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Hardware-assisted Live Kernel Function
Updating on Intel Platforms

Lei Zhou, Fengwei Zhang*, Kevin Leach, Xuhua Ding, Zhenyu Ning, Guojun Wang, Jidong Xiao

Abstract—Traditional kernel updates such as perfective maintenance and vulnerability patching requires shutting the system down,
disrupting continuous execution of applications. Enterprises and researchers have proposed various live updating techniques to patch
the kernel with lower downtime to reduce the loss of useful uptime. However, existing kernel live update techniques either rely on
specific support from the target OS, or are deployed in virtualized environments (i.e., systems running in virtual machines). In this
paper we present KSHOT, a hardware-assisted live and secure kernel function update mechanism for native operating systems. By
leveraging x86 SMM and Intel SGX, KSHOT runs in hardware-assisted Trusted Execution Environments and updates kernel functions
at the binary-level without relying on the underlying OS support. We demonstrate the applicability of KSHOT by successfully patching
critical kernel vulnerabilities, upgrading base kernel functions and drivers nearly instantly and transparently. Our experimental results
show that KSHOT incurs merely 70 microseconds downtime to update a one kilobyte binary and 18 MB memory overhead.

Index Terms—Kernel Function Updating, System Management Mode, Trusted Execution Environment, Consistency, Transparency.
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1 INTRODUCTION

The growing complexity and heterogeneity of software has
led to a concomitant increase in the pressure to apply
patches and updates on operating systems [1]. For example,
updating the Linux kernel functions from version 4.15 to
4.16 entailed 1309 commits over 18 revisions in two months.
Frequently, users who choose to update their kernels may
experience nontrivial downtime when the update requires
restarting the system, even for a small change. However,
high availability is an important requirement for many
current services, especially in cloud services, which ideally
must be accessible anytime without detectable downtime.
To minimize the downtime, enterprises and users often
delay applying updates to their operating systems, leading
to increased risks to their computing resources [1], and
postponing new functionality and features until a planned
period of downtime to restart the system.

Since kernel functions updates are important to fixing
vulnerabilities and adding software features, organizations
often use rolling upgrades [2], [3], in which updates are de-
signed to affect small subsystems that minimize unplanned
whole-system downtime. However, rolling upgrades do not
altogether obviate the need to restart software or reboot
systems; instead, dynamic hot patching (live patching) ap-
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proaches [4], [5], [6], [7], [8] aim to apply patches to running
software without having to restart it.

Mainstream OSes like Windows and Linux have pro-
posed several live updating technologies. For example, in
Azure, hot patching is available in recent cloud server
systems. Various Linux-based kernel live patching tools
including kpatch [9], kGraft [10], Ksplice [11], and the
Canonical Livepatch Service [12] have also been developed.
These approaches are designed to redirect the execution
flow from instructions within vulnerable kernel function to
benign instructions by tracing, hooking, and trampolining
the target function execution. However, all of these ap-
proaches require modifying the existing kernel code and
trusting the underlying operating system. In a similar vein,
some approaches like KUP [5] replace the whole kernel at
runtime while retaining state from running applications.
However, KUP incurs significant runtime and resource over-
heads (e.g., more than 30 GB of memory space) to support
application checkpointing [13], even for very small kernel
changes.

Existing patching implementations are known to be
buggy [14] and may cause patching failures or interruptions.
In the worst scenario, a patch may become a means of attack
if the OS or the patching mechanism is compromised. For
example, an internal OS update can be hijacked [15], [16],
[17] to download and install malicious patches. Such attacks
download additional malicious applications while retaining
kernel functionality. It is thus imperative to harden live
updating techniques. A secure live kernel function update
faces three challenges:

1) Downtime. Traditional kernel updating methods re-
quire downtime, either from unplanned reboots or from
stopping applications to checkpoint states.

2) Overhead. Live kernel function updating techniques
often incur non-trivial CPU and memory overhead to
apply patches and restore the previously-checkpointed
state.
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3) Trust. Live updating software depends on the correct-
ness of the underlying OS, which may suffer from
bugs [18] or security vulnerabilities. If the OS-level up-
dating mechanism becomes compromised, then patches
applied by that mechanism cannot be trusted.

In this paper, we present an enhanced hardware-assisted
live kernel function updating that uses the Intel Software
Guard eXtensions (SGX) and System Management Mode
(SMM). We apply our prototype to effectively, efficiently,
and reliably update running, untrusted kernels in native
OSes. This paper is an extended version of our published
conference work 1. The original work verified the live
patching framework in a virtual machine environment. The
current work focuses on deploying the live patching frame-
work in native systems for the addition of upgrading base
kernel function and dynamic kernel modules like drivers
(which remains named KSHOT), which addresses the new
challenges associated with developing the system on bare
machines while the trusted compute base— for example,
the SMM handler is stored in firmware, which is a restricted
or closed-source resource for commercial devices. We sum-
marize our contributions as follows:

• We develop a reliable architecture for live updates to
kernel functions. We leverage Trusted Execution En-
vironments (TEEs) implemented with SGX and SMM
features for kernel updating rather than deployed in
a simulation environment which is designed in our
previous work.

• We analyze patches, new functions, and dynamic kernel
module updating requirements, and design classified
updating strategies for different goals.

• We extend SMM to execute updating functions con-
currently, which greatly improves live updating per-
formance. We use SGX as a trusted environment for
patch preparation to provide adequate runtime update
performance. Furthermore, updating task information
in an SGX enclave precludes adversarial tampering,
and improves updating reliability.

• We evaluate the effectiveness and efficiency of KSHOT
by providing an in-depth analysis of a suite of rep-
resentative kernel updates. We demonstrate that our
approach incurs little overhead while providing trust-
worthy live kernel function updates that improve the
security and applicability of the live system.

2 BACKGROUND

In this section, we first introduce existing live kernel func-
tion update techniques. We then provide an overview of
the x86 System Management Mode and the Intel Software
Guard eXtensions, which we use as a trusted base to imple-
ment our approach.

2.1 Live Kernel Function Update
Live update enables OS upgrades without disrupting
business-critical workloads, especially for real-time service
platforms. It helps system administrators enforce live pro-
duction systems and helps users achieve uninterrupted

1Kshot [19], which has been published in IEEE/IFIP DSN 2020.
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Fig. 1. Overview of live patching approaches—function-, instruction-,
and kernel-level. In function-level, entire kernel functions are replaced
with new ones by copying bytes into memory. In instruction-level, single
buggy instructions are replaced with trampolines to new instructions. In
kernel-level, the entire kernel image is replaced with a new binary image
by switching page table entries so that kernel addresses correspond to
a new location in physical memory that contain the revised image.

services, thereby increasing overall business productivity.
Therefore, cloud service providers like Windows Azure [20]
and IBM AIX [21] are rapidly developing live update ser-
vices for their customers.

Live update approaches update kernel code at three lev-
els of abstraction: function replacement, instruction hooking
and jumping, and kernel switching. Figure 1 illustrates com-
mon live kernel update methods across these three levels of
abstraction. In general, live kernel patching apply changes
by replacing single instructions, portions of vulnerable func-
tions, or the entire kernel image with a patched version to
repair bugs or eliminate vulnerabilities. For example, to live
patch the kernel with a completely new version, KUP [5] can
replace the old kernel image in memory. In more common
cases, tools can update small amounts of code in the kernel
memory, adding new functions or patching vulnerable ones.
Solutions here include industry-deployed mechanisms like
Ksplice [11] and kpatch [9], as well as academic tools like
KUP [5] and KARMA [6].

