
MobiPluto: File System Friendly Deniable Storage for

Mobile Devices

Bing Chang

1,2,3
, Zhan Wang

1,2
⇤

, Bo Chen

4
, Fengwei Zhang

5

1
State Key Laboratory of Information Security,

Institute of Information Engineering, Chinese Academy of Sciences, China

2
Data Assurance and Communication Security Research Center,

Chinese Academy of Sciences, China

3
University of Chinese Academy of Sciences, China

4
College of Information Sciences and Technology, The Pennsylvania State University, USA

5
Department of Computer Science, Wayne State University, USA

{changbing,wangzhan}@iie.ac.cn, bxc30@psu.edu, fengwei@wayne.edu

ABSTRACT
Mobile devices are prevalently used for processing personal
private data and sometimes collecting evidence of social in-
justice or political oppression. The device owners may al-
ways feel reluctant to expose this type of data to undesired
observers or inspectors. This usually can be achieved by
encryption. However, the traditional encryption may not
work when an adversary is able to coerce device owners into
revealing their encrypted content. Plausibly Deniable En-
cryption (PDE) is thus designed to protect sensitive data
against this type of powerful adversaries.

In this paper, we present MobiPluto, a file system friendly
PDE scheme for denying the existence of sensitive data stored
on mobile devices. MobiPluto achieves deniability feature as
nothing but a “side-e↵ect” of combining thin provisioning, a
well-established tool in Linux kernel, with encryption. This
feature makes MobiPluto more plausible for users to have
such software on their mobile devices. A salient di↵erence
between MobiPluto and the existing PDE schemes is that
MobiPluto is “file system friendly”, i.e., any block-based file
systems can be deployed on top of it. Thus, it is possible
to deploy MobiPluto on most mobile devices. We provide
a proof-of-concept implementation for MobiPluto in an An-
droid phone to assess its feasibility and performance.

Keywords
Plausibly Deniable Encryption, Mobile, Thin Provisioning,
LVM

1. INTRODUCTION
Mobile devices are frequently used for processing private

data and sometimes collecting evidence of social injustice

⇤This author is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’15, December 07-11, 2015, Los Angeles, CA, USA

c� 2015 ACM. ISBN 978-1-4503-3682-6/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2818000.2818046

or political oppression. The owner of a mobile device may
be reluctant to expose this type of data to undesired ob-
servers or inspectors. With today’s fast-paced, multitasking
lifestyle, it is possible to leave our phones lying on table with
an unlocked screen incautiously [26]. In certain geopolitical
areas with tensions, the border inspector may compulsively
require the passengers to reveal the content on their mobile
devices. This could prove detrimental and may compromise
security of particular professionals such as human rights ac-
tivists, who may possess evidence of violence.

Plausibly Deniable Encryption (PDE) has been adopted
to protect sensitive data against powerful adversaries who
can coerce users into revealing their encrypted content. This
practice should not be confused with encryption, as regu-
lar encryption is overt, while PDE is covert. A variety of
PDE systems have been published for PC platform, includ-
ing Rubberhose [24], TrueCrypt [35], etc. StegFS [28] is
a PDE solution for Ext2 file system, but its drawbacks in-
clude: (1) it is space costly for resolving overwritten issue by
using multiple copies; (2) the existence of the modified Ext2
driver and the external block table may lead to compromise
of deniability. Ragnarsson et al. [31] was the first to mention
taking advantage of thin provisioning to achieve deniability
on PC’s and inspired our work. However, their proposed
design requires significant modification of thin provisioning
and fails to hide the metadata, thus the deniability cannot
be fully realized.

As the first PDE system implemented for mobile devices,
Mobiflage [33] requires a physical or emulated FAT32 SD
card which is not necessarily present in some mobile de-
vices. Recently, Mobiflage [15] is extended to support Ext4
file system by modifying the driver of Ext4. Although the
extended Mobiflage no longer requires a physical or emu-
lated FAT32 SD card, its modifications to the Ext4 driver
may indicate the use of PDE and lead to compromise of
deniability. MobiHydra [36] improves Mobiflage by adding
support to multiple levels of deniability and mode switching
without rebooting, but it also requires a physical or emu-
lated FAT32 SD card.

All the prior solutions [15, 24, 28, 31, 33, 35, 36] are not
suitable for mobile devices, due to their performance and
storage costs, getting inadequate support by the mobile op-
erating systems, or being forced to modify the associated
file systems as a last resort. In this work, we propose Mobi-

http://dx.doi.org/10.1145/2818000.2818046

Pluto, a file system friendly PDE solution, which can make
the existence of sensitive data stored on mobile devices deni-
able. To achieve deniability, two types of volumes are used:
a public volume for storing regular data, and one or multiple
hidden volumes for storing sensitive data. The volumes are
protected by di↵erent passwords and encrypted with associ-
ated master keys. The key features of MobiPluto include:

• File system friendly. As data hiding is achieved at
the block level, any block-based file systems can be de-
ployed on top of MobiPluto without modifications. To
the best of our knowledge, no prior work can provide
such a novel feature.

• Deniability as a side-e↵ect. MobiPluto achieves
deniability as nothing but a “side-e↵ect” of combin-
ing thin provisioning with encryption. Note that thin
provisioning has been a well-established tool in Linux
kernel.

• User-controlled deniability levels. A user is able
to control the number of deniability levels in the sys-
tem. This can be achieved by choosing the number of
hidden volumes during initialization.

• Less storage cost. Compared to the steganographic
based schemes [16, 28, 29], MobiPluto does not require
extra storage for solving the overwritten problem be-
tween public data and hidden data.

We provide a proof-of-concept implementation for An-
droid 4.2.2 on LG Nexus 4 to assess the feasibility and per-
formance of MobiPluto. We also discuss the best practices
users should follow to restrict other known issues that may
lead to compromise of deniability.

The rest of the paper is organized as follows: Section 2
presents the background. In Section 3, we discuss mod-
els and assumptions, including system model and adversar-
ial model. In Section 4, we describe MobiPluto design. In
Section 5, we discuss the implementation for Android. We
present the evaluation results in Section 6, including security
analysis and performance evaluation. In Section 7, we dis-
cuss our design. Section 8 presents related work and Section
9 is the conclusion.

2. BACKGROUND

2.1 Deniable Encryption
Plausibly deniable encryption (PDE) was first explored to

maintain the privacy of communicated data against a coer-
cive attacker, who can approach and coerce either the sender
or the receiver into revealing the decryption keys [19]. When
being applied to storage encryption, it allows a data owner
to decrypt a ciphertext to a plausible and benign decoy
plaintext when using a di↵erent key, such that the owner is
able to deny the existence of the original sensitive data [33].
For achieving plausibility, it requires that [31], 1) the decoy
plaintext can be normally found on a computer; 2) all the ci-
phertexts should be “accounted for”, i.e., having a plausible
explanation.

