
A Framework to Secure Peripherals at Runtime

Fengwei Zhang1, Haining Wang2, Kevin Leach3, and Angelos Stavrou1

1 George Mason University, Fairfax, VA, USA
2 College of William and Mary, Williamsburg, VA, USA

3 University of Virginia, Charlottesville, VA, USA

Abstract. Secure hardware forms the foundation of a secure system.
However, securing hardware devices remains an open research problem.
In this paper, we present IOCheck, a framework to enhance the secu-
rity of I/O devices at runtime. It leverages System Management Mode
(SMM) to quickly check the integrity of I/O configurations and firmware.
IOCheck is agnostic to the operating system. We use random-polling and
event-driven approaches to switch into SMM. We implement a prototype
of IOCheck and conduct extensive experiments on physical machines.
Our experimental results show that IOCheck takes 10 milliseconds to
check the integrity of a network card and a video card. Also, IOCheck
introduces a low overhead on Windows and Linux platforms. We show
that IOCheck achieves a faster switching time than the Dynamic Root
of Trust Measurement approach.

Keywords: Integrity, Firmware, I/O Configurations, SMM.

1 Introduction

As hardware devices have become more complex, firmware functionality has ex-
panded, exposing new vulnerabilities to attackers. The National Vulnerabilities
Database (NVD [1]) shows that 183 firmware vulnerabilities have been found
since 2011. The Common Vulnerabilities and Exposures (CVE) list from Mitre
shows 537 entries that match the keyword ‘firmware,’ and 94 new firmware vul-
nerabilities were found in 2013 [2]. A recent study shows that 40,000 servers are
remotely exploitable due to vulnerable management firmware [3]. Attackers can
exploit these vulnerabilities in firmware [4] or tools for updating firmware [5].

After compromising the firmware of an I/O device (e.g., NIC card), attackers
alter memory via DMA [4, 6, 7] or compromise surrounding I/O devices [8, 9].
Fortunately, the Input Output Memory Management Unit (IOMMU) mechanism
can protect the host memory from DMA attacks. It maps each I/O device to a
specific area in the host memory so that any invalid access fails. Intel Virtualiza-
tion Technology for Directed I/O (VT-d) is one example of IOMMU. AMD also
has its own I/O virtualization technology called AMD-Vi. However, IOMMU
cannot always be trusted as a countermeasure against DMA attacks, as it relies
on a flawless configuration to operate correctly [10]. In particular, researchers
have demonstrated several attacks against IOMMU [11–13].

M. Kuty�lowski and J. Vaidya (Eds.): ESORICS 2014, Part I, LNCS 8712, pp. 219–238, 2014.
c© Springer International Publishing Switzerland 2014



220 F. Zhang et al.

Static Root of Trust for Measurement (SRTM) [14] with help from the Trust
Platform Module (TPM) [15] can check the integrity of the firmware and I/O
configurations while booting. It uses a fixed or immutable piece of trusted code,
called the Core Root of Trust for Measurement (CRTM), contained in the BIOS
at the start of the entire booting chain, and every piece of code in the chain
is measured by the predecessor code before it is executed, including firmware.
However, SRTM only secures the booting process and cannot provide runtime
integrity checking.

Trust Computing Group introduced Dynamic Root of Trust for Measurement
(DRTM) [16]. To implement this technology, Intel developed Trusted eXecution
Technology (TXT) [17], providing a trusted way to load and execute system
software (e.g., OS or VMM). TXT uses a new CPU instruction, SENTER, to
control the secure environment. Intel TXT does not make any assumptions about
the system state, and it provides a dynamic root of trust for Late Launch.
Thus, TXT can be used to check the runtime integrity of I/O configurations and
firmware. AMD has a similar technology called Secure Virtual Machine, and
it uses the SKINIT instruction to enter the secure environment. However, both
TXT and SVM introduce a significant overhead on the late Launch Operation
(e.g., the SKINIT instruction in [18]).

In this paper, we present IOCheck, a framework to enhance the security of
I/O devices at runtime. It leverages System Management Mode (SMM), a CPU
mode in the x86 architecture, to quickly check the integrity of I/O configurations
and firmware. IOCheck identifies the target I/O devices on the motherboard
and checks the integrity of their corresponding configurations and firmware. In
contrast to existing firmware integrity checking systems [19, 20], our approach is
based on SMM instead of Protected Mode (PM). While PM-based approaches
assume the booting process is secure and the OS is trusted, our approach only
assumes a secure BIOS boot to set up SMM, which is easily achieved via SRTM.

