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ABSTRACT

Dynamic Information Flow Tracking (DIFT) is a fundamental com-
puter security technique that tracks the data flow of interest at
runtime, overcoming the limitations of discovering data dependen-
cies statically at compilation time. However, software-based DIFT
tools often suffer from unbearably high runtime overhead due to
dynamic binary instrumentation or virtual machine, limiting the
usefulness of DIFT. Even though hardware-assisted DIFT frame-
works cut down the performance overhead effectively, it is still
unacceptable for applications under rigorous time constraints.

This paper presents Raft, a flexible hardware-assisted DIFT
framework that provides runtime protection for embedded applica-
tions without delay to the programs. Our framework is designed
as a coprocessor for a RISC-V Rocket Core, introducing minimally-
invasive changes to the main processor. In Raft, we apply a novel
storage mechanism with hybrid byte/variable granularity to reduce
the size of tag storage and provide fine-grained protection. We
deploy Raft on the Rocket emulator and FPGA development board
to evaluate its effectiveness and efficiency. The experiment results
show that, compared to previous approaches, Raft cuts down the
performance overhead from more than 20% to less than 0.1% on
NBench and CoreMark microbenchmarks. The performance over-
head of Raft on SPEC CINT 2006 benchmarks is negligible (0.13%).
We also utilize a customized program to demonstrate its functional-
ity and conduct a detailed evaluation with a real-world embedded
medical application and known CVEs.
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1 INTRODUCTION

Dynamic Information Flow Tracking (DIFT) [44], which tracks
the data flow of interest during program execution, is a funda-
mental computer security technique. It has a wide range of ap-
plications in software and system security, such as exploit detec-
tion [14, 16, 25, 29, 38, 49], privacy leak detection [5, 11, 28, 61],
malware analysis [23, 34], and protocol reverse engineering [8, 35].
Static Information FlowTracking (SIFT) [36, 41], meanwhile, detects
potential security issues based on an overestimation of all possible
program paths through lexical analysis, syntax analysis, and se-
mantic analysis. However, though efficient, SIFT is labor-intensive
and leads to false positives due to the lack of the program’s runtime
behavior [60]. Moreover, some works [37, 60] have shown that SIFT
also induces some false negatives owing to the complexity of pro-
grams in real-world scenarios. Unlike SIFT, DIFT monitors the data
flow of the program at runtime. DIFT only tracks the execution path
taken by the program and captures its runtime behavior, which
results in an approach more precise than SIFT.

At the same time, the implementation of DIFT often suffers from
high performance overhead. Software-based DIFT solutions build
their analysis frameworks and optimizations atop Dynamic Binary

https://creativecommons.org/licenses/by-nc-sa/4.0/
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Instrumentation (DBI) (e.g., Intel PIN [39] and DynamoRIO [6])
or simulators. They dynamically disassemble the binary and in-
strument analysis logic, then compile and reassemble the executed
code at runtime, which causes unbearably high runtime overhead.
For instance, a state-of-the-art dynamic information flow analysis
tool libdft [32] imposes a slowdown that ranges between 1.20x and
6.03x on commonly-used Unix utilities. There has been much re-
search that seeks to improve the performance of DIFT. For instance,
TaintPipe [42] explored a parallel and pipeline scheme on multicore
platforms, achieving a performance 2.38x faster than libdft. Selec-
tiveTaint [13] applied static binary rewriting instead of dynamic
binary instrumentation to selectively instrument the instructions
involving DIFT, which is 1.7x faster than that of libdft. Nonethe-
less, pure software implementations still incur huge performance
overhead. Therefore, a research interest emerged in developing
hardware accelerators to improve the performance of DIFT at the
expense of flexibility.

Hardware-assisted DIFT solutions extend each register and mem-
ory location with tags. During the program execution, the hard-
ware accelerator transparently propagates or checks tags for each
executed instruction without additional instrumentation. Earlier
hardware-assisted DIFT systems [17, 18] integrated analysis logic di-
rectly into the main processor’s pipeline. Each stage of the pipeline
is duplicated with a specific hardware module to complete tag-
related operations and regular computation in parallel. Although
this approach has low performance overhead, the invasive de-
sign makes it difficult to port on hardcore CPUs built with non-
reconfigurable silicon [55]. Later studies [21, 31] utilized a dedicated
coprocessor to perform DIFT. The main core is responsible for ini-
tializing tags and committing instructions to the coprocessor in
charge of propagation and verification. Even though this approach
applies minor modifications to the main core and is easier to de-
ploy, it also incurs non-negligible performance overhead (e.g., 26%
on SPEC 2006 benchmarks in SIFT [46]) for the main processor
due to the communication between the main core and coprocessor.
Such performance overhead seems reasonable for program analysis
but is still unacceptable when protecting time-critical applications
at runtime. Embedded applications in delicate domains, such as
medical applications and vehicle control units that serve highly
critical tasks in embedded systems, have strict time constraints. Un-
fortunately, such time-critical embedded applications often suffer
from programming errors and exploitable vulnerabilities that are
already known from classical computing [54]. The focus of this
paper is to significantly improve the performance of DIFT so that it
can be exploited for runtime protection on time-critical embedded
applications.

To further reduce the performance overhead of DIFT, we first
analyze performance factors in traditional coprocessor-based DIFT
solutions. We find that major runtime overhead comes from the
communication between the coprocessor and the main core. The
traditional tag-storage mechanism [31, 33] uses a separate memory
region (called shadow memory) for tag storage and directly maps
the tags of every memory address into shadow memory. However,
the coprocessor generally cannot access memory directly. Thus, it
needs to send memory requests to the main core when obtaining
and updating tags. The main processor is stalled when handling

tag read/write operations, which is the main factor incurring per-
formance overhead.

To address the above challenges, we present Raft (Runtime
protection using dynamic information Flow Tracking), a flexible
hardware-assisted DIFT framework that provides runtime protec-
tion for embedded applications without delay to the programs.
We utilize a coprocessor to perform analysis logic in Raft, avoid-
ing invasive modification to the existing architecture. Specifically,
we implement Raft as a coprocessor for a RISC-V Rocket Core.
RISC-V [58] is an emerging open and free Instruction Set Archi-
tecture (ISA). It is widely used in embedded devices and has the
advantages of RISC enhanced by its open-source nature. In Raft,
we introduce an innovative tag-storage mechanism with hybrid
byte/variable granularity, which reduces the storage space while
ensuring fine-grained protection. By reason of the limited program
size of embedded applications and our optimized storage mecha-
nism, it is feasible to store tags in the coprocessor for the embedded
systems. Thus, we deposit tag storage in the coprocessor rather
than in the memory of the main processor, which avoids frequent
memory access requests to the main core when updating tags. We
build our prototype of Raft based on PHMon [20], a programmable
hardware monitor, which is implemented as a RISC-V coprocessor
as well. We modify PHMon to perform actions in a non-blocking
manner and implement the pipelining of DIFT tasks, increasing
the efficiency of processing instructions in the coprocessor so as to
decrease the possibility of stalling the main core. By virtue of the
programmability of PHMon, Raft is capable of enforcing various
security policies flexibly.

Raft is deployed on the Rocket emulator and FPGA development
board to evaluate its effectiveness and efficiency. We implement the
same tag propagation framework with the traditional tag-storage
mechanism (directly mapped to shadow memory) and our new
tag-storage mechanism, and the experiment results show that our
mechanism effectively cuts down the performance overhead from
more than 20% to less than 0.1% on NBench [40] and CoreMark [1]
microbenchmarks (detailed in Section 7.3). The runtime overhead
introduced by Raft on SPEC CINT 2006 [26] is negligible (0.13%),
implying that it is suitable for security-critical applications under
strict delay constraints (detailed in Section 7.4). Raft incurs 34%
LUTs and 93% Flip-Flops hardware overhead, and 2.32% power
overhead compared to an unmodified RISC-V core. The hardware
cost introduced by Raft is reasonable, which will be discussed in
detail in Section 7.5. Furthermore, we utilize a customized program
to demonstrate its flexible functionality in detecting various security
use cases. We also conduct a detailed evaluation with known CVEs
and a medical application OpenSyringePump [59], which is often
used as a sample real-world application in security applications for
embedded systems (detailed in Section 7.6).

Goals and Contributions. This paper proposes Raft, a flexible
hardware-assisted coprocessor-based DIFT framework that pro-
vides runtime protection for embedded applications. Our goal is
to track live data flow and detect security violations at runtime
without delay to the protected programs, meeting the requirements
of time-critical applications.

In summary, this paper presents the following contributions:
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• DIFT Framework. We propose Raft, a flexible hardware-
assisted DIFT framework that provides runtime protection
for embedded applications without delay to the programs.
We filter out DIFT-unrelated instructions by instrumenta-
tion and perform DIFT operations in a RISC-V coprocessor.
The framework also provides programmers with abundant
interfaces to enforce various security policies flexibly.
• Storage Mechanism. We introduce a novel storage mech-
anism with hybrid byte/variable granularity, reducing the
size of tag storage while ensuring fine-grained protection.
We retain tag storage in the coprocessor instead of mem-
ory, significantly reducing the communication between the
coprocessor and the main core.
• Prototype. We implement the prototype of Raft on the
RISC-V Rocket emulator and FPGA development board. We
utilize known CVEs and a real-world embedded application
to demonstrate its functionality and security provisions. The
macrobenchmark and microbenchmarks evaluation result
shows that the performance overhead introduced by Raft
is negligible. The source code of Raft can be found via
https://github.com/Compass-All/Raft.