2.2 Full Disk Encryption
To protect sensitive data, it can either encrypt individ-

ual files/directories (i.e., file system level encryption) or en-
crypt the entire disk (i.e., full disk encryption). Compared

to file system level encryption, full disk encryption (FDE)
has several benefits: 1) it transparently encrypts almost ev-
erything including the swap space and temporary files, by
which the users do not need to bother about which files to be
encrypted; 2) it allows to immediately destruct data by sim-
ply destroying a small number of keys for FDE. Popular FDE
tools include BitLocker [4] (for Windows) and FileVault [12]
(for Mac OS). FDE on Android has been an option since
Android 3.0 [21] and it is implemented with dm-crypt [7].

To deny the existence of sensitive data protected by FDE,
the device owner can claim that he/she does not possess the
secret keys any more (e.g., he/she has not used the device
for a long time, and has forgotten the password), and is not
able to decrypt the disk. This however, only provides very
weak deniability as the device owner may not be able to
prove the aforementioned statement [31].

2.3 Steganographic File Systems vs. Hidden
Volumes

To build practical PDE systems, it typically relies on ei-
ther steganography or hidden volumes. Multiple stegano-
graphic file systems [16, 28, 29] have been designed in the
literature to hide data in regular file systems. However, all
of them seem to hide deniable data among regular file data.
This may result in data loss of hidden files as they may be
overwritten by the regular file data. To mitigate the risk
of data loss, they usually need to maintain a large amount
of redundant data which will lead to ine�cient use of disk
space. The hidden-volume mechanism (e.g., TrueCrypt [35])
can mitigate the risk of data loss by intelligently placing all
the deniable files toward the end of the disk. In this way, the
redundant data required for data loss can be significantly re-
duced. Consequently, we choose to use hidden volumes to
build MobiPluto.

The hidden-volume mechanism works as follows. The disk
is initially filled with random data. Two volumes are cre-
ated on the disk, a public volume and a hidden volume. The
public volume is encrypted (i.e., FDE) by a decoy key and is
placed on the entire disk. The hidden volume is encrypted
by a hidden key and is placed towards the end of the disk,
starting from a secret o↵set. Upon a coercive attack, the
device owner can disclose the decoy key to the attacker, to
deny the existence of the hidden volume, as the attacker
cannot di↵erentiate the encrypted hidden volume data and
the initial randomness embedded on the disk. Note that
when using the hidden-volume mechanism to achieve denia-
bility, the data written to the public volume should be placed
sequentially (or approximately sequentially), to reduce the
risk of over-writing the sensitive data stored in the hidden
volume. This explains why the PDE systems [33, 36] based
on hidden volumes prefer to use FAT [11] file systems.

2.4 Thin Provisioning
To avoid any potential failures caused by inadequate stor-

age, storage administrators usually need to plan ahead and
install more storage capacity than required (i.e., “thick pro-
visioning”). This thick provisioning usually leads to signifi-
cant waste, as a lot of storage capacity may remain unused
over time. Thin provisioning has been designed to optimize
storage utilization by eliminating the need for installing un-
necessary storage capacity. With thin provisioning, a stor-
age administrator only allocates logical storage space to an
application and the system will not release the physical stor-

age capacity until it is actually required. This “on-demand”
storage avoids pre-allocating physical storage capacity, elim-
inating the waste caused by unused capacity.

Thin provisioning has been implemented by the dm-thin-
pool module, which works with two devices, a data device
and a metadata device. The data device contains blocks
of the various volumes, allocated sequentially from the be-
ginning, while the metadata device contains the block map-
pings. The dm-thin module provides two device mapper
targets, thin-pool and thin. The thin-pool target maps the
data and the metadata device to a pool device, while the
thin target maps this pool device to multiple thin volume
devices.

Logical Volume Manager (LVM [1]) has gained popularity
on Android for being able to flexibly handle internal and
external storage [2, 5]. Thin provisioning is added to LVM
and can provide much more flexible storage management.
As mobile devices become more and more powerful and are
expected to be equipped with more and more storage capac-
ity, using thin provisioning to manage mobile storage will
become extremely helpful and popular.

In this work, we aim to adapt thin provisioning to build
“file system friendly” deniable storage for mobile devices,
for the following reasons: 1) The dm-thin-pool module has
been added to the kernel, and we can simply rely on the
existing kernel features to build PDE systems for mobile
devices; 2) A thin volume can be used to build any block-
based file systems, and thin provisioning can transform the
non-sequential allocation on the thin volume to sequential
allocation on the underlying storage. This makes it possible
to combine both thin provisioning and hidden volumes to
build “file system friendly” PDE systems.

3. MODELS AND ASSUMPTIONS

3.1 System Model
We mainly consider mobile devices equipped with stor-

age media that expose a block-based access interface. Such
block-based storage media are used extensively as the in-
ternal storage for mobile devices nowadays [33], including
eMMC [14], etc.

For mobile devices equipped with raw flash, MobiPluto
cannot directly work, as raw flash does not expose a block
interface due to its nature [23] (e.g., flash memory has a
limited number of program-erase cycle, and cannot be over-
written before being erased, etc.).

3.2 Adversarial Model
We consider a computationally bounded adversary, who

can fully control a mobile device after having captured the
device’s owner. The adversary can get root privilege of the
device, and fully control over the device’s internal and ex-
ternal storage, etc. Additionally, the adversary can coerce
the device’s owner to surrender keys, in order to decrypt the
storage and obtain the sensitive data stored in the device.
As mobile devices usually communicate with the external
environment, the adversary may also collude with the wire-
less carrier or the ISP to collect the network activity logs of
suspected devices.

However, we do not consider an adversary who can con-
tinuously monitor a suspicious device, and can stealthily
take periodic snapshots of the device’s storage. In other
words, our adversary can only have “one-time”, rather than

“multiple-time” storage snapshots. This would be practical
as the adversary usually can have access to a mobile device
only after seizing the user [33].

3.3 Assumptions
Our MobiPluto relies on multiple assumptions, as sum-

marized in the following:

• The adversary cannot capture a mobile device which is
working in the PDE mode. Otherwise, it can trivially
retrieve the sensitive data from the PDE mode.

• MobiPluto needs to be merged with Android code stream,
such that the PDE capability is widespread, and the
availability of PDE will not be a red flag.

• The adversary will know the design of MobiPluto. How-
ever, it does not have any knowledge on the keys and
passwords for PDE mode as well as the o↵set of the
hidden volume.

• The adversary will stop coercing the device’s owner
once it is convinced that the decryption keys have been
revealed.

• For a mobile device that uses MobiPluto, we assume
the mobile OS, the bootloader, as well as the firmware
and the baseband OS are all malware-free (i.e., trusted).
Especially in the PDE model, the user will not use the
malicious apps controlled by the adversary.

Compared to Mobiflage [33] and MobiHydra [36], Mobi-
Pluto does not require any assumptions on the file systems,
and is thus “file system friendly”. This will be advantageous
in practice, as it allows the deployment of any block-based
file systems in MobiPluto PDE systems.

