
Nighthawk: Transparent System Introspection
from Ring -3

ESORICS 2019
Lei Zhou() ∗, Jidong Xiao1, Kevin Leach5, Westley Weimer5,

𝐅𝐞𝐧𝐠𝐰𝐞𝐢 𝐙𝐡𝐚𝐧𝐠F) ∗∗, Guojun WangI
(Central South University, China
)Wayne State University, USA
1 Boise State University, USA
5 University of Michigan, USA

F SUSTech, China
I Guangzhou University, China

* Work was done while visiting COMPASS lab at WSU; ** The corresponding author

Outline

• Introduction and Background

• Architecture of Nighthawk

• Design and Implementation

• Evaluation: Effectiveness and Performance

• Conclusion

Privilege Layers

Ring 3 User mode virus

Ring 0 Kernel mode rootkits

Ring -1 Hypervisor rootkits

Ring -2 SMM rootkits (SMM reload)

Defense Mechanism

How to defend against the attacks in each
layer?

Defense Mechanism

Deploy a defense at the a more privileged
layer !

How to defend against the attacks in each
layer?

Existing Malware Detection

n Virtualization based defensive approach (ring -1)
Advantages ---- Full control of VM.
Limitations ---- High performance overhead and more likely to be a new
target of attack.

Existing Malware Detection

n Virtualization based defensive approach (ring -1)
Advantages ---- Full control of VM.
Limitations ---- High performance overhead and more likely to be a new
target of attack.

n Hardware based defensive approach (ring -2)
Advantages ---- Small TCB and lower layer.
Limitations ---- Additional monitoring device or disturbing the normal
system execution.

How to better defend against low-level
attacks?

“Ring -3” ?

How to better defend against low-level
attacks?

Higher Privilege System In Intel Architecture

Intel ME system:
Strong Isolation but

integrate into
motherboard

Intel ME system:
Provide assistance
protection for Host

DRAM

Main CPU ME CPU

Hardware
Software

SPI Flash
Memory

ME
UMA

Intel Chipset

Intel AMT

Supervisor mode
User mode

Applications

Hypervisor kernel

SMRAM

Understanding DMA Malware (DIMVA 2012)

Intel Management Engine

ü No Extra Hardware
Needed

ü Full Privilege

ü Small TCB

ü Transparency and low
performance overhead

Intel Management Engine

ü No Extra Hardware
Needed

ü Full Privilege

ü Small TCB

ü Transparency and low
performance overhead

However, IME related
resources are not public to

users

Location

Microcontroller embedded in
the PCH (older version in
MCH)

Outline

• Introduction and Background

• Architecture of Nighthawk

• Design and Implementation

• Evaluation: Effectiveness and Performance

• Conclusion

High-level Architecture of the Nighthawk

If we are able to add introspection code into IME system, we can check arbitrary host
physical memory.

Introspection
&

Forensics

Introspection
modules

Compromised
Memory

Remote Machine
IME Target Host

Target Machine

Assist
Analyzing

DMA-based Checking

Details of Components in Nighthawk

Outline

• Introduction and Background

• Architecture of Nighthawk

• Design and Implementation

• Evaluation: Effectiveness and Performance

• Conclusion

Nighthawk Design & Implementation

§ Preparing the Target Machine

§ Target Host Reconnaissance

§ Measuring Integrity via Custom IME

§ Command from Remote Machine

High-level Overview of the Implementation

Nighthawk Design & Implementation

§ Preparing the Target Machine

§ Target Host Reconnaissance

§ Measuring Integrity via Custom IME

§ Command from Remote Machine

Preparing Target Machine (1) — Code Injection

The Process for introspection code injection in ME

How to Inject the Introspection Code

Through Reverse engineering of the ME system code, we find
the ideal function entry in which to inject the code.

Preparing Target Machine (2) — Stop Reusing Injection

Stop reusing the injection in ME: leveraging the Intel
TXT to lock the related registers.