The remainder of the paper is organized as follows. Section 2
provides the background information about DIFT and PHMon. Sec-
tion 3 reviews related hardware-assisted DIFT works and previous
tag-storage mechanisms. Then, we introduce the scope and assump-
tions of our work in Section 4. Section 5 presents the design of our
proposed Raft and demonstrates our new tag-storage mechanism.
We give the implementation of Raft in Section 6. Section 7 shows
the security analysis, hardware resource cost, and performance
evaluation of Raft. Section 8 discusses the limitations of our work.
Section 9 concludes the paper.

2 BACKGROUND

2.1 Dynamic Information Flow Tracking

DIFT [44] is a widely-applied computer security technique that
tracks live data flow during program execution, which is also called
Dynamic Data Flow Tracking (DDFT) or Dynamic Taint Analysis
(DTA). The processing of DIFT typically consists of three stages:
tag initialization, tag propagation, and tag checking. It utilizes taint
tags to mark untrusted data or critical data and propagate tags as
the program executes. DIFT checks whether the used data is tainted
when security-sensitive operations occur. The untrusted data typi-
cally comes from local input or remote input (called sources). Taint
tags are propagated during program execution in accordance with
instruction type, instruction operand, and predefined tag propaga-
tion rules. Note that most DIFT works only propagate tags based
on data dependencies [13]. Program points where DIFT performs
tag checking are called sinks. For instance, we can specify control-
flow transfer instructions as sinks to detect control-flow hijacking
attacks, output functions to detect sensitive information leakage
attacks, or locations where critical data is used to detect data cor-
ruption attacks.

There are different tag granularities to mark a bit, a byte, a word,
or a block of data. Fine-grained protection offers enhanced security
but requires more storage space to store tags. As data operations

usually take bytes as the smallest unit, byte-level tag granular-
ity is commonly considered sufficient for fine-grained protection.
Moreover, some works [21, 48] support multiple-bit tags to enforce
different security policies at the same time. On the other hand,
longer tag sizes will lead to more wasted storage space.

2.2 PHMon

Programmable Hardware Monitor (PHMon) [20] is an efficient
programmable hardware monitor to enforce an event–action moni-
toring model. Hardware-assisted DIFT frameworks are tag-based
monitors that monitor the program and take actions based on the
tag propagation. Unlike hardware-assisted DIFT works, PHMon
is a trace-based monitor, which monitors the user-defined events
and performs actions based on the trace of program execution.
They define a set of events, and each event is defined by a set of
monitoring rules. Once an event is detected, PHMon performs a
sequence of follow-up actions. PHMon consists of three main ar-
chitectural units: a Trace Unit, Match Units, and an Action Unit.
The Trace Unit collects the instruction execution trace of a proces-
sor, Match Units examine the execution trace to find matches with
programmed events, and the Action Unit takes follow-up actions.
PHMon is implemented as a coprocessor of the RISC-V Core as well
and provides a list of functions to communicate with the coproces-
sor. Moreover, PHMon performs actions in a blocking manner, i.e.,
it only performs one action at a time. When a memory request to
the main processor is sent, PHMon blocks the rest of the actions
until a memory response is received.

3 RELATEDWORK

3.1 Hardware-assisted DIFT Techniques

Software-based DIFT solutions [4, 19, 24, 42, 44] often incur huge
performance overhead due to DBI. In order to overcome it, various
hardware-assisted mechanisms have been proposed. Hardware-
assisted DIFT frameworks logically extend each register and each
memory location with a tag (single bit or multiple bits). During
program execution, the hardware transparently propagates and
checks tags to track untrusted data. Table 1 summarizes and com-
pares existing hardware-assisted DIFT works. Tag Size refers to the
maximum width of the tag supported in work, and Tag Granularity
is the size of the memory location with a tag. There are three design
alternatives: integrated in-core designs, multicore-based offloading
designs, and coprocessor-based off-core designs.

In-core. This approach directly integrates DIFT operations into
the pipeline of the main core. Suh et al. [51] identify a set of input
channels as spurious and track information flows in parallel with
data processing. Raksha [18] duplicates each stage of the pipeline to
perform tag propagation and checks in parallel with regular instruc-
tion execution. All storage elements, including registers, caches,
and DRAM, are extended with tags. This work first provides a
set of policy configuration registers to describe the propagation
and check rules. FlexiTaint [53] adds two pipeline stages ahead of
the final commit stage, which updates a separate register file and
cache for tags. This simplified design minimizes the impact on the
complex out-of-order core. Similar to Raksha, Palmiero et al. [47]
apply DIFT to RISC-V architecture. Although the performance im-
pact of integrated in-core designs is minimal, it requires invasive
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Table 1: Comparison on hardware-assisted DIFT techniques.

Type Works

Tag

Size

Tag

Granularity

Experimental Target

Communication

Interface

Performance

Overhead

Hardware Overhead

In-core

[51] 1-bit 1-byte Alpha, SimpleScalar simulator Signals 0.8% 4.5%(Storage)
[18] 4-bit Per word SPARC, XC2VP6000 FPGA Signals Negligible 12.5%(Storage)
[53] 2-bit Per word MIPS, SESC simulator Signals 1%-3.7% Unspecified
[47] 4-bit Per word RISC-V, XC7Z020 FPGA Signals Negligible 12.5%(Storage), 0.82%(LUTs)

Offloading
[43] 32-bit Per word x86, Simics simulator Hardware queue 48% Unspecified
[50] 8-bit Per word x86, Simics simulator Log buffer in cache 120% Unspecified
[12] 8-bit Per word x86, Simics simulator Log buffer in cache 2%-51% Unspecified

Off-core

[31] 4-bit Per word SPARC, XC2VP30 FPGA Signals 0.79% 16%(BRAMs), 7.64%(LUTs)
[21] 1-bit Per word SPARC, Virtex-5 FPGA Signals 17% 14.8%(Area)
[22] 1-bit Per word SPARC, Leon3 Signals <20% 55%(Area)
[27] 1-bit Per word SPARC, Virtex-5 FPGA System bus 45.7% 14.47%(Area)
[33] 1-bit Per word SPARC, XC5VLX330 FPGA Core debug interface 1.6% 60%(BRAMs), 28.36%(LUTs)
[57] 1-bit 1-byte ARM, Zedboard EMIO and system bus 5.37%-24.6% 0.47%(Area)
[56] 32-bit 1-byte ARM, Zedboard EMIO and system bus 335% 0.95%(Area)
[10] 1-bit Per variable RISC-V, Artix-7 FPGA Signals 5.03% 24%(BRAMs), 214%(LUTs), 33%(FFs)

This Work 1-bit 1-byte RISC-V, KC705 FPGA Signals Negligible 2.31%(Power), 34%(LUTs), 93%(FFs)

modification to the processor architecture, which introduces huge
design and verification costs. The extra effort required to redesign
and revalidate a complex superscalar processor deters hardware
vendors from adopting this approach [31]. Even on open-source
RISC-V, performing invasive hardware modifications to existing
processor designs presents a major obstacle in adopting DIFT in
practice.

Offloading. An alternative approach is to involve a separate
processor core to perform DIFT analysis for another core in a mul-
ticore chip. Nagarajan et al. [43] spawn a helper thread scheduled
on a separate core, which is only responsible for DIFT. Aside from
program execution, the first core compresses and stores the infor-
mation required for DIFT inside a hardware queue. The second
core decompresses this information and enforces DIFT operations.
Similarly, Ruwase et al. in [50] and Chen et al. in [12] utilize a log
buffer in the cache to enable communication between the main
thread and the DIFT thread. The modification of multicore-based
offloading designs to the existing hardware platforms is negligible.
On the other hand, it introduces high performance overhead for
inter-core coordination. Moreover, these designs are suitable for
multicore systems and require a full general-purpose core for DIFT
analysis, which reduces the number of available cores and increases
energy consumption.

Off-core. This approach performs DIFT operations on a
dedicated coprocessor instead of a general-purpose processor.
Coprocessor-based off-core designs are a compromise approach.
This approach only makes minor modifications to the main pro-
cessor and requires a simple hardware accelerator instead of a
general-purpose processor core. Since DIFT operations are dele-
gated to a coprocessor, which can be easily packaged, it incurs a
relatively low development and deployment cost. That is the main
reason why we adopt the coprocessor-based approach in this paper.
Off-core designs also require communication with the main core.
Such communication, which includes memory access requests and
synchronisation checks, is mainly responsible for the performance
overhead of this approach. The key to reducing runtime overhead

is to diminish the required information and increase the speed at
which the coprocessor processes instructions.