4. MOBIPLUTO DESIGN
In this section, we present the design of MobiPluto. Our

MobiPluto provides a file system friendly PDE solution for
mobile devices by utilizing hidden volumes and thin pro-
visioning. MobiPluto is named after the Helmet of Pluto,
which according to classic mythology, is capable of turning
its wearer invisible [13].

4.1 Overview
MobiPluto is able to deny the existence of sensitive data

by hiding volumes (storing sensitive data) in the empty space
of the storage medium. For simplicity of presentation, we
consider a simple case which has only two volumes: a pub-
lic volume created for storing regular data, and a hidden
volume created for storing sensitive data. The data stored
in the hidden volume are those whose existence the owner
wants to deny. If multi-level deniability is required, the num-
ber of hidden volumes can be varied accordingly [36]. By
utilizing the interesting properties o↵ered by thin provision-
ing (Sec. 2.4), we build thin logical volumes (“thin volumes”
for short) to achieve a file system friendly deniable storage
solution for mobile devices.

In MobiPluto, the public volume is protected by a decoy
password and the hidden volume is protected by a hidden
password. Specifically, we use a randomly generated decoy
key to encrypt the public volume and use the decoy pass-
word to encrypt the decoy key, which will be stored in the
encryption footer. We use a randomly generated hidden key

to encrypt the hidden volume, and use the hidden password
to encrypt the hidden key. The encrypted hidden key will
be stored at a secret o↵set which is generated by the hidden
password. To achieve “file system friendly” PDE, we create
thin volumes in the public volume and the hidden volume
respectively. Upon booting, the password will be used to de-
crypt the key and the decrypted key will be used to decrypt
the corresponding volume. Specifically, if the owner provides
the decoy password, the system will boot into public mode,
in which the content of the public volume will be present.
The hidden volume part of the storage looks no di↵erence
from random data. In this fashion, an ordinary observer will
be convinced no sensitive data exists. To process sensitive
data, the owner should use the hidden password and boot
into PDE mode, in which the hidden volume will be located
(i.e., the o↵set of the hidden volume can be generated based
on the hidden password) and decrypted by the hidden key.

A more sophisticated adversary may try to examine the
utilization of the entire storage space and its availability.
Thus, the entire storage space should remain allocatable and
usable in the public mode. This can be handled in Mobi-
Pluto, as thin provisioning allows dynamically scaling, i.e.,
we can specify the size of a thin volume that exceeds its
allocated capacity.

Note that in the public mode, the system can allocate the
entire storage and the storage area that contains the hidden
volume just looks like random noise. The adversary cannot
infer the existence of hidden volume without knowing the
hidden key.

Compared to the existing deniable encryption schemes for
mobile devices [15, 33, 36], MobiPluto has a salient advan-
tage: it is file system friendly, i.e., any block-based file sys-
tems can be deployed on top of each thin volume. Thus, we
can deploy MobiPluto on the internal storage of most mobile
devices.

4.2 File System Friendly Deniability
Di↵erent file systems may use di↵erent allocation strate-

gies (e.g., FAT32 prefers linear allocation [11] and Ext4
prefers random allocation [15]). FAT32 has the nature of
supporting hidden-volume mechanism due to its concentrated
metadata and sequential allocation. For a FAT32 formatted
device, we can simply place the hidden volume somewhere in
the second half of the storage medium, by which the data in
the hidden volume will not be easily overwritten by the data
in the public volume, as the public volume grows sequen-
tially from the beginning of the storage medium. However,
it is problematic to place hidden volumes in an Ext4 format-
ted device, because: Firstly, the data in the hidden volumes
may overwrite all or part of the public volume’s metadata.
By observing this abnormal overwrite, the adversary may
suspect the existence of hidden volumes; Secondly, the data
from the public volume may easily overwrite the data in
the hidden volumes. In general, if the device is formatted
with a file system having similar characteristics like Ext4,
we cannot simply create hidden volumes within it.

Thin provisioning can help address the aforementioned
concern. By using thin provisioning, we can first create a
thin pool and then create thin volumes in the thin pool. The
thin pool ties together a small metadata device and a data
device, and the latter occupies most of the storage space.
Interestingly, the data device in thin provisioning is used
linearly (i.e., the space maps allocate space linearly from

front to back). To avoid fragmenting free space, the alloca-
tion always goes back and fills the gaps in the data device.
In this way, thin provisioning can transform the possibly
non-sequential allocation on the thin volume to sequential
allocation on the data device. This renders it possible to
combine hidden volumes and thin provisioning to achieve a
PDE solution that allows any block-based file systems to be
deployed.

Thin provisioning provides a logical block device (a thin
volume), which allows to deploy an arbitrary block-based
file system. No matter how the file system uses the logical
device, the changes on the data device are linear (see Fig-
ure 2). On the thin volume, the non-sequential addresses are
mapped to sequential addresses on the data device through
mappings in the metadata device. For example, the meta-
data of an Ext4 file system is evenly distributed on the thin
volume [10], but through mapping, the metadata is written
on the data device sequentially. As a result, we can create
hidden volumes on the second half of the public volume’s
data device. Since the data in the public volume are al-
ways written sequentially to the data device (regardless of
the allocation strategies of the deployed file system on the
thin volume), it is very unlikely that they will overwrite the
hidden volumes. In other words, the “file system friendly”
feature can be achieved. Note that we write random noise
to the storage when initializing and encrypting the hidden
volume with dm-crypt and thus in the public mode, the
adversary cannot di↵erentiate the hidden volume from the
random noise.

Another benefit o↵ered by thin provisioning is that the
size of a thin volume can be set larger than or equal to the
entire storage space. Since the label, the metadata of LVM
and the metadata device of thin pool will occupy space, the
thin volume usually cannot use the entire space. However,
in the public mode, we can set the thin volume size equal to
the size of the entire storage space, by which the adversary
will observe the entire space is usable and will not suspect
the existence of PDE. Additionally, as thin provisioning is
a kernel feature, its existence will not become a clue of the
existence of PDE.

4.3 Storage Layout
For the public volume, we use the decoy key to create an

encrypted block device over the entire disk. We then use
LVM to create a physical volume on the encrypted block
device. A physical volume label will be placed in the second
512-byte sector and the first 512-byte sector remains unused
according to the default LVM configuration [9]. We further
create a volume group within this physical volume. The
metadata of the volume group will be placed right after the
physical volume label (see Figure 1).

Next, we create a thin volume (used for storing the regular
data) in this volume group. We first create a small ordinary
logical volume, which is used as the metadata device for the
thin pool. We then create a large ordinary logical volume
in the remaining space of the volume group. This volume
is used as the data device for the thin pool, on which we
can create thin volumes. LVM allocates the space in the
data device to thin volumes according to the mappings in
the metadata device. On thin volumes, we can deploy any
block-based file systems (e.g., Ext4).