The superiority of SMM over PM is two-fold. First, we can reduce the Trusted
Computing Base (TCB) of the analysis platform. Similar to Viper [20] and
NAVIS [19], IOCheck is a runtime integrity checking system. Viper and NAVIS
assume the OS is trusted and use software in PM to check the integrity, while
IOCheck uses SMM without relying on the OS, resulting in a much smaller TCB.
IOCheck is also immune to attacks against the OS, facilitating a stronger threat
model than the checking systems running in the OS. Second, we achieve a much
higher performance compared to the DRTM approaches [18] running in PM.
DRTM does not rely on any system code; it can provide a dynamic root of trust
for integrity checking. IOCheck can achieve the same security goal because SMM
is a trusted and isolated execution environment. However, IOCheck is able to
achieve a much higher performance over Intel TXT or AMD SVM approaches.
Based upon experimental results, SMM switching time takes microseconds, while
the switching operation of the DRTM approach [18] takes milliseconds.

We implement a prototype of our system using different methods to enter
SMM. First, we develop a random polling-based integrity checking system that
checks the integrity of I/O devices, which can mitigate transient attacks [21, 22].



A Framework to Secure Peripherals at Runtime 221

To further defend against transient attacks, we also implement an event-driven
system that checks the integrity of a network card’s management firmware.

We conduct extensive experiments to evaluate IOCheck on both Microsoft
Windows and Linux systems. The experimental results show that the SMM
code takes about 10 milliseconds to check PCI configuration space and firmware
of NIC and VGA. Through testing IOCheck with popular benchmarks, IOCheck
incurs about a 2% overhead when we set the random polling instruction interval
between [1,0xffffffff]1. We also compare IOCheck with the DRTM approach; our
results indicate that our system’s switching time is three orders of magnitude
faster than DRTM. Furthermore, the switching time of IOCheck is constant
while the switching operation in DRTM depends on the size of the loaded secure
code.

Contributions. This work makes the following contributions:

– We provide a framework that checks the integrity of I/O devices at runtime.
– IOCheck is OS-agnostic and is implemented in SMM.
– We implement a prototype that uses random-polling and event-driven ap-

proaches to mitigate transient attacks.
– We demonstrate the effectiveness of our system by checking the integrity

of a popular network card and video card, and we show that our system
introduces a low operating overhead on both Windows and Linux platforms.

2 Background

2.1 Computer Hardware Architecture

The Central Processing Unit (CPU) connects to the Northbridge via the Front-
Side Bus. The Northbridge contains the Memory Management Unit (MMU) and
IOMMU, collectively called the Memory Controller Hub (MCH). The North-
bridge also connects to the memory, graphics card, and Southbridge. The South-
bridge connects a variety of I/O devices including USB, SATA, and Super I/O,
among others. The BIOS is also connected to the Southbridge. Figure 2 in Ap-
pendix shows the hardware architecture of a typical computer.

2.2 Firmware Rootkits

A firmware rootkit creates a persistent malware image in hardware devices such
as network cards, disks, and the BIOS. The capabilities of firmware rootkits can
be summarized thusly. First, firmware rootkits can modify the host memory via
DMA if a system does not have an IOMMU or if it is incorrectly configured.
Second, a compromised device can access sensitive data that passes through
it [23]. For instance, a NIC rootkit can eavesdrop network packets containing
passwords. Third, a hardware device with malicious firmware may be able to
compromise surrounding devices via peer-to-peer communication. For example, a
compromised NIC may access GPU memory [24]. Last but not least, an advanced
firmware rootkit can even survive a firmware update [25].

1 It takes about .5s to run 0xffffffff instructions. Table 2 explains this further.



222 F. Zhang et al.

2.3 System Management Mode and Coreboot

System Management Mode (SMM) is a CPU mode in the x86 architecture. It
is similar to Real and Protected Modes. It provides an isolated execution envi-
ronment for implementing system control functions such as power management.
SMM is initialized by the BIOS. Before the system boots up, the BIOS loads the
SMM code into System Management RAM (SMRAM), a special memory region
that is inaccessible from other CPU modes. SMM is triggered by asserting the
System Management Interrupt (SMI) pin on the motherboard. Both hardware
and software are able to assert this pin, although the specific method depends
on the chipset. After assertion, the system automatically saves its CPU states
into SMRAM and then executes the SMI handler code. An RSM instruction is
executed at the end of the SMI hander to switch back to Protected Mode.

