
MOAT: Towards Safe BPF Kernel Extension

Hongyi Lu1,2,3, Shuai Wang3,†, Yechang Wu2, Wanning He2, Fengwei Zhang2,1,†

1Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology
2Department of Computer Science and Engineering, Southern University of Science and Technology

3Department of Computer Science and Engineering, Hong Kong University of Science and Technology

Abstract
The Linux kernel extensively uses the Berkeley Packet Filter
(BPF) to allow user-written BPF applications to execute in the
kernel space. The BPF employs a verifier to check the security
of user-supplied BPF code statically. Recent attacks show that
BPF programs can evade security checks and gain unautho-
rized access to kernel memory, indicating that the verification
process is not flawless. In this paper, we present MOAT, a
system that isolates potentially malicious BPF programs us-
ing Intel Memory Protection Keys (MPK). Enforcing BPF
program isolation with MPK is not straightforward; MOAT
is designed to alleviate technical obstacles, such as limited
hardware keys and the need to protect a wide variety of BPF
helper functions. We implement MOAT on Linux (ver. 6.1.38),
and our evaluation shows that MOAT delivers low-cost isola-
tion of BPF programs under mainstream use cases, such as
isolating a BPF packet filter with only 3% throughput loss.

1 Introduction

It is common to extend kernel functionality by allowing user
applications to download code into the kernel space. In 1993,
the well-known Berkeley Packet Filter (BPF) was introduced
for this purpose [7]. The classic BPF is an infrastructure that
inspects network packets and decides whether to forward or
discard them. With the introduction of its extended version
(referred to as eBPF) in the Linux kernel, BPF soon became
more powerful and is now utilized in numerous real-life sce-
narios, such as load balancing, system tracing, and system
call filtering [24, 30, 37, 63, 71, 72].

To ensure security, BPF is equipped with a verifier [9]. The
verifier performs a variety of static analyses to ensure the user-
supplied code is secure. For instance, the verifier tracks the
bounds of all pointers to prevent out-of-bound access. Given
that BPF code runs directly within the kernel, the verifier be-
comes crucial for BPF security. Nevertheless, as pointed out
by recent studies [32, 43, 44, 61, 69], the current verifier has

†
Shuai Wang and Fengwei Zhang are the corresponding authors.

various limitations and is insufficient for the overall security
of BPF. First, the current BPF ecosystem supports a variety
of functionalities, such as packet forwarding and kernel de-
bugging [10, 31]. Supporting all these functionalities in the
verifier results in a complicated verification process. Though
the verifier has been partially verified via formal methods [68],
the unverified part and the gap between abstraction and im-
plementation still result in vulnerabilities [47–51, 53, 54, 56].
Second, due to the rapid expansion of BPF capabilities, the
verifier is frequently updated, and it is inherently difficult to
update a complex static verification tool without introducing
new vulnerabilities [55]. To date, the BPF subsystem has been
repeatedly exploited. For instance, two privilege-escalation
vulnerabilities have been discovered in bpf_ringbuf, a re-
cent BPF feature introduced in 2020 [7]. Further, the verifier’s
register-value tracking is quite complex and often bypassed
via corner-case operations (e.g., sign extension) [47–50].

Given the increasing security threats in BPF and the chal-
lenge of enforcing safe BPF programs with merely static
verification, we seek to employ hardware extensions to sand-
box untrusted BPF programs. In particular, we leverage Intel
Memory Protection Keys (MPK) [11], an emerging hardware
extension that partitions memory into distinct permission
groups by assigning up to 16 keys to their Page Table En-
tries (PTEs). With the aid of MPK, we present MOAT, which
isolates untrusted BPF programs in a low-cost and principled
manner. For instance, two MPK protection keys K and E can
be assigned to the kernel and the BPF programs, respectively.
When the kernel transfers control to a BPF program, it can
set K as access-disabled to prevent the potentially malicious
BPF program from tampering with kernel memory.

Despite its promising potential, using MPK to enforce BPF
isolation is not straightforward. In designing MOAT, we faced
and overcame two major technical hurdles. First, MPK pro-
vides a maximum of 16 keys. Thus, supporting numerous
BPF programs with this limited number of keys is challeng-
ing. Existing workarounds like key virtualization [62] heavily
rely on scheduling and notification mechanisms that are only
available to user space; our tentative observation shows that

Kerneltracepoint

packet filter

schduler

tracepoint

packet filter

schduler

User
Application packet filter

schduler
tracepoint

BPF Programs BPF Bytecode

Verifier

Maps

Helpers call load_skb

...
log pkt_type
ret 0

KernelBPF (Runtime) Utilities BPF Program

BPF Compiler

Figure 1: BPF overview. We illustrate the BPF compilation procedure and execution context of a sample BPF packet filter.

directly reusing them in the kernel may largely block kernel
threads. To address this hurdle, we propose a novel two-layer
isolation scheme to protect both the kernel and the benign BPF
programs from malicious BPF programs. MOAT also utilizes
a contemporary hardware feature named process context iden-
tifier to minimize the incurred overhead. Second, while MPK-
based isolation mitigates malicious BPF programs, helper
functions provided by the BPF subsystem may still be ex-
ploited by attackers. On the one hand, MOAT should allow
benign BPF programs to use these helpers freely. On the other
hand, MOAT must be cautious enough with these helpers to
ensure that they are not abused. However, designing security
policies for each of them requires non-trivial engineering ef-
fort and might result in a bloated codebase. To prevent abuse,
we design two defense schemes that do not rely on the specific
design of helper functions. We show that each of them applies
to a wide range of helpers (see Appendix. C).

We systematically examine how MOAT mitigates the attack
on the BPF ecosystem and the potential threats to MOAT itself.
We also empirically analyze all recent CVEs within MOAT’s
application scope. The result shows that MOAT successfully
mitigates each CVE. We evaluate the performance overhead
brought by MOAT across a variety of micro and macro bench-
mark settings, and MOAT achieves low performance overhead
across all settings. In particular, we evaluate MOAT with the
common use cases of BPF in network applications, and the
maximum performance penalty from MOAT is 3% among
these cases. We also test MOAT’s overhead on system tracing,
another important BPF use case. On average, MOAT brings
a performance loss of 5.5% in this setting. Furthermore, we
evaluate MOAT’s performance when using BPF for system
call filtering [12]. In this case, the performance loss brought
by MOAT is less than 3%. Thus, we conclude that MOAT’s
overhead is reasonably low, especially given its security bene-
fits. In sum, we have made the following contributions.

• Instead of merely relying on the BPF verifier to statically
validate BPF programs, this paper, for the first time, ad-
vocates isolating BPF programs with an emerging hard-
ware extension, Intel MPK, effectively ensuring the memory
safety of BPF programs.

• Technically, MOAT is properly designed to address domain-
specific challenges, including limited hardware keys and
preventing helper abuse in the BPF ecosystem. MOAT fea-
tures a two-layer isolation scheme to protect both the kernel
and the benign BPF programs from malicious BPF pro-
grams and incorporates various design considerations to

deliver a security guarantee on memory safety at a low cost.

• We implemented a prototype of MOAT on Linux 6.1.381

and thoroughly evaluated its security over different attack
scenarios (including all memory-relevant BPF CVEs in the
past decade) and performance using various benchmark
datasets. The evaluation shows that MOAT delivers a prin-
cipled security warranty with minimum overhead.

2 Background

2.1 Berkeley Packet Filter (BPF)

BPF Overview. BPF [7] was originally introduced to facil-
itate flexible network packet filtering. Instead of inspecting
packets in the user space, users can provide BPF instructions
specifying packet filter rules, which are directly executed in
the kernel. BPF allows configurable packet filtering without
costly context switching and data copying. Modern Linux ker-
nel features extended BPF (eBPF), a Linux subsystem which
supports a wide range of use cases, such as kernel profiling,
load balancing, and firewalls. Popular applications such as
Docker [46], Katran [31], and kernel debugging utilities like
Kprobes [10] utilize or are built directly on top of BPF.

Fig. 1 depicts an overview of how BPF programs are com-
piled and deployed. The BPF subsystem offers ten general-
purpose 64-bit registers, a stack, BPF customized data struc-
tures (often called BPF maps), and a set of BPF helper func-
tions. To use BPF (e.g., for system tracing), users first write
their own BPF programs (in C code) to specify the function-
ality, which, in turn, are compiled into bytecode and loaded
into the kernel. Given that BPF code is written by untrusted
users, the kernel employs a verifier to conduct several checks
during the bytecode loading stage (see below). By default, the
verified bytecode is further compiled into native code by an
in-kernel Just-In-Time (JIT) compiler for better performance.
Additionally, on platforms without the JIT support, the byte-
code is alternatively executed by the BPF interpreter. The
BPF program is then attached to certain kernel components
based on its specific end goal. For instance, as shown in Fig. 1,
a BPF program attaches to the kernel as the packet filter, mon-
itoring network traffic and sending statistics back to the user
space via a BPF map.
BPF Verifier. BPF programs are written in C and compiled
into a RISC-like instruction set. As aforementioned, the kernel

1We release the codebase of MOAT on our site [14]. We will maintain
MOAT to benefit the community and follow-up research.

- len < INSN_MAX
- no loop
- no dead code
- no OOB jmp

Unverified CFG
Check Phase

Data-Flow
Check Phase

- register tracking
- access check
- helper check
- misc fixups

Verified

Figure 2: BPF verification process.

strictly verifies the BPF programs upon loading to ensure they
are safe to execute. Fig. 2 illustrates the verification process
in a holistic manner. First, a BPF program is parsed into a
control flow graph (CFG) by the verifier, which performs
a CFG check phase to ensure four key properties: 1) the
program size is within a limit; 2) there are no back edges
(loops) on its CFG; 3) there is no unreachable code; and 4)
all jumps are direct jumps and refer to a valid destination.

The verifier then tracks the value flow of every register
to deduce its value ranges conservatively. With these ranges,
the verifier decides if a pointer accesses safe memory and if
a parameter is valid. Since this analysis is performed stati-
cally, it is possible for a malicious BPF program to exploit a
vulnerability to bypass it [47–51, 53, 54, 56].
BPF Helpers. The kernel also limits the functions a BPF pro-
gram may call. Those functions are dubbed BPF helpers, as
shown in Fig. 1. To date, there are over 200 helpers provided
by the kernel [4]. Depending on the task, a BPF program can
usually call a group of relevant helpers. For example, a BPF
packet filter can call skb_load to read packet data, but is not
allowed to call any helper related to system tracing.
BPF Maps. Out of security concern, the kernel also sets a
strict space limit on BPF programs. Each program, by default,
can only use up to 512 bytes of stack space and 10 registers,
which is far from enough for certain BPF programs. To ad-
dress this problem, BPF maps can be allocated to provide
additional space for BPF programs. To date, there are over
30 types of maps supported by kernel [8]. Based on the isola-
tion requirements, they can be roughly categorized into two
types. The first type is maps that own a memory region. The
most commonly used maps, hash maps and array maps, be-
long to this category. BPF programs use them to store data
and communicate with user space. Therefore, a proper access
permission has to be set for these maps (see MOAT’s solution
in Sec. 4.1). The second type holds references to other kernel
resources (e.g., file descriptors). BPF programs are restricted
to using helpers to interact with this type of map. Thus, MOAT
forbids BPF programs from directly accessing them.

00 01 ... 10 00
32 0

PKR

PTE[62:59] = 0xF
PTE[62:59] = 0xE
PTE[62:59] = 0x1

Page Table Entry

PKR Entry Options

00 Access Enabled (AE)

Access Disabled (AD)

Write Disabled (WD)

Access Disabled (AD)

01

10

11

Figure 3: Intel MPK overview.

Classic BPF (cBPF). cBPF specializes in tasks like syscall
filtering (e.g., seccomp-BPF) and has more restrictions than

eBPF. We clarify that MOAT supports both of them. We also
evaluate MOAT using seccomp-BPF with cBPF in Sec. 6.2.2.
In this paper, we use BPF to refer to both cBPF and eBPF, as
the kernel internally converts cBPF to eBPF.

