
Raft: Hardware-assisted Dynamic Information Flow
Tracking for Runtime Protection on RISC-V

Yu Wang1, Jinting Wu1, Haodong Zheng1, Zhenyu Ning2,1, Boyuan He3, Fengwei Zhang1

1Southern University of Science and Technology
2Hunan University

3Huawei Technologies Co., Ltd.

October, 16, 2023

Dynamic Taint Analysis

Raft: Hardware-assisted Dynamic Information Flow Tracking for Runtime Protection on RISC-V RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

because there is no need to access memory. Moreover, it only han-
dles committed instructions from the main core. By contrast, the
main core has to deal with mispredicted instructions, instruction
cache misses, and pipeline dependencies. Therefore, even for a su-
perscalar processor, a DIFT-dedicated coprocessor can achieve close
Instruction Per Clock (IPC).

Table 5: Performance overhead comparison when the copro-

cessor is paired with higher-frequency main cores.

Processor/Coprocessor Frequency Ratio

1x 1.5x 2x 3x

Raksha v2 [31] 0.79% 3.8% 11.7% \
Raft <0.1% \ <0.1% <0.1%

To further explore the performance of the coprocessor, we con-
struct an experiment in which we clock the coprocessor at a lower
frequency than the main core, similar to Raksha v2 [31]. We set up
a main core with a peak instruction processing rate 2x and 3x that
of the coprocessor and rerun the CoreMark benchmark. The size of
the Instruction Queue is set to 16 to keep consistent with Raksha v2.
As Table 5 demonstrates, Raft introduces negligible performance
overhead (<0.1%) at the 3x ratio, while Raksha v2 reports 11.7% 1 at
the 2x ratio in the paper. Raksha v2 utilizes a tag cache to mitigate
memory traffic from the main core. Consequently, as the frequency
gap increases, the overhead becomes higher owing to the tag cache
miss and the full queue that blocks the main core. Compared with
Raksha v2, Raft deposits tag storage in the coprocessor and updates
tags via register access. The case where the queue is full does not
happen in the experiment, so the performance overhead remains
negligible. This indicates that the coprocessor performs well and
can be used with a superscalar core.

7.5 RQ4: Hardware Resource Cost

To assess the hardware resource cost of Raft, we instantiate the
original and the modified RISC-V Rocket Cores and synthesize
them on the FPGA development board using Vivado 2018.3. In our
evaluation, we configure Raft with 9 MUs, 32 64-bit registers for
SRF, 1 KiB registers for TSF (Base-FP), and 9 KiB registers for TSF
(Base-GP), which is sufficient to accommodate all experiments in
our evaluation. The Instruction Queue is set to hold up to 1,024
elements.

Table 6 shows the power and area overheads of Raft. Whole
System refers to the hardware resource cost of the whole system
with a Rocket core and peripherals. We observe an extra usage of
34.04% slice LUTs and 93.17% slice Registers in the whole system. In
addition, it incurs 2.31% power consumption. The hardware over-
head of Raft is reasonable. As mentioned before, our new storage
mechanism optimizes the structure of tag storage and moves tags
from shadow memory to the coprocessor. Although the hardware
resource is limited, it is sufficient to track the information flow of
embedded applications whose size is small. For instance, 1 KiB TSF
(Base-FP) and 1 KiB TSF (Base-GP) support tracking programs with
8 KiB data segments and 4 KiB stack maximum size. In fact, when

1The experiment result of Raksha v2 is from their paper.

tracking the same program, the scheme using shadow memory re-
quires a much larger storage space compared to our design. Similar
work [10] that places tags in the coprocessor introduces higher
hardware resource overhead (≈ 2× slice LUTs and ≈ 0.34× slice
Registers).

Table 6: Hardware resource cost of Raft.

Whole System

Power

Slice LUTs Slice Registers

Without Raft 58,442 29,445 3.46 W
With Raft 78,355 56,879 3.54 W

% + 34.07% + 93.17% + 2.31%

7.6 RQ5: Security Features of Raft

7.6.1 Vulnerable Sample Program. We use a vulnerable sample
program to demonstrate how our framework works to protect
programs at runtime and discuss the security provided by Raft.
Listing 2 shows the code of the simplified program. The variable
private_data is sensitive data (line 8) that should not be tampered
with or leaked. The program accepts a file input and has a buffer
overflow vulnerability (lines 9-15), failing to check the bounds of
the fixed-size array buffer. The sensitive data is propagated to the
variable temp (line 16). We construct three exploits to illustrate the
functionality of Raft, and all attacks are successfully detected by
our framework.