Raksha v2 [31] first decouples DIFT functionality onto a coproces-
sor and provides the same security guarantees as previous in-core
designs. The pipeline is slightly modified to export the required in-
formation to the coprocessor. Similarly, Deng et al. [21, 22] propose
a generic hardware accelerator that works up to 1 GHz. The accel-
erator can be configured to enforce different security policies. Heo
et al. [27] instrument memory addresses and branch instructions to
reconstruct the CFG and recover memory addresses. Although the
way that uses instrumentation to recover DIFT information is more
flexible and portable on hardcore CPUs, it incurs more performance
overhead. Unlike previous frameworks, some works [33, 56, 57]
utilize Core Debug Interface (CDI) to extract the required informa-
tion for DIFT. Lee et al. [33] exploit ARM CoreSight Event Trace
Macrocell (ETM) to track all instructions. To improve performance,
Wahab et al. [56, 57] use CoreSight Program Trace Macrocell (PTM)
as a trace component. They only trace instructions related to con-
trol flow and apply static analysis and instrumentation to retrieve
the missing information. Additionally, FineDIFT [10] uses a Con-
tent Addressable Memory (CAM)-like structure as tag storage to
reduce storage demands. However, recursive function calls and
nested function calls may not be protected effectively due to the
limited number of CAM-like entries. Some off-core designs [31, 33]
utilize a tag cache to mitigate memory traffic from the main core
and report fairly low runtime overhead in Table 1. However, when
clocking the coprocessor at a lower frequency than the main core,
the performance overhead becomes non-negligible (11.7% at the 2x
ratio in [31]).

3.2 Tag-Storage Mechanism

For hardware-assisted DIFT methods, all registers and memory are
extended to support tags. There are two basic types of tag storage:
extended memory and shadow memory. The former directly ex-
pands memory word width. This approach obtains data and tags
simultaneously when accessing memory. However, it is difficult to
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deploy and incompatible with existing techniques. The latter stores
tags in a separate memory region referred to as shadow memory.
It obtains tags by mapping the address of data into shadow mem-
ory. This approach only requires reserving a separate memory in
advance and no modification to the memory mechanism, which
is commonly adopted in existing hardware-assisted DIFT frame-
works [18, 31, 53]. Nonetheless, the method that directly maps into
shadow memory requires massive storage space. For instance, it
will take 1 GiB shadow memory to cover the entire 8 GiB memory
space for byte-level granularity protection, which incurs waste on
storage space. Recently, FineDIFT [10] applied a CAM-like struc-
ture as tag storage, which records the base address of the allocated
memory and its size. This method reduces the size of tag storage
while increasing the complexity of accessing tags (an increase of
214% in the use of lookup tables with a CAM-like structure).

Among coprocessor-based DIFT architectures, FineDIFT [10] is
the closest to Raft in terms of targeting embedded applications,
depositing tag storage in the coprocessor, and being implemented
on RISC-V. FineDIFT focuses on utilizing a series of custom in-
structions to dictate propagation. Thus, it introduces higher per-
formance overhead and an extra increase in binary size. In addi-
tion, FineDIFT relies on programmers to configure which variables
should be tracked and how to track them, which is labor-intensive
work. Programmers need to be familiar with the management of
registers and memory used in the program and manually set ap-
propriate flags for the corresponding variables. Compared with it,
Raft automatically performs taint analysis for each instruction
according to the security policy and is easier to use. Since FineDIFT
requires allocation merge and split operations in the CAM-like
entries, it has issues with variadic functions, aggregates, and library
functions deallocating memory blocks, etc. Moreover, FineDIFT
provides a coarser variable-level granularity trace (i.e., tag a block
of data) instead of byte-level protection.

4 SCOPE AND ASSUMPTIONS

We aim to protect applications running on embedded devices, espe-
cially those time-critical applications. Our current work provides
fine-grained runtime protection for a single program on a single
core. Recent studies [10, 21, 31] on coprocessor-based DIFT also
focus on a single processor without multi-threading as the first
step. We discuss this in Section 8.2. We assume that an attacker can
remotely or locally utilize applications’ vulnerabilities to corrupt
the internal data and state of the program or leak sensitive data. We
also assume that our protected applications running on embedded
devices are benign but might be vulnerable because it makes no
sense to protect inherently malicious programs. Furthermore, we
assume all hardware components are trustworthy. Thus, we do not
consider the corruption of executed instructions committed to the
coprocessor and the security of tags in the coprocessor. Finally,
physical attacks such as side-channel and JTAG attacks are out of
scope.

5 RAFT DESIGN

We propose a flexible hardware-assisted architecture to enforce
DIFT and improve its performance. Our framework Raft is de-
signed as a coprocessor, thus introducing minimally-invasive

changes to the main processor and allowing it to be integrated
into different architectures. This framework provides programmers
with various interfaces to specify which instructions and memory
regions to track and what policy to utilize for each instruction. In
this section, we first present the architecture of Raft. Then, we
introduce our novel tag-storage mechanism in detail. Lastly, we
further demonstrate the thorough process of DIFT in Raft under
the new storage mechanism.

5.1 Architecture

Figure 1 shows an overview of Raft’s architecture.Raft is designed
as an extension of the RISC-V Rocket [3] Core and communicates
with the main core by Rocket Custom Coprocessor (RoCC) Inter-
face. The gray area represents the modified and added components
in our architecture design. To perform coprocessor-based DIFT,
Raft consists of four main components: a Trace Unit (TU), a Filter
Unit, a Control Unit, and an Interrupt Manager. The Trace Unit
is used to collect the runtime execution information of the main
processor and commit it to Raft by the RoCC Interface. After that,
the Filter Unit filters out those instructions unrelated to DIFT and
enqueue the remaining instructions into the Instruction Queue (Ins
Queue). The Control Unit is responsible for controlling analysis
logic to perform DIFT operations, which will be presented in detail
in Section 5.4. Once the Instruction Queue is full, a full signal is sent
to the Interrupt Manager to stall the main processor for avoiding
executed instructions miss. Security violations will also trigger the
coprocessor interrupt and then be handled by the Linux interrupt
handler in the main processor.

Trace Unit. The Trace Unit is responsible for collecting the
runtime information about the main processor and committing it to
our DIFT framework. The collected information (called commit log)
contains four separate entries, i.e., the undecoded instruction (inst),
the current program counter (pc), the memory/register address
used in the current instruction (addr), and the data accessed by the
current instruction (data). This component is built upon PHMon’s
Trace Unit. For each executed instruction, the Trace Unit generates
a commit log in the write-back stage of the Rocket processor’s
pipeline and subsequently transfers it to the coprocessor by the
RoCC interface.

Filter Unit. The Filter Unit is responsible for filtering out DIFT-
unrelated instructions that do not involve tag propagation in DIFT.
Specifically, we use compiler instrumentation to insert two custom
instructions before and after the block of DIFT-unrelated instruc-
tions, implying that these instructions do not involve tag propa-
gation. The Filter Unit is set to neglect the block of instructions
wrapped by these custom instructions. Because filtered-out instruc-
tions do not affect the result of tag propagation, the Filter Unit does
not cause additional false negatives. Note that it is necessary to
set a hardware component in the coprocessor to filter out DIFT-
unrelated information and further improve performance, but the
strategy that decides which instructions should be filtered is not
our contribution.

Control Unit. The Control Unit is responsible for controlling
Raft analysis logic. It performs the following tasks: 1) Fetch. De-
queue an instruction from the InstructionQueue. 2) Decode. Identify
the opcode of the instruction and the index of registers. 3) Inquiry.
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Figure 1: Architecture overview of Raft.

Query Tag Rules Pool to obtain tag propagation or check rules
according to the current instruction’ opcode. Subsequently, Raft
performs the DIFT operation according to the rule. When the DIFT
operation is done, the Control Unit dequeues the next instruction
and repeats these tasks until the Instruction Queue is empty.

Interrupt Manager. The Interrupt Manager is responsible for
managing the coprocessor interrupt. A full signal indicates that the
Instruction Queue is full. It will trigger a coprocessor interrupt to
stall the main processor until the queue is empty. A security viola-
tion signal indicates that tainted data is used to perform an insecure
operation. The Interrupt Manager will record the current pc value
in a pre-reserved memory and trigger a coprocessor interrupt to
notify the main processor.

5.2 Tag Storage

As mentioned in Section 3.2, the previous scheme allocates a tag
for every memory address and utilizes shadow memory for tag
storage. Such a scheme takes 1 GiB shadow memory to tag 8 GiB
memory with byte-level granularity, requiring massive memory for
tag storage. In Raft, we propose a new structure of tag to reduce
the size of tag storage effectively. Our new tag structure is based on
an observation that the way to access an allocated heap memory is
usually through the start address of heap data stored on the stack
or registers. We extend the tag with one bit to indicate whether the
content stored on the stack is an address pointing to heap data or
not. Consequently, we can utilize the information on the stack to
represent the tags of heap data. Figure 2 sketches the tag-storage
mechanism in Raft, which consists of Tag Storage File (TSF) and
Shadow Register File (SRF). TSF is used to tag program memory,
consisting of TSF (Base-FP) and TSF (Base-GP). FP and GP are the
abbreviations of Frame Pointer and Global Pointer, respectively.
TSF (Base-FP) stores the tags of the stack, and TSF (Base-GP) stores
the tags of the uninitialized and initialized data segment. SRF is
used to tag general-purpose registers in the main processor.

Tag Storage File. In TSF (Base-FP), we use two bits to tag 1-byte
memory on the stack. The first bit indicates whether tainted or
not, and the second bit indicates data or address. In TSF (Base-GP),
we use one bit to tag 1-byte memory on the .bss segment or .data
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Figure 2: Tag storage in Raft.

segment. To see an example, consider the code snippet shown in
Figure 2. The local variable s (line 5) and global variable glo_s (line
7) accept unsafe external input, which should be tagged as taint. The
constant ’BBB’ is copied to the heap memory pointed by variable
p (line 6), which is non-taint. As Figure 2 depicts, the program
layout is shown in the left half, and the gray area represents tainted
memory. The right half of Figure 2 shows the corresponding tags
in the coprocessor. For instance, the value of variable p is stored
on the stack 0xfffff9f8. In TSF (Base-FP), the tag of the memory
0xfffff9f8 is 0-1, signifying that there stores an address and the
memory region 0x000863e8 pointed by variable p is not tainted.
The local variable s is stored on the stack 0xfffff9f0, and the tag
is 1-0 in TSF (Base-FP), indicating that the variable s is tainted. In
such away, we can denote both heap and stack tags in TSF (Base-FP).
Therefore, we adopt a storage mechanism with hybrid byte/variable
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Table 2: Example code of tag propagation under the new tag-storage mechanism. The third column is the corresponding tag

storage in the coprocessor.