Coreboot [26] aims to replace legacy BIOS in most computers. It performs
some hardware initialization and then executes additional boot logic, called a
payload. With the separation of hardware initialization and later boot logic,
Coreboot provides flexibility to run custom bootloaders or a Unified Extensible
Firmware Interface (UEFI). It switches to Protected Mode early in the booting
process and is written mostly in C language. Google Chromebooks are manufac-
tured and shipped with Coreboot.

3 Threat Model and Assumptions

3.1 Threat Model

We consider two attack scenarios. First, we consider an attacker who gains con-
trol of a host through a software vulnerability and then attempts to remain resi-
dent in a stealthy manner. We assume such an attacker installs firmware rootkits
(specifically, a backdoor [23]) after infecting the OS so that the malicious code
remains even if the user reinstalls the OS.

In the second scenario, we assume the firmware itself can be remotely exploited
due to vulnerabilities. For instance, Duflot et al. [4] demonstrate an attack that
remotely compromises a Broadcom NIC with crafted UDP packets. Additionally,
Bonkoski et al. [3] show a buffer overflow vulnerability in management firmware
that affected thousands of servers.

3.2 Assumptions

An attacker is able to tamper with the firmware by exploiting zero-day vulner-
abilities. Since IOCheck does not rely on the operating system, we assume the
attacker has ring 0 privilege. Thus, attackers are granted more capabilities in our
work than those OS-based systems [19, 20]. We assume the system is equipped
with SRTM, in which CRTM is trusted so that it can perform a self-measurement
of the BIOS. Once the SMM code is securely loaded into the SMRAM, we lock
the SMRAM in the BIOS. We assume the SMM is secure after locking SMRAM,
and we will discuss attacks against SMM in Section 7. Moreover, we assume the
attacker does not have physical access to our system.



A Framework to Secure Peripherals at Runtime 223

System
Management

Mode

Network Card

Graphics Card

Disk Controller

Other I/O Device

.

.

.

2) Check Firmware

I/O Configurations

3) Found Attack

Audible Tone

1) Random Poling-based
or Event-driven Triggering Enter SMM

4) Execute RSM Exit SMM

Target Machine

External
Machine

Serial Cable

Fig. 1. Architecture of IOCheck

4 System Framework

Figure 1 shows the architecture of IOCheck. The target machine connects to the
external machine via a serial cable. In the target machine, the box on the left
lists all of the I/O devices on a motherboard; the box on the right represents the
System Management Mode code that checks the integrity of I/O configurations
and firmware. The framework performs four steps for each check: 1) the target
machine switches into SMM; 2) the SMI handler checks the integrity of target
I/O devices; 3) if a potential attack has been found, the target machine plays an
audible tone and SMM sends a message to the external machine via the serial
cable; and 4) the target machine executes the RSM instruction to exit SMM.
These steps are further described below.

4.1 Triggering an SMI

In general, there are software- and hardware-based methods to trigger an SMI.
In software, we can write to an ACPI port to raise an SMI. For example, Intel
chipsets use port 0x2b as specified by the Southbridge datasheet. Our testbed
with a VIA VT8237r Southbridge uses 0x52f as the SMI trigger port [27]. In
terms of hardware-based methods, there are many hardware devices that can be
used to raise an SMI, including keyboards, network cards, and hardware timers.

The algorithm for triggering SMIs plays an important role in the system
design. In general, there are polling-based and event-driven approaches used to
generate SMIs. The polling-based approach polls the state of a target system at
regular intervals. When we use this approach to check the integrity of a target
system, it compares the newly retrieved state with a known pristine state to see
if any malicious changes have occurred. However, polling at regular intervals in
the system is susceptible to transient [21] or evasion attacks [22].

Transient attacks are a class of attacks that do not produce persistent changes
within a victim’s system. Polling-based systems suffer from transient attacks
because they infer intrusions based upon the presence of an inconsistent state.
Transient attacks can thus avoid detection by remove any evidence before a
polling event and resuming malicious activity between polls. Mitigating these



224 F. Zhang et al.

attacks requires either 1) minimizing the polling window so that there is less of
a chance for the malware to clean its evidence, or 2) randomizing the polling
window so that malware cannot learn a pattern for cleaning its evidence. We
implement these methods in IOCheck via performance counters to trigger SMIs.