For the hidden volume, we first calculate an o↵set using
the hidden password and create another encrypted block de-

Label

VG Metadata
Metadata Device

Data Device

Public Volume (encrypted with the decoy key)

Label
VG Metadata

Metadata Device
Data Device

Hidden Volume (encrypted with the hidden key)

Encryption Footer

Encrypted hidden key

offset

Figure 1: MobiPluto Storage Layout

Thin Provisioning

Storage

Public Mode File System PDE Mode File System

Figure 2: Thin Provisioning and the Hidden Volume

vice within the space between the o↵set and the end of the
storage medium (Figure 1). We then create a thin volume
(used for storing the sensitive data) following the aforemen-
tioned steps. Note that any block-based file systems can also
be deployed on this thin volume.

4.4 Size Calculation
In this section, we describe how to calculate the size of the

hidden volume, the metadata device and the data device.
For deniability purpose, the thin volume size should be set
the same as the total disk size in the public mode.

The hidden volume starts at a specific o↵set on the stor-
age medium. MobiPluto generates this o↵set using hidden
password in the following way [33]:

o↵set = 0.75⇥ vlen� (H(pwd||salt) mod (0.25⇥ vlen))

Here, vlen denotes the number of 512-byte sectors on the
physical block device; H is a PBKDF2 iterated hash func-
tion [17]; pwd is the hidden password; salt is a random salt
value for PBKDF2 and it is the same as the one stored in the
encryption footer. Thus, we do not need to store another
salt.

The hidden volume is stored after the encrypted hidden
key (stored at the o↵set). The hidden volume size can be
calculated as follows:

S
hid

= vlen� o↵set� S
key

� S
footer

Here, S
key

and S
footer

denote the size of the encrypted hid-
den key and of the encryption footer respectively.

The amount of metadata will vary according to the block
size of the thin provisioned devices, the size of the thin
provisioning pool and the maximum number of overall thin
provisioned devices and snapshots. There is a tool named
“thin metadata size” in the thin provisioning tools and it
can return the size of thin metadata according to the above
input. However, it is space-consuming to add this tool to
“boot.img” and our scenario is very simple as we only have
one thin volume and no snapshots. We give a calculation of
thin metadata device size:

S
meta

= S
req

⇥ vlen/S
block

Here, S
block

is the block size of the thin provisioned devices.
S
req

denotes the average space needed by each data device
block in thin metadata device. After the thin metadata de-
vice is created, the free space in the volume group is used to
create the data device. Note that the size of thin metadata
device is the same in both the public volume and the hidden
volume.

5. IMPLEMENTATION
We implement a prototype of MobiPluto on a LG Nexus

4 device and its Android version is 4.2.2. The source code
of the implementation has been released on GitHub1. We
add about 1000 lines of C code into the Android volume
mounting daemon (VOLD). We also change some of the de-
fault kernel configurations so that we could use the required
features (e.g., thin provisioning in kernel). In addition, we

1https://github.com/FengweiZhang/MobiPluto

https://github.com/FengweiZhang/MobiPluto

compile Logical Volume Manager (LVM) and thin provision-
ing tools [34] for Android and put them in a boot image.

5.1 Thin Provisioning on Android
In this section, we describe how we run thin provision-

ing on Android. Thin provisioning is available in the Linux
kernel since version 3.2. Android 4.2.2 uses the Linux ker-
nel 3.4, but the default configuration disables this feature.
Therefore, we have to enable it and recompile the kernel.
In addition, since we use AES-XTS, the xts and gf128mul

kernel crypto modules should be enabled, too.
It is not enough to enable only the thin provisioning fea-

ture in the kernel. We have to use LVM to setup logical
volumes. Furthermore, we use thin provisioning tools to ac-
tivate the thin volumes. Thus, we compile LVM and thin
provisioning tools for Android. The compiling process re-
quires a specific environment for Android. Besides gcc and
g++ tool chains for Android, both tools need to be statically
linked. For static compiling, we add “–enable-static link”
when configuring LVM and we add “LDFLAGS= -static” to
the makefile of thin provisioning tools. Furthermore, the
default LVM configuration does not enable the thin pro-
visioning, so we add “–with-thin = internal” in the LVM
configuration for that.

Next, we add both tools to the boot.img using unpack-

bootimg and mkbootimg which are provided by AOSP [8].
Note that we modify the access permissions of these files by
adding “chmod” command to mako.init in the boot.img.
Otherwise, we are not able to use them. After enabling thin
provisioning feature in the kernel and adding the tools to
the boot.img, we can use thin provisioning on Android.

5.2 User Interface and Pre-boot Authentica-
tion

Users can use a command-line utility, vdc, to activate Mo-
biPluto PDE; the command is as follows: “vdc cryptfs pde
<wipe> <decoy pwd> <hidden pwd>”. The default An-
droid shell does not maintain history, thus the commands or
the passwords cannot be retrieved from a captured Android
device.

To make the hidden volume indistinguishable, we first
wipe the entire internal storage with random noise. For the
public volume of MobiPluto, we use a random key to create
an encrypted block device and store the encrypted key and
the salt in the encryption footer. We then create a thin vol-
ume on the encrypted block device and create an Ext4 file
system on the thin volume. We have described the proce-
dure of initializing a public volume and a hidden volume in
Section 4.3. The size of the metadata device is calculated
according to Section 4.4. S

req

is chosen as 50 for now, and a
more accurate value will be investigated in our future work.

When the device is booted but fails to find a valid Ext4
file system on the userdata partition, the system will ask the
user to enter a password. The default Android will use this
password to decrypt the key in the footer and decrypt the
storage medium with this key. If a valid Ext4 file system can
be mounted, the system will continue to boot. However, Mo-
biPluto creates a thin volume instead of an Ext4 file system
on the encrypted block device. It would be time consuming
if MobiPluto enables the thin volume to check the existence
of Ext4 file system by mounting it. To reduce the time of
checking, we use a Message Authentication Code (MAC) in
the following way: 1) We calculate a master secret S with

the corresponding password and the salt in the encryption
footer using PKCS5 PBKDF2 HMAC SHA1 function. 2)
The encryption key of the volume key is derived from S
and a character string “encryption key”. 3) The MAC key
is derived from S and another character string “mac key”.
4) We use the MAC key to compute a MAC for the entire
volume header (this header is stored in the second 512-byte
sector of the volume). 5) We store the MAC in the first
512-byte sector of the volume, which remains unused when
we use LVM. When the user enters a password, the system
will check the MAC of the public volume. If it is matched,
the password is the decoy password and the system will boot
into the public mode. Otherwise, the system will calculate
an o↵set and check the MAC of the hidden volume. If this
MAC is matched, the password is the hidden password and
the system will boot into the PDE mode. Otherwise, the
system asks for another password.