Main Core Coprocesoor

C Code strcpy(p, s);

ASM Code

1 lw a1, 48(sp) // load address p to a1 register
2 lw a4, (-1)a0 // load tainted data from buffer s to a4 register
3 sw a4, (1)a1 // store tainted data to address p

SRF(a1): 0-1-48(sp)
SRF(a4): 1-0-N/A
TSF(sp+48): 1-1

granularity (i.e., tag stack/data segment with byte-level granularity
and tag heap with variable-level granularity).

Shadow Register File. In SRF, we use 64 bits to tag a general-
purpose register. Each coprocessor register holds the tag of the
corresponding register in the main core. Similar to TSF, the tag
in SRF is extended to 64 bits containing three parts: the first bit
indicates whether tainted or not, the second bit indicates data or
address, and the remaining bits indicate the location of the address
stored on the stack. The third part is used to guarantee updating
tags correctly in TSF when the content is stored from the register to
memory. For instance, when the variable p is loaded to the register
t0, the tag of register t0 in SRF is 0-1-0xfffff9f8, signifying
that the memory pointed to by variable p is not tainted. The start
address of the allocation is stored on the stack 0-1-0xfffff9f8.

5.3 Tag Initialization

In Raft, we utilize custom instructions to initialize tags in the
coprocessor.When the program is executed, the main processor will
skip these custom instructions and commit to the coprocessor. We
instrument external input functions to initialize taint (the first bit of
the tag). For instance, we insert an instruction behind the file input
function fgetc(), implying that the function return value register
is tainted. Similarly, we insert an instruction ahead of the file output
function fputc() to check whether the function argument register
is tainted or not. Furthermore, to distinguish data and address, we
instrument memory allocation functions (e.g., malloc()) to mark
the return value register as an address (the second bit of the tag).

5.4 Tag Propagation and Tag Checking

Tags are propagated in accordance with instruction type, instruc-
tion opcode, and configured rules. As described in Algorithm 1, we
divide instructions into four types: ALU, Load, Store, and Sink op-
erations. For ALU operations, tags are propagated in SRF as values
are delivered among general-purpose registers. For Load operations
loading a value from memory𝑀 to a register, tags are propagated
from TSF to SRF. If the loaded value is an address, we record the
memory address 𝑀 in SRF as well. For Store operations storing
a value in the register to memory, tags are propagated from SRF
to TSF. If the stored value is an address, we update TSF according
to the recorded address𝑀 . Raft decides to update TSF (Base-FP)
or TSF (Base-GP) based on the range of the address. For Sink op-
erations, we perform security checks. Once the register used by
the current instruction is tainted, a security violation signal is sent
to the Interrupt Manager. Note that we can specify which instruc-
tion belongs to which instruction type by a list of functions. This
software interface is built upon functionality provided by PHMon.
For instance, to detect control-flow attacks, we can specify jump

instructions as a Sink operation. Thus, the behavior of jumping to
the address controlled by an attacker will be detected by Raft.

Table 2 demonstrates an example of the thorough process of tag
propagation under the new storage mechanism. The second row
is a simplified ASM code of strcpy() that copies buffer s to the
memory pointed by p. The third column is the corresponding tag
storage in the coprocessor. Line 1 loads the address p to register
a1. The address of buffer s is stored in register a0, and line 2 loads
tainted data to register a4. When the program stores tainted data to
address p (line 3), Raft can update TSF according to the recorded
address𝑀 sp+48. Taints are successfully propagated when data is
copied between stack and heap regions. Listing 1 shows another
example to demonstrate the validity of tag propagation via heap
in Raft. Line 1 accepts an external input and tags variable ch as
tainted. Line 3 accesses a heap memory region by an offset and
copying the tainted data ch to p[2]. The taint is successfully prop-
agated to variable y via the heap memory region pointed by p (line
3). These two basic examples indicate there are no taint loss issues
due to the inclusion of heap objects on the taint-propagation path.
Note that Listing 1 also indicates Raft may have overtaint issues
for heap variables, a concern we discuss in detail in Section 8.1.

Algorithm 1: Tag Propagation and Tag Checking
Input: instruction type 𝑖𝑛𝑠𝑡𝑇𝑦𝑝𝑒

1 if instType == ALU then

/* update SRF */

2 if rs2 is N/A then

3 𝑇𝑎𝑔(𝑟𝑑) ← 𝑇𝑎𝑔(𝑟𝑠1);
4 else

5 𝑇𝑎𝑔(𝑟𝑑) ← 𝑇𝑎𝑔(𝑟𝑠1) ∨𝑇𝑎𝑔(𝑟𝑠2);
6 end

7 else if instType == Load then

/* update SRF */

8 𝑇𝑎𝑔(𝑟𝑑) ← 𝑇𝑎𝑔(𝑀𝑒𝑚[𝑟𝑠1 + 𝑜 𝑓 𝑓 𝑠𝑒𝑡]);
9 else if instType == Store then

/* update TSF */

10 𝑇𝑎𝑔(𝑀𝑒𝑚[𝑟𝑑 + 𝑜 𝑓 𝑓 𝑠𝑒𝑡]) ← 𝑇𝑎𝑔(𝑟𝑠1);
11 else if instType == Sink then

/* taint checking */

12 if rs1 is tainted then

13 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝐶𝑜𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 ();
14 end

15 end

As Algorithm 1 shows, we apply direct data tainting that tracks
external input. The propagation rules are similar to the rules used
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for input tainting by FlexiTaint [53]. Although we do not apply
pointer tainting that tracks valid heap pointers considering false
positives and taint explosion, our tag-storage mechanism is inher-
ently compatible with propagating both taints according to data
pointing and pointer tainting. The reason is that the tag of Raft
contains two parts where the first bit is tainted external input data,
and the second bit is a heap pointer, which meets the requirements
and has no conflicts with pointer tainting.

1 char ch = getchar (); // source
2 int* p = (int*) malloc(sizeof(int));
3 p[2] = ch;
4 int y = *p; // taint is propagated to y

Listing 1: Example code of tag propagation via heap.

6 IMPLEMENTATION

We implemented our prototype based on PHMon [20]. In this sec-
tion, we first introduce Raft instructions. After that, we detail the
implementation of the coprocessor, especially the improvements
for PHMon. Then, we present the necessary modifications to the
toolchain and Linux kernel.

6.1 Custom Instructions

Table 3 shows the functionality of custom instructions we imple-
mented to assist the coprocessor in performing DIFT operations.
The main processor will skip these instructions and commit them
to the coprocessor, thus not stalling the processor’s pipeline.

Tag Initialization.When a program obtains external input data,
we use the taint instruction to pass the index of the register that
stores tainted data according to the calling convention. In addition,
when the program calls memory allocation functions, we use the
src instruction to pass the index of the register that stores the heap
pointer to the coprocessor.

Taint Propagation. We utilize custom instructions to simplify
the process of tag propagation in some library functions. For in-
stance, for the function atoi() that converts a string to an integer,
we instrument the arg instruction behind the function, explicitly
indicating that the tag of the argument register is propagated to
the return value register. The tag is copied from the source reg-
ister of arg to the destination register. Moreover, the open and
close instructions are used to filter out DIFT-unrelated instruc-
tions. The block of instructions they enclose will be neglected by the
coprocessor. For instance, for the function islower() that checks
if the given character is lowercase, we instrument the open/close
instructions behind/after the function. The instructions that imple-
ment function islower() are DIFT-unrelated instructions, which
will be disregarded by Raft.

Taint Checking.When a program executes security-sensitive
functions, we utilize the sink instruction to pass the potentially
tainted parameters of these functions to the coprocessor. When de-
tecting tainted, the coprocessor triggers a coprocessor interrupt and
reports which instruction causes the security-violation operation
by writing reserved memory.

Program Addressing. The base instruction is used to pass the
frame pointer and global pointer to the coprocessor. These two base
addresses are used to assist the coprocessor in recording tags in
TSF (Base-FP) and TSF (Base-GP), respectively.

6.2 Coprocessor Implementation

In order to support DIFT, we store the taint information of the
Action Unit’s execution result in SRF and TSF. Furthermore, we add
four new types of actions: taint alu operation, taint load operation,
taint store operation, and sink operation.

Ready Idle Busy
All actions done One action done

Perform an action

 Read 
config

ResponseReqest
All action 
done?

Action Unit

Queue is valid

Config 
Units

ALU

Local Register File

Match Queue

Figure 3: The finite-state machine of Control unit in PHMon.