1 struct SAMPLE{
2 char buffer [20];
3 int private_data;
4 };
5 int test()
6 {
7 struct SAMPLE s;
8 s.private_data = 5; // source ①
9 signed char input_char;
10 int i = 0;
11 while ((input_char = fgetc(fp)) != EOF) // source ②
12 {
13 s.buffer[i] = input_char;
14 i++;
15 }
16 int temp = s.private_data;
17 process(temp); // sink ③
18 return 0; // sink ④
19 }

Listing 2: Example of a vulnerable sample program.

Our first exploit, a non-control-data attack, corrupts critical data
private_data by using a buffer overflow vulnerability. We tag
the input input_char as a source at ② and perform checks when
the critical data is used at ③. Since the tag is propagated to the
variable temp, Raft triggers a coprocessor interrupt to notice the
main core when tainted data is used in the program. Our second
attack overflows the array buffer and overwrites the return ad-
dress stored on the stack. Subsequently, it redirects the program’s
control flow to the attacker-chosen location. Similarly, we tag the
input input_char as a source at ② and check the tag of the return
address register ra at ④. As the return address is tainted, we de-
fend this attack when function test() returns. Our third exploit

Key Elements
• Taint source
• Taint propagation
• Taint sink

Applications
• Exploit detection
• Privacy leakage detection
• Data corruption detection

2 / 22

High Performance Overhead

• Software-based DTA tools often suffer from unbearably high performance overhead
• Due to Dynamic Binary Instrumentation (DBI) or Virtual Machine (VM)
• Imposing ~4x or even ~10x slowdown

• A research interest emerged in developing hardware accelerators to improve the
performance of DTA

3 / 22

Hardware-assisted DTA

Program Logic Taint Logic

mv t2, t1

sb t2 0x8000200

lb t3 0x8000200

lb t1 0x8000210

0x800200

0x800210
t2t1 t3

0x800200

0x800210
t2t1 t3

0x800200

0x800210
t2t1 t3

0x800200

0x800210
t2t1 t3

Shadow Register Shadow Memory

4 / 22

Hardware-assisted DTA on RISC-V
• Utilizing a coprocessor to perform analysis logic on RISC-V

Problem 1
• Non-negligible performance overhead (~20%)

• Mainly coming from frequent memory operations
• Reasonable for program analysis but is still unacceptable when protecting time-critical

applications at runtime (e.g., medical applications and vehicle control units)

RISC-V Rocket
Microprocessor

RoCC Interface

RoCCMain Core

L1 Data Cache

Command

Response

Core Interrupt

Coprocessor Interrupt

Memory Request

Memory Response

Memory Traffic 5 / 22

Hardware-assisted DTA on RISC-V
• Utilizing a coprocessor to perform analysis logic on RISC-V

Problem 2
• High memory overhead

• For example, a flat, fixed-size structure: directly mapping the tags of every memory address
into shadow memory requires massive storage space

1

1 1 1 1

0x1000c8

0x100108

Shadow Memory

8 GiB Memory >> 1 GiB Shadow Memory

Massive Storage Space

sb reg addr

0x8000640

0x8000641

0x8000642

0x8000643

sw reg addr

0x8000842

0x8000843

0x8000844

0x8000845

6 / 22

Goals

• A flexible hardware-assisted DTA framework on RISC-V to provide runtime protection for
embedded applications without delay to the programs

• A new tag-storage mechanism with hybrid byte/variable granularity to reduce the size of
tag storage