However, current live update techniques extend trust
to the kernel itself to correctly deploy patches. If the ker-
nel becomes compromised, then any subsequent update
deployed by that kernel are not trustworthy, potentially
leading to additional malicious activities [1]. In our work,
we implement a trustworthy live patching mechanism by
leveraging TEEs that enable live kernel patching even when
the underlying kernel patching mechanism is compromised.

2.2 System Management Mode
System Management Mode (SMM) is a highly-privileged CPU
execution mode present in all current x86 machines since
the 80386. It is used to handle system-wide functionalities
such as power management, system hardware control, or
OEM-specific code. SMM is typically used by the system
firmware but not by applications or normal system software.
The code and data used in SMM are stored in a hardware-
protected memory region named System Management RAM
(SMRAM), which is inaccessible from the normal OS (i.e.,
can only be accessed by SMM) — the memory controller
will only allow references to SMRAM when the CPU is in
SMM. SMM code is executed by the CPU upon receiving
a System Management Interrupt (SMI), causing the CPU to
switch modes from (typically) Protected Mode to SMM. The
hardware automatically saves the CPU state in a dedicated
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region in SMRAM. Upon completing the execution of SMM
code by the RSM instruction, the CPU’s state is restored,
resuming execution in Protected Mode. Moreover, SMM
code accesses the physical memory with a higher privilege,
allowing it to read or modify kernel code and data structures
in kernel memory segments. An SMI is triggered when the
CPU executing the out 0xb2, sid instruction, where 0xb2
is an SMI triggering port on the hardware device (which
may vary with the specific chipset), and sid represents a
specific SMI handler identity in SMM. Alternatively, we can
program the Interrupt Command Register in the Advanced
Programmable Interrupt Controller (APIC) to generate an
SMI. An SMI traps all cores in Protected Mode to SMM and
passes the control to the SMI handler, which is well-suited
for concurrently and securely handling updating operations.

2.3 Software Guard eXtensions

Software Guard eXtensions (SGX) [22] is a TEE technology
proposed by Intel which allows a trusted application to run
in userspace, even if the OS kernel is compromised. SGX
protects selected code and data from disclosure or modifi-
cation by the OS. Developers can partition applications into
processor-hardened enclaves, or protected areas of execution
in memory, which increases security without having to
extend trust beyond those enclaves. Enclaves are trusted
execution environments provided by SGX. The enclave code
and data reside in a region of protected physical memory
called the Enclave Page Cache (EPC). The EPC is guarded
by CPU access controls: non-enclave code cannot access
enclave memory.

3 SYNOPSIS
We consider the following service setting. A platform
provider initializes the built-in SMM code for kernel up-
date (denoted by the Trusted Update Agent, TUA), which
also leverages SGX features for preparing patches (denoted
by the Trusted Preparation Agent, TPA). A platform user
(denoted by the owner) proposes the trusted kernel update
within a potentially-compromised system with the help of
the TPA and TUA.

3.1 Threat Model

Kernel-based updating mechanisms can become compro-
mised by internal weaknesses [14], [18] or external at-
tacks [17]. An adversary can obtain kernel privilege and
manipulate or subvert the kernel update mechanism. For
example, the CVE-2016-5195, which exploits a race con-
dition for privilege escalation within the kernel, can be
used by attackers to install rootkits. Attackers can design
such rootkits to interfere with the patching process and
prevent memory-level bug repairs (e.g., by undoing changes
to memory introduced by a live-patching system). Note that,
memory-level bug-fixing is the regular mechanism used in
current Kernel Live Patching (KLP) approaches. The rootkits
can be designed against the patching process and pre-
vent physical memory-level bug repairing. In addition, the
compromised system maintains an unstable runtime state
which cannot ensure reliable update service and may cause

the kernel to panic. Moreover, reactionary or insufficiently-
verified updates may cause ongoing security risks. In the
worst case, a stealthy adversary can install “legal” patches
along with injecting malicious code for data leakage or as a
secret backdoor. In that way, the user will continue to suffer
security problems even after a kernel update.

3.2 Trust Model
First, we deploy our kernel live update approach on SGX-
and SMM-enabled devices. We assume that the system is
trusted during the boot stage, and that System Management
RAM (Section 2.2) is locked by the system firmware so that
an attacker cannot modify it (i.e., the hardware is trusted to
enforce access control). Although SGX and SMM are poten-
tially vulnerable to side-channel attacks like Crosstalk [23],
and SMM Reload [24], such vulnerabilities can be addressed
by hardware vendors, and are not the subject of this paper.
In brief, we trust the hardware and firmware, but not the
software or the operating system’s patching mechanism.
In addition, we assume that the source code of the patch
is trusted. We note that KSHOT can be prevented by the
compromised kernel since the update sources are from the
user-level SGX enclave. However, this is not specific to
our work (and, indeed, KSHOT can detect when Denial-of-
Service (DOS) attacks occur with the SMM-based checking).
If DOS attacks occur, we assume that a system operator
in the loop would elect to take a victim system offline for
subsequent manual updating.

3.3 Problem Statement and Our Approach
Our research problem is how to securely update the func-
tions in a compromised OS under the aforementioned ad-
versary model. The target functions include two types:
base functions in monolithic kernel and dynamic loaded
functions (e.g., loadable kernel modules, LKM). Functions
in the base kernel are generally stored at the fixed physi-
cal addresses once the kernel is loaded at the boot stage.
However, the LKMs are loaded into dynamically-allocated
memory within the kernel.

A reliable and low-overhead kernel function live update
is expected to meet the following requirements. (a) The up-
date mechanism is not tampered with or faked by corrupted
code inside the kernel (trustworthiness)). (b) The function
update and revocation do not cause a kernel panic or false
application execution (consistency). (c) The scheme should
avoid high computational overheads induced by system
interruption and context switch (efficiency).

KSHOT meets these requirements by using a novel com-
bination of an SGX enclave within a helper application that
securely downloads updated source code which is built and
written to the kernel memory by a customized SMM Han-
dler. In this way, the updating mechanism remains trusted
since it does not rely on the untrusted kernel — the kernel
cannot tamper with the update mechanism. In addition,
the host system’s kernel and applications are temporarily
paused when trapping into the SMI handler, and this allows
us to apply patches without causing the system to get into
an inconsistent state. Moreover, when switching between
the protected mode and the SMM mode, system states are
automatically saved and restored by the hardware, and
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Fig. 2. High-level architecture of KSHOT. Our approach uses three
secure entities: the Remote Update Server, the SGX enclave in a helper
application with trust preparing agent (TPA), and the SMM-based trusted
handler with multi-update agents (TUAs). The annotations 1–5 trace
the life cycle of trusted kernel update. In (1), we transfer to the update
module; in (2), we pre-process the binary code; in (3), we switch to SMM;
in (4), we apply the update at the binary level; and in (5), we resume the
updated OS.

such support from the hardware substantially reduces the
overhead of runtime state saving, and thus enables rapid
update deployment.

4 SYSTEM ARCHITECTURE

KSHOT is designed to achieve two goals while updating
functions in the kernel, including (1) upgrading the base
kernel function and loadable kernel modules to a designated
version, (2) fixing vulnerable functions in both base kernel
and loadable kernel modules. KSHOT implements a trust-
worthy download mechanism to acquire an update block
with the help of an SGX enclave, then applies the update to
the designated kernel memory, pausing the target system’s
execution. This novel combination of system features allows
us to deploy updates with low runtime overhead, low
latency, and without having to trust the underlying OS.

