt Team. 2018. AutoIt v3 is a freeware BASIC-like scripting language designed
for automating the Windows GUI and general scripting (2018). https://www.
autoitscript.com/site/autoit/.

[56] TheWashingtonPost. 2021. Ransomware is a national security threat and a big
business — and it’s wreaking havoc. https://tinyurl.com/357vxevm.

[57] Linus Torvalds. 2022. syscall_wrapper.h. https://github.com/torvalds/linux/blob/
master/arch/x86/include/asm/syscall_wrapper.h.

[58] VirusShare. 2021. VirusShare.com - Because Sharing is Caring. https://virusshare.
com/.

[59] VirusTotal. 2021. Analyze suspicious files and URLs to detect types of malware.
https://www.virustotal.com.

[60] Peiying Wang, Shijie Jia, Bo Chen, Luning Xia, and Peng Liu. 2019. Mimosaftl:
adding secure and practical ransomware defense strategy to flash translation
layer. In Proceedings of the Ninth ACM Conference on Data and Application Security
and Privacy. 327–338.

[61] P. Yosifovich, D.A. Solomon, and A. Ionescu. 2017. Windows Internals, Part 1.
[62] zaqoQLF. 2022. ransomware-python. https://github.com/zaqoQLF/ransomware-

python.

355

https://github.com/axboe/fio
https://tinyurl.com/4he7utk9
https://tinyurl.com/mt58w3a9
https://attack.mitre.org/techniques/T1134/
https://attack.mitre.org/techniques/T1134/
https://tinyurl.com/2rnmxrzn
https://tinyurl.com/4zrfxp9j
https://code.google.com/p/opennfm/
https://shorturl.at/hzCHS
https://shorturl.at/hzCHS
https://linux-kernel-labs.github.io/refs/heads/master/lectures/processes.html
https://linux-kernel-labs.github.io/refs/heads/master/lectures/processes.html
https://tinyurl.com/ynrd68ju
https://www.kingston.com/en/blog/data-security/how-ssd-encryption-works
https://www.kingston.com/en/blog/data-security/how-ssd-encryption-works
https://tinyurl.com/3tjtcjw6
https://tinyurl.com/5vnyhhh7
https://github.com/microsoft/diskspd
https://tinyurl.com/3sa395yy
https://tinyurl.com/3dx9u2r4
https://tinyurl.com/3dx9u2r4
https://tinyurl.com/5356jbuy
https://tinyurl.com/4eeh6fhd
https://tinyurl.com/5n9338ye
https://tinyurl.com/38fwkekd
https://tinyurl.com/jcm3uswa
https://www.autoitscript.com/site/autoit/
https://www.autoitscript.com/site/autoit/
https://tinyurl.com/357vxevm
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/syscall_wrapper.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/syscall_wrapper.h
https://virusshare.com/
https://virusshare.com/
https://www.virustotal.com
https://github.com/zaqoQLF/ransomware-python
https://github.com/zaqoQLF/ransomware-python

	Abstract
	1 Introduction
	2 Background
	2.1 SSD Intrinsic Characteristic
	2.2 File Systems in Windows/Linux

	3 System Design
	3.1 Assumptions and Threat Model
	3.2 Approach Overview
	3.3 OS-Isolated and High-Precision Detection
	3.4 Fine-Grained Data Backup
	3.5 Fine-Grained Data Recovery

	4 Implementation
	4.1 Key Techniques in the Hypervisor
	4.2 Key Techniques in the SSD

	5 Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness of Detection
	5.3 Effectiveness of File Recovery
	5.4 Security Analysis and Evaluation
	5.5 Impact on I/O Performance
	5.6 Impact on SSD's Lifespan

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