7 / 22

Architecture Overview

 RoCC InterfaceRISC-V Rocket
Microprocessor

Main Core

L1
Data Cache

Memory Request

Memory Response

Coprocessor Interrupt

Core Interrupt

Command

Response

-- inst
-- rs1
-- rs2

-- rd

Fetch Dec Exe Mem WBFetch Dec Exe Mem WB

PipelinePipeline

Fetch Dec Exe Mem WB

Pipeline

TU

Commit Log

-- inst
-- pc
-- addr
-- data

Control Unit
Tag Checking

Tag Propagation

ALU

Full

Sink

Shadow

Register File

Tag

Storage File

Filter

Unit

D

E

Security Violation

F
etch Load/Store

D
eco

d
e

In
s Q

u
eu

e

In
q
u
iry

Interrupt

Manager

Control Unit
Tag Checking

Tag Propagation

ALU

Full

Sink

Shadow

Register File

Tag

Storage File

Filter

Unit

D

E

Security Violation

F
etch Load/Store

D
eco

d
e

In
s Q

u
eu

e

In
q
u
iry

Interrupt

Manager

Tag

Rules

Pool

Tag

Rules

Pool Tag Storage

RAFT

Components

RAFT

8 / 22

Architecture Overview

 RoCC InterfaceRISC-V Rocket
Microprocessor

Main Core

L1
Data Cache

Memory Request

Memory Response

Coprocessor Interrupt

Core Interrupt

Command

Response

-- inst
-- rs1
-- rs2

-- rd

Fetch Dec Exe Mem WBFetch Dec Exe Mem WB

PipelinePipeline

Fetch Dec Exe Mem WB

Pipeline

TU

Commit Log

-- inst
-- pc
-- addr
-- data

Control Unit
Tag Checking

Tag Propagation

ALU

Full

Sink

Shadow

Register File

Tag

Storage File

Filter

Unit

D

E

Security Violation

F
etch Load/Store

D
eco

d
e

In
s Q

u
eu

e

In
q
u
iry

Interrupt

Manager

Control Unit
Tag Checking

Tag Propagation

ALU

Full

Sink

Shadow

Register File

Tag

Storage File

Filter

Unit

D

E

Security Violation

F
etch Load/Store

D
eco

d
e

In
s Q

u
eu

e

In
q
u
iry

Interrupt

Manager

Tag

Rules

Pool

Tag

Rules

Pool Tag Storage

RAFT

Components

RAFT

9 / 22

Tag-storage Mechanism

Mapping

Coprocessor

Shadow Register File

{taint}{data}{N/A}

0xfffff9f8

{non-taint}{address}{address of the
starting address of heap data}

t0

t1

0

{taint}

Tag Storage File

Base-GP

Tag Storage File

{non-taint}{address}

{taint}{data}

Base-FP

Main Core

Taint

1

0x000000001 0

0 1

1 0

1

1 char glo_s[4];
2 void main(){
3 char s[4];
4 char* p = (char*)malloc(4);
5 s = getInputA(); // AAA taint
6 strcpy(p, "BBB"); // BBB non-taint
7 glo_s = getInputC(); // CCC taint
8 }

General Purpose Registers

0x000863e0t0

t1 0x0000000a

Program Memory Layout

char s[4]

char* p =
(char*)malloc(4);

0xfffff9f0

0xfffff9f8

0x000863e0

Command Line Arguments

……

Text/Code Segment

High Address

Low Address

char glo_s[4]

CCC\0

BBB\0

……

……

AAA\0

……

0x000863e0

……

Stack

Heap

.Data

.Bss

Program Memory Layout

char s[4]

char* p =
(char*)malloc(4);

0xfffff9f0

0xfffff9f8

0x000863e0

Command Line Arguments

……

Text/Code Segment

High Address

Low Address

char glo_s[4]

CCC\0

BBB\0

……

……

AAA\0

……

0x000863e0

……

Stack

Heap

.Data

.Bss

Mapping

Mapping

Observation
• The way to access an allocated heap

memory is usually through the start
address stored on the stack

Design
• Utilizing the information on the stack

to represent the tags of heap data

10 / 22

Tag-storage Mechanism

Mapping

Coprocessor

Shadow Register File

{taint}{data}{N/A}

0xfffff9f8

{non-taint}{address}{address of the
starting address of heap data}

t0

t1

0

{taint}

Tag Storage File

Base-GP

Tag Storage File

{non-taint}{address}

{taint}{data}

Base-FP

Main Core

Taint

1

0x000000001 0

0 1

1 0

1

1 char glo_s[4];
2 void main(){
3 char s[4];
4 char* p = (char*)malloc(4);
5 s = getInputA(); // AAA taint
6 strcpy(p, "BBB"); // BBB non-taint
7 glo_s = getInputC(); // CCC taint
8 }

General Purpose Registers

0x000863e0t0

t1 0x0000000a

Program Memory Layout

char s[4]

char* p =
(char*)malloc(4);

0xfffff9f0

0xfffff9f8

0x000863e0

Command Line Arguments

……

Text/Code Segment

High Address

Low Address

char glo_s[4]

CCC\0

BBB\0

……

……

AAA\0

……

0x000863e0

……

Stack

Heap

.Data

.Bss

Program Memory Layout

char s[4]

char* p =
(char*)malloc(4);

0xfffff9f0

0xfffff9f8

0x000863e0

Command Line Arguments

……

Text/Code Segment

High Address

Low Address

char glo_s[4]