2.2 Hardware Features in MOAT

Intel MPK. Intel introduced MPK [11] to provide efficient
page table permissions control. By assigning an MPK protec-
tion key to the page table entries (PTEs) of one process, users
can enable intra-process isolation and confidential data access
control [23, 45, 62, 67]. As illustrated in Fig. 3, MPK uses
four reserved bits [62:59] in each PTE to indicate which
protection key is attached to this page. Those three PTEs in
Fig. 3 are assigned with keys 0x1, 0xE and 0xF, respectively.
Since there are only 4 bits involved, the maximum number
of keys is 16. Then, a new 32-bit register named Protection
Key Register (PKR) is introduced to specify the access per-
mission of these protection keys. Each key occupies two bits
in PKR, whose values flag the access permission of the page.
In Fig. 3, the access permissions of the three pages are 01
access-disabled (AD), 10 write-disabled (WD), and 00 access-
enabled (AE), respectively. By writing to certain bits in PKR,
the access permission of corresponding pages can be config-
ured efficiently without having to modify the PTEs.
Clarification and Notations. There are actually two versions
of MPK. One applies to the user space, while the other ap-
plies to the kernel space. For brevity, we refer to these two
versions in their conventional abbreviations as Protection Key
Supervisor (PKS) and Protection Key User (PKU), respec-
tively. Most existing works [23, 34, 45, 62, 67] are based
on PKU. In MOAT, we use PKS instead since our goal is to
isolate in-kernel BPF programs. The logistics behind these
two versions are mostly identical with slight variations. For
instance, the permission configuration register in PKS is a
Model Specific Register (MSR) named IA32_PKRS, which is
inaccessible from user space, whereas in PKU, this role is
assigned to a dedicated register PKRU. To avoid confusion, the
rest of the paper refers to MPK leveraged by MOAT as PKS.

0 ... 0x1

1 ... 0x2

0 ... 0x2

Page Table Root PCID[11:0]No Flush

...Flush

PCID

New CR3 Value TLB

0x1
0x1

...

0x2
0x3

Figure 4: PCID overview.

Process Context Identifier (PCID). MOAT uses PCID to
reduce the overhead of address-space switching (Sec. 4.2.2);
we introduce PCID here. On the x86 platform, the CR3 regis-
ter holds the page table root of the current process. Modifying
the CR3 register causes a complete Translation Lookaside
Buffer (TLB) flush and is therefore costly. Fortunately, Intel
introduced PCID to address this issue. As shown in Fig. 4,
the lower 12 bits [11:0] of CR3 register are PCID, identify-

ing the owner of the page table, while the highest bit of the
new CR3 value controls the flushing behavior of TLB. If the
highest bit is 1, this modification does not flush TLB at all;
if the highest bit is 0, then this modification only flushes the
TLB entries of the PCID in this new CR3 value. This feature
enables fast address-space switch without costly TLB flush.
Since there are only 12 reserved bits for PCID, it supports up
to 4096 different processes with isolated TLB entries.

3 Motivation and Threat Model

3.1 Motivation

In this section, we discuss the typical threats to the BPF ver-
ifier, the restriction on unprivileged BPF brought by these
threats, and lastly, the motivation for our research.
Fast Feature Evolving. As a fast-developing technology,
threats may come from the inconsistency between the con-
stantly expanding BPF capabilities and the rigorous static
verification process imposed on them [51, 55]. It is a common
practice to add corresponding verification procedures simul-
taneously when introducing new features to BPF programs.
However, it is difficult to implement a verifier that supports
all these features yet still does not miss any edge case, which
already has over 10K LoC with various functionalities [9].
Challenging Register-value Tracking. Second type of
threats originates from the complexity of the register-value
tracking. Although the soundness of such a tracking mech-
anism is formally proved [68], there exist gaps between the
actual implementation and abstraction of the register-value
tracking, especially in some corner cases, such as sign exten-
sion, truncation, and bit operators [47–51, 53, 54, 56].
Unprivileged BPF. BPF was originally designed as a re-
stricted interface for unprivileged users to extend kernel func-
tionality. It comes with a fine-grained privilege system [6]
that allows users to tune a specific part of the kernel with-
out root. However, numerous vulnerabilities [47–50] indicate
that the verifier is not reliable, and consequently, major dis-
tributions have banned unprivileged users from loading BPF
programs [38, 65]. Despite this, there is still a long-lasting
desire for unprivileged BPF in the community. For example,
the seccomp-BPF users have been asking for unprivileged
BPF support for a long time [5].2 Moreover, there have been
continuous efforts (from 2016 to 2023) in the community to
re-emerge unprivileged BPF again [1, 3, 13]. Unfortunately,
these efforts fail as they only focus on enhancing the verifier
itself, which is already over-complicated and error-prone.
Motivation. Overall, seeing BPF’s potential and its current
restriction, we propose MOAT as an isolation scheme comple-
mentary to the BPF verifier. On the one hand, this isolation
scheme shall make BPF more accessible to unprivileged users

2We clarify that seccomp already supports classic-BPF (cBPF), which
lacks expressiveness and no longer updates [2]. BPF here refers to eBPF.

whilst maintaining security. On the other hand, even for priv-
ileged users, MOAT provides the security guarantee that the
BPF programs obtained from a potentially untrusted source
are isolated from the kernel. Overall, we aim to provide a
more secure and accessible BPF ecosystem, thereby promot-
ing its development and adoption in the community.

3.2 Threat Model
Our threat model considers a practical setting that is aligned
with existing BPF vulnerabilities [47–51, 53, 54, 56]. Attack-
ers can load their prepared BPF code into the kernel space
to launch exploitation. In particular, we assume attackers are
non-privileged users with BPF access since a root user already
has control over almost the entire kernel. MOAT isolates user-
submitted BPF programs and prevents them from accessing
kernel memory regions. As will be introduced in Sec. 4, a BPF
program is given only the necessary resources and privileges
to complete its task. We present the threat models of major
components in our research context as follows.
BPF Programs. We assume that malicious BPF programs
are able to bypass checks statically performed by the verifier;
they may thus behave maliciously during runtime. Our threat
model deems BPF programs as untrusted.
BPF Helper Functions. These helpers act as the interme-
diate layer between the BPF subsystem and kernel. Certain
malicious BPF programs can abuse these helpers to perform
attacks, and therefore, we assume they are also untrusted.
MOAT mitigates risks raised by adversarial-manipulated
helper functions with practical defenses.
Out of Scope. The main objective of MOAT is to mitigate
memory exploitation performed by BPF programs. Other
subtle attacks (not relevant to memory exploits), such as spec-
ulation, race condition, and Denial of Service (DoS) toward
the BPF subsystem [57, 58] are not considered. They do not
specifically exist in BPF [22, 26], and are addressed by rel-
evant research [21, 29]. We thus treat them as orthogonal.
Also, BPF subsystem comes with a set of user-space facilities
such as libbpf; bugs in them are not considered by MOAT.
Note that MOAT mitigates information leakage that is due to
out-of-bounds memory access; if the leakage is due to issues
like speculation [58], then it is out of the scope of MOAT.

We clarify that MOAT focuses on the kernel memory ex-
ploitation via BPF, its most prevalent threat. The vulnerabili-
ties mitigated by MOAT typically receive high threat scores
in vulnerability databases [47–51, 53–56] with public PoC
exploits [66], whereas above-precluded vulnerabilities often
lack exploits [27].

4 Design

MOAT Overview. As described in Sec. 3.1, the current se-
curity design against malicious BPF programs solely relies
on the static analysis performed by the BPF verifier, which

is seen as a weak point and exploitable by non-privileged
users. MOAT instead delivers a principled isolation of BPF
programs from the rest part of the kernel using PKS and pre-
vents bypasses.

BPF Memory
Management

§4.1

Two-layer
Isolation

§4.2

Stack Maps Ctx

Kernel BPF HelpersBPF Program

Layer-I Isolation §4.2.1 Layer-II Isolation §4.2.2

Mᴏᴀᴛ

BPF
Workflow

1 2

COP
§4.3.1

DPA
§4.3.2

Helper
Protection

§4.33

Figure 5: MOAT overview.

Fig. 5 depicts an overview of MOAT and how it is inte-
grated into the workflow of BPF programs. 1 Given a user-
submitted BPF program P, MOAT statically allocates the nec-
essary memory regions the program needs, such as stack,
maps, and context based on P’s metadata (Sec. 4.1). 2 When
the kernel invokes P, MOAT isolates P from the kernel using
PKS (Layer-I in Sec. 4.2.1), and constrains P in its isolated
address space (Layer-II in Sec. 4.2.2). 3 On the occasions
that P calls helpers, depending on the helper types, MOAT
adjusts the involved memory region permissions (Sec. 4.3.1)
and validates the helper parameters (Sec. 4.3.2) to prevent the
helpers from being abused.

4.1 BPF Memory Management in MOAT

Further to the overview in Fig. 5, we introduce how MOAT
manages the BPF memory. The BPF memory refers to the
memory regions a BPF program needs to function properly,
including descriptor tables, stacks, maps, and runtime context.
Descriptor Tables. On x86 platforms, Global Descriptor Ta-
ble (GDT) and Interrupt Descriptor Table (IDT) are essential
for basic operations like interrupt. These structures are as-
signed to a shared region that all BPF programs can access.
To prevent tampering, they are made read-only when shared.
Stack. BPF programs use a 512-byte stack space to store lo-
cal variables and function frames. The verifier determines if a
program makes out-of-bounds access toward the stack. Thus,
if the BPF program passes the static checks, its stack is di-
rectly allocated from the kernel stack. However, as discussed
in Sec. 3.1, certain vulnerabilities may allow BPF programs
to bypass this check. Thus, MOAT needs to allocate the stack
as a part of BPF memory and swap stacks to prevent the BPF
programs from tampering with the kernel stack.
Maps. As described in Sec. 2.1, maps are utilized by BPF
programs to store data and communicate with the user space.
Linux provides a set of helper functions for BPF programs to
interact with maps. For example, bpf_map_look_up_elem
returns the pointer of an element so that the program can
modify its value. This means that BPF programs must have
access to these elements’ memory. Thus, MOAT allocates
these maps as a part of BPF memory. Note that we do not

allocate the metadata of these maps inside BPF memory since
they contain exploitable structures like function pointers.

Runtime Context. The context refers to BPF program pa-
rameters, which vary depending on the BPF program types.
We investigated the BPF contexts of common BPF program
types and summarized our findings in Table 1. Most of these
contexts are local objects on the kernel stack and are passed to
BPF programs as parameters, such as bpf_cgroup_dev_ctx.
For this type of BPF context, MOAT allocates them on the
BPF stack instead so that the BPF programs can still access
them without the permission to access the kernel stack. How-
ever, there also exist contexts that are not local objects on the
stack but persistent kernel structures. For example, sk_buff
holds the network packet received by a socket and is also
passed to BPF socket filter programs as context. For this type
of persistent context (denoted in the fourth column of Ta-
ble 1), MOAT dynamically maps the physical page of the
corresponding context into the BPF memory. The reason why
we choose to map instead of creating a local copy is that
sk_buff is typically hundreds of bytes. Our preliminary ex-
periment shows that syncing between the local copy and the
actual kernel object brings non-trivial overheads. Furthermore,
network-related BPF contexts (e.g., bpf_sock_ops) may con-
tain nested pointers to other kernel structures (denoted in the
fifth column of Table 1). Including only these pointers in BPF
memory triggers a false alarm, as these nested structures are
not included. We clarify that BPF programs only access lim-
ited fields of these nested structures. Thus, MOAT reserves a
part of BPF memory to mirror these nested fields efficiently
so that they can be accessed by the BPF programs.

Page 0 Page 1 Virt Page 0

Map (4k-aligned)Stack UnusedLocal Ctx

Pages allocated from page allocator with pkey: 0x1

Fine-grained () allocation by object allocator

Reserved virtual memory (for persist. ctx) from virtual allocator

0 4096 8192

Figure 6: BPF memory allocators.

BPF Memory Allocators. As shown in Fig. 6, MOAT pro-
vides three types of allocators to manage these BPF memory
regions. When loading a BPF program, the page allocator first
allocates physical pages (Page 1) for its BPF memory; these
pages are given the protection key 0x1 and become a part of
its BPF memory. The object allocator handles fine-grained
allocations from the allocated pages (Page 0) that are less than
the page size (4 KB), e.g., the BPF stacks (512 bytes). Lastly,
the virtual allocator controls the virtual memory that is not
backed with concrete physical pages. For instance, it reserves
a part of virtual BPF memory (Virt Page 0) to map persistent
BPF contexts (e.g., sk_buff). Note that we also modify the
implementation of BPF maps to use MOAT’s allocator.

