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Background
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What is (e)BPF?

Extended Berkeley Packet Filter:

• Kernel Virtual Machine

• Introduced in Linux 3.15 (2014)

• Extended from classic BPF (cBPF), which dates back to FreeBSD 
(1992)

• Packet Filter          Tracing/Network/Security...
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Why eBPF?

• Fast: Run in JITed native code.

• Portable: Stable kernel API (named helpers).

• Robust: Does NOT crash your kernel; eBPF is statically checked by 
a verifier.
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Sounds good, but?

BPF Security is a concern.

BPF verifier alone is NOT enough 
to ensure BPF’s security.

And...

• Static analysis is hard.

• BPF is rapidly developed.

• Kernel is critical.
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BPF CVEs



Hardware Isolation!
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We therefore propose MOAT.
MOAT uses hardware features (e.g., MPK) to isolate BPF programs.
And... resolves a set of challenges, like limited MPK and BPF API 
security.



Hardware Isolation!

Wait..., what is Intel MPK?

• Add a 4-bit tag to PTEs (16 tags).

• Toggle PTEs with the same tag.

7



Hardware Isolation!

Wait..., what is Intel MPK?

• Add a 4-bit tag to PTEs (16 tags).

• Toggle PTEs with the same tag.

8



Method
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Limited MPK Tags

MPK is...

• Only 16 tags

• Lightweight

So... bad for multiple BPF 
programs.

But... good for isolating 
kernel/BPF.
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Three Domain
Three Tags
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Constrain ALL 
BPF programs



Limited MPK Tags
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Things both BPF 
& Kernel need



Intra-BPF exploitation

Problem: 

Bad BPFs attack the good ones.

MOAT isolates them by address 
spaces.

TLB flush is slow?
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Avoid unnecessary 
flushes



Kernel API Security

BPF is isolated, but it might still access kernel via its API 
(BPF Helpers)

MOAT does...

• Isolate easy-to-exploit structures from helpers.

• Check parameters against verified bounds.
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Critical Object Protection

We studied kernel objects that 
were previously exploited via 
BPF.

In sum, 44 of these are 
identified; 

MOAT protects them with an 
extra MPK tag.
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Dynamic Parameter Auditing

MOAT uses the verifier’s bounds 
to double-check the helper’s 
arguments.

Why verifier is trustworthy now?

• Bad deduced values D.

• Good bounds E for helpers.

• E never deviates from ground 
truth T in practice.
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Runtime 
Value
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Deduced 
Value
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Expected 
Safe Value
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Truly Safe 
Value
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Evaluation
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Security Evaluation

We verified that MOAT mitigates all 26 memory-related BPF CVEs
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• L3: verifier deduces r5



Security Evaluation
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• L5: MOD32 forgets to track 
upper bits

• r5 is mis-deduced to 0x1



Security Evaluation

We verified that MOAT mitigates all 26 memory-related BPF CVEs
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• MOAT saves the day!



Performance Evaluation

In sum...

• Network filtering: <2%.

• System profiling: <13%.

• Seccomp (cBPF): <3%
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And many more...

• Numerous BPF programs...

• Comparison with SandBPF...

• Microbenchmark...



Takeaways.

• BPF is powerful but its security is a concern.

• BPF security can benefit from hardware features.

• Good protection is multi-folded.

(Software + Hardware & Memory + API)
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Thank You!
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