Moreover, we can use an event-driven triggering method to further mitigate
transient attacks. Polling-based systems are likely to miss events between two
checks that an event-driven approach would not. For instance, we can trigger
SMIs when a region of memory changes, allowing us to monitor the state, in-
cluding malicious changes.

4.2 Checking I/O Configurations and Firmware

Configurations of I/O Devices. Before the system boots up, the BIOS
initializes all of the hardware devices on the motherboard and populates cor-
responding configuration spaces for each one. These devices rely on the con-
figurations to operate correctly. Here we use the PCI configuration space and
IOMMU configuration as examples.
PCI Configuration Space: Each PCI or PCIe controller has a configuration
space. Device drivers read these configurations to determine what resources (e.g.,
memory-mapped location) have been assigned by the BIOS to the devices. Note
that the PCI configurations should be static after the BIOS initialization. How-
ever, an attacker with ring 0 privilege can modify the PCI configuration space.
For example, the attacker can relocate the device memory by changing the Base
Address Register in the PCI configuration space. Additionally, PCI/PCIe de-
vices that support Message Signaled Interrupts (MSI) contain registers in the
PCI configuration space to configure MSI delivery. Wojtczuk and Rutkowska
demonstrate that the attacker in the driver domain of a VM can generate ma-
licious MSIs to compromise a Xen hypervisor [13]. Note that IOCheck assumes
the PCI configuration remains the same after the BIOS initialization and does
not consider “Plug-and-Play” PCI/PCIe devices.
IOMMU Configurations : IOMMU restricts memory access from I/O devices. For
example, it can prevent a DMA attack from a compromised I/O device. IOMMU
is comprised of a set of DMA Remapping Hardware Units (DRHU). They are
responsible for translating addresses from I/O devices to physical addresses in
the host memory. The DRHU first identifies a DMA request by BDF-ID (Bus,
Device, Function number). Then, it uses BDF-ID to locate the page tables asso-
ciated with the requested I/O controller. Finally, it translates the DMA Virtual
Address (DVA) to a Host Physical Address (HPA), much like MMU translation.
Although IOMMU gives us effective protection from DMA attacks, it relies on
proper configurations to operate correctly. Several techniques have been demon-
strated to bypass IOMMU [11, 13]. We can mitigate these attacks by checking
the integrity of the critical configurations of IOMMU at runtime. Table 4 in
Appendix shows the static configuration of IOMMU.



A Framework to Secure Peripherals at Runtime 225

Firmware Integrity. We aim to check the firmware of I/O devices including the
network card, graphics card, disk controller, keyboard, and mouse. We describe
the process of checking a NIC, VGA, and the BIOS as examples.
Network Interface Controller : Modern network cards continue to increase in
complexity. NICs usually include a separate on-chip processor and memory to
support various functions. Typically, a NIC loads its firmware from Electric
Erasable Programmable Read-Only Memory (EEPROM) to flash memory, and
it then executes the code on the on-chip processor. IOCheck stores a hash value
of the original firmware image and checks the integrity of the NIC’s firmware at
runtime. For some network cards [28], we can monitor the instruction pointer of
the on-chip CPU through the NIC’s debugging registers. This can restrict the
instruction pointer to the code section of the memory region. If the instruction
pointer points to a memory region that stores heap or stack data, then a code
injection or control flow hijacking may have occurred.

Monitoring the integrity of the static code and instruction pointer can prevent
an attacker from injecting malicious code into the firmware; however, it cannot
detect advanced attacks, such as Return Oriented Programming attacks, since
they technically do not inject any code. To detect these attacks, we can imple-
ment a shadow stack to protect the control flow integrity of the NIC firmware.
Duflot et al. implemented a similar concept in NAVIS [19]. We will study the
control flow integrity of the firmware in future work.
Video Graphics Adapter : The Video Graphics Adapter (VGA) normally re-
quires device-specific initialization, and the motherboard BIOS does not have
the knowledge of all possible vendor-specific initialization procedures. Fortu-
nately, the PCI expansion ROM (i.e., option ROM) can be executed to initialize
the VGA device. The VGA expansion ROM code is stored on the device, and
this mechanism allows ROM to contain multiple images that support different
processor architectures (e.g, x86, HP RISC). However, the ROM code on the de-
vice can be flashed with a customized image [29] or malicious code [30]. IOCheck
uses SMM to ensure the integrity of the VGA option ROM at runtime.
Basic Input Output System: As mentioned before, SRTM can check the integrity
of the BIOS at the booting time, which helps us to securely load the SMM
code from the BIOS to the SMRAM. After the system boots up, attackers with
ring 0 privilege might modify the BIOS using various tools (e.g., flashrom [31]).
However, they are not able to access locked SMRAM. Thus, we can use the SMM
code to check the runtime integrity of the BIOS. Although the modified BIOS
with malicious code cannot be executed until the system resets and SRTM will
detect this BIOS attack before booting, we can detect this attack earlier than
SRTM, which provides runtime detection and serves as a complementary defense.
Earlier detection of such attacks can also limit the damage they wreak against
the system. Note that we assume CRTM in the BIOS is immutable and trusted,
but attackers can modify any other BIOS code (e.g., ACPI tables). Otherwise,
we cannot perform SRTM correctly.