Table 1: BPF context of common program types.

Category Program Type Context Type Persistent Nested Note

Network

Socket Filter sk_buff * Yes Yes Socket packet buffer
Socket Ops bpf_sock_ops * No Yes Socket events (timeout, retransmission, ...)
Socket Lookup bpf_sk_lookup * No Yes Packet information for socket lookup
XDP xdp_md * No Yes Metadata of xdp_buff

Tracing
Kprobe pt_regs * No No Register status on probed location
Tracepoints Depending on tracepoint types No No Relevant tracepoint information
Perf Event bpf_perf_event_data * No No Perf. event (register status, sample period)

Cgroup Cgroup Socket Filter sk_buff * Yes Yes Socket packet buffer under specific cgroup
Cgroup Device bpf_cgroup_dev_ctx * No No Device ID, access type (read, write)

4.2 Two-layer Isolation

Challenge. In theory, we can assign each BPF program with
a unique key to achieve low-cost BPF isolation. However,
PKS only supports up to 16 regions (i.e., keys). If we assign
each BPF program with a unique key, these keys would soon
be exhausted as there could be over 16 BPF programs in the
kernel. It is challenging to isolate an unlimited number of
BPF programs with only 16 protection keys.
Solution. We propose a novel two-layer isolation scheme
using PKS and isolated address spaces. Though isolating
address spaces is less efficient than PKS, we manage to reduce
its overhead to a minimum using a contemporary hardware
feature named PCID; We use PCID as a complement to PKS
to support the isolation of numerous BPF programs.

4.2.1 Layer-I: Lightweight Isolation Domain via PKS

The main objective of MOAT is to isolate the kernel from
malicious BPF programs. Thus, we use PKS as a lightweight
isolation primitive between kernel and BPF programs. Specif-
ically, we use PKS to build three isolated domains: the BPF
domain, the kernel domain, and the shared domain.

As depicted in Fig. 7, all BPF programs reside in the BPF
domain with the protection key 0x1. MOAT grants a BPF pro-
gram access (i.e., access-enabled; AE) to the BPF domain
(0x1) when executing the program by setting its PKR bits to
00 (flagging AE). The kernel domain holds all kernel pages
with the protection key 0x0 and is only accessible by the ker-
nel itself. When entering a BPF program, this kernel domain
(0x0) becomes access-disabled (AD) by setting its PKR bits
to 01 (flagging AD). However, the shared domain (0x2) com-
prises memory regions like IDT and GDT. These regions are
crucial for low-level routines like interrupts. Thus, they are
made write-disabled (WD) instead of access-disabled for BPF
programs by setting the PKR bits to 10 (flagging WD).

This domain design only needs three (out of 16) keys from
PKS yet effectively mitigates malicious BPF programs tar-
geting the kernel. For these malicious programs, a modus
operandi is to introduce an unsanitized kernel pointer by ex-
ploiting a verifier vulnerability. Then, the malicious BPF pro-
gram arbitrarily tampers the kernel using that pointer, leading
to a full-blown exploitation. Isolating BPF programs from the
kernel effectively stops such attacks, as all malicious kernel
access directly from BPF programs is prevented by PKS.

BPF

BPF

Stack
Context
Maps

Stack
Context

010010
WD AE AD

010010
ADWD

6

..

..

..

..

32

... 0x1 ...

...0x1...

0

AE

0x2
Shared by &

Write-Disabled

AD Access-Disabled AE Access-Enabled

GDT
IDT

WD Write-Disabled

BPF Domain

Kernel Domain

0x0 ...
5962

Kernel

Kernel Data
Kernel Code

PTE

Data Regions Runtime PKR Value

Access-Enabled...

Shared Domain

Figure 7: PKS-enforced domains of MOAT.

4.2.2 Layer-II: Isolated BPF Address Space

In Sec. 4.2.1, we have discussed how MOAT prevents BPF
attacks targeting the kernel. However, MOAT only uses PKS
to build isolation between the kernel and BPF programs. All
BPF programs still share the same PKS domain, allowing a
malicious BPF program to tamper with the memory of benign
BPF programs. Inspired by prior works in user-space isola-
tion [70], we set up an isolated address space for each BPF
program to prevent such tampering. Consequently, when a
malicious BPF program tries to access the memory regions of
another BPF program, a page fault occurs, and the malicious
BPF program is immediately terminated.

Unmapped

Kernel Memory BPF BPF Address Space

Kernel Memory BPF

Kernel Memory BPF Unmapped

Address Space

Address Space

BPF DomainKernel Domain

Figure 8: Isolated address spaces of BPF programs.

Fig. 8 illustrates the isolated address spaces of two BPF
programs, P1 and P2. In the address space of P1, the mapping
of P2 does not exist. Similarly, the mapping of P1 does not
exist in the address space of P2 either. This effectively pre-
vents BPF programs from accessing each other and addresses
the abovementioned issue. To avoid the high TLB flush over-
head (and TLB misses) from the address-space switching, we
use PCID to keep the TLB entries from different BPF pro-
grams isolated. Since BPF programs are usually smaller than
user applications, MOAT allocates a non-overlapped virtual
address space with a unique PCID for each of them. In the
rare cases where over 4,096 BPF programs are running in the

same kernel, MOAT has to flush the TLB when two BPF pro-
grams (with the same PCID) run consecutively. Since there
are 4,096 PCIDs available, we expect such conflicts to be
rare, especially considering that the kernel also periodically
flushes TLB, thus clearing the conflicting entries. Even when
such cases occur, MOAT only flushes the TLB entries of the
conflicting PCID and leaves other TLB entries intact.
Why Intra-BPF Isolation. One may question the necessity
for the isolation between BPF programs, as most existing BPF
exploits target the kernel. However, since BPF maps are the
only bridge between the BPF programs and the user space,
the configurations of a BPF program have to be saved in its
maps so that users can change its behavior without reload-
ing it. This paradigm makes cross-BPF attack a noticeable
threat [17]. For example, an attacker may load a malicious
BPF program to change the behavior of another program by
tampering with its configuration maps, disrupting resources
accounting, or even nullifying security checks. Intra-BPF iso-
lation is essential for preventing such attacks.

4.3 Helper Security Mechanism

As mentioned in Sec. 2.1, the kernel provides a set of helper
functions for BPF programs. As these helpers act as the in-
terfaces between the kernel and BPF programs, they can also
be abused by malicious programs to launch attacks. MOAT
needs to protect the helpers from such abuse.

Our investigation of existing BPF vulnerabilities shows
that the malicious BPF programs typically abuse the BPF
helpers in two ways: ➀ the helper contains a defect, which is
exploited by the malicious programs [52]; ➁ the helper itself
is correct, but the malicious programs pass invalid parameters
to abuse it [55]. For ➀, a typical case is that the helper itself
contains defects such as heap overflow. These defects are
leveraged by malicious programs to overwrite the sensitive
fields (e.g., function pointers) of BPF-related kernel objects.
For ➁, since the helper by itself is correct, the malicious pro-
grams are typically restricted to leaking kernel pointers (by
passing invalid parameters) and cannot conduct full-blown ex-
ploitation. Notably, in most cases, since the helper parameters
are checked by the BPF verifier, the malicious programs still
need to leverage the register-value-tracking vulnerabilities in
the verifier (Sec. 3.1) to bypass this check [47–51, 53, 54, 56].

Challenge. However, protecting these BPF helpers is not
trivial. First, the BPF helpers, by design, need to access BPF-
related objects in the kernel memory; blindly isolating helpers
using PKS leads to spurious alarms and impedes benign pro-
grams. Second, there are over 200 BPF helpers in the kernel,
so MOAT’s design must be generic enough to apply to most
of these helpers (see Appendix. C for the supported helpers).
Design Consideration and Solution. To prevent such abuse,
we aim to identify and guard sensitive BPF-related objects
(instead of all BPF-related objects) from the defective BPF

helpers. Besides directly protecting sensitive objects, since
the attackers need to deliver malformed parameters to conduct
helper abuse, we also wish to ensure the validity of the helper
parameters at runtime. To this end, we designed the following
two defense schemes: Critical Object Protection (COP) and
Dynamic Parameter Auditing (DPA). COP protects sensitive
BPF-related objects from being tampered with, while DPA
dynamically checks if the arguments of the helpers are within
legitimate ranges. To clarify, COP and DPA should be enabled
together to deliver protection. DPA only constrains the argu-
ments to their expected ranges. This stops most exploitation
attempts [47–51] but may not ward them off completely in the
presence of a buggy helper [52]; COP, in this case, prevents
the buggy helper from accessing sensitive objects.

4.3.1 Critical Object Protection (COP)

Although BPF helpers have to access BPF-related kernel ob-
jects to complete their tasks, the sensitive BPF-related ob-
jects should still not be accessed by any helper. For example,
array_map_ops is a function pointer in the BPF array maps
that should only be accessed from system calls. However,
array_map_ops is close to other helper-needed objects in
the address space, making it a potential victim of the abused
helpers. Based on this, we designed the COP scheme. As
shown in Fig. 9, instead of treating the entire kernel domain
as a whole, we divide it into a normal domain and a critical-
object domain. Permissions of these critical objects are man-
aged via an extra page and protection key. When entering
helper functions, instead of setting the entire kernel space
as access-enabled (AE), those critical objects remain access-
disabled (AD), preventing the helpers from accessing them.
To identify these objects, we first review BPF CVEs and find
all objects that have been exploited. Then, we manually search
for similar objects in the kernel and check that these found
objects indeed contain sensitive fields (e.g., function pointers).
It took two authors about half a month to conduct the above
procedure individually and cross-check results, which ensures
the credibility of our research to a great extent. We identified
a total of 44 critical objects (see Appendix A); these objects
could either leak the sensitive base address of the kernel (e.g.,
iter_seq_info) or even be tampered with to launch a full-
blown exploit (e.g., array_map_ops). In addition to these 44
identified objects, we set MOAT itself and cred as critical
objects. The former contains sensitive data of MOAT (e.g., the
saved state of IA32_PKRS), while the latter tracks the privi-
lege of a process. We believe protecting the identified critical
objects provides a practical security guarantee for the BPF
helpers. Nonetheless, unidentified critical objects could exist;
we will discuss their potential threat in Sec. 8. Moreover, it is
always feasible to extend COP to protect other kernel objects.

Normal Domain

AD

Critical Objects

AD

PKR

... AD

Critical Objects

BPF Domain

AE

PKR

...
Helper Entry

Kernel Address Space
for BPF Program

Kernel Address Space
for BPF Helpers

AD Access-Disabled AE Access-Enabled

Normal Domain
BPF Domain

AE AE

Helper Exit

Figure 9: Critical object protection (COP).

4.3.2 Dynamic Parameter Auditing (DPA)

To further regulate the helpers, we propose Dynamic Parame-
ter Auditing (DPA), which leverages the information obtained
from the BPF verifier to dynamically check if the parameters
are within their legitimate ranges. As illustrated in Fig. 10,
the verifier can deduce the value range of each register via
static analysis (aligned with the uncovered verifier inaccura-
cies [49, 53]; our DPA design tolerates even invalidly deduced
value ranges; see clarification below). MOAT logs such value
ranges and instruments the BPF programs to insert checks
before helper calls. During runtime, these checks ensure that
the provided parameters of the helpers are within the verifier-
deduced value ranges during runtime. In our example, we can
check if r0==0x10;r1==0x11 when BPF_HELPER is called.
If the parameter runtime values do not match with the static
analysis results, the BPF program is terminated immediately.

r0 = 0x10
r1 = r0 + 0x1
call BPF_HELPER

BPF Instructions Static Register Value
Inferred by Verifier

0x10 0x11
Runtime Register Values

for Each Instruction

...

0x10 0xbe
0x10 0x11

r0 r1
r0 = 0x10
r0 = 0x10 r1 = 0x11
r0 = 0x10 r1 = 0x11

...

...

Figure 10: Register value tracking of the verifier.