6. EVALUATION RESULTS

6.1 Security Analysis
Deniability provided by hidden volumes. In general,
storage units are not filled with random data when coming
from the manufacturers. In addition, the operating system
installation procedures do not fill the entire storage with ran-
dom data. Thus, the adversary may suspect the existence of
PDE after decrypting the disk with a decoy key, as it can find
out random data which is not “accounted for” (Sec. 2.1). A
plausible explanation from the device owner can be, he/she
always fills the disk with random data before putting file
systems on it. Although the adversary has the full knowl-
edge of MobiPluto design (Sec. 3.3), without knowing the
secrets, it cannot prove the existence of hidden volumes, as
they are encrypted by FDE and are indistinguishable from
the initially filled random data (Note that MobiPluto uses
the encryption function for FDE as the pseudorandom num-
ber generator).

To prevent the adversary from identifying hidden volumes
without recovering any hidden plaintexts, MobiPluto uses
XTS as the block cipher mode, which has been designed
for disk encryption, and is able to prevent attacks such as
ciphertext manipulation and cut-and-paste [27].

Thin provisioning/LVM specific security issues. Mo-
biPluto uses both thin provisioning and LVM tools. Thin
provisioning/LVM in either the public mode or the hidden
mode will have its own label, VG metadata, metadata device
and data device (Sec. 4), which are stored in its own userdata
partition, encrypted by dm-crypt with di↵erent keys (i.e.,
decoy key and hidden key). For the hidden mode specifi-
cally, the location of the userdata partition is secret and can
only be derived when knowing the hidden password. Thus,
when the adversary looks into the public volume (i.e., in the
public mode), it will not have any clues of the data related
to thin provisioning/LVM in the hidden volumes.

Other security issues. We require device owners to choose
strong passwords resilient to guessing. The data and exis-
tence leakage of hidden files into temporary files, swap space,
or OS logs can be mitigated by the two modes of MobiPluto
[33]. MobiPluto is built for mobile devices, which usually
use flash storage. An analysis of leakage from flash storage
can be found in Mobiflage [33]. However, it is still not clear

 0

 5000

 10000

 15000

 20000

 25000

 30000

dd-W
rite

dd-Read

Bonnie++-W
rite

Bonnie++-Read

S
eq

u
en

ti
al

 T
h

ro
u

g
h

p
u

t
in

 K
B

/s

Android-CBC
Android-XTS

MobiPluto-Pub
MobiPluto-PDE

Figure 3: Sequential Throughput test of dd and
Bonnie++ in KB/s

how this leakage can a↵ect deniability and how to avoid this
leakage. It is the subject of future work to further under-
stand this.

6.2 Performance Evaluation
In this section, we describe experimental results of Mobi-

Pluto prototype and explain the performance impact on the
device. We summarize our findings and provide conclusions.

The main di↵erence between MobiPluto and the default
Android is that MobiPluto uses 1) AES-XTS and 2) thin
volumes, so we intend to understand how these two points
impact the performance. We use three experiments to un-
derstand the performance di↵erences among 1) the default
Android FDE, 2) the XTS Android FDE (i.e., only replace
the AES-CBC of Android FDE with AES-XTS), 3) the pub-
lic mode of MobiPluto, 4) and the PDE mode of MobiPluto.
We conduct the experiments on the internal storage of a LG
Nexus 4.

First of all, we use a popular Linux command tool, “dd”, to
measure the storage performance of the four systems. For
the write speed, we execute following command, “time dd
if=/dev/zero of=test.dbf bs=400M count=1 conv=
fdatasync”. It measures the time for writing a 400MB file to
the storage. Note that “conv=fdatasync” ensures the data
is written to the disk instead of a RAM bu↵er. In addi-
tion, we use “time dd if=234.mp4 of=/dev/null bs=400M”
to measure the read speed. Here “234.mp4” is a multimedia
file and its size is 3 GB. Note that “dd” command tests the
sequential I/O performance. Additionally, we use a popu-
lar benchmark, Bonnie++ [20], to test the sequential I/O
operations. We conduct each experiment 10 times, and the
average results and standard deviations are shown in Fig-
ure 3. We can see that the AES-XTS has a small impact
on the read speed, and the use of thin volumes has little
influence on the performance.

We use AndroBench [25], a popular storage benchmark
for Android-based mobile devices, to conduct the second ex-
periment. AndroBench measures the sequential and random
I/O operations and SQLite transactions. We repeat the ex-
periment 10 times. Figure 4 shows the I/O access speed that
includes sequential and random read/write. In Figure 4, for
sequential I/O performance, we can get a similar conclu-
sion to “dd” and Bonnie++ tests. For random I/O access,
the AES-XTS also has a small impact on the access speed.
Additionally, Figure 5 shows throughputs of three SQLite
transactions, which are SQLite-Insert, SQLite-Update, and

 0

 5

 10

 15

 20

 25

Seq-Read Seq-Write Rnd-Read Rnd-Write

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Android-CBC
Android-XTS

MobiPluto-Pub
MobiPluto-PDE

Figure 4: I/O Throughput test of AndroBench in
MB/s (Seq: Sequential, Rnd: Random)

 0

 20

 40

 60

 80

 100

SQLite-Insert SQLite-Update SQLite-Delete

T
ra

n
sa

ct
io

n
s

P
er

 S
ec

o
n

d

Android-CBC
Android-XTS

MobiPluto-Pub
MobiPluto-PDE

Figure 5: The SQLite performance test of An-
droBench in transactions per second

SQLite-Delete. Though AES-XTS decreases the throughput
of I/O access, it improves the storage performance of SQLite,
compared with AES-CBC. However, we can see that from
the experiment results, the use of thin volumes decreases the
performance. On the whole, the storage performance is not
significantly a↵ected.

We use Bonnie++ [20], a benchmark suit conducting tests
on hard drives and file systems, for the third experiment.
Figure 6 shows the number of file system operations can be
done in one second. We can see from Figure 6 that both
AES-XTS and thin provisioning have a low performance
overhead on file system operations, and it gives us a good re-
sult that MobiPluto is competitive with the default Android
FDE in I/O performance.

Additionally, Bonnie++ shows us the CPU overhead, which
indicates the power consumption di↵erence. The CPU over-
head shows the CPU requirement of encryption and space
allocation, so we can get the power consumption result from
it, as shown in Figure 7. We can see that the AES-XTS de-
creases the power consumption and the use of thin volumes
has little impact on it. Note that we repeat 10 times for
each experiment with Bonnie++, and we show the averages
and standard deviations of the experiment results.