226 F. Zhang et al.

4.3 Reporting an Alert and Exiting SMM

The last stage of IOCheck is to report any alerts to a human operator. We
accomplish this task by playing an audible tone to notify a user that a potential
attack may happen. To distinguish the type of attack, we use different tone
frequency for a variety of I/O attacks. In addition, we use a serial cable to
connect the target machine to the external machine. IOCheck assumes attackers
with ring 0 privilege, which means they are able to modify hardware registers
to block SMI assertions and launch a Denial-of-Service (DoS) attack against our
system. We use the external machine to detect the DoS attack. For example, the
random polling-based triggering in IOCheck must generate SMIs at least every
maximum time interval, whereupon the external machine expects a message
from SMM via the serial cable. If the external machine does not receive a log
message in the interval, we conclude that a DoS attack has occurred. We also use
a secret key to authenticate the log messages to avoid fake messages. Specifically,
the target machine establishes a shared secret key with the external machine in
the BIOS while booting. Since we trust the BIOS at startup, we can store the
secret in the trusted SMRAM. Later, only the SMI handler can access it, which
prevents attackers from spoofing messages.

Note that the reporting stage executes within SMM. Even if an attack disables
the PC speaker or serial console in PM, we can enable it in SMM and guarantee
that an audible tone and a serial message is delivered. After the reporting stage,
the SMI handler simply executes the RSM instruction to exit from SMM.

5 System Implementation

We implement a prototype of IOCheck system using two physical machines.
The target machine uses an ASUS M2V-MX SE motherboard with an AMD
K8 Northbridge and a VIA VT8237r Southbridge. It has a 2.2 GHz AMD LE-
1250 CPU and 2GB Kingston DDR2 RAM. We use a PCIe-based Intel 82574L
Gigabit Ethernet Controller and a PCI-based Jaton VIDEO-498PCI-DLPNvidia
GeForce 9500GT as the testing devices. To program SMM, we use open-source
BIOS, Coreboot. Since IOCheck is OS-agnostic, we install Microsoft Windows 7
and CentOS 5.5 on the target machine. The external machine is a Dell Inspiron
15R laptop with Ubuntu 12.04 LTS. It uses a 2.4GHz Intel Core i5-2430M CPU
and 6 GB DDR3 RAM.

5.1 Triggering an SMI

We implement a random polling-based triggering algorithm to check integrity
of I/O configurations and firmware by using performance counters to generate
SMIs. The performance monitoring registers count hardware events such as in-
struction retirement, L1 cache miss, or branch misprediction. The x86 machines
provide four of these counters from which we can select a specific hardware event
to count [32]. To generate an SMI, we first configure one of the performance coun-
ters to store its maximum value. Next, we select a desired event (e.g., a retired



A Framework to Secure Peripherals at Runtime 227

instruction or cache miss) to count so that the next occurrence of that event will
overflow the counter. Finally, we configure the Local Advanced Programmable
Interrupt Controller (APIC) to deliver an SMI when an overflow occurs. Thus,
we are able to trigger an SMI for the desired event. The performance counting
event is configured by the PerfEvtSel register, and the performance counter is
set by the PerfCtr register [32].

To randomly generate SMIs, we first generate a pseudo-random number, r,
ranging from 1 to m, where m is a user-configurable maximum value. For ex-
ample, a user could set m as 0xffff (216 − 1), so the random number resides in
the set [1,0xffff]. Next, we set the performance counter to its maximum value
(0xffffffffffff) minus this random number (248 − 1 − r). We also set the desired
event in PerfEvtSel and start to count the event. Thus, an SMI will be raised
after r occurrences of the desired event. We use a linear-congruential algorithm
to generate the pseudo-random number, r, in SMM. We use the parameters of
the linear-congruential algorithm from Numerical Recipes [33]. We use the TSC
value as the initial seed and save the current random number in SMRAM as the
next round’s seed.