Figure 2 summarizes our approach. First, target system
information required for compiling a compatible update
binary is gathered and sent to the remote update server. Sec-
ond, an SGX-based application fetches the update-required
binary code from the remote update server and collects
required updating information (e.g., patch function loca-
tion addresses). The information is loaded into a reserved
memory region to be processed by the SMM handler code.
Third, we remotely trigger [25] an updating command, and
switch current host to SMM to execute the SMM handler,
which modifies the target machine’s memory. Through a
combination of hooking, adding redirection instructions in
target functions, and locating the binary code in a reserved
memory location (see Section 5), the update is applied so
that the updated code will be executed on the next invoca-
tion once the SMM handler completes.

4.1 KSHOT Components
There are three main components in our KSHOT archi-
tecture: the remote update server, system-specific update
preprocessing in the SGX enclave, and SMM-based kernel
updating.

Remote Update Server: The remote update server is an
independent, trusted system that constructs and supplies
trusted binary code for updating. That is, we assume that

developers have already provided a fixed or updated binary
kernel image that we seek to apply to the target system.
The update server communicates with the target system to
obtain OS information, which is used to build a compatible
binary kernel image, allowing for the creation of consistent
binary code.

SGX-based update preparation: This component in-
cludes kernel information collection and binary update pre-
processing. These processes take place in an SGX enclave
as the trust preparing agent (TPA). The data transmitted
between SGX and the update server, as well as between
SGX and SMM, is authenticated to protect the update code
from malicious changes. Leveraging SGX for preprocessing
updates provides several benefits: First, the SGX enclave,
functioning as a user-level trusted execution domain, can
be verified by the user through Intel-supported remote and
local attestation mechanisms [26]. This ensures that the user
has confidence that the update code has been processed
in a trusted environment. Second, TPA reduces the SMM
workload and thus the time during which the OS is paused
to execute the SMM handler. Third, TPA reduces the amount
of software that must be developed in SMM (e.g., bespoke
network drivers must be implemented to transfer data if
all processing is handled in SMM). Fourth, TPA maintains
the confidentiality of the binary update code, which reduces
readily-visible knowledge for a hypothetical attacker. Fi-
nally, because of the large semantic gap between SMM and
the host environment [27], it is more natural to gather kernel
information from the software layer within an SGX-enabled
helper application.

SMM-based kernel updating: This component includes
system information verification, data decryption, update
function integrity checking, and binary updating. KSHOT
promises consistency of kernel execution since the hardware
automatically saves and restores architectural state (e.g.,
registers) while switching to SMM. This saves substantial
time and resource overhead compared to software-based
system state saving and restoration (i.e., checkpointing)
in previous live updating approaches. Furthermore, since
each core in SMM has an independently-executed interrupt
handler, KSHOT can deploy multiple trust update agent
(TUA) to process parallel update tasks in one system paus-
ing interval, which effectively improves the performance of
kernel updating. In addition, if a kernel error occurs after
updating [18], TUA can undo the update and rollback the
system. While the update operations are processed in SMM,
the target OS is paused (which precludes simultaneous state
changes). Because this activity is carried out with SMM
support such that even kernel-level attacks cannot compro-
mise the updating operations. In addition to an updating
module, KSHOT can leverage a kernel introspection module
for kernel protection.

4.2 Qualitative Analysis of KSHOT

We design KSHOT to enable reliable and efficient live kernel
function updating from three perspectives: how the trust-
worthiness of update processing is preserved under a com-
promised OS; how the consistency of system execution is
maintained during the live updating; and how the effective-
ness of update handling is achieved via update preparation
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and memory addressing. For the above perspectives, we
leverage Intel SGX and SMM to build a trusted execution
environment for update code pre-processing and update im-
plementation. Meanwhile, the data (i.e., the update binary
and configuration) transferred between the remote update
server and the SGX enclave, and between the SGX enclave
and the SMM handler, are signed with a secret signature and
encrypted under an untrusted data transmission channel.

Security of Updating Environment. Current live patch-
ing systems, like kpatch and Ksplice, depend on the cor-
rect execution of kernel functions, and thus implicitly trust
the kernel and patching mechanism. As a result, a com-
promised, buggy, or vulnerable kernel may lead to failed
deployments. To address this issue, we leverage SMM to
process updates. SMM is an isolated execution environment
that cannot be accessed by host applications. In addition,
no other interrupts are valid once all cores trap into SMM
after an SMI is triggered. With the above hardware-assisted
functional design, the SMM handler cannot be disrupted by
kernel rootkits or malware. Since updating is implemented
at the memory level with SMM handler, the update binary
passed to the SMM handler from the user-level application
will maintain confidentiality. With the help of a cryptog-
raphy channel and an SGX-based execution environment,
the ciphertext of the update binary is transferred to SMM
handler via shared memory.

Consistency of Runtime Execution. The challenge of
live updating is to ensure the execution status of the runtime
system is consistent after updating. Unlike existing updat-
ing approaches, which require restarting the system and
discarding the execution status data the traditional updating
approaches, or implementing expensive process tracing and
checkpointing mechanisms to restore execution status data,
KSHOT temporarily halts the entire host system via switch-
ing to SMM. During this temporary system-wide halt, all
kernel and user processes are suspended with no new status
produced, while the SMM handlers can access the physical
memory and reserved host register values for updating. By
precisely locating the memory of a target kernel function to
update, KSHOT creates a trampoline to the updated instance
of that function without breaking the execution flow of
other host processes. However, some complex updates (less
than 2% in statistical cases of Linux kernel updates) may
change the semantics of target functions, which might affect
other non-patched functions. For example, the update might
change the order in which locks are acquired in multiple
functions at the same time. Currently, KSHOT cannot handle
those cases independently but can address this problem
with help of constructing a consistency model and safely
choosing update tasks [9], [12].

Efficiency Requirement. First, switching to SMM pauses
the host system and restores the architectural state once
the SMM handler completes. We thus avoid implementing
expensive process tracing and checkpointing mechanisms
(as in kpatch or KUP), considerably reducing time and stor-
age overhead. Current live patching approaches generally
have to stop the process during update handling, but the
basic kernel functions like CPU scheduling, and memory
management keeps running. However, in KSHOT, the host
system including kernel and user applications is paused
once switched to SMM, which manifests as a stuck, frozen

state for the user. To minimize the interval of time spent
paused due to SMI execution, and to make it impercepti-
ble to users, we propose to implement only the required
functionality in SMM (i.e., memory read/write capabilities)
to quickly deploy updates once they are made available to
the SMM handler. Separately, we use an SGX enclave in
user space to securely download the patch and marshal the
update data into the SMM handler. This SGX enclave allows
the update-required binary code to be downloaded securely
using the system’s existing networking stack. Together, the
SGX enclave and SMM handler provide a low overhead,
high efficiency, secure mechanism for applying kernel up-
dates at runtime.

5 KSHOT DESIGN AND IMPLEMENTATION

The goal for KSHOT is to live update an OS kernel with
(1) minimal downtime, (2) minimal overhead, (3) support
for compromised kernels, and (4) support for consistency
without being kernel-specific. We implemented a prototype
of KSHOT based on Intel SGX and x86 SMM. The SGX-
based TEE supports receiving and preprocessing update
code, providing security without the full overhead of SMM.
Encrypted update codes are processed in SMM and placed
in an executable memory space. The system stores the state
of runtime processes, restoring that state after applying the
update when SMM completes. This allows for the deploy-
ment of a trusted binary via a possibly-compromised target
system.