The initialization time and the booting time are two fac-
tors that a↵ect the user experience. If a user wants to en-
crypt the phone, the default Android FDE performs an in-
place encryption to the internal storage but MobiPluto per-

 0

 500

 1000

 1500

 2000

Rnd-Seek

SC-Create

SC-Read

SC-D
elete

RC-Create

RC-Read

RC-D
elete

F
il

e
S

y
st

em
 O

p
er

at
io

n
s/

s

Android-CBC
Android-XTS

MobiPluto-Pub
MobiPluto-PDE

Figure 6: File system operations per second mea-
sured with Bonnie++ (Rnd: Random; SC: Sequen-
tial Create; RC: Random Create)

 0

 5

 10

 15

 20

 25

 30

Seq-W
rite

Rew
rite

Seq-Read

Rnd-Seek

SC-Read

SC-D
elete

RC-Read

RC-D
elete

C
P

U
 U

sa
g

e
(%

)

Android-CBC
Android-XTS

MobiPluto-Pub
MobiPluto-PDE

Figure 7: CPU Usage test of Bonnie++ in percent-
age (Seq: Sequential; Rnd: Random, SC: Sequential
Create; RC: Random Create)

forms a two pass random-wipe. Thus, MobiPluto takes twice
as long to encrypt the storage. However, the initialization
is a one-time procedure which will not be repeated. To test
the initialization time, we use a timer to record the time
interval between the moment when the passwords are en-
tered through the vdc command, and the moment when the
screen shows up a user interface for password entering. We
analyze the booting time by reading the logs of the system.
The experimental results of initialization time and booting
time are shown in Table 1.

7. DISCUSSION
Precautions against collusion between the adversary
and carriers/service providers. The collusion between
the adversary and carriers may disclose the existence of hid-
den volumes. If a user connects to external networks when
working in the PDE mode, a malicious carrier may provide
the adversary this user’s connection activity logs. As the
logs from the carrier may be di↵erent from the logs in the
public mode of the captured device, the adversary may ob-
tain evidence for the existence of PDE mode. Thus, when
working in the PDE mode, we recommend the user open
“Airplane Mode” and remove the SIM card. If the user feels
the necessity to communicate with the external networks,
anonymity should be used. Similarly, to prevent the collu-
sion of the adversary and the service providers, we recom-
mend they use a secondary account with a pseudonym when

using any web services in the PDE mode [33].

Block-based file systems. MobiPluto relies on dm-crypt,
a kernel feature that can encrypt whole disks, partitions,
software RAID volumes, logical volumes, as well as files.
dm-crypt provides a logical block device interface to the up-
per level, such that any block-based file systems can be built
on top of it. Flash file systems (e.g., YAFFS [30]) however,
are specifically designed to accommodate the special nature
of raw flash memory [23]. They may not be used on top of
block devices, and thus may not be used in MobiPluto. Note
that block devices are broadly used as the internal storage
for mobile devices nowadays. For example, eMMC [32] is
used in a large number of Android phones (e.g., Samsung
Galaxy S 5, Samsung Galaxy Note 4, Google Nexus 6, LG
G3, HTC One M9). Thus, MobiPluto can be used exten-
sively in mobile devices. The raw flash is used as the internal
storage in a few early Android devices like Google Nexus
One. However, it is rarely used in the latest Android de-
vices. Deploying MobiPluto on the raw flash is possible by
modifying the encryption layer (e.g., dm-crypt) to accom-
modate the special characteristics of raw flash (e.g., wear
leveling). This may require moderate engineering work on
dm-crypt without a↵ecting other components of MobiPluto
framework.

Supporting multi-level deniability. There are debates
over the e↵ectiveness of multi-level deniability [33]. Ex-
tending MobiPluto to support multi-level deniability can be
achieved by adapting the multi-level deniability solution in-
troduced in MobiHydra [36]. To support multi-level deni-
ability, each deniability level is corresponding to a di↵er-
ent hidden volume. Each hidden volume starts at a di↵er-
ent secret o↵set, and extends toward the end of the stor-
age medium. The hidden volumes will thus overlap, and
this overlap leads to a situation that the data from di↵erent
hidden volumes may overwrite each other. This is a com-
mon issue in all the prior PDE solutions [15, 28, 29, 33,
35, 36]. MobiPluto mitigates this “overwrite” issue in the
following aspects: 1) Each secret o↵set is derived from the
hidden password corresponding to that deniability level [36].
When generating o↵sets, we usually ensure a minimum sep-
aration distance between o↵sets [36]. As the data written
to a hidden volume are usually placed sequentially (starts
from the o↵set), overwrite will not happen until the total
amount of data written to a certain hidden volume exceeds
the minimum separation distance; 2) In practice, the sen-
sitive data stored in each deniability level is usually small
in size; 3) Users will be carefully guided when working in
the PDE mode. Specifically, when a user is working in the
PDE mode and using a hidden volume, a daemon program
should be used to monitor the storage usage in the corre-
sponding hidden volume, and the user will be notified if the
total amount of writes to this hidden volume is approaching
the minimum separation distance.

Supporting other operating systems. To use Mobi-
Pluto in other operating systems (mobile or desktop), we
have to ensure that the OS supports both thin provisioning
and block-layer encryption. Thin provisioning helps trans-
form the non-sequential allocation on the thin volume to
sequential allocation on the physical volume. The block-
layer encryption is also required, as MobiPluto needs to be
built on top of encrypted block devices.

Table 1: Initialization time and booting time

Initialization
booting time
(wrong pwd)

booting time
(decoy pwd)

booting time
(hidden pwd)

Android FDE 18min23s±1s 0.19±0.02s 0.29±0.02s N/A
MobiPluto 37min2s±2s 1.98±0.03s 1.36±0.02s 2.35±0.03s

8. RELATED WORK
Deniable encryption is an emerging security paradigm in

network communications [19], disk storage, cloud storage
[22], etc. In disk storage, most of the existing work relies on
either steganography or hidden volumes to achieve deniabil-
ity.

Steganography-based. Anderson et al. [16] propose the
first file encryption scheme with PDE support. They present
two solutions: Hiding blocks within cover files and hiding
blocks within random data. However, both solutions are
not suitable for performance-sensitive mobile devices due to
high storage and I/O overheads. StegFS [28] is a deniable-
encryption version of the work of Anderson et al. [16]. It
uses the second approach in [16] to work on Ext2 file sys-
tem. However, the existence of the modified Ext2 driver
and the external block table may make the system suspi-
cious. In addition, the disk usage rate is low due to the
collision avoidance. Pang et al. [29] propose a di↵erent de-
sign that blocks used by hidden files are marked as occupied
in the bitmap, and it uses “abandoned blocks” and “dummy
blocks” to achieve deniability. Unfortunately, their design is
disk space ine�cient.