CCC\0

BBB\0

……

……

AAA\0

……

0x000863e0

……

Stack

Heap

.Data

.Bss

Mapping

Mapping

Tag Storage File (TSF)
Tagging program memory
• 2-bit tag:

• 1 bit: taint or non-taint
• 1 bit: address or data

Shadow Register File (SRF)
Tagging general-purpose registers
• 64-bit tag:

• 1 bit: taint or non-taint
• 1 bit: address or data
• 62 bits: the location of the

address stored on the stack

11 / 22

Trace Unit

 RoCC InterfaceRISC-V Rocket
Microprocessor

Main Core

L1
Data Cache

Memory Request

Memory Response

Coprocessor Interrupt

Core Interrupt

Command

Response

-- inst
-- rs1
-- rs2

-- rd

Fetch Dec Exe Mem WBFetch Dec Exe Mem WB

PipelinePipeline

Fetch Dec Exe Mem WB

Pipeline

TU

Commit Log

-- inst
-- pc
-- addr
-- data

Control Unit
Tag Checking

Tag Propagation

ALU

Full

Sink

Shadow

Register File

Tag

Storage File

Filter

Unit

D

E

Security Violation

F
etch Load/Store

D
eco

d
e

In
s Q

u
eu

e

In
q
u
iry

Interrupt

Manager

Control Unit
Tag Checking

Tag Propagation

ALU

Full

Sink

Shadow

Register File

Tag

Storage File

Filter

Unit

D

E

Security Violation

F
etch Load/Store

D
eco

d
e

In
s Q

u
eu

e

In
q
u
iry

Interrupt

Manager

Tag

Rules

Pool

Tag

Rules

Pool Tag Storage

RAFT

Components

RAFT

• Collecting the runtime information about the main core and committing it to the
coprocessor

12 / 22

Filter Unit

 RoCC InterfaceRISC-V Rocket
Microprocessor

Main Core

L1
Data Cache

Memory Request

Memory Response

Coprocessor Interrupt

Core Interrupt

Command

Response

-- inst
-- rs1
-- rs2

-- rd

Fetch Dec Exe Mem WBFetch Dec Exe Mem WB

PipelinePipeline

Fetch Dec Exe Mem WB

Pipeline

TU

Commit Log

-- inst
-- pc
-- addr
-- data

Control Unit
Tag Checking

Tag Propagation

ALU

Full

Sink

Shadow

Register File

Tag

Storage File

Filter

Unit

D

E

Security Violation

F
etch Load/Store

D
eco

d
e

In
s Q

u
eu

e

In
q
u
iry

Interrupt

Manager

Control Unit
Tag Checking

Tag Propagation

ALU

Full

Sink

Shadow

Register File

Tag

Storage File

Filter

Unit

D

E

Security Violation

F
etch Load/Store

D
eco

d
e

In
s Q

u
eu

e

In
q
u
iry

Interrupt

Manager

Tag

Rules

Pool

Tag

Rules

Pool Tag Storage

RAFT

Components

RAFT

• Filtering out DTA-unrelated instructions that do not involve tag propagation
• Manually instrumenting two custom instructions before and after the block of unrelated

instructions

13 / 22

Control Unit

 RoCC InterfaceRISC-V Rocket
Microprocessor

Main Core

L1
Data Cache

Memory Request

Memory Response

Coprocessor Interrupt

Core Interrupt

Command

Response

-- inst
-- rs1
-- rs2

-- rd

Fetch Dec Exe Mem WBFetch Dec Exe Mem WB

PipelinePipeline

Fetch Dec Exe Mem WB

Pipeline

TU

Commit Log

-- inst
-- pc
-- addr
-- data

Control Unit
Tag Checking

Tag Propagation

ALU

Full

Sink

Shadow

Register File

Tag

Storage File

Filter

Unit

D

E

Security Violation

F
etch Load/Store

D
eco

d
e

In
s Q

u
eu

e

In
q
u
iry

Interrupt

Manager

Control Unit
Tag Checking

Tag Propagation

ALU

Full

Sink

Shadow

Register File

Tag

Storage File

Filter

Unit

D

E

Security Violation

F
etch Load/Store

D
eco

d
e

In
s Q

u
eu

e

In
q
u
iry

Interrupt

Manager

Tag

Rules

Pool

Tag

Rules

Pool Tag Storage

RAFT

Components

RAFT

• Controlling analysis logic
1. Dequeue an instruction and Decode it
2. Query tag propagation rules
3. Perform DTA operations