5.1 Update Preparation

We leverage a trusted remote server to prepare binary kernel
update code. First, basic information about the OS, includ-
ing the kernel version, configuration, and compilation flags
sufficient to rebuild the binary image, are all transferred to
the remote server. The remote server then builds pre-update
and post-update versions of the kernel binary using that
same compilation information. A binary diff is sent back
to the SGX enclave on the target machine. Note that, the
information sent to the remote server may be compromised
by OS. For example, the memory address of the pre-updated
kernel module is tampered with by the adversary. To defend
against such an attack, we incorporate a checking module
within SMM to verify the encrypted information received
from the enclave since the SMM handler can access the host
memory.

We update the kernel by assessing the requirements of
each kernel-level function that must be updated. For small
updates in kernel functions, KSHOT patches the code by
overwriting instructions within the function. For driver up-
grade and downgrade, KSHOT updates the kernel function
via memory-block interchange. KSHOT prepares the exe-
cutable updated function binary and kernel module binary
according to the target kernel configuration. For example,
we compile the same kernel module x.ko with functions
changed and mark the library function in any call instruc-
tions which must be replaced with the real address once
loaded into memory. These marked instructions are passed
to the enclave in the target system together for further
binary assembly.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3300101

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

5.1.1 Identifying Target Functions

Given the pre- and post-update binary kernel image, we
extract all corresponding updated functions. While this pro-
cess is complicated by compiler optimizations [28], we do
not claim any novelty in our identification of the functions
that must be updated, instead we make use of a combination
of existing algorithms and techniques. Our prototype builds
a source-level call graph [29], [30] of the kernel by using the
codeviz tool [31]. We also make use of IDA Pro [32] to
create a binary-level call graph of the kernel binary image.
Differences between the source- and binary-level call graphs
illuminate certain compiler optimizations [28], including in-
lining, which is particularly common in OS kernels. Because
functions may be transitively inlined, we employ a worklist
algorithm that iteratively identifies implicated functions
until no new implicated functions can be added. KSHOT
makes use of existing binary signature matching methods
such as iBinHunt [33] and FIBER [28] to align and identify
relevant sections of the binary kernel image.

For the purposes of discussion and evaluation, we group
implicated code into two categories: individual functions
and modules. Individual functions have three broad types
(of increasing difficulty to support via kernel live updating),
including Type 1 functions do not involve inlining. Type
2 functions do involve inlining. Type 3 functions modify
global or shared variables. For Type 3 analyses, we consider
global or shared variables changed in the updated function.
Such a variable might be deleted, added, or modified. If
the variable’s size is not modified, the update code is unaf-
fected. However, if storage space for a variable is inserted or
deleted, care must be taken to avoid inconsistent handling
of that data between pre- and post-update code. To handle
such variable modifications, we change the corresponding
variable and type in kernel memory (i.e., in data and text
segments). In general, significant changes to storage layouts
(e.g., adding or removing a field in a widely-used data
structure) may result in update application failures; we
evaluate this empirically in Section 6. Individual modules
are loosely coupled with other kernel functions, and they
all export the their base addresses to a file under the /proc
directory, and this allows us to easily address the modules.

5.1.2 Updating Target Functions

After we identify and analyze all relevant target func-
tions and modules, we must make the memory contain-
ing the (binary) newly-updated instructions accessible to
the running kernel. In general, we cannot directly replace
vulnerable function instruction memory with an updated
function without compromising consistency. To solve this
problem, we use trampolines (cf. [34]): We store the updated
functions in a reserved memory space and link old code to
the new functions by replacing the first instruction in the
target function with a jmp instruction. The configurations
of reserved memory, including memory size, location, and
page attributes, are all saved in SMM code in advance via
the update server. A basic trampoline approach addresses
the call to the beginning of a function but does not address
internal jumps or branches to intermediate labels. This is
because the offset for each jump and branch in the post-
update binary may have changed. Thus, we must change

these offsets to retain the required functionality via the
standard approach of calculating label differences.

KSHOT is a system for kernel-space update that does
not need to trust the operating system: our focus is on
deploying a compiled binary update code in a compromised
system (e.g., via hardware support) and we are agnostic to
the underlying standard binary updating mechanism.

5.1.3 Supporting Kernel Tracing

Recent versions of the Linux kernel include a special form of
tracing support [35] that is relevant to kernel live updating.
When the trace attribute is enabled, more than half of the
functions (23, 000 of 32, 000 in Linux 3.14) are compiled
with a special 5-byte trace instruction sequence which can be
dynamically changed at runtime by the kernel itself (not by
our live updating). KSHOT must be aware of such tracing
instructions to avoid conflicts. Naively updating an entire
function containing such a tracing sequence will result in
incorrect execution or other memory errors at runtime. Since
the tracing instructions are located at a fixed offset from the
entry of the function, our solution is to identify such 5-byte
trace instruction signatures and replace the instructions after
them, leaving the tracing itself untouched.

5.2 SGX-based Update Preparation

KSHOT uses Intel SGX hardware support to safeguard
trusted live update preprocessing. The preparation of exe-
cutable binary update code proceeds in a trusted environ-
ment before the processed update is made available to the
SMM-based live updating module. In this subsection, we
describe our SGX enclave behavior. We encrypt communi-
cation when obtaining the binary update code from the re-
mote server. This is also particularly relevant when passing
data between the SMM handler and the SGX enclave. Both
communications are handled by untrusted applications or
network drivers—we encrypt data while in transit. Due to
the isolation properties of Intel SGX enclaves and SMRAM,
there is no direct channel for data transmission between
them. To exchange data between these two entities, we
use shared memory for encrypted data transmission. In
general, unless care is taken, there may not be a spare kernel
memory region available. In addition, if we live update an
existing kernel function, it may change the function size and
cause a kernel consistency issue. We address these issues by
reserving a physical memory space for KSHOT at boot time.

5.2.1 Memory Protection and Isolation

We first configure the boot loader (e.g., grub) to reserve
a suitable kernel memory allocation space (18MB for our
prototype implementation). We also add page attribute op-
eration code to the paging init function to provide the ap-
propriate access permission control for that memory region.
The reserved memory region includes three logical parts:
mem RW, mem W, and mem X. The small mem RW is a
read/write area used for identity exchange.

KSHOT uses a AES share key to encrypt the identity in
our prototype. If improved to against the relay or MITM
attack, we can leverage the SMM-based hardware feature to
execute designed SGX enclave by refer the SMILE work [36].
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The larger mem W region is write-only and is used for
storing the encrypted update text. The untrusted application
writes data from the SGX enclave into mem W. However,
the untrusted application cannot decrypt this output data.
Finally, the much larger mem X region is executable-only
and is used to store decrypted updated instructions as the
kernel text. Read and write access to those instructions is
prohibited (as is standard with kernel function memory)
to maintain integrity. Moreover, we can use existing SMM-
based runtime checking systems [25], [37] to further ensure
the integrity of this region.

KSHOT uses a shared AES key to encrypt the iden-
tity and update code following an authenticated Diffie-
Hellman (DH) key exchange between the SMM handler
and the enclave. The handler and the enclave have their
public/private key pairs and share the public keys through
the mem RW mechanism. As a result of key exchange, both
parties generate the same 128-bit AES key which is securely
stored in SMRAM and EPC for exclusive accesses from the
handler and the enclave, respectively. To defend against
MITM attacks, we can leverage the SMM-based confined
host environment to execute designed SGX enclave as in
SMILE [36].