Clarification. In this DPA strategy, one may wonder if the
“value ranges” deduced by the verifier are wrong [49, 53]. To
clarify this, we list possible cases of a BPF variable v’s value
range and the corresponding system states in Table 2; our
discussions are as follows.

Table 2: Four cases of a BPF variable v’s value ranges. R denotes
the runtime value of v, D denotes the verifier’s deduced value of v,
E denotes verifier’s expected legitimate value range of v, while T
denotes the ground truth legitimate value range of v. The last column
denotes this case is safe (✓), mitigated by verifier (✓V), mitigated
by MOAT (✓M), or unsafe (✗)

R D E T State
1 0x10 0x10 [0,0x20] [0,0x20] ✓

2 0xba 0xba [0,0x20] [0,0x20] ✓V

3 0xba 0x10 [0,0x20] [0,0x20] ✓M

4 0xba 0xba [0,0xba] [0,0x20] ✗

Case 1 illustrates the value range of a variable v in a benign
BPF program. The runtime value aligns with verifier’s deduc-
tion which further falls within the expected and true legitimate
value ranges simultaneously (R = D ∈ E = T , see the caption
of Table 2). Case 2 demonstrates the value range of variable
v in a malformed BPF program. The runtime value 0xba is

out-of-bounds, and this invalid value is detected by the verifier
through static analysis. Therefore, this program is rejected by
the verifier, and the system remains safe (R = D /∈ E = T).
Case 3 shows the value range of v in a malicious BPF pro-
gram. The runtime value 0xba is out-of-bounds. However,
due to the incomplete analysis caused by vulnerabilities, the
verifier deduces that v’s value is 0x10, which is within the
verifier’s expectation. Since DPA operates in the runtime and
checks whether the runtime value actually matches the veri-
fier’s deduction, this mismatch is then detected by DPA, and
this malicious BPF program is terminated (R ̸= D ∈ E = T).

While the above three cases cannot be exploited, Case 4
implies a scenario where DPA fails and the helper is abused.
The verifier’s expected value range differs from the ground
truth, legitimate value range. This discrepancy allows an out-
of-bounds value 0xba to be passed as an argument to a helper
for exploitation. For this to occur, the following conditions
must be satisfied simultaneously: 1 The verifier has an incor-
rect expectation (i.e., E ̸= T). 2 The incorrect expectation
E is unsafe (i.e., T −E overlaps an exploitable structure). 3
The BPF program is carefully tweaked to be aligned with D
and evade DPA (i.e., R = D). For BPF programs, It is usually
straightforward for the verifier to obtain E statically (e.g.,
E encodes the array size). It is thus hard to satisfy 1 and
2 simultaneously. For today’s known BPF exploits (all of
which fall into Case 3), the verifier has the correct expectation
E = T but makes the incomplete deduction R ̸= D; therefore,
the discrepancy E ̸= T is never encountered in practice.

4.4 Design Comparison

In this section, we compare MOAT’s design with other works
in kernel isolation. This helps highlight the contribution of
MOAT, in comparison to previous research.
Virtualization. There is a line of research works on isolat-
ing kernel components via virtualization [16, 59, 60]. How-
ever, among these prior works, lightweight solutions like
SKEE [16] are not compatible with the low-level routines
(e.g., interrupt) in Linux. SKEE disables the interrupt upon
entry, but disabling the interrupt will significantly impede
BPF’s network performance. To incorporate with low-level
routines in the kernel, non-trivial modification to the system
is often needed. For example, LVD and LXDs [59, 60] require
a hypervisor and an implanted micro-kernel to manage the
isolated components. MOAT, on the one hand, leverages PKS
to enforce lightweight isolation between kernel and BPF; this
ensures efficient interrupt handling. On the other hand, MOAT
re-uses the kernel memory subsystem to enforce intra-BPF
isolation without the additional hypervisor or micro-kernel.
SFI-based Solutions. Prior works also proposed Software
Fault Injection (SFI) for kernel security [20, 41]. SFI inserts
checks before memory access to ensure that they fall into
valid ranges. However, inserting checks for memory access
often brings higher overheads (see Sec. 6.3 for an empirical

comparison with MOAT). MOAT uses PKS to ensure mem-
ory safety and only inserts checks before helpers. Since the
number of helper calls is much smaller than that of memory
access, this design largely reduces the overhead of MOAT.

5 Implementation

MOAT is implemented on Linux 6.1.38, and consists of 2,911
lines of C code. We explain the key points below.
Kernel Interrupt Handling. MOAT has to cooperate with
many low-level routines inside the kernel. For instance, dur-
ing the execution of BPF programs, an interrupt may occur
and take over the control flow to its handler. Note that most
interrupt handlers require access to kernel memory, and as a
result, the PKS would presumably raise spurious alerts. Thus,
we need to temporarily disable PKS inside these handlers and
re-enable it once the handlers finish. To avoid the overhead
when there is no BPF program, we use a per-CPU variable
in_bpf to identify whether the processor is executing a BPF
program. Since BPF programs only occupy a tiny fraction
of kernel execution time, we observe little performance loss
due to this, even under cases where interrupt frequently oc-
curs (e.g., intensive network activity in Sec. 6.2.2).
Granularity of PKS. As protection keys are associated with
PTEs, MOAT only protects memory in the granularity of a
page (i.e., 4 KB). However, the objects used by BPF programs
may not be aligned to 4 KB, which means they could inter-
leave with critical kernel structures. Therefore, granting BPF
programs access to these objects also enables access to those
kernel structures and leads to exploitation. To prevent this, we
have modified BPF-related objects (e.g., maps) so that they
are page-aligned and not interleaved with other structures.
DPA Check Generation. To deploy DPA from Sec. 4.3.2, we
modify the BPF JIT compiler (bpf_jit_comp.c with about
2500 LoC) to instrument BPF programs. As shown in Fig. 11,
our modified JIT compiler receives a set of expected ranges
from the verifier. Then, for each parameter, the JIT compiler
emits assembly instructions to check whether the parameter
is within the expected range. If not, we terminate the pro-
gram (bad label in Fig. 11). This prevents malicious programs
from passing invalid parameters to abuse BPF helpers.

Verifier Ranges

JIT
Compiler

BPF Prog.

cmp %rdi,$min
jl bad
cmp %rdi,$max
jg bad

...
bad:
<terminate>

(min, max)

Figure 11: DPA Check Generation.

6 Evaluation

To evaluate MOAT, we first analyze how MOAT mitigates
various attack interfaces and then benchmark its CVE de-

tectability in Sec. 6.1. We then assess the performance of
MOAT under different BPF program setups in Sec. 6.2.

6.1 Security Evaluation
6.1.1 Analysis of Attack Mitigation

We systematically analyze how MOAT mitigates the represen-
tative attacks on the BPF ecosystem as well as the potential
threats to MOAT itself. Our analyses are illustrated in Fig. 12.

PTEsIDT/GDT Memory

BPF
Program

Helper
Protect

BPF
HelperIA32_PKRS

34 1 2

5

PKS Region Write-Disabled Access-Disabled

7

6 ROP

PKU Pitfall

Figure 12: Analysis of attack mitigation.

1 Arbitrary Kernel Access. Currently, the most prevalent
threat to the BPF ecosystem is the ability of malicious BPF
programs to arbitrarily modify kernel memory. In order to
accomplish this, these BPF programs typically employ corner-
case operations to deceive the verifier during the loading
phase and to behave maliciously during runtime. This type of
attack is effectively mitigated due to the fact that MOAT de-
rives the necessary memory regions of each BPF program and
uses PKS to prevent any runtime access beyond this region
(Sec. 4.2), mitigating such illegal access.
2 Helper Function Abuse. Apart from launching an attack
directly from BPF programs, a malicious BPF program may
carefully prepare parameter values and pass them to abuse cer-
tain helpers. To prevent such abuse, MOAT deploys security
enforcement schemes (Sec. 4.3) to dynamically audit helper
parameters and also protect critical kernel kernel objects dur-
ing the execution of these helpers. Thus, the attacker can no
longer take advantage of these helpers.
3 PTE Corruption. A page’s PKS region is configured via
its PTE. Consequently, a malicious BPF program may attempt
to tamper with the PTEs to disable MOAT. However, this is
impossible since MOAT sets these PTEs as access-disabled;
they are thus protected by PKS like other kernel resources.
4 Descriptor Table Tampering. Descriptor tables like GDT
and IDT are essential for segmentation and interrupt handling.
Therefore, blindly setting them as access-disabled would
cause system crashes. However, since these descriptor tables
are only accessed in a read-only manner, MOAT sets them
as write-disabled, thus preventing malicious BPF programs
from using them to compromise the kernel.
5 Hardware Configuration Tampering. Besides memory-
based attacks, attackers may also directly disable PKS
through hardware configurations. As described in Sec. 2.2,
IA32_PKRS is a critical register for configuring PKS. One
may disable PKS by modifying IA32_PKRS. However, this
register can only be modified via special instructions, and

BPF instruction sets do not include any of these. Thus, a BPF
program with these instructions is rejected immediately. Since
the BPF programs are set to W ⊕X (meaning write and exe-
cutable permissions are not simultaneously enabled), adding
these instructions via self-modification is also impossible.
6 Return-Oriented Programming. Two properties of the
BPF instruction set prevent potential control-flow hijacking
attacks like return-oriented programming (ROP). First, BPF
only supports jump instructions with constant and instruction-
level offsets. This means the destinations of jumps are triv-
ially known during the compile time, and there are no unin-
tended ROP gadgets (jumps between instructions) like x86
[19]. Secondly, as a specialized instruction set, BPF does not
include any instructions that may modify hardware configura-
tions such as XRSTOR and WRMSR. These two properties allow
MOAT to reliably detect invalid instructions and prevent BPF
programs from tampering with hardware settings.
7 Attacks in PKU Pitfalls. We carefully examined attacks
mentioned in PKU Pitfalls [25], which focus on breaking
PKU, the user variant of MPK. Their noted attacks can be
roughly categorized into three types. The first type manip-
ulates memory mappings through certain system calls (e.g.,
mremap) to subvert PKU, such as modifying user-space PTEs
and creating mutable backup. However, BPF programs are
incapable of launching such attacks, as there is no helper
that can manipulate kernel memory mappings. The second
type involves tampering with the saved state of PKRU and dis-
abling PKU entirely upon restoration. Unlike PKU, MOAT
exclusively manages the saved state of IA32_PKRS, making
these attacks infeasible. The third type relies on mechanisms
that are exclusive to the user space (e.g., using seccomp to
intercept system calls) and is not applicable to MOAT.

6.1.2 Real-world CVE Evaluation

We surveyed the BPF CVEs in the past ten years. A total of 26
CVEs are memory exploits (Appendix. B) and thus fall within
the scope of MOAT. We tested MOAT’s effectiveness on all of
these CVEs. For CVEs with publicly available PoC, we ported
and ran the PoC on MOAT-enabled kernel. For CVEs without
PoC, we studied the fixes and ensure that MOAT mitigates
them. In sum, we report that MOAT successfully mitigates all
of them. We now present the following case studies.
CVE Case Study. To better explain how MOAT mitigates
these CVEs, we elaborate on the exploit paths for three of
them, 2022-23222, 2020-27194, and 2021-34866.
CVE-2022-23222 is a pointer mischeck vulnerability intro-
duced via a rather new BPF feature, bpf_ringbuf. This
new feature was brought to BPF in 2020, along with a
new pointer type named PTR_TO_MEM_OR_NULL. However,
the verifier had not been updated to track the bounds of
this new type, resulting in this vulnerability. As shown in
Fig. 13a, the malicious payload first retrieves a nullptr via
ringbuf_reserve (line 1), which returns this newly added

pointer type named PTR_TO_MEM_OR_NULL. Since this new
type is not tracked by the verifier, the payload can bypass
pointer checks by tricking the verifier that r1 is 0x0 when it
is 0x1 (line 3). r1 can then be multiplied with any offset to
perform arbitrary kernel access (line 6). However, such access
violates PKS and is terminated by MOAT (line 7).
CVE-2020-27194 is a vulnerability due to incorrect trunca-
tion. As in Fig. 13b, the user first inputs an arbitrary value in
the range of [0,0x600000001] (line 1). Then, the conditional
clause helps the verifier to determine its value range (line 3).
However, when tracking the BPF_OR operator, the verifier
performs a wrong truncation on its upper bound. After the
truncation, the user-controlled r5 is viewed by the verifier
as a legitimate constant 0x1 (line 5), which is later used as
the offset to perform arbitrary access to the kernel (line 6).
Similarly, such access is stopped by MOAT.
CVE-2021-34866 is a helper-abuse vulnerability. As shown
in Fig. 13c, the malicious payload tries to pass an invalid
map to the ringbuf_reserve to cause heap overflow (line
3). However, since the runtime value of r5 does not match
the argument of ringbuf_reserve, DPA prevents such a
mismatched helper call (line 2). Moreover, supposing that
the DPA is not enabled, and the helper tries to tamper with
exploitable kernel objects (e.g., array_map_ops). COP pro-
tects these objects and thus prevents the helper from access-
ing them (line 3). Lastly, even if neither COP nor DPA is
enabled, and the abused helper manages to return a leaked
kernel pointer, accessing the leaked pointer violates PKS, and
the malicious program is terminated by MOAT (line 4).