To further mitigate transient attacks, we consider event-driven-based trigger-
ing approaches. We implement an event-driven-based version of IOCheck for
checking the integrity of a NIC’s management firmware, and the detailed im-
plementation is described as follows. When a management packet arrives at the
PHY interface of the NIC, the manageability firmware starts to execute. We
use Message Signalled Interrupts (MSI) to trigger an SMI when a manageability
packet arrives at the network card. First, we configure the network card to de-
liver an MSI to the I/O APIC with the delivery mode specified as SMI. When
the I/O APIC receives this interrupt, it automatically asserts the SMI pin, and
an SMI is generated. Next, we use the SMM code to check the integrity of the
management firmware. Note that the act of this triggering is generated via a
hardware interrupt in the NIC, and the management firmware code is decoupled
from this. Thus, we trigger an SMI for every manageability packet before the
firmware has an opportunity to process it.

5.2 Checking I/O Configurations and Firmware

Network Interface Controller. We use a popular commercial network card,
an Intel 82574L Gigabit PCIe Ethernet Controller, as our target I/O device.
First, we check the PCIe configuration space of the network card. The NIC
on our testbed is at bus 3, device 0, and function 0. To read the configuration
space, we use standard PCI reads to dump the contents. We use a standard hash
function MD5 [34] to hash these 256 bytes of the configuration and compare the
hash value with the original one generated during booting.

Network management is an increasingly important requirement in today’s net-
worked computer environments, especially on servers. It routes manageability
network traffic to a Management Controller (MC). One example of MC is the
Baseboard Management Controller (BMC) in Intelligent Platform Management
Interface (IPMI). The management firmware inevitably contains vulnerabilities



228 F. Zhang et al.

that could be easily exploited by attackers. Bonkoski et al. [3] identified more than
400 thousand IPMI-enabled servers running on publicly accessible IP addresses
that are remotely exploitable due to textbook vulnerabilities in the management
firmware. The 82574L NIC [35] provides two different and mutually exclusive bus
interfaces for manageability traffic. One is the Intel proprietary System Manage-
ment Bus (SMBus) interface, and the other is the Network Controller - Sideband
Interface (NC-SI). For each manageability interface, it has its own firmware code
that implements the functions. Figure 3 in Appendix shows a high-level architec-
tural block diagram of the 82574L NIC.

The management firmware of these two interfaces is stored in a Non-Volatile
Memory (NVM). The NVM is I/O mapped memory in the NIC, and we use the
EEPROMRead Register (EERD 0x14) to read it. EERD is a 32-bit register used
to cause the NIC to read individual words in the EEPROM. To read a word, we
write a 1b to the Start Read field. The NIC reads the word from the EEPROM
and places it in the Read Data field and then sets the Read Done field to 1b. We
poll the Read Done bit to make sure that the data has been stored in the Read
Data field. All of the configuration and status registers of 82574L NIC, including
EERD, are memory-mapped when the system boots up. To access EERD, we
use normal memory read-and-write operations. The memory address of EERD
is INTEL 82574L BASE plus EERD offset.

Video Graphics Adapter. Jaton VIDEO-498PCI-DLP GeForce 9500GT is a
PCI-based video card. It is at bus 7, device 0, and function 0 on our testbed.
Similar to the checking approach of NIC, we first check the PCI configuration
space of the VGA device. Then, we check the integrity of the VGA expansion
ROM. The VGA expansion ROM is memory-mapped, and the four-byte register
at offset 0x30 in the PCI configuration space specifies the base address of the
expansion ROM. Note that bit 0 in the register enables the accesses to the
expansion ROM. PCI expansion ROMs may contain multiple images for different
architectures. Each image must contain a ROM header and PCI data structure,
which specify image information such as code type and size. Table 5 in Appendix
shows the formats of ROM header and PCI data structure. Note that we only
check the image for x86 architecture since our testbed is on Intel x86.

We first use the base address of expansion ROM to locate the header of the
first image. Next, we read the pointer to PCI data structure at offset 0x18 to
0x19. Then, we identify the code type at offset 0x14 in the PCI data structure.
If this image is for Intel x86 architecture, we check the integrity of this image by
comparing the hash values. Otherwise, we repeat the steps above for the next
image.