Hidden volumes-based. TrueCrypt [35] and FreeOTFE [6]
are two well-known PDE tools relying on hidden volumes.
Compared to TrueCrypt, MobiPluto decouples file system
from the underlying storage medium, achieving “file-system
friendly” feature. We summarize the di↵erences between
TrueCrypt and MobiPluto as follows: 1) TrueCrypt is sen-
sitive to file systems and its hidden volume can only be de-
ployed on top of the storage using FAT or NTFS [3]. If
the storage medium is using a file system with distributed
metadata or non-sequential block assignment (e.g., Ext4),
TrueCrypt may not work. However, MobiPluto works with
any block-based file systems due to its “file system friendly”
design. 2) TrueCrypt uses a special boot loader to obtain
the user’s password before the OS is loaded, but using such a
special boot loader may make the system suspicious and may
lead to compromise of deniability. To handle the password,
MobiPluto uses thin provisioning and regular FDE which
should be standard in Android. Thus, the deniability o↵ered
by MobiPluto is stronger than that o↵ered by TrueCrypt. 3)
TrueCrypt is not a default module in desktop, and the ad-
versary can tell the di↵erence between a TrueCrypt volume
and a regular volume (TrueCrypt volume header contains
either random data (i.e., salt) or encrypted fields, and reg-
ular volume header contains meaningful plaintext fields), so
he/she can easily identify the existence of TrueCrypt and
may suspect the existence of hidden volumes. This may
lead to compromise of deniability. However, FDE has been
a default module in Android since version 3.0 and the ad-
versary cannot tell the di↵erence between MobiPluto and
Android FDE by disk analysis (the MobiPluto footer can-
not be di↵erentiated from FDE footer), so he/she cannot
identify the existence of MobiPluto, which is good for deni-
ability. Mobiflage [33, 15] builds the first PDE scheme for
mobile devices. It is implemented in two versions: one for

FAT32 file system in external storage [33], and the other for
Ext4 file system in internal storage [15]. The FAT32 ver-
sion is not suitable for mobile devices without external stor-
age; the Ext4 version needs to significantly modify Ext4 file
system that introduces a large attack surface against PDE.
MobiHydra [36] improves Mobiflage by addressing a new
booting-time attack. In addition, it introduces multi-level
deniability and supports mode switching without rebooting.
Blass et al. [18] present HIVE, a desktop PDE scheme that
can defend against a multiple-snapshot adversary. HIVE re-
lies on write-only oblivious RAM, which su↵ers from a high
performance overhead.

Others. Ragnarsson et al. [31] propose to use thin pro-
visioning to provide deniability. However, their solution
requires significant modifications of thin provisioning. In
addition, they do not provide any proof-of-concept imple-
mentation. Peters et al. [30] introduce DEFY, a deniable
encrypted file system based on YAFFS. DEFY is the first de-
niable file system specifically designed for flash-based, solid-
state drives. It follows a log-structured design, motivated
by the technical constraints of flash memory.

9. CONCLUSION
In this paper, we have proposed MobiPluto, a file sys-

tem friendly PDE solution for mobile devices. MobiPluto
achieves the deniability feature as nothing but a“side-e↵ect”
of equipping thin provisioning, which is a well-established
tool in Linux kernel. Most significantly, MobiPluto utilizes
thin provisioning to build an additional layer that can trans-
form the non-sequential allocation on the thin volumes to se-
quential allocation on the underlying storage medium. This
renders it feasible to achieve “file system friendly” PDE us-
ing hidden volumes. We have implemented a prototype of
MobiPluto on a LG Nexus 4 device and our extensive eval-
uations have shown that MobiPluto only introduces a small
performance overhead.

10. ACKNOWLEDGMENTS
We would like to thank our shepherd, Ariel Feldman, and

anonymous ACSAC reviewers for their insightful suggestions
and advice. This work is partially supported by National 973
Program under Award No. 2014CB340603, and Strategy
Pilot Project of Chinese Academy of Sciences under Award
No. XDA06010702. Bo Chen is currently supported by US
ARO grant ARO W911NF-15-1-0576.

11. REFERENCES
[1] LVM Administrator’s Guide. https://www.centos.org/

docs/5/html/Cluster Logical Volume Manager/, 2007.
[2] “partitioning” your Nexus S using LVM.

http://forum.xda-developers.com/nexus-s/general/
howto-partitioning-nexus-s-using-lvm-t1656794, May
2012.

[3] TrueCrypt User’s Guide. https://www.grc.com/misc/
truecrypt/TrueCrypt%20User%20Guide.pdf, 2012.

https://www.centos.org/docs/5/html/Cluster_Logical_Volume_Manager/
https://www.centos.org/docs/5/html/Cluster_Logical_Volume_Manager/
http://forum.xda-developers.com/nexus-s/general/howto-partitioning-nexus-s-using-lvm-t1656794
http://forum.xda-developers.com/nexus-s/general/howto-partitioning-nexus-s-using-lvm-t1656794
https://www.grc.com/misc/truecrypt/TrueCrypt%20User%20Guide.pdf
https://www.grc.com/misc/truecrypt/TrueCrypt%20User%20Guide.pdf

[4] BitLocker Overview. https://technet.microsoft.com/
en-us/library/hh831713.aspx, 2013.

[5] Consider LVM on Android.
http:// forum.cyanogenmod.org/ topic/
4226-has-anyone-considered-lvm-on-android/ , 2013.

[6] FreeOTFE - Free disk encryption software for PCs
and PDAs. version 5.21. Project website:
http:// sourceforge.net/ projects/ freeotfe.mirror/ ,
2014.

[7] Android encryption. https://source.android.com/
devices/tech/security/encryption/, 2015.

[8] AOSP: Android open source project.
http://source.android.com/, 2015.

[9] Appendix E. LVM Volume Group Metadata.
https://access.redhat.com/documentation/en-US/
Red Hat Enterprise Linux/6/html/Logical Volume
Manager Administration/lvm metadata.html, 2015.

[10] Ext4 Disk Layout. https:
//ext4.wiki.kernel.org/index.php/Ext4 Disk Layout,
2015.

[11] FAT file system. https:
//technet.microsoft.com/en-us/library/cc938438.aspx,
2015.

[12] OS X Yosemite: Encrypt the contents of your Mac
with FileVault. https://support.apple.com/kb/
PH18637?locale=en US&viewlocale=en US, 2015.

[13] Pluto-King of the Underworld.
http://www.crystalinks.com/plutorome.html, 2015.

[14] Samsung eMMC memory.
http://www.samsung.com/global/business/
semiconductor/product/flash-emmc/overview, 2015.

[15] Adam Skillen and Mohammad Mannan. Mobiflage:
Deniable storage encryption for mobile devices. IEEE
Trans. Dependable Sec. Comput., 11(3):224–237, 2014.

[16] R. Anderson, R. Needham, and A. Shamir. The
steganographic file system. In Information Hiding,
pages 73–82. Springer, 1998.

[17] B. Kaliski. PKCS 5: Password-based cryptography
specification,version 2.0. RFC 2898 (informational),
2000.

[18] E.-O. Blass, T. Mayberry, G. Noubir, and
K. Onarlioglu. Toward robust hidden volumes using
write-only oblivious RAM. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and
Communications Security, pages 203–214. ACM, 2014.

[19] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky.
Deniable encryption. In Advances in
Cryptology-CRYPTO’97, pages 90–104. Springer,
1997.