1

12032879

September 2023

1 Introduction

Algorithm 1: Tag Propagation and Tag Checking

Input: instruction type instType
1 Tag(rd)← Tag(rs1);
2 Tag(rd)← Tag(rs1) ∨ Tag(rs2);
3 Tag(rd)← Tag(Mem[rs1 + offset]);
4 Tag(Mem[rd+ offset])← Tag(rs1);

1

14 / 22

Control Unit

 RoCC InterfaceRISC-V Rocket
Microprocessor

Main Core

L1
Data Cache

Memory Request

Memory Response

Coprocessor Interrupt

Core Interrupt

Command

Response

-- inst
-- rs1
-- rs2

-- rd

Fetch Dec Exe Mem WBFetch Dec Exe Mem WB

PipelinePipeline

Fetch Dec Exe Mem WB

Pipeline

TU

Commit Log

-- inst
-- pc
-- addr
-- data

Control Unit
Tag Checking

Tag Propagation

ALU

Full

Sink

Shadow

Register File

Tag

Storage File

Filter

Unit

D

E

Security Violation

F
etch Load/Store

D
eco

d
e

In
s Q

u
eu

e

In
q
u
iry

Interrupt

Manager

Control Unit
Tag Checking

Tag Propagation

ALU

Full

Sink

Shadow

Register File

Tag

Storage File

Filter

Unit

D

E

Security Violation

F
etch Load/Store

D
eco

d
e

In
s Q

u
eu

e

In
q
u
iry

Interrupt

Manager

Tag

Rules

Pool

Tag

Rules

Pool Tag Storage

RAFT

Components

RAFT

• Pipelining the above tasks
• Moving tags from shadow memory to the coprocessor

15 / 22

Interrupt Manager

 RoCC InterfaceRISC-V Rocket
Microprocessor

Main Core

L1
Data Cache

Memory Request

Memory Response

Coprocessor Interrupt

Core Interrupt

Command

Response

-- inst
-- rs1
-- rs2

-- rd

Fetch Dec Exe Mem WBFetch Dec Exe Mem WB

PipelinePipeline

Fetch Dec Exe Mem WB

Pipeline

TU

Commit Log

-- inst
-- pc
-- addr
-- data

Control Unit
Tag Checking

Tag Propagation

ALU

Full

Sink

Shadow

Register File

Tag

Storage File

Filter

Unit

D

E

Security Violation

F
etch Load/Store

D
eco

d
e

In
s Q

u
eu

e

In
q
u
iry

Interrupt

Manager

Control Unit
Tag Checking

Tag Propagation

ALU

Full

Sink

Shadow

Register File

Tag

Storage File

Filter

Unit

D

E

Security Violation

F
etch Load/Store

D
eco

d
e

In
s Q

u
eu

e

In
q
u
iry

Interrupt

Manager

Tag

Rules

Pool

Tag

Rules

Pool Tag Storage

RAFT

Components

RAFT

• Managing the coprocessor interrupt
• Security violation (e.g., return address comes from the system input)
• Instruction Queue is full

16 / 22

Implementation
• Implementing our prototype based on PHMon (USENIX Security’20)

• An efficient programmable hardware monitor to enforce an event–action monitoring model
• Utilizing it to flexibly configure tag propagation rules and trace the runtime information

• Raft is deployed on the RISC-V Rocket emulator and Xilinx Kintex-7 FPGA KC705
evaluation board

• Custom instructions (RISC-V ISA)

1

12032879

September 2023

1 Introduction

Algorithm 1: Tag Propagation and Tag Checking

Input: instruction type instType
1 Tag(rd)← Tag(rs1);
2 Tag(rd)← Tag(rs1) ∨ Tag(rs2);
3 Tag(rd)← Tag(Mem[rs1 + offset]);
4 Tag(Mem[rd+ offset])← Tag(rs1);

Table 1: Custom instructions functionality. Among them, base, open, and close
instructions are directly executed by the coprocessor, and taint, arg, and src
instructions are committed to the coprocessor and processed as a commit log.