These access control mechanisms only limit the OS ker-
nel. By contrast, the hardware-supported SMM handler can
read and write any reserved memory. The SGX enclave
receives the post-compilation binary update code. KSHOT
formats the instruction text, adds external message fields to
ensure that the SMM handler can process the text correctly,
and places the text in the correct memory location and
alignment.

5.2.2 Update Preprocessing
The SGX enclave receives an update code set from the
remote update server P = {p1, . . . , pn}, with edits
to n functions. An individual update pi has the form
{sequence, opt, type, . . . , payload}. The update preparation
workflow follows a standard sequence of steps. First, we
verify the integrity of the received update code to guard
against network transmission errors. Next, the modified
binary update code will be written out as an executable
memory block. We package this memory block with exter-
nal header information. We encrypt this data in the SGX
enclave. The outside untrusted application then passes the
encrypted data to the mem W segment. After that, an
SMI is triggered to transfer control to the SMM-based live
updating component.

5.3 SMM-based Live Updating

The CPU changes to System Management Mode when
a System Management Interrupt is triggered. The SMM
hardware ensures that the latest runtime state and register
values are saved to the protected SMRAM region of mem-
ory. Before the updating, a DH key generation module is
executed in SMM to create the private key, which is used
to encrypt/decrypt the update code related data in SMM.
This cryptographic key is dynamically changed before each
kernel update to guard against replay attacks between data
transmissions. While a Man-in-The-Middle (MITM) attack
could still intercept the communication between the SGX

enclave and SMM, KSHOT can verify the enclave’s identity
via the trusted update server and thus mitigate the MITM
attack. We implement the live updating process in the SMM
handler, including integrity checking and the updating
module itself.

5.3.1 Update Mechanism Deployment
Current commercial Intel devices disable the SMM firmware
for secure protection. Thus, accessing the SMM execution
environment is a critical problem. We leverage the Intel
debug connection interface technologies and reverse en-
gineering to locate and modify the runtime SMI handler
memory.

The SMRAM layout various with the motherboard type.
OEMs often modify or extend the SMI handler to meet
their own requirements. Therefore, the context and layout
of the SMI handler differ from device to device. This means
that the code and functionality implemented within the SMI
handler can vary significantly. It is important for program-
mers and system designers to be aware of these variations
in order to ensure compatibility and proper functioning of
software across different devices and motherboard configu-
rations.

We use the IDA and UEFI tools to decode the control
flow of the SMI handler and locate suitable space to insert
a new function in runtime SMRAM. In order to update a
64-bit function, we have to design the update handler in 64-
bit. However, in SMM, the SMI handler does not execute
the 64-bit instruction at first, it has to execute instructions
in 16-bit mode first, then configure the control register and
memory space, so as to switch to 64-bit mode and execute
instructions in 64-bit mode. In that way, we have to address
the 64-bit executable space in the original handler if we can
not configure the mode due to lack of specification.

To ensure binary code updating, we design three main
components to add within the SMI handler, including key
generation, binary decryption, and verification. Key gener-
ation is built upon the Diffie-Hellman key exchange algo-
rithm, which can exchange the 128-bit encrypted key with-
out leaking each private key. Binary decryption is developed
with the AES-NI instruction set that is also supported within
SMM; this module is roughly 40 instructions. Binary verifi-
cation is developed with a simple hash algorithm (SDBM).
Since in a short session of exchanging binary data between
the SGX enclave and SMM handler, current verification is
secure enough to attest to the integrity of the updated binary
code. At the end of the verification, those readily updated
binary code is moved to the designated shared memory
space.

In total, the update mechanism code is 2894 bytes in size,
which can be inserted into the SMRAM. After that, we insert
a trampoline instruction in the individual SMM execution
code of each CPU core, which allows the updating threads
to execute concurrently on all CPU cores.

5.3.2 Vulnerable Kernel Function Patching
We define the location address of the patch function
paddr at mem X. The location address of the first up-
dating function p1.paddr is the base address of mem X.
Then, the location address of the ith updating function is
pi.paddr = p(i−1).paddr + p(i−1).size, where size denotes

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3300101

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

the size of a binary update code. The binary update code
pi is then placed between the memory of pi.paddr and
pi.paddr + pi.size. The trampoline instruction at pi.taddr,
where taddr is the physical memory base address of the
vulnerable function, is replaced with a jmp instruction with
the offset value of pi.paddr−pi.taddr+5, which ensures that
process will be redirected to the updating function once the
vulnerable function is called (and respects the 5-byte kernel
tracing setup).

5.3.3 Base Kernel Function Upgrading
Besides fixing vulnerabilities, kernel patches oftentimes add
or modify the code in the kernel that changes functionality.
For example, the locking protocols in md should assume
the device never be removed once it in resync, recovery, and
reshape state, however, some cases like state store() with such
locking (by calling function remove and add spares and
md check recovery) is not needed, which only cause extra
time overhead. Therefore, in the new kernel version, the
kernel adds new conditional statements to abort the redun-
dant execution. For such cases, KSHOT updates the function
with the same operations as patching vulnerable functions
discussed above. First, we add the execution binary of
the updated function in mem X , then add the trampoline
introduction at the first address of the old function.

However, there are more factors introduced in upgrade
cases that increase the difficulty of live updating. For ex-
ample, a kernel patch may export symbols and define new
structures (similar to type 3 patches mentioned in Section 5).
To apply such a patch in the memory, KSHOT changes the
kernel data and bss sections, and such changes may lead
to changes of the kernel’s layout in the memory. A more
flexible solution is to reserve a memory block for updating
during the kernel initialization.

5.3.4 Kernel Module Updating
Dynamically loadable kernel modules are another mech-
anism for function modification at the kernel level. Most
device drivers are implemented as a loadable kernel mod-
ule. The Linux system supports dynamic driver installation,
and some other technologies like Dynamic Kernel Module
Support (DKMS) to support the management of the driver
update without recompilation. However, updating drivers
inevitably pause user applications and, in the worst case,
requires rebooting the system.

Unlike small changes to the base kernel, updating a
kernel module typically involves much larger changes. For
example, in kvdo, each update affects more than 20 files
with hundreds of changed lines. To avoid the creation of
an overly-bloated update binary, we apply the following
steps to update kernel modules: First, we sign the kernel
module information via an SGX enclave with a key passed
from SMM. The key is used to encrypt messages — both
the key and the messages are stored in the shared memory.
Second, we install the new kernel module with the help of
the untrusted kernel, which places the new code in a new
address in memory. Third, we check the signed message
in SMM and verify the kernel module in host memory.
Fourth, we modify the device tree structure and point the
old device to the new address. In brief, by using the existing
untrusted update mechanism and verifying its work, we can

save substantial effort and space when live updating kernel
modules.

5.3.5 Multi-tasks Updating
Recall that each core can execute independent SMM han-
dlers in parallel. Meanwhile, each update task for different
kernel updates is independent. Thus, KSHOT applies live
updating operations across several cores to improve per-
formance. As Figure 3 shows, we sort the update binary
in shared memory. We marked each SMI handler in order
and pick the corresponding package for updating. After
the update operation, all cores return to protected mode
simultaneously. Thus, the total time that the host system
spends suspended depends on the longest update, but not
the entire update operation. This significantly shortens the
total time the system must spend paused in SMM.

5.4 Update Rollback/Update

After updating the kernel, the system or its applications
may not run correctly for many different reasons [5]. For
example, the update may introduce a new bug or cause a
new vulnerability. Indeed, a software engineering study of
commercial and open source operating systems by Yin et
al. found that 15–24% of human-written OS patches were
incorrect and resulted in end-user-visible impacts such as
crashes or security problems [18]. Supporting rollback is
thus critical for a realistic deployment. In such situations,
we can send a rollback instruction from the remote server.
The SMM handler rolls back the update function to the
original function. We keep the updated information in SMM
and store the original instruction in mem W . As a result,
if a rollback operation is triggered, we can fetch out the
original instruction and replace the jump instruction in the
vulnerable function. In KSHOT, the last updating operation
can always be rolled back in this manner.