[20] R. Coker. Bonnie++ file system benchmark suite.
http://www.coker.com.au/bonnie++/, 2009.

[21] B. Donohue. Android 5.0 data better protected with
new crypto system. https:
//blog.kaspersky.com/full-disk-encryption-android-5/,
2014.

[22] P. Gasti, G. Ateniese, and M. Blanton. Deniable cloud
storage: sharing files via public-key deniability. In
Proceedings of the 9th annual ACM workshop on

Privacy in the electronic society, pages 31–42. ACM,
2010.

[23] L. M. Grupp, J. D. Davis, and S. Swanson. The bleak
future of NAND flash memory. In Proceedings of the
10th USENIX conference on File and Storage
Technologies, pages 2–2. USENIX Association, 2012.

[24] J. Assange, R.P. Weinmann, and S. Dreyfus.
Rubberhose Filesystem. Archive available at:
http://web.archive.org/web/ 20120716034441/ http:
//marutukku.org/ , 2001.

[25] J.-M. Kim and J.-S. Kim. AndroBench: Benchmarking
the storage performance of Android-based mobile
devices. In Frontiers in Computer Education, pages
667–674. Springer, 2012.

[26] A. Levin. The 10 Dumbest Risks People Take With
Their Smartphones. http:// blog.credit.com/2013/ 01/
the-10-dumbest-risks-people-take-on-the
ir-smartphones-64384/ , 2013.

[27] L. Martin. XTS: A mode of AES for encrypting hard
disks. IEEE Security & Privacy, (3):68–69, 2010.

[28] A. D. McDonald and M. G. Kuhn. StegFS: A
steganographic file system for Linux. In Information
Hiding, pages 463–477. Springer, 2000.

[29] H. Pang, K.-L. Tan, and X. Zhou. StegFS: A
steganographic file system. In Data Engineering, 2003.
Proceedings. 19th International Conference on, pages
657–667. IEEE, 2003.

[30] T. M. Peters, M. A. Gondree, and Z. N. Peterson.
DEFY: A deniable, encrypted file system for
log-structured storage. In 22th Annual Network and
Distributed System Security Symposium, NDSS 2015,
San Diego, California, USA, February 8-11, 2015.

[31] B. Ragnarsson, G. Toth, H. Bagheri, and
W. Minnaard. Desirable features for plausibly deniable
encryption. https://www.os3.nl/ media/ 2012-2013/
courses/ ssn/ desirable features for plausibly deniable
encryption.pdf , 2012.

[32] E. Silverstein. 2013 Was a Year to Remember for
NAND eMMC Memory.
http://www.mobilitytechzone.com/topics/
4g-wirelessevolution/articles/2014/02/28/
371835-2013-a-year-remember-nand-emmc-memory.
htm, 2014.

[33] A. Skillen and M. Mannan. On implementing deniable
storage encryption for mobile devices. In 20th Annual
Network and Distributed System Security Symposium,
NDSS 2013, San Diego, California, USA, February
24-27, 2013.

[34] J. Thornber. Thin Provisioning Tools.
https://github.com/jthornber/thin-provisioning-tools,
2015.

[35] TrueCrypt. Free open source on-the-fly disk
encryption software.version 7.1a. Project website:
http://www.truecrypt.org/ , 2012.

[36] X. Yu, B. Chen, Z. Wang, B. Chang, W. T. Zhu, and
J. Jing. MobiHydra: Pragmatic and multi-level
plausibly deniable encryption storage for mobile
devices. In Information Security, pages 555–567.
Springer, 2014.

https://technet.microsoft.com/en-us/library/hh831713.aspx
https://technet.microsoft.com/en-us/library/hh831713.aspx
http://forum.cyanogenmod.org/topic/4226-has-anyone-considered-lvm-on-android/
http://forum.cyanogenmod.org/topic/4226-has-anyone-considered-lvm-on-android/
http://sourceforge.net/projects/freeotfe.mirror/
https://source.android.com/devices/tech/security/encryption/
https://source.android.com/devices/tech/security/encryption/
http://source.android.com/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Logical_Volume_Manager_Administration/lvm_metadata.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Logical_Volume_Manager_Administration/lvm_metadata.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Logical_Volume_Manager_Administration/lvm_metadata.html
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://technet.microsoft.com/en-us/library/cc938438.aspx
https://technet.microsoft.com/en-us/library/cc938438.aspx
https://support.apple.com/kb/PH18637?locale=en_US&viewlocale=en_US
https://support.apple.com/kb/PH18637?locale=en_US&viewlocale=en_US
http://www.crystalinks.com/plutorome.html
http://www.samsung.com/global/business/semiconductor/product/flash-emmc/overview
http://www.samsung.com/global/business/semiconductor/product/flash-emmc/overview
http://www.coker.com.au/bonnie++/
https://blog.kaspersky.com/full-disk-encryption-android-5/
https://blog.kaspersky.com/full-disk-encryption-android-5/
http://web.archive.org/web/20120716034441/http://marutukku.org/
http://web.archive.org/web/20120716034441/http://marutukku.org/
http://blog.credit.com/2013/01/the-10-dumbest-risks-people-take-on-the
http://blog.credit.com/2013/01/the-10-dumbest-risks-people-take-on-the
ir-smartphones-64384/
https://www.os3.nl/_media/2012-2013/courses/ssn/desirable_features_for_plausibly_deniable_encryption.pdf
https://www.os3.nl/_media/2012-2013/courses/ssn/desirable_features_for_plausibly_deniable_encryption.pdf
https://www.os3.nl/_media/2012-2013/courses/ssn/desirable_features_for_plausibly_deniable_encryption.pdf
http://www.mobilitytechzone.com/topics/4g-wirelessevolution/articles/2014/02/28/371835-2013-a-year-remember-nand-emmc-memory.htm
http://www.mobilitytechzone.com/topics/4g-wirelessevolution/articles/2014/02/28/371835-2013-a-year-remember-nand-emmc-memory.htm
http://www.mobilitytechzone.com/topics/4g-wirelessevolution/articles/2014/02/28/371835-2013-a-year-remember-nand-emmc-memory.htm
http://www.mobilitytechzone.com/topics/4g-wirelessevolution/articles/2014/02/28/371835-2013-a-year-remember-nand-emmc-memory.htm
https://github.com/jthornber/thin-provisioning-tools
http://www.truecrypt.org/

	Introduction
	Background
	Deniable Encryption
	Full Disk Encryption
	Steganographic File Systems vs. Hidden Volumes
	Thin Provisioning

	Models and Assumptions
	System Model
	Adversarial Model
	Assumptions

	MobiPluto Design
	Overview
	File System Friendly Deniability
	Storage Layout
	Size Calculation

	Implementation
	Thin Provisioning on Android
	User Interface and Pre-boot Authentication

	Evaluation Results
	Security Analysis
	Performance Evaluation

	Discussion
	Related Work
	Conclusion
	Acknowledgments
	References