1 r0 = ringbuf_reserve(fd, INT_MAX , 0)
2 r1 = r0 + 1 // R:r0=0;r1=1 V:r0=r1=?
3 if (r0 != nullptr) // R:r0=0;r1=1 V:r0=r1=?
4 exit(1)
5 off = <bad off> // R:r0=0;r1=1 V:r0=r1=0
6 off = off * r1 // R:off=<bad off> V:off=0
7 *(ptr+off) = 0xbad // PKS violation

(a) Code snippet of CVE-2022-23222

1 r5 = <bad addr >
2 r6 = 0x600000002
3 if (r5>=r6||r5 <=0) // R&V:0x1<=r5 <=0x600000001
4 exit(1)
5 r5 = r5 | 0 // R:r5=<bad addr > V: r5=0x1
6 *(ptr+r5)=0xbad // PKS violation

(b) Code snippet of CVE-2020-27194

1 r5 = <bad map fd>
2 <DPA checks > // DPA violation
3 r0=ringbuf_reserve(r5,INT_MAX ,0)// COP-guarded
4 *(r0+ptr_off) = 0xbad // PKS violation

(c) Code snippet of CVE-2021-34866

Figure 13: CVE case study. R denotes variable runtime statuses. V
denotes verifier-deduced values of variables.

6.2 Performance Evaluation

Evaluation Setup. We assess MOAT performance on Linux
v6.1.38 and a 5-core Intel 8505 processor with PKS sup-
port. To reduce variance, hyper-threading, turbo-boost, and
frequency scaling are disabled. All evaluated BPF programs
are executed in the JIT mode, given that BPF JIT is enabled
by default on all supported platforms. Moreover, both COP
and DPA (Sec. 4.3) are enabled; COP is configured to protect
the critical objects identified in Sec. 4.3.1. We manually in-
spected the CPU utilization to ensure it is close to 100%, and
that the overhead is not hidden by the increased CPU load.

6.2.1 Micro Benchmark

For the micro benchmark, we measure the CPU cycles of
four key operations in MOAT. We list the four operations in
Table 3. set_pkrs changes region permissions by chang-
ing IA32_PKRS via WRMSR. get_pkrs returns the current
permission configuration by reading IA32_PKRS via RDMSR.
bpf_{entry/exit} is the total cost of entering/exiting a BPF
program, which includes operations like swapping stack, man-
aging BPF context, and configuring region permissions with
set_pkrs. dpa_check_args is the cost of checking helper
parameters. Each operation is measured by averaging ten runs
of one million invocations to eliminate randomness. Since
Intel has introduced the concept of “performance core” and
“efficient core”, we measure their cycles independently.

As shown in Table 3, the overall switching cost of MOAT
is less than 200 cycles, which is negligible for most BPF pro-
grams (see Sec. 6.2.2 for details). Notably, setting and getting
the region permissions (set_pkrs/get_pkrs) in PKS is more
expensive than its user-space variant in libmpk [62] (see the
caption of Table 3). We presume that this is because, in PKU,
the region permission is controlled via a dedicated register
named PKRU with two special instructions RDPKRU/WRPKRU,
whereas in PKS employed by MOAT, its region permission is
stored in an MSR named IA32_PKRS without any special in-
struction. To configure the permission in IA32_PKRS, one has
to use the RDMSR/WRMSR instructions with the MSR ID 0x6E1.
Moreover, although the cost of dpa_check_args varies based
on the checked range type (e.g., value point [0x1,0x1] costs
less than value range [0x1,0x10]), we report that these costs
are all less than ten cycles. Lastly, we observe that the opera-
tions of MOAT are not substantially affected by the difference
between performance and efficient cores.

Table 3: Micro benchmark results. We use P to denote the cycles of
performance cores and E for the efficient cores. As a reference [62],
user-space RDPKRU, WRPKRU take 0.5 and 23.3 cycles, respectively.

Operation #Cycles Note
get_pkrs/RDMSR P:36 E:43 Get region permissions
set_pkrs/WRMSR P:111 E:112 Set region permissions
bpf_{entry/exit} P:154 E:173 Entry/exit BPF program
dpa_check_args P:≤10 E:≤10 Check helper arguments

MOAT’s Overhead vs. #BPF Programs. To show MOAT
supports that numerous BPF programs, we prepare the fol-
lowing experiments. We attach 1, 10, 32, 64, and 128 BPF
programs to trace execve3, run a program that continuously
creates processes for one minute, and measure the number of
processes created. In this setting, each invocation of execve
stresses MOAT to constantly switch between the BPF pro-
grams. Moreover, we craft each BPF program as succinct
(programs that directly return) so that MOAT’s relative over-
head is not “dominated” by the overly lengthy BPF programs.

1 10 32 64 128
3000

3500

4000

4500

5000

5500

6000

Pr
oc

es
s

C
re

at
io

n
T

hr
ou

gh
pu

t(
#p

ro
ce

ss
/s

)

5149.5 5136.4 5132.8 5125.3 5117.1

4959.7
0.96

4943.7
0.96

4916.8
0.96

4834.8
0.94 4650.7

0.91

#BPF Programs

Baseline
MOAT

Figure 14: MOAT’s overhead with respect to #BPF programs.

We report our results in Fig. 14. Since we use simple BPF
programs, the baseline performance (without MOAT) is not
observably affected by the number of BPF programs; we ex-
pect that in real-world cases, the baseline performance would
also drop as the number of BPF programs increases. MOAT’s
overhead stays largely the same (4%) when there are 1, 10, or
32 BPF programs and then slowly increases with the number
of BPF programs. It eventually incurs 9% overhead with 128
BPF programs. With further inspection, we find that over 64
BPF programs with isolated TLB entries pose heavy stress to
TLB, resulting in increased overhead. However, having over
64 BPF programs attached to the same place is extremely
rare (if it occurs at all). Nonetheless, even in such cases,
MOAT incurs a performance penalty of less than 10%.

To complement the above experiment, we prepare the fol-
lowing experiment where BPF programs are attached to differ-
ent kernel locations. There are, in total, 685 BPF tracepoints
of system calls in Linux [15]. Following a similar setting
as above, we attach each of these tracepoints with a simple
BPF program and run UnixBench [42] to measure the overall
system performance. In sum, there are nearly 700 BPF pro-
grams in the kernel with diverse invocation patterns. Thus,
this setting stresses the system in a manner distinct from the
previous experiment. We report that in such settings, the av-
erage UnixBench baseline score is 4936.3, MOAT’s score is
4720.8, and thus, the incurred overhead is about 5%.

From these two experiments, we interpret that the overhead
of MOAT is slightly affected by the number of BPF programs
due to the TLB stress. Nevertheless, MOAT’s overhead falls
in a reasonable and promising range (4%~9%), even for cases

3We clarify that one BPF tracepoint only supports up to 64 programs [18],
so we attach to both entry and exit tracepoints of execve in these experiments.

that are much heavier and rarely seen in real-world ones.

6.2.2 Macro Benchmark

For the macro benchmark, we set up three mainstream BPF
use cases: network, system tracing, and system-call filter-
ing. On the network cases (i.e., Socket and XDP), we use
the smallest applicable packet size because BPF operates on
each packet. Thus, under the same bandwidth, smaller-sized
packets will incur higher throughput (i.e., more packets) and
lead to more invocations of BPF programs, eventually putting
more stress on MOAT.
Network — Socket. To evaluate MOAT’s overhead on the net-
work applications, we simulate a traffic monitoring scenario.
A traffic generator sends UDP packets for one minute, with
a packet size of 16 bytes, to our tested device. A server on
the tested device receives these packets. Both the sender and
receiver have a 1 GbE network interface controller. As for the
tested BPF programs, we use five socket filtering programs
from the Linux source tree, similar to previous works [39]:
• drop: directly ignores the packet.

• byte: monitors the traffic in bytes from each protocol.

• pkt: monitors the traffic in packets from each protocol.

• trim: only keeps the packet header to the socket.

• flow: monitors the network traffic based on protocol, inter-
face, source, destination, and port.
We attach a socket to the receiver’s network interface and

set up these BPF programs to monitor the network traffic over
the socket. In addition to the evaluation of each program, we
also conduct a full-on experiment where five BPF programs
are attached simultaneously to stress MOAT.

Table 4: MOAT’s traffic monitoring performance in Thousand Pack-
ets per Second (TPPS). The full-on experiment is denoted as “all”.
The “vanilla” throughput without BPF program is 596.3 TPPS; the
relative throughput is denoted in parentheses, e.g., (99.73%).

Throughput (TPPS) drop byte pkt trim flow all

Baseline 594.39
(99.70%)

594.67
(99.73%)

594.26
(99.66%)

594.74
(99.73%)

594.39
(99.68%)

587.22
(98.47%)

MOAT
593.10

(99.46%)
594.31

(99.66%)
594.43

(99.68%)
594.69

(99.73%)
593.10

(99.46%)
575.33

(96.48%)

As shown in Table 4, MOAT incurs negligible over-
head (<1%) for all BPF programs if they are solely executing
in the kernel. Even in the full-on experiment, which forces
MOAT to constantly switch between these BPF programs,
MOAT brings only a very small throughput drop of 2%.
Network — XDP. Besides processing packets from a socket
buffer, BPF provides a direct way to control the network —
eXpress Data Path (XDP). XDP processes packets at an early
stage in the network stack to achieve fast packet processing.
Following the settings in the socket experiment, we simulate
a packet processing scenario. Similar to prior works [39], we
run five XDP programs from the Linux source tree:

• xdp1: parses the IP header, keeps packets count in a BPF
map, and drops the packets.

• xdp2: same as xdp1, but re-sends the packets.

• adj: trims the packets into ICMP packets, sends them back,
and keeps packet count in a BPF map.

• rxq1: counts and drops the packets in each receive queue.

• rxq2: same as rxq1, but re-sends the packets.
Unlike socket filters, XDP programs require packets to be

over a certain size, so we tune our traffic generator to send
packets that go through the maximum possible execution path
of the tested programs. We send packets of 64 bytes for xdp1
and xdp2 and packets of 100 bytes for adj, rxq1, and rxq2.

Table 5: MOAT’s XDP performance in TPPS. The “vanilla” through-
put without XDP program is 532.9 TPPS with 100-byte packets, and
561.5 TPPS with 64-byte packets; the relative throughput is denoted
in parentheses, e.g., (99.55%).

Throughput (TPPS) xdp1 xdp2 adj rxq1 rxq2

Baseline 560.58
(99.84%)

557.78
(99.34%)

531.11
(99.66%)

528.36
(99.15%)

530.52
(99.55%)

MOAT
560.15

(99.76%)
557.76

(99.33%)
530.65

(99.58%)
527.57

(99.00%)
527.66

(99.05%)

As illustrated in Table 5, MOAT incurs negligible perfor-
mance penalties (<1%) when executing XDP programs.
System Tracing. System tracing is another mainstream BPF
use case. To evaluate MOAT’s overhead on system tracing,
we prepare 11 BPF programs to trace frequent system events
like page faults, process creation, context switch, and file op-
erations. These programs collect relevant system statistics for
user-space analysis. Then, we run UnixBench [42] to mea-
sure the overall system performance. UnixBench includes
the following tests: ➀ execl throughput, ➁ file copy, ➂ pipe
throughput, ➃ pipe-based context switching, ➄ process cre-
ation, ➅ shell scripts, and ➆ system call.