5.5 Updating Protection

In this subsection, we discuss several techniques we employ
to address potential malicious interference with our live
updating process.

Malicious Update Reversion. Some latent attacks in a
compromised OS might revert the update to an original
(i.e., vulnerable) version of the kernel or function. How-
ever, KSHOT can mitigate such attacks by leveraging SMM-
based introspection. Specifically, we use SMM-based kernel
protection mechanisms [25], [37] to prevent the target OS
from reversion or modification by rootkits after applying

T1Update task

SMI handler

CPU core

T2 T3 T4 ...

H1 H2 H3 H4

C1 C2 C3 C4

Fig. 3. The SMI handler parallel executes the update tasks.
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the updating. We can similarly use the SMM handler to
introspect regions of memory overwritten with trampoline
instructions to ensure that the updated version of code per-
sists after deploying a update with our approach. Because
SMM has higher privilege than the kernel, and because
it can transparently introspect the target OS, it can detect
changes to the kernel text and data.

Denial-of-service (DOS) attacks. DOS attacks may preclude
the update preparation operation from running, leading to
a live updating failure. DOS attacks are generally difficult
to defend [38], [39], however we can detect DOS attacks us-
ing SMM-based introspection techniques. After the remote
server sends the update code source to the SGX Enclave
in the target OS, the enclave and the remote server can
communicate the state of the update preparation. Once the
update binary is written in to the reserved memory, the
remote server can verify with the SMM Handler that the
update binary was written to memory (i.e., via introspection
in the SMM Handler). This approach cannot prevent DOS
attacks but can detect them.

6 EVALUATION

We evaluate the applicability, performance, and security of
KSHOT when live updating Linux kernel functions. Our
prototype machine uses an Intel Core i7 CPU (supporting
SGX and SMM) with 16GB of memory. We use the x86 GA-
Q170M-D3H motherboard with F21 BIOS. We experiment
with Ubuntu 14.04 to 20.04 using kernel versions 3.14 to
5.4.1.

We consider three research questions:
• RQ1. Can KSHOT correctly apply kernel updates?
• RQ2. What is KSHOT’s performance overhead?
• RQ3. How does KSHOT compare to existing ap-

proaches?

6.1 RQ1 — Correct Kernel Updating
We evaluated KSHOT’s ability to live update the kernel in
three scenarios: (1) patch critical kernel vulnerabilities by
using a suite of real-world patches from the Common Vul-
nerabilities and Exposures (CVE) database [40]; (2) upgrade
critical functions changed in a kernel version update; (3)
replace kernel modules following user requirements. For
scenario 1, we analyzed 267 vulnerabilities for Linux kernels
3.14 and 4.4. Of these 267, we found that 214 of them were
reproducible and applicable for our x86 architecture. The
remaining cases were excluded for one of two reasons: either
the vulnerability applied to a non-x86 platform (e.g., An-
droid or embedded devices), or the patch involved complex
data structure changes beyond the scope of our updating
framework. For scenario 2, we analyzed the patches accord-
ing to changes required, including extension, addition, and
deletion of functions. We chose several representative cases
to show how our kernel live update approach applies. For
scenario 3, we analyzed user requirements to update kernel
modules including new I/O device drivers and other LKMs.

6.1.1 Kernel Patching
We evaluated KSHOT on Linux kernels running on live
hardware. We determined that the system was in a stable

state with the default Ubuntu 14.04 or 16.04 background
processes running. We randomly selected 30 of those 214
patches to construct a benchmark suite similar in scale to
existing work [6], [41]. The selected patches are listed in
previous work [19]. To provide additional insight into our
successful applicability results, we detail a few patches as
case studies. Recall from Section 5.1 that we can classify
each kernel patch into one of three categories. Type 1
patches involve no inlining and thus have their independent
instruction memory (a default, simple case). Type 2 patches
involve inlining. Type 3 patches require changes to kernel
data structures or global variables. We discuss an example
patch from each category that we considered.

Listing 1 Type 1 example: CVE-2017-17806 patch
1 static int hmac_create(struct crypto_template *tmpl,

struct rtattr **tb)
2 salg = shash_attr_alg(tb[1], 0, 0);
3 if (IS_ERR(salg))
4 return PTR_ERR(salg);
5 + alg = &salg->base;
6 err = -EINVAL;
7 + if (crypto_shash_alg_has_setkey(salg))
8 + goto out_put_alg;
9 +

10 ds = salg->digestsize;
11 ss = salg->statesize;
12 - alg = &salg->base;

Example Type 1 Patch We consider CVE-2017-17806.
This vulnerability admits a kernel stack buffer overflow
when a local attacker executes a crafted sequence of system
calls that encounter a missing SHA-3 initialization and even-
tually a stack-out-of-bounds bug. The official fix, partially
shown in Listing 1, is to add the cryptographic check to the
relevant kernel function (see Line 7). This is our most direct
case.

Listing 2 Type 2 example: CVE-2017-17053 patch
1 static inline int init_new_context(struct task_struct

*tsk,
2 ...
3 #endif
4 - init_new_context_ldt(tsk, mm);
5 - return 0;
6 + return init_new_context_ldt(tsk, mm);

Example Type 2 Patch We consider the use-after-free
vulnerability CVE-2017-17053. In this bug, the Linux kernel
does not correctly handle errors from certain table alloca-
tions when forking a new process, allowing a local attacker
to achieve a use-after-free via a specially-crafted program.
In the official fix for this bug, the return value in function
init new context is changed (see Listing 2, Line 6). Critically
for KSHOT, this patch involves inlining, so more than one
function is implicated and must be updated.

Listing 3 Type 3 example: CVE-2014-3690 patch
1 struct vcpu_vmx {
2 int gs_ldt_reload_needed;
3 int fs_reload_needed;
4 u64 msr_host_bndcfgs;
5 + unsigned long vmcs_host_cr4
6 } host_state;

Example Type 3 Patch We consider CVE-2014-3690 as an
example Type 3 patch involving updates to local data struc-
tures. The official patch, partially shown in Listing 3, adds
a new field to local struct vcpu vmx. In addition, function
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vmx set constant host state assigns a value to the new field,
and function vmx vcpu run reads the field’s value. Thus,
both functions must be patched. KSHOT successfully applies
this patch, but Type 3 cases remain difficult in general.

6.1.2 Kernel Function Upgrade
In our test, we do not implement a complete upgrade but
choose parts of critical cases for evaluation. For example,
previous patches for the objtool enable it to read the retpoline
alternatives but leave a bug in the patched function which
may cause an incorrect handling at the end of retpoline alter-
natives. The kernel version 4.16 upgrades this function, and
the official update is partially shown in Listing 4. However,
this does not mean we target the defective function directly,
the final update function segment is up to the optimization
options upon compiling, e.g., the handle group alt function
will be complied with inlined operations (-O2 optimization
option) and finally be inserted to the caller function check()
as parts of the instruction segment (87 instructions), then we
can select compatible binary code for the next live updating.