Instruction Usage

taint rs1, rs2 Mark the taintedness
src rs1, rs2 Mark heap pointer variables
arg rd, rs1 Assist tag propagation
open/close zero, zero Filter out DIFT-unrelated instructions
sink rs1, rs2 Perform security checks
base fp/gp, rs2 Pass the frame pointer and global pointer to the coprocessor

1
• Toolchain (LLVM 12.0.1) and OS support (Linux v5.4)

17 / 22

Performance Evaluation

Comparison against Traditional Storage
• Shadow Memory: 22.54% overhead on CoreMark and 26.37% overhead on NBench
• Raft: <0.1% overhead on CoreMark and NBench

• Raft effectively cuts down the performance overhead from >20% to <0.1% with our
new tag-storage mechanism

1200

1400

1600

1800

Baseline Our Work Shadow Memory

It
er

a
ti

o
n

s/
S

ec

0.9

1.0

1.1

1.2

1.3

1.4

1.5

FOURIER NEURAL NET LU

DECOMPOSITION

N
o

rm
a

li
ze

d
 O

v
er

h
ea

d

(c) FP Intensive Test

Shadow Memory

Our Work

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

NUMERIC

SORT

FP

EMULATION

IDEA HUFFMAN

N
o

rm
a

li
ze

d
 O

v
er

h
ea

d

(a) CPU Intensive Test

Shadow Memory

Our Work

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

STRING SORT BITFIELD ASSIGNMENT

N
o

rm
a

li
ze

d
 O

v
er

h
ea

d

(b) Memory Intensive Test

Shadow Memory

Our Work

18 / 22

Performance Evaluation

• SPEC CINT 2006: 0.13% overhead on average

0.13%

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

P
er

fo
rm

a
n

ce
 O

v
er

h
ea

d

Raft

• We set up a main core with a peak instruction processing rate 2x and 3x that of the
coprocessor and rerun the CoreMark

• Raft still introduces negligible performance overhead

19 / 22

Hardware Resource Cost

• An extra usage of 34.04% LUTs and 93.17% FFs
• 2.31% power overhead

Raft: Hardware-assisted Dynamic Information Flow Tracking for Runtime Protection on RISC-V RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

because there is no need to access memory. Moreover, it only han-
dles committed instructions from the main core. By contrast, the
main core has to deal with mispredicted instructions, instruction
cache misses, and pipeline dependencies. Therefore, even for a su-
perscalar processor, a DIFT-dedicated coprocessor can achieve close
Instruction Per Clock (IPC).

Table 5: Performance overhead comparison when the copro-

cessor is paired with higher-frequency main cores.

Processor/Coprocessor Frequency Ratio

1x 1.5x 2x 3x

Raksha v2 [31] 0.79% 3.8% 11.7% \
Raft <0.1% \ <0.1% <0.1%

To further explore the performance of the coprocessor, we con-
struct an experiment in which we clock the coprocessor at a lower
frequency than the main core, similar to Raksha v2 [31]. We set up
a main core with a peak instruction processing rate 2x and 3x that
of the coprocessor and rerun the CoreMark benchmark. The size of
the Instruction Queue is set to 16 to keep consistent with Raksha v2.
As Table 5 demonstrates, Raft introduces negligible performance
overhead (<0.1%) at the 3x ratio, while Raksha v2 reports 11.7% 1 at
the 2x ratio in the paper. Raksha v2 utilizes a tag cache to mitigate
memory traffic from the main core. Consequently, as the frequency
gap increases, the overhead becomes higher owing to the tag cache
miss and the full queue that blocks the main core. Compared with
Raksha v2, Raft deposits tag storage in the coprocessor and updates
tags via register access. The case where the queue is full does not
happen in the experiment, so the performance overhead remains
negligible. This indicates that the coprocessor performs well and
can be used with a superscalar core.

7.5 RQ4: Hardware Resource Cost

To assess the hardware resource cost of Raft, we instantiate the
original and the modified RISC-V Rocket Cores and synthesize
them on the FPGA development board using Vivado 2018.3. In our
evaluation, we configure Raft with 9 MUs, 32 64-bit registers for
SRF, 1 KiB registers for TSF (Base-FP), and 9 KiB registers for TSF
(Base-GP), which is sufficient to accommodate all experiments in
our evaluation. The Instruction Queue is set to hold up to 1,024
elements.

Table 6 shows the power and area overheads of Raft. Whole
System refers to the hardware resource cost of the whole system
with a Rocket core and peripherals. We observe an extra usage of
34.04% slice LUTs and 93.17% slice Registers in the whole system. In
addition, it incurs 2.31% power consumption. The hardware over-
head of Raft is reasonable. As mentioned before, our new storage
mechanism optimizes the structure of tag storage and moves tags
from shadow memory to the coprocessor. Although the hardware
resource is limited, it is sufficient to track the information flow of
embedded applications whose size is small. For instance, 1 KiB TSF
(Base-FP) and 1 KiB TSF (Base-GP) support tracking programs with
8 KiB data segments and 4 KiB stack maximum size. In fact, when

1The experiment result of Raksha v2 is from their paper.

tracking the same program, the scheme using shadow memory re-
quires a much larger storage space compared to our design. Similar
work [10] that places tags in the coprocessor introduces higher
hardware resource overhead (≈ 2× slice LUTs and ≈ 0.34× slice
Registers).