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Performance Score

syscall Æ

shell2 Å

shell1 Å

proc Ä

pipectx Ã

pipe Â

fc3 Á

fc2 Á

fc1 Á

execl À

0.69

0.94

0.93

0.95

0.81

0.37

0.97

0.97

0.96

0.92

0.58

0.91

0.90

0.89

0.68

0.35

0.92

0.92

0.90

0.86

Baseline MOAT

Figure 15: UnixBench normalized scores with respect to the “vanilla”
scores without BPF tracepoints. The “fc* ➁” and “shell* ➅” are file
copy tests and shell tests with different settings.

We report the results in Fig. 15. We find that MOAT im-
poses a small slowdown (≤ 6%) for most UnixBench tests.

The maximum performance loss brought by MOAT is 13% in
test ➆. Such overhead seems moderate. However, note that the
BPF programs without MOAT already bring a non-trivial per-
formance penalty (e.g., 63% slowdown in test ➂). Therefore,
the performance loss brought by MOAT (<13%) is reasonably
low for system tracing.
Syscall Filtering. BPF is also used to enhance software se-
curity [12, 28, 36]. seccomp-BPF allows filtering the system
calls of a process with BPF. sysfilter [28] is an automated
tool that analyzes a program, creates the set of system calls the
program needs, and restricts the program using seccomp-BPF.
We use seccomp-BPF and sysfilter to evaluate MOAT’s
overhead in such a use case. We apply the MOAT-hardened
filter to Nginx and benchmark it using wrk [33] with one,
two, and three client processes; each sends requests for one
minute with 128 connections. Nginx is configured with the
same number of worker processes. To clarify this setting: the
number of processes for Nginx typically shall not exceed the
number of cores, and adding more processes does not increase
the throughput due to the context-switch cost. All requests are
sent over the loopback (lo) to minimize network interference.

Table 6: Nginx throughput in Thousands of Request per Second (Tre-
q/s). The relative throughput is in the parentheses, e.g., (95.6%).

Throughout (Treq/s) 1 worker 2 worker 3 worker
Vanilla

(no seccomp-BPF)
148.1 (100%)
±12.81

179.5 (100%)
± 8.35

165.2 (100%)
±4.72

Baseline 147.2 (99.4%)
±9.56

171.3 (95.4%)
±8.08

160.5 (97.2%)
±5.28

MOAT
142.3 (96.1%)
±8.77

166.3 (92.6%)
±6.70

158.0 (95.6%)
±4.48

As shown in Table 6, MOAT incurs an additional through-
put drop of 3%. Moreover, the standard deviations of through-
put are within the normal range. Therefore, MOAT does not
introduce fluctuation to Nginx throughput.

6.3 Additional Evaluation

In addition to the above experiments, we also evaluate
MOAT’s memory footprints, instrumentation cost from DPA,
and compare MOAT’s performance with a prior work [41].
Memory Footprint. As mentioned in Sec. 5, MOAT aligns
BPF-related objects (e.g., maps) to 4 KB to ensure that they
do not interleave with other kernel structures, introducing
extra memory footprints. We provide a detailed breakdown
of MOAT’s memory footprints in Table 7. Specifically, MOAT
uses four pages to set up the page table of isolated address-
spaces, one page for the stack and one for the context. As for
critical objects identified in Sec. 4.3.1, MOAT uses an extra
page to toggle their permissions independently. Additionally,
the memory used by the BPF program binaries and BPF maps
is aligned up to a multiple of page size.

Though MOAT’s memory footprints seem non-trivial from
Table 7, we clarify that they are static and thus do not grow
dynamically during the runtime. Even if there are thousands

Table 7: Breakdown of MOAT’s memory footprint. AS: Address
Space; ST: Stack; Ctx: Context; CO: Critical Objects. P and M
denote #pages of program and map, respectively.

Type AS ST CO Ctx Prog Map
#Page 4 1 1 1 ⌈P⌉ ⌈M⌉

of BPF programs, MOAT’s memory footprints are merely a
few megabytes, which is negligible for modern systems.
Helper Instrumentation Cost. As described in Sec. 4.3.2,
MOAT instruments the BPF programs to insert DPA checks.
Table 8 shows the number of helper calls and memory access
made by the BPF programs4 in Sec. 6.2.2. The former reflects
the number of DPA checks inserted by MOAT, while the latter
reflects the number of checks from SFI-based solutions. We
report that, in most cases, the number of DPA checks is smaller
than that of SFI-based solutions, let alone that SFI only offers
memory safety, which is offered by PKS in MOAT.

Table 8: The number of checks of DPA and SFI-based isolation. Note
that the tracepoint (marked with *) consists multiple BPF programs,
and we report their average number of inserted checks.

Name drop byte pkt trim flow xdp1 xdp2 adj rxq tracepoint*
#Helper 0 1 1 0 2 3 3 5 3 6.4
#Mem. 0 4 3 1 61 16 29 53 37 6.9

Comparison with SandBPF. As far as we know,
SandBPF [41] is the only work on BPF isolation at the time
of writing. In this section, we compare MOAT with SandBPF.
Technically, SandBPF enforces isolation by inserting software
runtime checks into the memory access of BPF programs.
As a result, it shall incur a relatively higher overhead than
hardware-based methods. To substantiate this observation,
we conduct the following direct comparative study. The au-
thors of SandBPF conduct an evaluation with Phoronix Test
Suite [40]; we reproduce the same experiments on MOAT.
Note that the source code of SandBPF is not public at the
time of writing, so we directly refer to their data in Table 9.

Table 9: Comparison with SandBPF [41]. We provide MOAT’s
relative overhead (Rel.) and SandBPF’s overhead (Ref.).

Test #Conn
(req./s)

XDP Socket Filter
Base MOAT Rel. Ref. Base MOAT Rel. Ref.

Apache 20 34,303 33,689 2% 0% 40,666 40,286 1% 4%
Apache 100 31,929 30,726 4% 8% 37,998 36,546 4% 4%
Apache 200 27,751 26,657 4% 5% 32,652 31,344 4% 3%
Apache 500 24,786 24,439 1% 7% 30,262 29,423 3% 7%
Apache 1000 24,597 24,470 1% 6% 29,545 28,961 2% 7%
Nginx 20 22,688 21,892 3% 7% 23,359 23,530 0% 10%
Nginx 100 21,492 20,689 4% 7% 22,870 22,482 2% 8%
Nginx 200 19,972 19,216 4% 6% 21,562 20,984 3% 8%
Nginx 500 18,470 17,814 4% 6% 19,421 18,713 4% 7%
Nginx 1000 17,024 16,735 2% 3% 17,392 17,098 2% 6%

As shown in Table 9, MOAT’s overhead is lower than
SandBPF in most testcases (Rel. v.s. Ref.). The MOAT’s
highest overhead is 4%, while SandBPF’s is 10%. Again, we
interpret the advantage of MOAT is attributed to the reduced

4The BPF programs in syscall filtering scenario are cBPF programs and
thus do not support helper functions; we do not include them here.

number of inserted checks compared to SFI-based approaches.

7 Related Work

In this section, we discuss other related works on MPK and
BPF. We already reviewed highly relevant works on kernel
isolation and compared MOAT’s design with theirs in Sec. 4.4.
MPK-based Isolation. Prior to PKS, Intel first announced
its user-space variant PKU. Consequently, most existing
works [35, 62, 70] using MPK focus on user-space isola-
tion. To better utilize PKU as an isolation primitive, Park et al.
[62] proposed libmpk, which resolves the semantic discrep-
ancies between PKU and conventional mprotect. VDom and
EPK [35, 70] aim to provide unlimited keys in the user space
via key virtualization. Despite the similarity, we clarify that
isolating BPF programs in the kernel is a distinct scenario
and comes with its own challenges. This is why we have
proposed the lightweight two-layer design to efficiently iso-
late BPF programs. Apart from using PKU to isolate user
applications, efforts are made to isolate trusted applications
in SGX via PKU [23, 45]. SGXLock [23] establishes mutual
distrust between the kernel and the trusted SGX applications,
while EnclaveDom [45] enables intra-isolation within one en-
clave. PKU has also been used for kernel security. IskiOS [34]
applies PKU to kernel pages by marking them as user-owned.
BPF Security. There are prior works [32, 43, 44, 61, 69] on
securing the BPF ecosystem. Most of them use formal meth-
ods to enhance the following BPF components: the verifier,
the JIT compiler, or the BPF program. To enhance the BPF
verifier, Gershuni et al. [32] propose PREVAIL based on ab-
stract interpretation, which supports more program structures
(e.g., loops) and is more efficient than the standard verifier.
PRSafe [44], on the other hand, designs a new domain-specific
language, whose ultimate goal is to build a mathematically
verifiable compiler for BPF programs. Jitk [69] offers a JIT
compiler whose correctness is proven manually, and Nelson
et al. [61] generate automated proof for real-world BPF JIT
compilers. Lastly, Luke Nelson [43] build proof-carrying BPF
programs, requiring developers to provide a correctness proof
with the program before loading it into the kernel.

8 Limitations

In this section, we discuss the limitations of MOAT, including
the unidentified critical objects, issues brought by the granu-
larity of PKS, and potential barriers to deploying MOAT.
Unidentified Critical Objects. In Sec. 4.3.1, we manually
identified the critical objects in the BPF subsystem that have
been exploited in the wild or similar to the ones that have been
exploited. Despite two authors’ rich experience, there might
still exist unidentified critical objects. However, to exploit
these unidentified objects, one still has to find a BPF helper

that can be abused to access these critical objects and bypass
the parameter checks (i.e., DPA) enforced by MOAT. Thus,
even if few unidentified critical objects exist, they would be
hard, if at all possible, to exploit due to DPA.
Page-size Granularity. MOAT leverages PKS to enforce iso-
lation, which only supports 4 KB granularity. Though we care-
fully adjust BPF-related objects so that they are page-aligned,
there still exist few corner-cases where PKS does not apply.
In particular, BPF programs shall only access certain fields of
the context sk_buff, which is enforced via the static checks
by the verifier. However, applying PKS to these fields would
significantly bloat sk_buff due to the granularity. MOAT thus
cannot use PKS to constrain the access of BPF programs. As
a result, sk_buff might have some bits leaked to BPF pro-
grams if the verifier’s static checks are bypassed. Fortunately,
BPF programs only receive a copy of sk_buff and cannot
tamper with the original structure. Therefore, the consequence
of such leakage, per our observation, seems trivial.
Barrier to Deploying MOAT. To deploy MOAT on other plat-
forms or systems, there exist several barriers. First, MOAT re-
quires a hardware feature like PKS that can provide page-level
isolation. Fortunately, major platforms already support secu-
rity features with similar capability. For example, on RISC-
V, a prior work [64] implements a PKS-like feature named
Donky, which could be used to support MOAT. Therefore, we
expect MOAT to be deployable on other platforms with mod-
erate engineering effort. Second, as we mentioned in Sec. 6.3,
MOAT introduces additional memory footprints. Though the
introduced footprints are only a few pages and negligible for
modern systems, it might still create obstacles for some em-
bedded systems, where memory is a scarce resource. Third,
MOAT consists of about 3,000 lines of C code, which requires
moderate engineering effort to port to other platforms.

9 Conclusion

Despite using BPF to extend kernel functionality, malicious
BPF applications can bypass static security checks and con-
duct unauthorized kernel accesses. We present MOAT to iso-
late potentially malicious BPF applications from the kernel.
MOAT delivers practical and extensible protection with a low
cost, in compensation to contemporary BPF verifiers.

Acknowledgments

We are grateful to the anonymous reviewers, Dr. Zhou Lei,
Dr. Adrian Rowland, and the members of COMPASS Lab
for their valuable comments. This work is partly supported
by the National Natural Science Foundation of China under
Grant No.62372218 and Shenzhen Science and Technology
Program under Grant No.SGDX20201103095408029. The
HKUST authors are supported in part by a RGC CRF grant
under the contract C6015-23G.

References

[1] Unprivileged bpf(), Oct 2015. URL https://lwn.net/
Articles/660331/.