Listing 4 Upgrade case: add support for objtool
1 static int handle_group_alt(struct objtool_file *file,
2 ...
3 - return -1;
4 + if(next_insn_same_sec(file, last_orig_insn)){
5 + fake_jump = malloc(sizeof(*fake_jump));
6 + if(!fake_jump){
7 ...
8 + *new_insn=fake_jump;
9 return 0;

We consider another kernel function upgrade example in
Linux kernel 5.4.1. The block storage function nbd add socket
in the previous version of the network kernel driver has a
vulnerability that can cause a memory leakage. Fortunately,
the corresponding repair method in the source code is sim-
ple, and the official update is partially shown in Listing 5. In
this update, the patch only changes the order of the function
workflow. While in KSHOT, the updated binary does not
add or delete any binary code but only changes the order
of the instructions, which introduces minimal impact on the
runtime system.

Listing 5 Upgrade case: nbd-prevent memory leak
1 static int nbd_add_socket(struct nbd_device *nbd,

unsinged long arg,
2 sockfd_put(sock);
3 return -ENOMEM;
4 }
5 +
6 + config->socks =socks;
7 +
8 nsock=kzalloc(sizeof(struct nbd_sock),GFP_KERNEL);
9 if(!nsock) {

10 sockfd_put(sock);
11 return -ENOMEM;
12 }
13 -
14 - config->socks =socks;
15 -
16 nsock->fallback_index =-1
17 ...

6.1.3 Kernel Module Update
For user requirements, we consider the functionality of a
loadable driver and system call module — e.g., one of the

TABLE 1
Breakdown of SGX operations (µs).

Binary
Size Fetching Code

Verifying Pre-processing Total

40B 16.51 11.22 6.75 34.48
400B 17.48 12.39 6.94 36.81
4KB 30.57 21.58 31.69 83.84
1MB 5,833.81 2,503.35 2,775.94 11,113.1
4MB 23,366.51 9,822.55 11,510.43 44,699.49

16MB 93,190.15 38,817.51 46,039.29 178,046.95

famous loadable drivers is the open-source NVIDIA GPU
driver. We can dynamically update those modules without
suspending the user application. Since the loadable kernel
module is designed for many goals (a partial list is shown
in Table 3), we choose those use cases to show how to live
update functions in the kernel module.

Updating a loadable kernel module is more flexible to
implement because most modules have no influence on the
base kernel functionality even when the LKM’s functions
change. Furthermore, we can replace the whole module
function in new memory segments, and we can update
the kernel module in SMM without restarting the user
application.

6.2 RQ2 — Performance Evaluation

To evaluate the performance of KSHOT, we measured each
stage of the live updating process. We consider overhead
from two sources: SGX-based binary preparation and SMM-
based updating. Since the SMM updating process essentially
pauses the target OS but the SGX-based enclave does not,
we evaluate the performance of two parts separately, in-
cluding a comparison with existing methods. In our exper-
iments, the total size of the binary code generally ranged
from 40 bytes to 4 KB.

6.2.1 SGX-Based Update Preparation Performance

The SGX enclave must (1) fetch the update code from
the remote server, (2) preprocess the update code through
integrity checking and branch instruction replacing, and
passing the code with encryption and writing to the shared
memory region for consumption by the SMM side. We
evaluate the time consumption in each step.

Table 1 shows a breakdown of the time consumed by this
SGX-based update binary preparation for various binary
sizes, averaged over 100 trials. Consider the 4 KB case as an
example. The time to fetch a binary code from our remote
server is 30.57 µs, and the time to verify the code is 21.58
µs. In addition, 31.69 µs is required to store the encrypted
binary code into the shared memory region. All told, we use
83.84 µs to complete the preprocessing of a 4 KB update.

6.2.2 SMM-Based Updating Performance

The SMM handler pauses the target OS while carrying
out key generation, data reading and decryption, binary
verification, and binary code activities. In addition, there
are overheads associated with switching between the SMM
mode and the protected mode. We evaluate these times
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TABLE 2
Breakdown of SMM operations (µs).

Binary
Size 1

Binary
Decryption

Binary
Verification Total

40B 14.39 0.41 15.34
400B 15.04 1.27 16.31
4KB 16.11 9.38 25.49
1MB 344.64 2,376.61 2,721.25
4MB 1,336.93 9,481.82 10,818.75

16MB 5,308.85 37,900.85 43,209.70
1 includes key generation but not includes SMM
switching time.

empirically using the rdtsc instruction to count the number
of CPU cycles elapsed during each operation.

Since our SMM-based updating code is inserted in the
original SMM handler code, SMM switch and original han-
dler execution take an average of 29.1 µs in our experi-
mental platform. These values depend on specific hardware
configuration and workflow of the SMM handler but are
typically on the same order of magnitude in our experience.
Once we switch to SMM, we spend 14.3 µs to generate en-
cryption keys. The switching operation and key generation
are fixed-cost operations, regardless of update binary size.

The SMM handler reads the encrypted code provided
by the SGX enclave, then applies it to the kernel memory.
The time taken to read, decrypt, and apply the update
code depends on the binary size. We tested binary sizes
ranging from 40 bytes to 10 MB. Table 2 shows the time
breakdown of updating operations for various binary sizes.
For example, a 4 KB binary takes 16.11 µs to read and
decrypt, and 9.38 µs to verify and apply to kernel memory
(e.g., to actually write the update function to memory).

The overhead grows approximately linearly with the
binary size. Even in the case of a large 16 MB binary, the total
required time is under 0.2 s. On average, the updates from
our CVE dataset are less than 1 KB, and from the general
kernel module are less than 10 MB. Note that we did not
count the overhead imposed by communication between
the update Server and target Machine’s untrusted helper
application, which has minimal effect on the SGX enclave.
Extrapolating from Table 2, the average update thus requires
roughly 35 ms. We view this as a small and acceptable time
interval to pause the system, especially given the rarity of
live updating events.

6.2.3 Whole-System Performance Evaluation

First, we consider the kernel function update. We randomly
selected 5 of our benchmarks for a detailed analysis of
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Enclave Switch Fetch Verify Preparation

Fig. 4. SGX-based binary preparation time.

whole-system performance.2 In addition to the update bi-
nary code itself, each function requires 42 bytes of header
data in the transmitted binary package. Figure 4 shows
the time breakdown in the SGX preprocessing stage, which
indicates the majority of time is spent preprocessing the
update according. Similarly, Figure 5 shows the time break-
down in SMM for each update. Larger updates require
more updating time, while the switching and key generation
times are relatively constant across all updating. In these
whole-system experiments, KSHOT required very little time
to apply each update. For example, for CVE-2014-4608, the
total time required on the Target Machine was about 140
µs for a 156-bytes binary, The system is only paused for
a brief 71.33 µs during SMM activities. This includes 14.8
µs for key generation and 29.1 µs for SMM switching. The
update was completed successfully, without changing the
application state.

Second, we consider large updates to kernel modules.
We halt and replace a whole vulnerable module in the kernel
at one time. For example, we choose a representative Linux
kernel module application including devices, filesystems,
and network drivers, listed in Table 3. While small kernel
module updates (less than 1 KB takes similar overhead to
updating a single kernel function, larger module updates
(larger than 1 MB) take more than 10 ms.

6.3 RQ3 — Updating System Comparison
Existing kernel live updating systems assume that update
binary code are trusted when they are stored in the target
OS. However, the integrity of the binary can be easily
compromised by attacks which have kernel access privilege
(e.g., syscall hijacking [42]). By contrast, KSHOT leverages
the SGX enclave to preprocess and apply binary updates
without having to trust the underlying OS. Additionally,
data blocks transmitted between SGX and SMM through
the shared memory are encrypted to protect the binary’s
integrity from malicious modification during preprocessing.