The Action Unit in PHMon comprises Config Units, a Control
Unit, an ALU, and a Local Register File. As shown in Figure 3, the
Finite-State Machine (FSM) of the Control Unit includes three states:
ready, idle, and busy. After receiving data from the queue, the state
is converted from ready to idle. In the idle state, the coprocessor
parses data, obtains the corresponding rules from the Config Unit,
and transfers to busy. In the busy state, the coprocessor executes
the corresponding action and returns to ready. It takes at least
three clock cycles for the coprocessor to process an instruction,
while the main processor only needs one clock cycle to enqueue
the instruction. Because these three states in DIFT are decoupled,
we are capable of pipelining tasks. Specifically, we optimize the
Control Unit to perform non-blocking by adding registers after
each state to buffer the information of the previous state. As a
result, the coprocessor can dequeue data, match rules, and take
actions simultaneously. In this way, we improve the performance
of the Control Unit and achieve greater throughput to meet the
requirements of DIFT.

6.3 Toolchain and OS Support

We add new passes to the LLVM compiler to recognize and emit
the aforementioned custom instructions. Moreover, we modify the
Linux kernel to handle the incoming interrupts from the RoCC
interface. We modify the OS to reserve a separate memory region
for distinguishing the coprocessor interrupt triggered by a queue
full or security violation signal and handle the interrupt in different
ways. For a queue full signal, the OS executes nop instructions until
the queue is empty. For a security violation signal, the OS reports
the current pc value and terminates the process. Raft is turned
on when switching to the protected process and turned off when
a context switch into another process occurs. We also modify the
OS to save or restore per-process DIFT-related information during
context switches.

7 EVALUATION

In this section, our evaluation aims to answer the following research
questions.
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Table 3: Custom instructions functionality. Among them, base, open, and close instructions are directly executed by the

coprocessor, and taint, arg, and src instructions are committed to the coprocessor and processed as a commit log.

Instruction Usage

taint rs1, rs2 Mark the taintedness
src rs1, rs2 Mark heap pointer variables
arg rd, rs1 Assist tag propagation
open/close zero, zero Filter out DIFT-unrelated instructions
sink rs1, rs2 Perform security checks
base fp/gp, rs2 Pass the frame pointer and global pointer to the coprocessor

RQ1: How effective is the Filter Unit?
RQ2: How does our new storage mechanism compare against

traditional storage using shadow memory?
RQ3:What is the performance overhead of Raft? What is the

performance of the coprocessor?
RQ4:What is the hardware resource cost of Raft?
RQ5: How does Raft perform when detecting malicious opera-

tions?

7.1 Experimental Setup

We prototype Raft as a coprocessor of RISC-V Rocket Core on a
Xilinx Kintex-7 FPGA KC705 evaluation board. Due to the evalua-
tion board limitation, the maximum frequency of the Rocket Core
is 60 MHz in our experiments. The system is configured with a 16
KiB 4-way L1 instruction cache, a 16 KiB 4-way L1 data cache, a
32-entry instruction TLB, and a 32-entry data TLB. Moreover, it has
128 MiB boot ROM and 1 GiB DDR3 memory. We perform experi-
ments with a modified RISC-V Linux (v5.4) kernel. All programs
are compiled by LLVM 12.0.1 for RV64GX (G for the general combi-
nation of standard instructions and X for customized instructions)
architecture.

7.2 RQ1: Effectiveness of Filter Unit

Table 4: Statistics of reduced instructions by the Filter Unit.

Program

Num of Instructions

%

Before After

cat file 9,710 7,722 - 20.47%
comm -3 file1 file2 9,186 7,181 - 21.83%
cut -c num file 12,329 9,866 - 19.98%

head file 9,425 7,428 - 21.19%
nl file 14,971 10,289 - 31.27%
od file 24,372 21,903 - 10.13%
ptx file 38,986 34,745 - 10.88%
tail file 10,240 8,238 - 19.55%

truncate –size num file 10,169 8,175 - 19.61%
uniq file 12,678 10,675 - 15.80%

The Filter Unit is used to filter out DIFT-unrelated instructions.
We use ten file content processing utility cat, comm, cut, head,
nl, od, ptx, tail, truncate, and uniq from Coreutils (version 9.1) to
evaluate the effectiveness of the Filter Unit. In detail, we count
the number of instructions processed by Raft with and without

instrumentation (i.e., with and without open/close instructions).
Table 4 shows the statistics of the reduced instructions by the
Filter Unit. The first column is the ten C/C++ programs we used
in our evaluation. The second and third columns show the total
number of instructions processed by the coprocessor before and
after instrumentation, followed by the last column of the ratio
of reduced instructions. The result shows that we have reduced
10.13%-31.27% of the possible tainted instructions compared to the
original program. We only filter out instructions that must not
involve tag propagation in the experiment. If adopting a more
radical strategy, more DIFT-unrelated instructions will be filtered
out. The filtering strategy itself is not our contribution. The Filter
Unit is set in Raft to provide hardware support for diminishing the
amount of information required for DIFT. The result shows that the
Filter Unit effectively cut down the number of instructions required
for DIFT. Note that for the sake of fairness, the Filter Unit is turned
off to ensure that the coprocessor processes the same number of
instructions for DIFT in the following evaluation.

7.3 RQ2: Comparison against Traditional

Storage

In order to see the performance improvement of Raftwith our new
tag-storage mechanism, we also implement a hardware-assisted
DIFT framework with traditional storage using shadow memory.
The implementation of this DIFT framework is the same as Raft,
apart from using different tag-storage mechanisms. We utilize
NBench [40] and CoreMark [1] microbenchmarks to evaluate the
performance of Raft with our tag-storage mechanism (denoted as
Our Work) and traditional storage using shadow memory (denoted
as Shadow Memory) and make a comparison. Specifically, NBench
is a synthetic computing benchmark used to expose the capabilities
of a CPU, FPU, and memory system, including ten different tests.
CoreMark is a sophisticated benchmark designed to test CPU bound
by producing a single-number score. In performance experiments,
we annotated I/O input and output functions in glibc as the loca-
tions of sources and sinks. We ran each benchmark ten times and
calculated the arithmetic mean.

Figure 4 depicts the performance overhead comparison with
Shadow Memory and Our Work on the NBench benchmark. Note
that we turn off the Filter Unit, and both frameworks are performed
to process the same number of instructions. In Figure 4, the base-
line (i.e., original programs without DIFT) is standardized as 1,
and we can find that the performance of Raft is approximately
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Figure 5: Performance comparison on CoreMark.

the same as the baseline. Since there are fluctuations in the run-
ning environment, the normalized performance overhead of some
programs is slightly less than 1. Moreover, the framework using
shadow memory incurs 26.37% overhead on average. It introduces
88.55% on BITFIELD at most, and memory-intensive tests lead to
higher overhead.

Figure 5 portrays the performance comparison on the CoreMark
benchmark. When employing the framework using shadow mem-
ory, the iterations per second are dropped from 1,713.60 to 1,398.38,
introducing 22.54% overhead on average. However, we can observe
from Figure 5 that the iterations per second in Raft are almost the
same as the baseline. The impact on the program is negligible for
Raft on Cormark, while the approach employing shadow memory
as tag storage significantly affects the program. In other words,
compared to the approach using shadow memory, Raft effectively
cuts down the performance overhead from >20% to <0.1% with our
new tag-storage mechanism.

Our Work vs. Shadow Memory. To further understand the
reason for the performance improvement, we discuss it in detail.
The framework using shadow memory exploits a separate memory
to store tags.When tracking load/store instructions, the coprocessor
needs to send a memory request to update tags in shadow memory.
Subsequently, the main processor is stalled and turns to process the
memory request and then sends back amemory response. Therefore,
the performance overhead introduced by this approach mainly
comes from frequent memory operations. That is the reason why
it incurs higher performance overhead on memory-intensive tests.

It is unsuitable to directly deposit tags in the coprocessor due
to the limited storage space of the coprocessor. Our work adopts
a new tag-storage mechanism to reduce the size of tag storage at
the expense of granularity. The reduced tag-storage space and the

limited size of embedded applications help Raft to store tags in the
coprocessor instead of the main processor, thus avoiding frequent
memory requests. When tracking load/store instructions, Raft di-
rectly updates tags in the coprocessor without waiting for memory
responses. It increases the speed of tracking instructions in the co-
processor, and further decreases the possibility of Instruction Queue
full blocking the main core. Additionally, it also eliminates the per-
formance impact on the main processor due to processing memory
requests. Therefore, Raft incurs negligible performance overhead
for the main core and has little impact on protected programs.

7.4 RQ3: Performance Overhead
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Figure 6: Performance overhead on SPEC CINT 2006.

As Figure 4 and Figure 5 show, the performance overhead intro-
duced by Raft is negligible. To better measure the performance
overhead of Raft, we also run SPEC CPU benchmark suites. Due
to its high memory requirements, we could not run SPEC CPU2017
on our RISC-V platform. We test SPEC CINT 2006 [26] benchmarks,
and each benchmark is run ten times. As Figure 6 sketches, the
performance overhead introduced by Raft on SPEC CINT 2006
is 0.13% on average. In other words, applying Raft to provide a
program with runtime protection has little impact on the program
running on the main processor.

The performance overhead of Raft is contingent on the speed
of the main processor executing instructions and the speed of the
coprocessor processing instructions. Due to the simplicity of DIFT
operations, the coprocessor has a very shallow pipeline. Raft pro-
cesses instructions with a 3-stage pipeline consisting of fetch/de-
code, inquiry, and execute. It takes three clock cycles to process
an ALU operation, and the Load and Store operations are the same
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because there is no need to access memory. Moreover, it only han-
dles committed instructions from the main core. By contrast, the
main core has to deal with mispredicted instructions, instruction
cache misses, and pipeline dependencies. Therefore, even for a su-
perscalar processor, a DIFT-dedicated coprocessor can achieve close
Instruction Per Clock (IPC).