[2] cBPF is frozen without fix/extension, May
2019. URL https://lwn.net/ml/netdev/
20190509044720.fxlcldi74atev5id@ast-mbp/.

[3] Reconsidering unprivileged BPF, Aug 2019. URL
https://lwn.net/Articles/796328/.

[4] BPF-Helpers(7) - Linux Manual Page, 2021. URL
https://man7.org/linux/man-pages/man7/bpf-
helpers.7.html.

[5] eBPF seccomp() filters, May 2021. URL https://
lwn.net/Articles/857228/.

[6] Capabilities - Overview of Linux capabilities — The
Linux manual page, 2022. URL https://man7.org/
linux/man-pages/man7/capabilities.7.html.

[7] BPF Documentation — The Linux Kernel Documen-
tation, 2022. URL https://docs.kernel.org/bpf/
index.html.

[8] eBPF Maps — The Linux Kernel Documentation, 2022.
URL https://docs.kernel.org/bpf/maps.html.

[9] eBPF Verifier — The Linux Kernel Documenta-
tion, 2022. URL https://docs.kernel.org/bpf/
verifier.html.

[10] Kprobes Documentation — The Linux Kernel Docu-
mentation, 2022. URL https://docs.kernel.org/
trace/kprobes.html.

[11] Intel 64 and IA-32 Architectures Software
Developer Manuals, 2022. URL https:
//www.intel.com/content/www/us/en/developer/
articles/technical/intel-sdm.html.

[12] Seccomp BPF (SECure COMPuting with filters), 2022.
URL https://www.kernel.org/doc/html/latest/
userspace-api/seccomp_filter.html.

[13] Unprivileged BPF and authoritative security hooks, Apr
2023. URL https://lwn.net/Articles/929746/.

[14] MOAT website, Oct 2023. URL https:
//sites.google.com/view/safe-bpf/.

[15] Analysing behaviour using events and trace-
points, 2023. URL https://www.kernel.org/
doc/Documentation/trace/tracepoint-
analysis.txt.

[16] Ahmed M. Azab, Kirk Swidowski, Rohan Bhutkar,
Jia Ma, Wenbo Shen, Ruowen Wang, and Peng Ning.
Skee: A lightweight secure kernel-level execution en-
vironment for arm. In Network and Distributed
System Security Symposium, 2016. URL https://
api.semanticscholar.org/CorpusID:8991310.

[17] Bootlin. BPF Configuration Map — config_map.
https://elixir.bootlin.com/linux/v5.10/
source/samples/bpf/xdp_rxq_info_kern.c#L32,
2023.

[18] Bootlin. Linux — BPF_TRACE_MAX_PROGS.
https://elixir.bootlin.com/linux/latest/
source/kernel/trace/bpf_trace.c#L2115, 2023.

[19] Nicholas Carlini and David Wagner. ROP is still dan-
gerous: Breaking modern defenses. In Proceedings of
the 23rd USENIX Conference on Security Symposium,
SEC’14, page 385–399, USA, 2014. USENIX Associa-
tion.

[20] Miguel Castro, Manuel Costa, Jean-Philippe Martin,
Marcus Peinado, Periklis Akritidis, Austin Donnelly,
Paul Barham, and Richard Black. Fast byte-granularity
software fault isolation. In Proceedings of the 22nd
ACM Symposium on Operating Systems Principles
2009, SOSP 2009, Big Sky, Montana, USA, October
11-14, 2009, pages 45–58. ACM, 2009. doi: 10.1145/
1629575.1629581.

[21] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi,
Gilles Barthe, and Deian Stefan. Sok: Practical foun-
dations for software spectre defenses. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 666–
680, 2022. doi: 10.1109/SP46214.2022.9833707.

[22] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian
Zhang, Zhiqiang Lin, and Ten-Hwang Lai. SgxPectre at-
tacks: Leaking enclave secrets via speculative execution.
CoRR, abs/1802.09085, 2018.

[23] Yuan Chen, Jiaqi Li, Guorui Xu, Yajin Zhou, Zhi Wang,
Cong Wang, and Kui Ren. SGXLock: Towards effi-
ciently establishing mutual distrust between host appli-
cation and enclave for SGX. In 31st USENIX Security
Symposium (USENIX Security 22), pages 4129–4146,
Boston, MA, August 2022. USENIX Association.

[24] Cilium. Cilium. https://github.com/cilium/
cilium, 2022.

[25] R. Joseph Connor, Tyler McDaniel, Jared M. Smith,
and Max Schuchard. PKU pitfalls: Attacks on pku-
based memory isolation systems. In Srdjan Capkun
and Franziska Roesner, editors, 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14, 2020,
pages 1409–1426. USENIX Association, 2020.

https://lwn.net/Articles/660331/
https://lwn.net/Articles/660331/
https://lwn.net/ml/netdev/20190509044720.fxlcldi74atev5id@ast-mbp/
https://lwn.net/ml/netdev/20190509044720.fxlcldi74atev5id@ast-mbp/
https://lwn.net/Articles/796328/
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://lwn.net/Articles/857228/
https://lwn.net/Articles/857228/
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://docs.kernel.org/bpf/index.html
https://docs.kernel.org/bpf/index.html
https://docs.kernel.org/bpf/maps.html
https://docs.kernel.org/bpf/verifier.html
https://docs.kernel.org/bpf/verifier.html
https://docs.kernel.org/trace/kprobes.html
https://docs.kernel.org/trace/kprobes.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://lwn.net/Articles/929746/
https://sites.google.com/view/safe-bpf/
https://sites.google.com/view/safe-bpf/
https://www.kernel.org/doc/Documentation/trace/tracepoint-analysis.txt
https://www.kernel.org/doc/Documentation/trace/tracepoint-analysis.txt
https://www.kernel.org/doc/Documentation/trace/tracepoint-analysis.txt
https://api.semanticscholar.org/CorpusID:8991310
https://api.semanticscholar.org/CorpusID:8991310
https://elixir.bootlin.com/linux/v5.10/source/samples/bpf/xdp_rxq_info_kern.c#L32
https://elixir.bootlin.com/linux/v5.10/source/samples/bpf/xdp_rxq_info_kern.c#L32
https://elixir.bootlin.com/linux/latest/source/kernel/trace/bpf_trace.c#L2115
https://elixir.bootlin.com/linux/latest/source/kernel/trace/bpf_trace.c#L2115
https://github.com/cilium/cilium
https://github.com/cilium/cilium

[26] Jinhua Cui, Jason Zhijingcheng Yu, Shweta Shinde, Pra-
teek Saxena, and Zhiping Cai. SmashEx: Smashing
SGX enclaves using exceptions. In Yongdae Kim, Jong
Kim, Giovanni Vigna, and Elaine Shi, editors, CCS ’21:
2021 ACM SIGSAC Conference on Computer and Com-
munications Security, Virtual Event, Republic of Korea,
November 15 - 19, 2021, pages 779–793. ACM, 2021.
doi: 10.1145/3460120.3484821.

[27] CVEDetails. CVE-2020-27171. https://
www.cvedetails.com/cve/CVE-2020-27171.

[28] Nicholas DeMarinis, Kent Williams-King, Di Jin, Ro-
drigo Fonseca, and Vasileios P. Kemerlis. sysfilter: Au-
tomated system call filtering for commodity software. In
23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), pages 459–474,
San Sebastian, October 2020. USENIX Association.

[29] Henri Maxime Demoulin, Isaac Pedisich, Nikos Vasi-
lakis, Vincent Liu, Boon Thau Loo, and Linh Thi Xuan
Phan. Detecting asymmetric application-layer Denial-
of-Service attacks In-Flight with FineLame. In Proceed-
ings of the 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 693–708, Renton, WA, 2019.
USENIX Association.

[30] Pekka Enberg, Ashwin Rao, and Sasu Tarkoma.
Partition-aware packet steering using XDP and eBPF
for improving application-level parallelism. In Proceed-
ings of the 1st ACM CoNEXT Workshop on Emerging
in-Network Computing Paradigms, ENCP@CoNEXT
2019, Orlando, FL, USA, December 9, 2019, pages 27–
33. ACM, 2019. doi: 10.1145/3359993.3366766.

[31] Facebook. Katran: A high performance layer 4
load balancer, Oct 2023. URL https://github.com/
facebookincubator/katran/tree/main.

[32] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina
Narodytska, Jorge A. Navas, Noam Rinetzky, Leonid
Ryzhyk, and Mooly Sagiv. Simple and precise static
analysis of untrusted linux kernel extensions. In Pro-
ceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI 2019, page 1069–1084, New York, NY, USA,
2019. Association for Computing Machinery. doi:
10.1145/3314221.3314590.

[33] Will Glozer. wrk - a http benchmarking tool, Feb 2021.
URL https://github.com/wg/wrk.

[34] Spyridoula Gravani, Mohammad Hedayati, John
Criswell, and Michael L. Scott. Fast intra-kernel iso-
lation and security with IskiOS. In 24th International
Symposium on Research in Attacks, Intrusions and
Defenses, RAID ’21, page 119–134, New York, NY,

USA, 2021. Association for Computing Machinery. doi:
10.1145/3471621.3471849.

[35] Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo
Chen. EPK: Scalable and efficient memory protection
keys. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22), pages 609–624, Carlsbad, CA, July
2022. USENIX Association.

[36] Wanning He, Hongyi Lu, Fengwei Zhang, and Shuai
Wang. Ringguard: Guard io_uring with eBPF. In Pro-
ceedings of the 1st Workshop on eBPF and Kernel Ex-
tensions, eBPF ’23, page 56–62, New York, NY, USA,
2023. Association for Computing Machinery.

[37] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The EXpress data path: Fast
programmable packet processing in the operating sys-
tem kernel. In Proceedings of the 14th International
Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’18, page 54–66, New York, NY,
USA, 2018. Association for Computing Machinery. doi:
10.1145/3281411.3281443.

[38] Canonical Inc. Unprivileged ebpf disabled by default for
ubuntu 20.04 lts, 18.04 lts, 16.04 esm, Mar 2022. URL
https://discourse.ubuntu.com/t/unprivileged-
ebpf-disabled-by-default-for-ubuntu-20-04-
lts-18-04-lts-16-04-esm/27047.

[39] Di Jin, Vaggelis Atlidakis, and Vasileios P. Kemerlis.
EPF: Evil packet filter. In 2023 USENIX Annual Tech-
nical Conference (USENIX ATC 23), pages 735–751,
Boston, MA, USA, 2023. USENIX Association.

[40] Michael Larabel. Phoronix test suite, Mar 2024. URL
https://www.phoronix-test-suite.com/.

[41] Soo Yee Lim, Xueyuan Han, and Thomas Pasquier. Un-
leashing unprivileged ebpf potential with dynamic sand-
boxing. In Proceedings of the 1st Workshop on EBPF
and Kernel Extensions, eBPF ’23, page 42–48, New
York, NY, USA, 2023. Association for Computing Ma-
chinery. doi: 10.1145/3609021.3609301.

[42] Kelly Lucas. UnixBench: the original BYTE UNIX
benchmark suite, updated and revised by many people
over the years., Apr 2023. URL https://github.com/
kdlucas/byte-unixbench.

[43] Emina Torlak Luke Nelson, Xi Wang. A proof-carrying
approach to building correct and flexible in-kernel veri-
fiers. Linux Plumbers Conference, 2021.

[44] Sai Veerya Mahadevan, Yuuki Takano, and Atsuko
Miyaji. PRSafe: Primitive recursive function based

https://www.cvedetails.com/cve/CVE-2020-27171
https://www.cvedetails.com/cve/CVE-2020-27171
https://github.com/facebookincubator/katran/tree/main
https://github.com/facebookincubator/katran/tree/main
https://github.com/wg/wrk
https://discourse.ubuntu.com/t/unprivileged-ebpf-disabled-by-default-for-ubuntu-20-04-lts-18-04-lts-16-04-esm/27047
https://discourse.ubuntu.com/t/unprivileged-ebpf-disabled-by-default-for-ubuntu-20-04-lts-18-04-lts-16-04-esm/27047
https://discourse.ubuntu.com/t/unprivileged-ebpf-disabled-by-default-for-ubuntu-20-04-lts-18-04-lts-16-04-esm/27047
https://www.phoronix-test-suite.com/
https://github.com/kdlucas/byte-unixbench
https://github.com/kdlucas/byte-unixbench

domain specific language using llvm. In 2021 In-
ternational Conference on Electronics, Information,
and Communication (ICEIC), pages 1–4, 2021. doi:
10.1109/ICEIC51217.2021.9369763.