5.3 Reporting an Alert and Exiting SMM

To play a tone, we program the Intel 8253 Programmable Interval Timer (PIT) in
the SMI handler to generate tones. The 8253 PIT performs timing and counting
functions, and it exists in all x86 machines. In modern machines, it is included as



A Framework to Secure Peripherals at Runtime 229

part of the motherboard’s Southbridge. This timer has three counters (Counters
0, 1, and 2), and we use the third counter (Counter 2) to generate tones via the
PC speaker. In addition, we can generate different kinds of tones by adjusting
the output frequency. In the prototype of IOCheck, a continuous tone would be
played by the PC speaker if a attack against NIC has been found. If an attack
against VGA has been found, an intermittent tone would be played.

We use a serial cable to print status messages and debug corresponding I/O
devices in SMM. The printk function in Coreboot prints the status messages
to the serial port on the target machine. When the target machine executes the
BIOS code during booting, the external machine sends a 16-byte random number
to the target machine through the serial cable. Then, the BIOS will store the
random number as a secret in the SMRAM. Later, the status messages are sent
with the secret for authentication. We run a minicom instance on the external
machine and verify if the secret is correct. If a status message is not received in
an expected time window or the secret is wrong, we conclude that an attack has
occurred.

6 Evaluation and Experimental Results

6.1 Code Size

In total, there are 310 lines of new C code in the SMI handler. The MD5 hash
function has 140 lines of C code [34], and the rest of the code implements the
firmware and PCI configuration space checking. After compiling the Coreboot,
the binary size of the SMI handler is only 1,409 bytes, which introduces a min-
imal TCB to our system. The 1,409-byte code encompasses all functions and
instructions required to check the integrity of the NIC and VGA firmware and
their PCI configuration spaces. The code size will increase if we check more I/O
devices. Additionally, other static code exists in Coreboot related to enabling
SMM to run on a particular chipset. For example, a printk function is built
into the SMM code to enable raw communication over a serial port.

6.2 Attack Detection

We conduct four attacks against our system on both Windows and Linux plat-
forms. Two of them are I/O configuration attacks, which relocate the device
memory by manipulating the PCI configuration space of NIC and VGA. The
other two attacks modify the management firmware of the NIC and VGA option
ROM. The Base Address Registers (BARs) in the PCI configuration space are
used to map the device’s register space. They reside from offset 0x10 to 0x27 in
the PCI configuration space. For example, the memory location BAR0 specifies
the base address of the internal NIC registers. An attacker can relocate these
memory-mapped registers for malicious purposes by manipulating the BAR0
register. To conduct the experiments, we first enable IOCheck to check the PCI
configuration space. Next, we modify the memory location specified by the BAR0



230 F. Zhang et al.

register on Windows and Linux platforms. We write a kernel module to modify
the BAR0 register in Linux and use the RWEverything [36] tool to configure it
in Windows. We also modify the management firmware of NIC and the VGA op-
tion ROM. The management firmware is stored as a Non-Volatile memory, and
it is I/O mapped memory; the VGA option ROM is memory-mapped. These
attacks are also conducted on both Windows and Linux platforms.

After we modify NIC’s PCIe configuration or the firmware, IOCheck auto-
matically plays a continuous tone to alert users and, the minicom instance on
the external machine shows an attack against NIC has been found. After the
modification of VGA’s PCI configuration or option ROM, an intermittent tone
is played by the PC speaker.

6.3 Breakdown of SMI Handler Runtime

To quantify how much time each individual step is required to run, we break
down the SMI handler into eight operations. They are 1) switch into the SMM;
2) check the PCIe configuration of NIC; 3) check the firmware of NIC; 4) check
the PCI configuration of VGA; 5) check the option ROM of VGA; 6) send a
status message; 7) configure the next SMI; and 8) resume Protected Mode. For
each operation, we measure the average time taken in SMM. We use the Time
Stamp Counter (TSC) register to calculate the time. The TSC register stores
the number of CPU cycles elapsed since powering on. First, we record the TSC
values at the beginning and end of each operation, respectively. Next, we use
the CPU frequency to divide the difference in the TSC register to calculate how
much time this operation.