Table 5: Performance overhead comparison when the copro-

cessor is paired with higher-frequency main cores.

Processor/Coprocessor Frequency Ratio

1x 1.5x 2x 3x

Raksha v2 [31] 0.79% 3.8% 11.7% \
Raft <0.1% \ <0.1% <0.1%

To further explore the performance of the coprocessor, we con-
struct an experiment in which we clock the coprocessor at a lower
frequency than the main core, similar to Raksha v2 [31]. We set up
a main core with a peak instruction processing rate 2x and 3x that
of the coprocessor and rerun the CoreMark benchmark. The size of
the Instruction Queue is set to 16 to keep consistent with Raksha v2.
As Table 5 demonstrates, Raft introduces negligible performance
overhead (<0.1%) at the 3x ratio, while Raksha v2 reports 11.7% 1 at
the 2x ratio in the paper. Raksha v2 utilizes a tag cache to mitigate
memory traffic from the main core. Consequently, as the frequency
gap increases, the overhead becomes higher owing to the tag cache
miss and the full queue that blocks the main core. Compared with
Raksha v2, Raft deposits tag storage in the coprocessor and updates
tags via register access. The case where the queue is full does not
happen in the experiment, so the performance overhead remains
negligible. This indicates that the coprocessor performs well and
can be used with a superscalar core.

7.5 RQ4: Hardware Resource Cost

To assess the hardware resource cost of Raft, we instantiate the
original and the modified RISC-V Rocket Cores and synthesize
them on the FPGA development board using Vivado 2018.3. In our
evaluation, we configure Raft with 9 MUs, 32 64-bit registers for
SRF, 1 KiB registers for TSF (Base-FP), and 9 KiB registers for TSF
(Base-GP), which is sufficient to accommodate all experiments in
our evaluation. The Instruction Queue is set to hold up to 1,024
elements.

Table 6 shows the power and area overheads of Raft. Whole
System refers to the hardware resource cost of the whole system
with a Rocket core and peripherals. We observe an extra usage of
34.04% slice LUTs and 93.17% slice Registers in the whole system. In
addition, it incurs 2.31% power consumption. The hardware over-
head of Raft is reasonable. As mentioned before, our new storage
mechanism optimizes the structure of tag storage and moves tags
from shadow memory to the coprocessor. Although the hardware
resource is limited, it is sufficient to track the information flow of
embedded applications whose size is small. For instance, 1 KiB TSF
(Base-FP) and 1 KiB TSF (Base-GP) support tracking programs with
8 KiB data segments and 4 KiB stack maximum size. In fact, when

1The experiment result of Raksha v2 is from their paper.

tracking the same program, the scheme using shadow memory re-
quires a much larger storage space compared to our design. Similar
work [10] that places tags in the coprocessor introduces higher
hardware resource overhead (≈ 2× slice LUTs and ≈ 0.34× slice
Registers).

Table 6: Hardware resource cost of Raft.

Whole System

Power

Slice LUTs Slice Registers

Without Raft 58,442 29,445 3.46 W
With Raft 78,355 56,879 3.54 W

% + 34.07% + 93.17% + 2.31%

7.6 RQ5: Security Features of Raft

7.6.1 Vulnerable Sample Program. We use a vulnerable sample
program to demonstrate how our framework works to protect
programs at runtime and discuss the security provided by Raft.
Listing 2 shows the code of the simplified program. The variable
private_data is sensitive data (line 8) that should not be tampered
with or leaked. The program accepts a file input and has a buffer
overflow vulnerability (lines 9-15), failing to check the bounds of
the fixed-size array buffer. The sensitive data is propagated to the
variable temp (line 16). We construct three exploits to illustrate the
functionality of Raft, and all attacks are successfully detected by
our framework.

1 struct SAMPLE{
2 char buffer [20];
3 int private_data;
4 };
5 int test()
6 {
7 struct SAMPLE s;
8 s.private_data = 5; // source ①
9 signed char input_char;
10 int i = 0;
11 while (( input_char = fgetc(fp)) != EOF) // source ②
12 {
13 s.buffer[i] = input_char;
14 i++;
15 }
16 int temp = s.private_data;
17 process(temp); // sink ③
18 return 0; // sink ④
19 }

Listing 2: Example of a vulnerable sample program.

Our first exploit, a non-control-data attack, corrupts critical data
private_data by using a buffer overflow vulnerability. We tag
the input input_char as a source at ② and perform checks when
the critical data is used at ③. Since the tag is propagated to the
variable temp, Raft triggers a coprocessor interrupt to notice the
main core when tainted data is used in the program. Our second
attack overflows the array buffer and overwrites the return ad-
dress stored on the stack. Subsequently, it redirects the program’s
control flow to the attacker-chosen location. Similarly, we tag the
input input_char as a source at ② and check the tag of the return
address register ra at ④. As the return address is tainted, we de-
fend this attack when function test() returns. Our third exploit
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is pure information leakage, leading to leakage of the private data
private_data. The function process() is undermined to output
the private data. We tag the variable private_data as a source at
① and check the output function. As a result, we detect information
leakage.

Control-flow Attacks. Control-flow hijacking is an attack tech-
nique that compromises the program’s control flow integrity. Con-
ventional control-flow attacks depend on injecting shellcode into
writable memory and redirecting the control flow to execute it. Such
code injection attacks have been well prevented by the widespread
deployment of measures like Data Execution Prevention (DEP).
However, code reuse attacks, such as Return-oriented Program-
ming (ROP) [7] and Jump-oriented Programming (JOP) [9], are still
quite prevalent. Attackers construct gadgets ending with return
or jump instructions from existing code without code injection and
redirect the control flow to execute in an attacker-controlled order.
Raft defends against control-flow attacks by tagging external input
as sources and checking all control-flow transfer instructions. Once
the jump target address is tainted data, the attacks will be detected
by Raft.

Non-control Data Attacks. Non-control-data attacks [15] in-
fluence program behavior without breaking the program’s control-
flow integrity. Attackers corrupt critical data (e.g., variables used for
decision-making), which can lead to escalating privileges. Alterna-
tively, pure non-control-data attacks manipulate the data pointer to
output a private key, leading to sensitive data leakage. Such attacks
are beyond the scope of defense techniques that ensure control-flow
integrity and are difficult to defend against. Raft can be configured
to tag private data as sources. Thus, information leakage will be
detected when tagged private data are used by output functions.
Similarly, Raft detects data corruption by performing checks when
critical data is used.

7.6.2 Real-World Application. We apply Raft to protect an open-
source real-world embedded application OpenSyringePump [59].
A syringe pump is a medical device that controls the quantity of
fluid to dispense or withdraw at regular time intervals. It is widely
used to inject medicines into patients. Hence, a syringe pump must
highly assure correct operations and has strict time requirements.
The device consists of a stepper motor, a fluid-filled syringe, and
a microcontroller. The control system accepts commands from a
keypad and a serial terminal and moves the stepper motor. Open-
SyringePump is an open-source implementation of a syringe pump,
which has already been used in previous works [2, 45, 52] to eval-
uate embedded system security. Since the original application is
written in Arduino Script, we use a C version 2 adopted by [2] and
port it on RISC-V.

We slightly modify the code and construct a non-control data
attack by exploiting a buffer overflow vulnerability. The program
receives user input from the serial terminal and stores it in a buffer
serialStr without checking the bounds. When a key is pressed,
the program receives an analog value and iterates through the pre-
defined static key-map array to recognize the pressed key. We over-
flow the buffer and corrupt the static key-map array adc_key_val
used for processing input from the keypad. This attack causes the
program to perform actions when no physical key is pressed (e.g.,
2https://github.com/control-flow-attestation/c-flat/tree/master/samples/syringe

Table 7: Summary of tested software vulnerabilities.

ID CVE ID Program Vulnerability Detection

1 CVE-2009-4496 Boa Information Leakage ✓
2 CVE-2014-8503 Size Buffer Overflow ✓
3 CVE-2016-3186 Gif2tiff Buffer Overflow ✓
4 CVE-2018-17100 Ppm2tiff Integer Overflow ✓
5 CVE-2010-0001 Gzip Integer Underflow ✓

the right key triggers the syringe to inject liquid). We instrument
the program and configure the critical data adc_key_val as sources.
Raft successfully detects this attack by performing checks when
the static key-map array is used in the function that converts ADC
value to key number.

7.6.3 CVEs. We further test Raft with 5 programs whose vulnera-
bilities are listed in Table 7, which covers common software exploits
concerning spatial safety. Among them, the buffer overflow vul-
nerabilities in size and gif2tiff use file input data as parameters
of potentially unsafe functions, which causes a denial of service.
ppm2tiff uses integer overflowed value in memory allocation func-
tions, leading to insufficient memory allocation. Integer underflow
in gzip leads to an array index error. boa writes data to a log file
without sanitizing non-printable characters. We manually mark
the locations of sources and sinks according to publicly available
vulnerability reports and successfully detect these CVEs.