Table 6: Hardware resource cost of Raft.

Whole System

Power

Slice LUTs Slice Registers

Without Raft 58,442 29,445 3.46 W
With Raft 78,355 56,879 3.54 W

% + 34.07% + 93.17% + 2.31%

7.6 RQ5: Security Features of Raft

7.6.1 Vulnerable Sample Program. We use a vulnerable sample
program to demonstrate how our framework works to protect
programs at runtime and discuss the security provided by Raft.
Listing 2 shows the code of the simplified program. The variable
private_data is sensitive data (line 8) that should not be tampered
with or leaked. The program accepts a file input and has a buffer
overflow vulnerability (lines 9-15), failing to check the bounds of
the fixed-size array buffer. The sensitive data is propagated to the
variable temp (line 16). We construct three exploits to illustrate the
functionality of Raft, and all attacks are successfully detected by
our framework.

1 struct SAMPLE{
2 char buffer [20];
3 int private_data;
4 };
5 int test()
6 {
7 struct SAMPLE s;
8 s.private_data = 5; // source ①
9 signed char input_char;
10 int i = 0;
11 while ((input_char = fgetc(fp)) != EOF) // source ②
12 {
13 s.buffer[i] = input_char;
14 i++;
15 }
16 int temp = s.private_data;
17 process(temp); // sink ③
18 return 0; // sink ④
19 }

Listing 2: Example of a vulnerable sample program.

Our first exploit, a non-control-data attack, corrupts critical data
private_data by using a buffer overflow vulnerability. We tag
the input input_char as a source at ② and perform checks when
the critical data is used at ③. Since the tag is propagated to the
variable temp, Raft triggers a coprocessor interrupt to notice the
main core when tainted data is used in the program. Our second
attack overflows the array buffer and overwrites the return ad-
dress stored on the stack. Subsequently, it redirects the program’s
control flow to the attacker-chosen location. Similarly, we tag the
input input_char as a source at ② and check the tag of the return
address register ra at ④. As the return address is tainted, we de-
fend this attack when function test() returns. Our third exploit

20 / 22

Functionality Evaluation

• A medical embedded application OpenSyringePump
• Detecting a non-control data attack by exploiting a buffer overflow vulnerability

• 5 known CVEs

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Yu Wang, Jinting Wu, Haodong Zheng, Zhenyu Ning, Boyuan He, and Fengwei Zhang

is pure information leakage, leading to leakage of the private data
private_data. The function process() is undermined to output
the private data. We tag the variable private_data as a source at
① and check the output function. As a result, we detect information
leakage.

Control-flow Attacks. Control-flow hijacking is an attack tech-
nique that compromises the program’s control flow integrity. Con-
ventional control-flow attacks depend on injecting shellcode into
writable memory and redirecting the control flow to execute it. Such
code injection attacks have been well prevented by the widespread
deployment of measures like Data Execution Prevention (DEP).
However, code reuse attacks, such as Return-oriented Program-
ming (ROP) [7] and Jump-oriented Programming (JOP) [9], are still
quite prevalent. Attackers construct gadgets ending with return
or jump instructions from existing code without code injection and
redirect the control flow to execute in an attacker-controlled order.
Raft defends against control-flow attacks by tagging external input
as sources and checking all control-flow transfer instructions. Once
the jump target address is tainted data, the attacks will be detected
by Raft.

Non-control Data Attacks. Non-control-data attacks [15] in-
fluence program behavior without breaking the program’s control-
flow integrity. Attackers corrupt critical data (e.g., variables used for
decision-making), which can lead to escalating privileges. Alterna-
tively, pure non-control-data attacks manipulate the data pointer to
output a private key, leading to sensitive data leakage. Such attacks
are beyond the scope of defense techniques that ensure control-flow
integrity and are difficult to defend against. Raft can be configured
to tag private data as sources. Thus, information leakage will be
detected when tagged private data are used by output functions.
Similarly, Raft detects data corruption by performing checks when
critical data is used.