Nighthawk Design & Implementation

§ Preparing the Target Machine

§ Target Host Reconnaissance

§ Measuring Integrity via Custom IME

§ Command from Remote Machine

Target Host Reconnaissance (1) — General Case
The information including:
System call table : 0x1653100
Kernel _text: 0x1000000
kvm_intel: 0xf8bc7000
…

Once the host system initializes, we fetch those basic information.

Target Host Reconnaissance (2) — Special Case

To mitigate some attacks like ATRA, we
leverage SMM to get the runtime CPU
information after checking SMRAM.

Nighthawk Design & Implementation

§ Preparing the Target Machine

§ Target Host Reconnaissance

§ Measuring Integrity via Custom IME

§ Command from Remote Machine

Measuring Integrity via Custom IME

Workflow of Introspection

Nighthawk Design & Implementation

§ Preparing the Target Machine

§ Target Host Reconnaissance

§ Measuring Integrity via Custom IME

§ Command from Remote Machine

Command from Remote Machine

Outline

• Introduction and Background

• Architecture of Nighthawk

• Design and Implementation

• Evaluation: Effectiveness and Performance

• Conclusion

Evaluation

The test environment platform:

ü Intel DQ35JO motherboard with 3.0GHz Intel E8400 CPU, ICH9D0 I/O
Controller Hub and 2GB RAM.

ü Intel e1000e Gigabyte network card for the network communication.

ü We use an earlier BIOS version (JOQ3510J.86A.0933) for injecting code into ME.

ü We run Ubuntu with the Linux kernel version 2.6.x to 4.x, along with KVM- and
Xen-based Hypervisor.

Effectiveness--General Attacks

To simulate the attacking environment, we use
existing rootkits for OS kernel, SMM, etc., installed in
the target system.

We manually modify the memory content in kernel,
Xen, KVM and SMM modules.

Through experiments, all attacks
illustrated in this table have been
detected by Nighthawk

Target Object and Attacks

Effectiveness -- Mitigating Special Attacks

We simulate a transient attack using a toorkit-modified
rootkit that changes the pointer address of the system call
table.

Our results in the table show that Nighthawk can detect
transient attacks in real world.

Transient Attacks Detection

ATRA Detection

We detect ATRA by testing for Page Global Directory and CR3 changes

Performance Evaluation

DMA Fetching Overhead

Integrity Checking Overhead

Transmission Overhead

DMA Fetching Overhead

Fetching data from host memory to ME memory

Time consumed by fetching data (Pages).
* represents the number of PTEs.
α represents accessing times. Time consumed by DMA (User Cases).

Memory Degradation Due To Introspection

With the benchmark test, the results show that Nighthawk has a very small
performance impact to host.

Integrity Checking Overhead

§ Time cost depends on the hash algorithm we choose.
-- For 4KB memory page, it takes 7.3ms for checking under SDBM hash.

§ Note that, for more complexity hash algorithm, e.g., sha1, it takes
more time for checking.

§ Compared to the fetching time, the checking time is very lower.

Comparison for Checking Overhead

With the SDBM hash verification test, we found the computing performance is much lower than it
is in Host. For example, comparing a 6.3MB data, 25s is needed in ME, and 10 ms in Host.

We develop a CPU speed testing program, and the experimental result shows that the
ME CPU executes approximately 15 million instructions each second (Meanwhile,

billions per second on regular CPUs).

Main factor: ME CPU core has a significantly lower
computational capability.

Transmission Overhead

l For a small message(<1KB), takes 228ms on average to pass the data.

l For a dumping data (i.e., > 64KB), we divide the data into multiple packets and
transmit via multiple messages. e.g., 64KB data takes 4.9s.

Performance Evaluation Summary

Conclusion

Nighthawk—a transparent introspection framework
— Leveraging Intel ME
— High privilege: ring -3
— Small TCB

Attack scenarios
— Real-world attacks against OS kernels, type-I and type-II

hypervisors, and unlocked system management RAM

Introducing almost zero overhead

Thank you! Questions?

zhangfw@sustech.edu.cn

https://fengweiz.github.com/

mailto:zhangfw@sustech.edu.cn
https://fengweiz.github.com/