8 DISCUSSIONS AND LIMITATIONS

8.1 Limitations

Raft reduces the demand for tag storage by applying a coarser
granularity for the heap. We record the start address of the al-
located heap memory without the size of the allocation. In such
a manner, we effectively reduce the tag storage size and further
substantially improve performance. Accordingly, it is difficult to
determine whether the whole heap variable is fully or partially
tainted. Thus, Raft’s design may have overtaint issues for heap
variables. However, there are no undertaint issues on the taint-
propagation path containing heap objects. The usage of the heap
will not cause the system to not work. Note that undertaint has a
greater impact than overtaint, especially for security-critical ap-
plications. Additionally, Raft has limited capabilities to prevent
attacks exploiting vulnerabilities on the heap (e.g., heap overflow)
due to lacking information about the allocation size. Our work pro-
vides a fine-grained, robust guarantee for stack and global variables
and coarse-grained, weak protection for heap variables. Therefore,
Raft is more applicable for protecting security-critical applications
without complicated heap usage. Moreover, Raft requires mark-
ing whether the value stored in a register is a heap address. We
instrument standard memory allocation functions to specify heap
pointers, but programmers are still required to deal with custom
memory allocators.

In addition, the size of programs that Raft is capable of tracking
is contingent on the available storage resource in the coprocessor.
Large programs may not be effectively protected due to the limited
size of TSF. Recursive and nested function calls may also cause
tag storage exhaustion due to stack explosion. As mentioned in
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Section 7.3, we also implement a hardware-assisted DIFT framework
on RISC-V using shadow memory, which can handle heap issues
and protect larger programs but be relatively slow. One solution
is to apply different tag-storage mechanisms in different scenarios
and switch in accordance with tracked program size. We plan to
integrate alternative tag-storage mechanisms into Raft and expose
functions for the automatic switch to programmers in the future.

Furthermore, a limitation of standard DIFT approaches is im-
plicit flows because they do not propagate taints along control
dependencies. Tainted data values influence control flow so that
the control flow difference influences other data in turn [30]. Like
other existing hardware-assisted DIFT frameworks [10, 31], we do
not handle implicit flows due to the complexity. Ignoring implicit
flows leads to under-tainting, while indiscriminately counting all
implicit flows leads to over-tainting [30]. Raft has the feature to
disable taint tracking for specific blocks and use manual taints. In
the future, we plan to identify implicit flows in common cases (e.g.,
if and switch statements) by additional instrumentation to obtain
instruction context.

8.2 Towards Multicore and Rich OS Systems

Similar to [10, 21, 31], our current work focuses on a single pro-
cessor without multithreading. For multithreading, thread ID and
multiple TSF structures are needed, with a separate TSF structure
corresponding to each thread. Every time a thread switch occurs
and the coprocessor is activated, the main core writes the current
thread ID to a dedicated register in the coprocessor. For multi-core
processors, each core needs a dedicated DIFT coprocessor. There
are consistency issues among multiple DIFT-supported coproces-
sors. Extra coherency protocols are required for the control unit
and tag storage to ensure the coherency of tags among multiple
processors, which is quite complex to address. For Out-of-Order
(OOO) cores, instructions in program order can be obtained from
the reorder buffer of OOO cores [31] and then committed to the
coprocessor. Therefore, it will only require slight modifications for
the current implementation to support OOO execution.

9 CONCLUSION

In this paper, we present Raft, a hardware-assisted coprocessor-
based DIFT framework that provides runtime protection for em-
bedded applications without delay to the programs. We diminish
the amount of information required for DIFT and apply a novel
storage mechanism to reduce the size of tag storage while provid-
ing fine-grained protection. We deploy Raft on the RISC-V Rocket
emulator and FPGA development board to evaluate its effectiveness
and efficiency. Compared to previous approaches (over 20% runtime
overhead), Raft has significantly improved performance, and its
overhead is 0.13% on SPEC CPU benchmarks.

ACKNOWLEDGMENTS

Wewould like to thank the anonymous reviewers for their insightful
comments. This work is partly supported by the National Natural
Science Foundation of China under Grant No.62002151 and No.
62102175, Shenzhen Science and Technology Program under Grant
No. SGDX20201103095408029 and No. ZDSYS20210623092007023.

REFERENCES

[1] Accessed: 2021. Riscv-coremark. Available: https://github.com/riscv-boom/riscv-
coremark.

[2] Tigist Abera, N Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew
Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. 2016. C-FLAT: control-flow
attestation for embedded systems software. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security (CCS’16). 743–
754.

[3] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, et al. 2016. The rocket chip generator. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17 4 (2016).

[4] Erik Bosman, Asia Slowinska, and Herbert Bos. 2011. Minemu: The world’s
fastest taint tracker. In International Workshop on Recent Advances in Intrusion
Detection. Springer, 1–20.

[5] Amiangshu Bosu, Fang Liu, Danfeng Yao, and Gang Wang. 2017. Collusive
data leak and more: Large-scale threat analysis of inter-app communications. In
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security (ASIACCS’17). 71–85.

[6] Derek Bruening and Saman Amarasinghe. 2004. Efficient, transparent, and compre-
hensive runtime code manipulation. Ph. D. Dissertation. Massachusetts Institute
of Technology, Department of Electrical Engineering . . . .

[7] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. 2008. When
good instructions go bad: Generalizing return-oriented programming to RISC.
In Proceedings of the 15th ACM Conference on Computer and Communications
Security (CCS’08). 27–38.

[8] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. 2007. Polyglot: Auto-
matic Extraction of Protocol Message Format using Dynamic Binary Analysis.
In Proceedings of the 14th ACM Conference on Computer and Communications
Security (CCS’07). 317–329.

[9] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-oriented programming
without returns. In Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS’10). 559–572.

[10] Kejun Chen, Orlando Arias, Qingxu Deng, Daniela Oliveira, Xiaolong Guo, and
Yier Jin. 2022. FineDIFT: Fine-Grained Dynamic Information Flow Tracking
for Data-Flow Integrity Using Coprocessor. IEEE Transactions on Information
Forensics and Security (TIFS’22) 17 (2022), 559–573.

[11] Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering informa-
tion leakage from browser extensions. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS’18). 1687–1700.

[12] Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak Falsafi, Phillip B
Gibbons, Todd C Mowry, Vijaya Ramachandran, Olatunji Ruwase, Michael Ryan,
and Evangelos Vlachos. 2008. Flexible hardware acceleration for instruction-
grain program monitoring. ACM SIGARCH Computer Architecture News 36, 3
(2008), 377–388.

[13] Sanchuan Chen, Zhiqiang Lin, and Yinqian Zhang. 2021. SelectiveTaint: Efficient
Data Flow Tracking With Static Binary Rewriting. In Proceedings of the 30th
USENIX Security Symposium (USENIX Security’21). 1665–1682.

[14] Shuo Chen, Jun Xu, Nithin Nakka, Zbigniew Kalbarczyk, and Ravishankar K Iyer.
2005. Defeating memory corruption attacks via pointer taintedness detection.
In International Conference on Dependable Systems and Networks (DSN’05). IEEE,
378–387.

[15] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K Iyer. 2005.
Non-Control-Data Attacks Are Realistic Threats.. In USENIX Security Symposium
(USENIX Security’05), Vol. 5. 146.

[16] Kai Cheng, Qiang Li, Lei Wang, Qian Chen, Yaowen Zheng, Limin Sun, and
Zhenkai Liang. 2018. DTaint: detecting the taint-style vulnerability in embedded
device firmware. In International Conference on Dependable Systems and Networks
(DSN’18). IEEE, 430–441.

[17] Jedidiah R Crandall and Frederic T Chong. 2004. Minos: Control data attack
prevention orthogonal to memory model. In Proceedings of the 37th International
Symposium on Microarchitecture (MICRO’04). IEEE, 221–232.

[18] Michael Dalton, Hari Kannan, and Christos Kozyrakis. 2007. Raksha: a flexible
information flow architecture for software security. ACM SIGARCH Computer
Architecture News 35, 2 (2007), 482–493.

[19] Ali Davanian, Zhenxiao Qi, Yu Qu, and Heng Yin. 2019. DECAF++: Elastic
whole-system dynamic taint analysis. In Proceedings of the 22nd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID’19). 31–45.

[20] Leila Delshadtehrani, Sadullah Canakci, Boyou Zhou, Schuyler Eldridge, Ajay
Joshi, and Manuel Egele. 2020. PHMon: A Programmable Hardware Monitor and
Its Security Use Cases. In Proceedings of the 29th USENIX Security Symposium
(USENIX Security’20). 807–824.

[21] Daniel Y Deng, Daniel Lo, GregMalysa, Skyler Schneider, and G Edward Suh. 2010.
Flexible and efficient instruction-grained run-time monitoring using on-chip
reconfigurable fabric. In 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’10). IEEE, 137–148.

https://github.com/riscv-boom/riscv-coremark
https://github.com/riscv-boom/riscv-coremark


RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Yu Wang, Jinting Wu, Haodong Zheng, Zhenyu Ning, Boyuan He, and Fengwei Zhang

[22] Daniel Y Deng and G Edward Suh. 2012. High-performance parallel accelerator
for flexible and efficient run-time monitoring. In International Conference on
Dependable Systems and Networks (DSN’12). IEEE, 1–12.

[23] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-
Based Detection of Android Malware through Static Analysis. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE’14). 576–587.

[24] John Galea and Daniel Kroening. 2020. The Taint Rabbit: Optimizing Generic
Taint Analysis with Dynamic Fast Path Generation. In Proceedings of the 15th
ACM Asia Conference on Computer and Communications Security (ASIACCS’20).
622–636.