7.6.2 Real-World Application. We apply Raft to protect an open-
source real-world embedded application OpenSyringePump [59].
A syringe pump is a medical device that controls the quantity of
fluid to dispense or withdraw at regular time intervals. It is widely
used to inject medicines into patients. Hence, a syringe pump must
highly assure correct operations and has strict time requirements.
The device consists of a stepper motor, a fluid-filled syringe, and
a microcontroller. The control system accepts commands from a
keypad and a serial terminal and moves the stepper motor. Open-
SyringePump is an open-source implementation of a syringe pump,
which has already been used in previous works [2, 45, 52] to eval-
uate embedded system security. Since the original application is
written in Arduino Script, we use a C version 2 adopted by [2] and
port it on RISC-V.

We slightly modify the code and construct a non-control data
attack by exploiting a buffer overflow vulnerability. The program
receives user input from the serial terminal and stores it in a buffer
serialStr without checking the bounds. When a key is pressed,
the program receives an analog value and iterates through the pre-
defined static key-map array to recognize the pressed key. We over-
flow the buffer and corrupt the static key-map array adc_key_val
used for processing input from the keypad. This attack causes the
program to perform actions when no physical key is pressed (e.g.,
2https://github.com/control-flow-attestation/c-flat/tree/master/samples/syringe

Table 7: Summary of tested software vulnerabilities.

ID CVE ID Program Vulnerability Detection

1 CVE-2009-4496 Boa Information Leakage ✓
2 CVE-2014-8503 Size Buffer Overflow ✓
3 CVE-2016-3186 Gif2tiff Buffer Overflow ✓
4 CVE-2018-17100 Ppm2tiff Integer Overflow ✓
5 CVE-2010-0001 Gzip Integer Underflow ✓

the right key triggers the syringe to inject liquid). We instrument
the program and configure the critical data adc_key_val as sources.
Raft successfully detects this attack by performing checks when
the static key-map array is used in the function that converts ADC
value to key number.

7.6.3 CVEs. We further test Raft with 5 programs whose vulnera-
bilities are listed in Table 7, which covers common software exploits
concerning spatial safety. Among them, the buffer overflow vul-
nerabilities in size and gif2tiff use file input data as parameters
of potentially unsafe functions, which causes a denial of service.
ppm2tiff uses integer overflowed value in memory allocation func-
tions, leading to insufficient memory allocation. Integer underflow
in gzip leads to an array index error. boa writes data to a log file
without sanitizing non-printable characters. We manually mark
the locations of sources and sinks according to publicly available
vulnerability reports and successfully detect these CVEs.

8 DISCUSSIONS AND LIMITATIONS

8.1 Limitations

Raft reduces the demand for tag storage by applying a coarser
granularity for the heap. We record the start address of the al-
located heap memory without the size of the allocation. In such
a manner, we effectively reduce the tag storage size and further
substantially improve performance. Accordingly, it is difficult to
determine whether the whole heap variable is fully or partially
tainted. Thus, Raft’s design may have overtaint issues for heap
variables. However, there are no undertaint issues on the taint-
propagation path containing heap objects. The usage of the heap
will not cause the system to not work. Note that undertaint has a
greater impact than overtaint, especially for security-critical ap-
plications. Additionally, Raft has limited capabilities to prevent
attacks exploiting vulnerabilities on the heap (e.g., heap overflow)
due to lacking information about the allocation size. Our work pro-
vides a fine-grained, robust guarantee for stack and global variables
and coarse-grained, weak protection for heap variables. Therefore,
Raft is more applicable for protecting security-critical applications
without complicated heap usage. Moreover, Raft requires mark-
ing whether the value stored in a register is a heap address. We
instrument standard memory allocation functions to specify heap
pointers, but programmers are still required to deal with custom
memory allocators.

In addition, the size of programs that Raft is capable of tracking
is contingent on the available storage resource in the coprocessor.
Large programs may not be effectively protected due to the limited
size of TSF. Recursive and nested function calls may also cause
tag storage exhaustion due to stack explosion. As mentioned in

21 / 22

Conclusion
• A flexible hardware-assisted DTA framework that provides runtime protection for

embedded applications without delay to the programs
• A new storage mechanism with hybrid byte/variable granularity
• A prototype on the RISC-V Rocket emulator and FPGA development board

https://github.com/Compass-All/Raft

Thanks!
You can reach me at 12032879@mail.sustech.edu.cn for follow-up questions

I am looking for PhD positions in System Security

22 / 22

https://github.com/Compass-All/Raft

	Introduction
	Motivation
	Design
	Implementation
	Evaluation
	Conclusion

