
MOAT: Towards Safe BPF
Kernel Extention

Hongyi Lu1,2, Shuai Wang2, Yechang Wu1, Wanning He1, Fengwei Zhang1,*

1Southern University of Science and Technology
2Hong Kong University of Science and Technology

1

Background

2

What is (e)BPF?

Extended Berkeley Packet Filter:

• Kernel Virtual Machine

• Introduced in Linux 3.15 (2014)

• Extended from classic BPF (cBPF), which dates back to FreeBSD
(1992)

• Packet Filter Tracing/Network/Security...

3

Why eBPF?

• Fast: Run in JITed native code.

• Portable: Stable kernel API (named helpers).

• Robust: Does NOT crash your kernel; eBPF is statically checked by
a verifier.

4

Sounds good, but?

BPF Security is a concern.

BPF verifier alone is NOT enough
to ensure BPF’s security.

And...

• Static analysis is hard.

• BPF is rapidly developed.

• Kernel is critical.

5

BPF CVEs

Hardware Isolation!

6

We therefore propose MOAT.
MOAT uses hardware features (e.g., MPK) to isolate BPF programs.
And... resolves a set of challenges, like limited MPK and BPF API
security.

Hardware Isolation!

Wait..., what is Intel MPK?

• Add a 4-bit tag to PTEs (16 tags).

• Toggle PTEs with the same tag.

7

Hardware Isolation!

Wait..., what is Intel MPK?

• Add a 4-bit tag to PTEs (16 tags).

• Toggle PTEs with the same tag.

8

Method

9

Limited MPK Tags

MPK is...

• Only 16 tags

• Lightweight

So... bad for multiple BPF
programs.

But... good for isolating
kernel/BPF.

10

Limited MPK Tags

MPK is...

• Only 16 tags

• Lightweight

So... bad for multiple BPF
programs.

But... good for isolating
kernel/BPF.

11

Three Domain
Three Tags

Limited MPK Tags

MPK is...

• Only 16 tags

• Lightweight

So... bad for multiple BPF
programs.

But... good for isolating
kernel/BPF.

12

Constrain ALL
BPF programs

Limited MPK Tags

MPK is...

• Only 16 tags

• Lightweight

So... bad for multiple BPF
programs.

But... good for isolating
kernel/BPF.

13

Things both BPF
& Kernel need

Intra-BPF exploitation

Problem:

Bad BPFs attack the good ones.

MOAT isolates them by address
spaces.

TLB flush is slow?

14

Intra-BPF exploitation

Problem:

Bad BPFs attack the good ones.

MOAT isolates them by address
spaces.

TLB flush is slow?

• BPF has small memory footprints.

• We use PCID to minimize #flushes.

15

Intra-BPF exploitation

Problem:

Bad BPFs attack the good ones.

MOAT isolates them by address
spaces.

TLB flush is slow?

• BPF has small memory footprints.

• We use PCID to minimize #flushes.

16

Avoid unnecessary
flushes

Kernel API Security

BPF is isolated, but it might still access kernel via its API
(BPF Helpers)

MOAT does...

• Isolate easy-to-exploit structures from helpers.

• Check parameters against verified bounds.

17

Critical Object Protection

We studied kernel objects that
were previously exploited via
BPF.

In sum, 44 of these are
identified;

MOAT protects them with an
extra MPK tag.

18

Critical Object Protection

We studied kernel objects that
were previously exploited via
BPF.

In sum, 44 of these are
identified;

MOAT protects them with an
extra MPK tag.

19

Dynamic Parameter Auditing

MOAT uses the verifier’s bounds
to double-check the helper’s
arguments.

Why verifier is trustworthy now?

• Bad deduced values D.

• Good bounds E for helpers.

• E never deviates from ground
truth T in practice.

20

Dynamic Parameter Auditing

MOAT uses the verifier’s bounds
to double-check the helper’s
arguments.

Why verifier is trustworthy now?

• Bad deduced values D.

• Good bounds E for helpers.

• E never deviates from ground
truth T in practice.

21

Runtime
Value

Dynamic Parameter Auditing

MOAT uses the verifier’s bounds
to double-check the helper’s
arguments.

Why verifier is trustworthy now?

• Bad deduced values D.

• Good bounds E for helpers.

• E never deviates from ground
truth T in practice.

22

Deduced
Value

Dynamic Parameter Auditing

MOAT uses the verifier’s bounds
to double-check the helper’s
arguments.

Why verifier is trustworthy now?

• Bad deduced values D.

• Good bounds E for helpers.

• E never deviates from ground
truth T in practice.

23

Expected
Safe Value

Dynamic Parameter Auditing

MOAT uses the verifier’s bounds
to double-check the helper’s
arguments.

Why verifier is trustworthy now?

• Bad deduced values D.

• Good bounds E for helpers.

• E never deviates from ground
truth T in practice.

24

Truly Safe
Value

Dynamic Parameter Auditing

MOAT uses the verifier’s bounds
to double-check the helper’s
arguments.

Why verifier is trustworthy now?

• Bad deduced values D.

• Good bounds E for helpers.

• E never deviates from ground
truth T in practice.

25

Evaluation

26

Security Evaluation

We verified that MOAT mitigates all 26 memory-related BPF CVEs

27

• L3: verifier deduces r5

Security Evaluation

We verified that MOAT mitigates all 26 memory-related BPF CVEs

28

• L5: MOD32 forgets to track
upper bits

• r5 is mis-deduced to 0x1

Security Evaluation

We verified that MOAT mitigates all 26 memory-related BPF CVEs

29

• MOAT saves the day!

Performance Evaluation

In sum...

• Network filtering: <2%.

• System profiling: <13%.

• Seccomp (cBPF): <3%

30

And many more...

• Numerous BPF programs...

• Comparison with SandBPF...

• Microbenchmark...

Takeaways.

• BPF is powerful but its security is a concern.

• BPF security can benefit from hardware features.

• Good protection is multi-folded.

(Software + Hardware & Memory + API)

31

Thank You!

32

My Homepage Email Me

My Wife (Yuqi Qian) & Me (Hongyi Lu)

Project Site

	Slide 1: MOAT: Towards Safe BPF Kernel Extention
	Slide 2: Background
	Slide 3: What is (e)BPF?
	Slide 4: Why eBPF?
	Slide 5: Sounds good, but?
	Slide 6: Hardware Isolation!
	Slide 7: Hardware Isolation!
	Slide 8: Hardware Isolation!
	Slide 9: Method
	Slide 10: Limited MPK Tags
	Slide 11: Limited MPK Tags
	Slide 12: Limited MPK Tags
	Slide 13: Limited MPK Tags
	Slide 14: Intra-BPF exploitation
	Slide 15: Intra-BPF exploitation
	Slide 16: Intra-BPF exploitation
	Slide 17: Kernel API Security
	Slide 18: Critical Object Protection
	Slide 19: Critical Object Protection
	Slide 20: Dynamic Parameter Auditing
	Slide 21: Dynamic Parameter Auditing
	Slide 22: Dynamic Parameter Auditing
	Slide 23: Dynamic Parameter Auditing
	Slide 24: Dynamic Parameter Auditing
	Slide 25: Dynamic Parameter Auditing
	Slide 26: Evaluation
	Slide 27: Security Evaluation
	Slide 28: Security Evaluation
	Slide 29: Security Evaluation
	Slide 30: Performance Evaluation
	Slide 31: Takeaways.
	Slide 32: Thank You!