[45] Marcela S. Melara, Michael J. Freedman, and Mic Bow-
man. EnclaveDom: Privilege separation for large-tcb
applications in trusted execution environments, 2019.

[46] Dirk Merkel. Docker: lightweight linux containers for
consistent development and deployment. Linux journal,
2014(239):2, 2014.

[47] MITRE. CVE-2020-27194. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2020-27194, .

[48] MITRE. CVE-2020-8835. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2020-8835, .

[49] MITRE. CVE-2021-31440. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2021-31440, .

[50] MITRE. CVE-2021-33200. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2021-33200, .

[51] MITRE. CVE-2021-3444. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2021-3444, .

[52] MITRE. CVE-2021-34866. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2021-34866, .

[53] MITRE. CVE-2021-3490. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2021-3490, .

[54] MITRE. CVE-2021-45402. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2021-45402, .

[55] MITRE. CVE-2022-23222. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2022-23222, .

[56] MITRE. CVE-2022-2785. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-CVE-2022-2785,
.

[57] MITRE. CVE-2021-4001. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2021-4001, .

[58] MITRE. CVE-2021-29155. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2021-29155, .

[59] Vikram Narayanan, Abhiram Balasubramanian, Charlie
Jacobsen, Sarah Spall, Scott Bauer, Michael Quigley,
Aftab Hussain, Abdullah Younis, Junjie Shen, Moinak
Bhattacharyya, and Anton Burtsev. LXDs: Towards
isolation of kernel subsystems. In 2019 USENIX An-
nual Technical Conference (USENIX ATC 19), pages
269–284, Renton, WA, July 2019. USENIX Associa-
tion. URL https://www.usenix.org/conference/
atc19/presentation/narayanan.

[60] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent
Jaeger, and Anton Burtsev. Lightweight kernel isolation
with virtualization and vm functions. In Proceedings of
the 16th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments, VEE ’20, page
157–171, New York, NY, USA, 2020. Association for
Computing Machinery. doi: 10.1145/3381052.3381328.

[61] Luke Nelson, Jacob Van Geffen, Emina Torlak, and
Xi Wang. Specification and verification in the field:
Applying formal methods to BPF just-in-time compilers
in the linux kernel. In 14th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 20),
pages 41–61. USENIX Association, November 2020.

[62] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon,
and Taesoo Kim. libmpk: Software abstraction for intel
memory protection keys (Intel MPK). In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages
241–254, Renton, WA, July 2019. USENIX Association.

[63] IO Visor Project. BPF Compiler Collection. https:
//github.com/iovisor/bcc, 2022.

[64] David Schrammel, Samuel Weiser, Stefan Steinegger,
Martin Schwarzl, Michael Schwarz, Stefan Mangard,
and Daniel Gruss. Donky: Domain keys – efficient In-
Process isolation for RISC-V and x86. In 29th USENIX
Security Symposium (USENIX Security 20), pages 1677–
1694. USENIX Association, August 2020.

[65] SUSE Support. Security hardening: Use of ebpf by
unprivileged users has been disabled by default, Jan
2022. URL https://www.suse.com/support/kb/
doc/?id=000020545.

[66] tr3e. CVE-2022-23222: Linux Kernel eBPF Local Privi-
lege Escalation, Jun 2022. URL https://github.com/
tr3ee/CVE-2022-23222.

[67] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: Secure, efficient in-process isolation with
protection keys MPK. In 28th USENIX Security Sym-
posium (USENIX Security 19), pages 1221–1238, Santa
Clara, CA, August 2019. USENIX Association.

[68] Harishankar Vishwanathan, Matan Shachnai, Srinivas
Narayana, and Santosh Nagarakatte. Sound, precise,
and fast abstract interpretation with tristate numbers. In
Proceedings of the 20th IEEE/ACM International Sym-
posium on Code Generation and Optimization, CGO
’22, page 254–265. IEEE Press, 2022. doi: 10.1109/
CGO53902.2022.9741267.

[69] Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chli-
pala, and Zachary Tatlock. Jitk: A trustworthy In-Kernel

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27194
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27194
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31440
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31440
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33200
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33200
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3444
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3444
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34866
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34866
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3490
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3490
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45402
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45402
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23222
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23222
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-CVE-2022-2785
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-CVE-2022-2785
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-4001
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-4001
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29155
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29155
https://www.usenix.org/conference/atc19/presentation/narayanan
https://www.usenix.org/conference/atc19/presentation/narayanan
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://www.suse.com/support/kb/doc/?id=000020545
https://www.suse.com/support/kb/doc/?id=000020545
https://github.com/tr3ee/CVE-2022-23222
https://github.com/tr3ee/CVE-2022-23222

interpreter infrastructure. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 14), pages 33–47, Broomfield, CO, October 2014.
USENIX Association.

[70] Ziqi Yuan, Siyu Hong, Rui Chang, Yajin Zhou, Wenbo
Shen, and Kui Ren. VDom: Fast and unlimited virtual
domains on multiple architectures. In Proceedings of the
28th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 2, ASPLOS 2023, page 905–919, New
York, NY, USA, 2023. Association for Computing Ma-
chinery. doi: 10.1145/3575693.3575735.

[71] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas,
Jeffrey Tao, Evan Mesterhazy, Michael Makris, Junfeng
Yang, Amy Tai, Ryan Stutsman, and Asaf Cidon. XRP:
In-Kernel storage functions with eBPF. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 375–393, Carlsbad, CA,
July 2022. USENIX Association.

[72] Hao Zhou, Shuohan Wu, Xiapu Luo, Ting Wang, Ya-
jin Zhou, Chao Zhang, and Haipeng Cai. NCScope:
hardware-assisted analyzer for native code in android
apps. In Sukyoung Ryu and Yannis Smaragdakis, edi-
tors, ISSTA 22: 31st ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, Virtual Event,
South Korea, July 18 - 22, 2022, pages 629–641. ACM,
2022. doi: 10.1145/3533767.3534410.

Appendix A: Critical Objects

We list the critical objects identified by us in Table 10. We
categorize the objects in Table 10 based on their locations.
Despite different location (i.e., map and iterator), both of them
are used to implement dynamic dispatching in the kernel.

Table 10: Critical objects in the BPF subsystem.

Location Critical Object

Map

array_map_ops, percpu_array_map_ops,
prog_array_map_ops, sock_map_ops,
cgroup_storage_map_ops, htab_map_ops,
htab_percpu_map_ops, htab_lru_map_ops,
htab_lru_percpu_map_ops, trie_map_ops,
task_storage_map_ops, dev_map_ops,
sk_storage_map_ops, cpu_map_ops,
xsk_map_ops, perf_event_array_map_ops,
queue_map_ops, stack_map_ops,
bpf_struct_ops_map_ops, ringbuf_map_ops,
bloom_filter_map_ops,cgroup_storage_map_ops,
cgroup_array_map_ops,array_of_maps_map_ops,
stack_trace_map_ops, htab_of_maps_map_ops,
user_ringbuf_map_ops, inode_storage_map_ops

Iterator

cgroup_iter_seq_info, sock_map_iter_seq_info,
sock_hash_iter_seq_info, ksym_iter_seq_info,
bpf_link_seq_info, bpf_map_seq_info,
sock_hash_iter_seq_info, sock_map_iter_seq_info,
ipv6_route_seq_info, iter_seq_info,
ksym_iter_seq_info, netlink_seq_info,
tcp_seq_info, udp_seq_info,
unix_seq_info, bpf_prog_seq_info

Appendix B: BPF CVE List

We provide the list of evaluated BPF CVEs in Table 11.

Table 11: Evaluated BPF CVEs.

CVE ID
2016-2383, 2017-16995, 2017-16996, 2017-17852, 2017-17853, 2017-17854,
2017-17855, 2017-17856, 2017-17857, 2017-17862, 2017-17863, 2017-17864,
2018-18445, 2020-8835, 2020-27194, 2021-23866, 2021-3489, 2021-3490,
2021-20268, 2021-3444,2021-33200, 2021-45402, 2022-2785, 2022-23222,
2023-39191, 2023-2163

Appendix C: Supported BPF Helpers

We list the helper functions that are tested on MOAT in Ta-
ble 12. To test these helper functions, we adapt the BPF
programs included in the Linux kernel tree to invoke these
helpers. We also check their results to ensure these helpers
are executing correctly on a MOAT-enabled system.

Table 12: MOAT-supported helpers.

Type Supported BPF Helpers

Map
bpf_map_lookup_elem, bpf_map_update_elem,
bpf_map_delete_elem, bpf_map_push_elem,
bpf_map_pop_elem, bpf_map_peek_elem

String bpf_strtol, bpf_strtoul, bpf_strncmp

Utilities

bpf_trace_vprintk, bpf_get_retval,
bpf_set_retval, bpf_user_rnd_u32,
bpf_get_raw_cpu_id, bpf_get_smp_processor_id,
bpf_ktime_get_ns, bpf_ktime_get_boot_ns,
bpf_ktime_get_coarse_ns, bpf_get_current_pid_tgid,
bpf_get_current_uid_gid, bpf_jiffies64,
bpf_get_attach_cookie

Cgroup

bpf_get_current_cgroup_id, bpf_get_cgroup_classid_curr,
bpf_get_cgroup_classid, bpf_skb_cgroup_id,
bpf_sk_ancestor_cgroup_id, bpf_skb_cgroup_classid,
bpf_sk_cgroup_id, bpf_skb_ancestor_cgroup_id,
bpf_get_current_ancestor_cgroup_id

Tracing

bpf_probe_read_compat_str, bpf_probe_read_compat,
bpf_probe_read_kernel_str, bpf_probe_read_kernel,
bpf_get_current_task, bpf_get_func_ip_tracing,
bpf_task_pt_regs, bpf_perf_event_read,
bpf_perf_event_read_value, bpf_perf_event_output,
bpf_get_func_ret, bpf_get_func_arg,
bpf_get_func_arg_cnt, bpf_get_func_ip,
bpf_get_ns_current_pid_tgid

Ringbuf
bpf_ringbuf_discard, bpf_ringbuf_query,
bpf_ringbuf_submit, bpf_ringbuf_reserve,
bpf_ringbuf_output

XDP

bpf_xdp_fib_lookup, bpf_xdp_load_bytes,
bpf_xdp_store_bytes, bpf_xdp_adjust_head,
bpf_xdp_adjust_meta, bpf_xdp_adjust_tail,
bpf_xdp_get_buff_len

Socket

bpf_get_listener_sock, bpf_skb_get_pay_offset,
bpf_skc_to_mptcp_sock, bpf_skc_to_tcp6_sock,
bpf_skc_to_tcp_request_sock, bpf_skc_to_tcp_sock,
bpf_skc_to_tcp_timewait_sock, bpf_skc_to_udp6_sock,
bpf_skc_to_unix_sock, bpf_sk_fullsock,
bpf_sk_release, bpf_tcp_sock,
bpf_skb_load_helper_8_no_cache,
bpf_skb_load_helper_16_no_cache,
bpf_skb_load_helper_32_no_cache,
bpf_sock_ops_cb_flags_set, bpf_task_storage_delete,
bpf_skb_load_bytes, bpf_skb_load_helper_16,
bpf_skb_load_helper_32, bpf_skb_load_helper_8

	Introduction
	Background
	Berkeley Packet Filter (BPF)
	Hardware Features in Moat

	Motivation and Threat Model
	Motivation
	Threat Model

	Design
	BPF Memory Management in Moat
	Two-layer Isolation
	Layer-I: Lightweight Isolation Domain via PKS
	Layer-II: Isolated BPF Address Space

	Helper Security Mechanism
	Critical Object Protection (COP)
	Dynamic Parameter Auditing (DPA)

	Design Comparison

	Implementation
	Evaluation
	Security Evaluation
	Analysis of Attack Mitigation
	Real-world CVE Evaluation

	Performance Evaluation
	Micro Benchmark
	Macro Benchmark

	Additional Evaluation

	Related Work
	Limitations
	Conclusion