In addition, existing solutions rely on kernel-specific
functions to implement the updating operations (e.g., ptrace,
stop machine, kexec). However, existing vulnerabilities [40],
such as CVE-2015-7837, CVE-2014-4699, or CVE-2012-4508,
can affect those particular kernel functions. For example, the
CVE-2015-7837 vulnerability allows the attacker to load an
unsigned kernel via kexec, which would compromise KUP’s
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Fig. 5. SMM-based live updating time.

2patches for CVE-2014-4608, CVE-2016-2143, CVE-2017-18270; cor-
responding patch sizes: 198, 257, 322 bytes. Also, we use the function
upgrade case 1 and 2 in section 6.1.2, the corresponding sizes: 9717, 384
bytes.
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TABLE 3
Kernel Module Update Cases. (µs; n = 100).

Functionality
type

Example
case

Partially Changed
function

Update Binary
size (bytes)

Preparation
overhead

Update
overhead

Update
valid

Device driver gpu-modules kernel gsp 0x204000 17,650.18 5,458.87 X
Filesystem driver tarfs tarfs file read 0xd79 74.67 38.50 X
System call reveng rtkit unprotect memory 0x21e 43.89 31.25 X
Network driver realtek r8152 bottom half 0x2f359 1,649.89 528.30 X
Storage driver kvdo getPageNoStats 0x40c97 2,227.47 713.42 X
Useful interpreter keylogger read dev 0x5db 63.28 33.23 X

TABLE 4
Comparison with kernel updating systems.

Type Downtime Untrusted
OS Memory

KUP [5] kernel 3s/kernel 7 >30G
KARMA [6] instruction 5µs/patch1 7 lua engine
kpatch [9] function 45.6ms/patch1 7 16G
KSHOT function 70µs/update1 X 18M

1 for an averaged sized update code of less than 1KB

updating mechanism. In KSHOT, live updating operations
execute in the SMM handler, which cannot be modified
even if the underlying target OS is compromised. Our use
of SMM as a trusted execution environment for deploying
binary prevents a compromised OS from interfering with
KSHOT.

We compare KSHOT with representative kernel live up-
dating methods (including KUP, KARMA, kpatch) in Table 4
in terms of patch granularity, updating time, trusted code
base, and memory consumption. KUP replaces an entire vul-
nerable kernel in around 3 seconds. Additionally, KUP can
handle update images with complex data structure changes.
KARMA requires less than 5 µs for small patches and uses
very little memory. kpatch takes longer, but it can be de-
ployed and integrated in the Linux kernel. However, these
existing methods all rely on the OS kernel (and thus their
TCB includes the whole kernel). By contrast, in KSHOT, the
TCB extends only to SMM and the SGX enclave. Moreover,
KSHOT needs no checkpointing of running applications,
and uses only 18 MB extra memory space for update binary
analysis and management. Also, KSHOT requires only about
70 µs to deploy most updating, which is faster than all ex-
isting non-instruction-level methods. Overall, our approach
provides an efficient and secure live updating mechanism.

6.4 Evaluation Summary

We find that KSHOT is a generic, performant, secure ap-
proach to live updating Linux kernel functions. Through
across an indicative benchmark of 30 critical kernel security
vulnerability patches, we correctly applied all of them suc-
cessfully with our approach. Based on our combination of
SGX and SMM binary preparation and deployment, KSHOT
incurs under 3% total system overhead over 1, 000 live up-
dates. Finally, this approach requires a substantially smaller
TCB compared to previous techniques.

To put these results in context, we discuss two of our ker-
nel function updates with respect to time from vulnerability
discovery to fix. First, CVE-2014-8133 was first discovered

on 10 October 2014, but a patch was not created until 14
December 2014 in Linux 3.13. Moreover, this patch did not
get merged into Ubuntu 14.04 until 26 Feb 2015. Second,
CVE-2017-17806 was discovered on 17 October 2017, with a
corresponding patch built on 29 November 2017 for Linux
4.4, and merged into Ubuntu 16.04 on 4 April 2018. These
timelines match industry reports that critical CVEs take an
average of over a month to get patched [43]. However, even
when a patch is created, it may take additional time for
end users to adopt the new patch [44]—many successful
exploits rely on old, previously-patched vulnerabilities [45].
Live updating techniques are intended in part to reduce the
cost associated with applying an update, and techniques
like KSHOT show promise in furthering that cost reduction
while extending kernel live updating capabilities.

7 RELATED WORK

In this section, we survey related work from the areas of
trusted execution environments and live patching methods.

7.1 Trusted Execution Environment
Trusted execution environments (TEE) are intended to pro-
vide a safe haven for programs to execute sensitive tasks. Be-
ing able to run programs in a trusted execution environment
is crucial to guarantee the program’s confidentiality and
integrity. Hardware-based TEEs include x86 SMM [46], Intel
SGX [47], [48], AMD memory encryption technology [49],
and ARM TrustZone [50]. HyperCheck [25] leverages SMM
to build a trusted execution environment and monitor hy-
pervisor integrity. VC3 [51] leverages Intel SGX to pro-
vide an isolated region for secure big data computation.
Scotch [52] combines x86 SMM and Intel SGX to monitor
cloud resource usage. KSHOT uses a TEE for reliable kernel
live patching.

7.2 Live Patching
Existing live patching techniques focus on open-source op-
erating systems, mainly Linux. For example, Ksplice [11],
kpatch [9], and kGraft [10] can effectively patch security vul-
nerabilities without causing a significant downtime. kpatch
and Ksplice both stop the running OS and ensure that
none of the processes are affected by changes induced by
patched functions. Specifically, kpatch replaces the whole
functions with patch ones, and Ksplice patches individual
instructions instead of functions. kGraft patches vulnera-
bilities at function level, but does not need to stop the
running processes. It maintains the original and patched
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function simultaneously and decides which one to execute
by monitoring the state of processes, potentially inducing
incorrect behavior or consuming additional storage. These
methods cannot address changes to data structures [5]. To
address this limitation, KUP [5] replaces the whole kernel
with an updated version, but uses checkpoint-and-restore
to maintain application state consistency. However, it check-
points all the user processes, leading to large CPU and
memory overhead. KARMA [6] uses a kernel module to
replace vulnerable instructions that it identifies from a given
patch diff file. In addition, several live updating methods
have been integrated into operating systems, like Canonical
Livepatch Service [12] in Ubuntu, which can update new
components if the patch is small. However, these methods
still rely on the trustworthy operation of the target OS,
so potential kernel-level attacks may tamper with the live
patching operation, leading to system failure. KSHOT ad-
dresses this by leveraging a TEE to reliably update the target
kernel function with a smaller TCB and low total overhead.

8 CONCLUSIONS

In this paper, we presented KSHOT, a secure and efficient
framework for kernel updating. It leverages x86 SMM and
Intel SGX to update the kernel without depending on the
OS. Additionally, we use SMM to naturally store the runtime
state of the target host, which reduces external overhead
and improves live updating performance. Employing this
hardware-assisted mechanism supports faster restoration
without external checkpoint-and-restore solutions. We eval-
uate the effectiveness and efficiency of KSHOT by providing
an in-depth analysis of the technique against a suite of
indicative kernel vulnerabilities. We demonstrate that our
approach incurs an average downtime of 70 µs for a 1 KB
binary kernel function update, but consumes only 18 MB
of extra memory space for binary analysis, a substantial
reduction over previous work. In addition, for 1MB kernel
module updating, it takes about 10 ms which is unnoticeable
for users.
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