[25] William GJ Halfond, Alessandro Orso, and Panagiotis Manolios. 2006. Using
Positive Tainting and Syntax-Aware Evaluation to Counter SQL Injection Attacks.
In Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE’06). 175–185.

[26] JL Henning. 2006. SPEC CPU2006 Benchmark descriptions. ACM SIGARCH
Comput Archit News 34 (4): 1–17.

[27] IngooHeo,Minsu Kim, Yongje Lee, Changho Choi, Jinyong Lee, Brent Byunghoon
Kang, and Yunheung Paek. 2015. Implementing an application-specific
instruction-set processor for system-level dynamic program analysis engines.
ACM Transactions on Design Automation of Electronic Systems (TODAES’15) 20, 4
(2015), 1–32.

[28] Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu
Zhang, and Guofei Jiang. 2015. SUPOR: Precise and Scalable Sensitive User
Input Detection for Android Apps. In Proceedings of the 24th USENIX Security
Symposium (USENIX Security’15). 977–992.

[29] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Pixy: A static
analysis tool for detecting web application vulnerabilities. In Proceedings of the
2006 IEEE Symposium on Security and Privacy (S&P’06). IEEE, 6–pp.

[30] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.
2011. Dta++: dynamic taint analysis with targeted control-flow propagation.. In
Network and Distributed System Security (NDSS’11).

[31] Hari Kannan, Michael Dalton, and Christos Kozyrakis. 2009. Decoupling dy-
namic information flow tracking with a dedicated coprocessor. In 2009 IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN’09). IEEE,
105–114.

[32] Vasileios P Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D
Keromytis. 2012. libdft: Practical dynamic data flow tracking for commodity
systems. In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual
Execution Environments (VEE’12). 121–132.

[33] Jinyong Lee, Ingoo Heo, Yongje Lee, and Yunheung Paek. 2016. Efficient security
monitoring with the core debug interface in an embedded processor. ACM
Transactions on Design Automation of Electronic Systems (TODAES’16) 22, 1 (2016),
1–29.

[34] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack
Provenance via Binary-based Execution Partition.. In Network and Distributed
System Security (NDSS’13), Vol. 2. 4.

[35] Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang. 2008. Automatic
protocol format reverse engineering through context-awaremonitored execution..
In Network and Distributed System Security (NDSS’08), Vol. 8. Citeseer, 1–15.

[36] Yin Liu and Ana Milanova. 2010. Static information flow analysis with handling
of implicit flows and a study on effects of implicit flows vs explicit flows. In
2010 14th European Conference on Software Maintenance and Reengineering. IEEE,
146–155.

[37] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J Nelson
Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer, Uday P Khedker, Anders Møller,
and Dimitrios Vardoulakis. 2015. In defense of soundiness: A manifesto. Commun.
ACM 58, 2 (2015), 44–46.

[38] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. Chex:
statically vetting android apps for component hijacking vulnerabilities. In Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security
(CCS’12). 229–240.

[39] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. Acm
Sigplan Notices 40, 6 (2005), 190–200.

[40] Uwe F Mayer. 2003. Linux/unix nbench.
[41] Ibéria Medeiros, Nuno Neves, and Miguel Correia. 2015. Detecting and remov-

ing web application vulnerabilities with static analysis and data mining. IEEE

Transactions on Reliability 65, 1 (2015), 54–69.
[42] Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu. 2015. Taintpipe:

Pipelined symbolic taint analysis. In Proceedings of the 24th USENIX Security
Symposium (USENIX Security’15). 65–80.

[43] Vijay Nagarajan, Ho-Seop Kim, Youfeng Wu, and Rajiv Gupta. 2008. Dynamic
information flow tracking on multicores. In Proceedings of the Workshop on
Interaction Between Compilers and Computer Architectures.

[44] James Newsome and Dawn Xiaodong Song. 2005. Dynamic Taint Analysis for
Automatic Detection, Analysis, and SignatureGeneration of Exploits on Com-
modity Software.. In Network and Distributed System Security (NDSS’05), Vol. 5.
Citeseer, 3–4.

[45] Christian Niesler, Sebastian Surminski, and Lucas Davi. 2021. Hera: Hotpatch-
ing of embedded real-time applications. In Proceedings of the 28th Network and
Distributed System Security Symposium (NDSS’21).

[46] Meltem Ozsoy, Dmitry Ponomarev, Nael Abu-Ghazaleh, and Tameesh Suri. 2011.
SIFT: A low-overhead dynamic information flow tracking architecture for smt
processors. In Proceedings of the 8th ACM International Conference on Computing
Frontiers (CF’11). 1–11.

[47] Christian Palmiero, Giuseppe Di Guglielmo, Luciano Lavagno, and Luca P Car-
loni. 2018. Design and implementation of a dynamic information flow tracking
architecture to secure a RISC-V core for IoT applications. In 2018 IEEE High
Performance extreme Computing Conference (HPEC’18). IEEE, 1–7.

[48] Joël Porquet and Simha Sethumadhavan. 2013. WHISK: An uncore architecture
for dynamic information flow tracking in heterogeneous embedded SoCs. In 2013
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS’13). IEEE, 1–9.

[49] Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan, Peng Li, Heng Yin, and
Tao Wei. 2021. SpecTaint: Speculative taint analysis for discovering spectre
gadgets. In Network and Distributed System Security (NDSS’21).

[50] Olatunji Ruwase, Phillip B Gibbons, Todd C Mowry, Vijaya Ramachandran,
Shimin Chen, Michael Kozuch, and Michael Ryan. 2008. Parallelizing dynamic
information flow tracking. In Proceedings of the twentieth annual Symposium on
Parallelism in Algorithms and Architectures (SPAA’08). 35–45.

[51] G Edward Suh, Jae W Lee, David Zhang, and Srinivas Devadas. 2004. Secure
program execution via dynamic information flow tracking. ACM Sigplan Notices
39, 11 (2004), 85–96.

[52] Sebastian Surminski, Christian Niesler, Ferdinand Brasser, Lucas Davi, and
Ahmad-Reza Sadeghi. 2021. RealSWATT: Remote Software-based Attestation
for Embedded Devices under Realtime Constraints. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security (CCS’21).
2890–2905.

[53] Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos Prvulovic. 2008.
Flexitaint: A programmable accelerator for dynamic taint propagation. In 2008
IEEE 14th International Symposium on High Performance Computer Architecture
(HPCA’08). IEEE, 173–184.

[54] John Viega and Hugh Thompson. 2012. The state of embedded-device security
(spoiler alert: It’s bad). IEEE Security & Privacy 10, 5 (2012), 68–70.

[55] Muhammad Abdul Wahab. 2018. Hardware support for the security analysis of
embedded softwares: applications on information flow control and malware analysis.
Ph. D. Dissertation. CentraleSupélec.

[56] Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah, Guillaume Hiet,
Arnab Kumar Biswas, Vianney Lapotre, and Guy Gogniat. 2018. A small and
adaptive coprocessor for information flow tracking in ARM SoCs. In 2018 Interna-
tional Conference on ReConFigurable Computing and FPGAs (ReConFig’18). IEEE,
1–8.

[57] Muhammad A Wahab, Pascal Cotret, Mounir N Allah, Guillaume Hiet, Vianney
Lapotre, and Guy Gogniat. 2017. ARMHEx: A hardware extension for DIFT on
ARM-based SoCs. In 2017 27th International Conference on Field Programmable
Logic and Applications (FPL’17). IEEE, 1–7.

[58] Editors Andrew Waterman and Krste Asanović. December 2019. The RISC-V
Instruction Set Manual, Volume I: User-Level ISA, Document Version 20191213.
RISC-V Foundation.

[59] Bas Wijnen, Emily J Hunt, Gerald C Anzalone, and Joshua M Pearce. 2014. Open-
source syringe pump library. PloS one 9, 9 (2014), e107216.

[60] Xueling Zhang, Xiaoyin Wang, Rocky Slavin, and Jianwei Niu. 2021. ConDySTA:
Context-Aware Dynamic Supplement to Static Taint Analysis. In Proceedings of
the 2021 IEEE Symposium on Security and Privacy (S&P’21). IEEE, 796–812.

[61] David Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and David Wetherall.
2011. TaintEraser: Protecting Sensitive Data Leaks Using Application-Level Taint
Tracking. ACM SIGOPS Operating Systems Review 45, 1 (2011), 142–154.


	Abstract
	1 Introduction
	2 Background
	2.1 Dynamic Information Flow Tracking
	2.2 PHMon

	3 Related work
	3.1 Hardware-assisted DIFT Techniques
	3.2 Tag-Storage Mechanism

	4 Scope and Assumptions
	5 Raft Design
	5.1 Architecture
	5.2 Tag Storage
	5.3 Tag Initialization
	5.4 Tag Propagation and Tag Checking

	6 Implementation
	6.1 Custom Instructions
	6.2 Coprocessor Implementation
	6.3 Toolchain and OS Support

	7 Evaluation
	7.1 Experimental Setup
	7.2 RQ1: Effectiveness of Filter Unit
	7.3 RQ2: Comparison against Traditional Storage
	7.4 RQ3: Performance Overhead
	7.5 RQ4: Hardware Resource Cost
	7.6 RQ5: Security Features of Raft

	8 Discussions and Limitations
	8.1 Limitations
	8.2 Towards Multicore and Rich OS Systems

	9 Conclusion
	Acknowledgments
	References