We repeat this experiment 40 times. Table 1 shows the average times taken
for each operation. We can see that the SMM switching and resuming take
only 4 and 5 microseconds, respectively. Checking 256 bytes of the PCIe/PCI
configuration space register takes about 1 millisecond. The 82574L NIC has 70
bytes of SMBus Advanced Pass Through (APT) management firmware and 138
bytes of NC-SI management firmware. The size of x86 expansion ROM image is
1 KB in the testing VGA. Checking NIC’s firmware takes about 1 millisecond,
while checking VGA’s option ROM takes about 5 milliseconds. Naturally, the

Table 1. Breakdown of SMI Handler Runtime (Time: µs)

Operations Mean STD 95% CI

SMM switching 3.92 0.08 [3.27,3.32]
Check NIC’s PCIe configuration 1169.39 2.01 [1168.81,1169.98]
Check NIC’s firmware 1268.12 5.12 [1266.63,1269.60]
Check VGA’s PCI configuration 1243.60 2.61 [1242.51,1244.66]
Check VGA’s expansion ROM 4609.30 1.30 [4608.92,4609.68]
Send a message 2082.95 3.00 [2082.08,2083.82]
Configure the next SMI 1.22 0.06 [1.20,1.24]
SMM resume 4.58 0.10 [4.55,4,61]

Total 10,383.07



A Framework to Secure Peripherals at Runtime 231

size of the firmware affects the time of the checking operation. We send a status
message (e.g., I/O devices are OK) in each run of the SMI handler, which is about
2 milliseconds. The time is takes to generate a random number and configure
performance counters for the next SMI is only 1.22 microseconds. Thus, the
total time spent in SMM is about 10 milliseconds. Additionally, we calculate the
standard deviation and 95% confidence interval for the runtime of each operation.

6.4 System Overhead

To measure system overhead introduced by this approach, we use the SuperPI [37]
program to benchmark our system on Windows and Linux. We first run the
benchmark without IOCheck enabled. Then, we run it with different random-
polling intervals. Table 2 shows the experimental results. The first column shows
the random polling intervals used in the experiment. For example, (0,0xfffff]
means a random number, r, is generated in that interval. We use retired instruc-
tions as the counting event in the performance counter. Thus, after running r
sequential instructions, an SMI will be asserted. The second column also in-
dicates the time elapsed. Since the CPU (AMD K8) on our testbed is 3-way
superscalar [38], we assume an average number of instructions-per-cycle (IPC)
is 3, and the equation for this transformation is T = I

(C∗IPC) , where T is the

real time, I is the number of instructions, and C is the clock speed on the CPU.

Table 2. Random Polling Overhead Introduced on Microsoft Windows and Linux

Random Polling Intervals Benchmark Runtime(s) System Slowdown

Instructions Time (µs) Windows Linux Windows Linux
1 [1,0xffffffff] (0,∼650,752] 0.285 0.393 0.014 0.011
2 [1,0xfffffff] (0,∼40,672] 0.297 0.398 0.057 0.023
3 [1,0xffffff] (0,∼2,542] 0.609 0.463 1.167 0.190
4 [1,0xfffff] (0,∼158] 4.359 1.480 14.512 2.805
5 [1,0xffff] (0,∼10] 91.984 18.382 ∼326 ∼46

We can see from Table 2 that the overhead will increase if we reduce the
random-polling interval, while small intervals have a higher probability of quickly
detecting attacks. Intervals in rows 1 and 2 introduce less than 6% overhead, so
intervals similar to or between them are suitable for normal users in practice.
Other intervals in the table have large overhead making them unsuitable in prac-
tice. These results demonstrate the feasibility and scalability of our approach.

6.5 Comparison with the DRTM Approach

IOCheck provides a new framework for checking firmware and I/O devices at
runtime. Compared to the well-known DRTM approach (e.g., Flicker [18]), SMM
in IOCheck serves a similar role as the trusted execution environment in DRTM.
However, IOCheck achieves a better performance in comparison. AMD uses the
SKINIT instruction to perform DRTM, and Intel implements DRTM using a CPU



232 F. Zhang et al.

Table 3. Comparison between SMM-based and DRTM-based Approaches

IOCheck Flicker [18]

Operation SMM switching SKINIT instruction
Size of secure code Any 4 KB
Time 3.92 µs 12 ms
Trust BIOS boot Yes No

instruction called SENTER. The SMM switching operation in IOCheck plays the
same role as SKINIT or SENTER instructions in the DRTM approach. As stated in
the Table II of Flicker [18], the time required to execute the SKINIT instruction
depends on the size of the Secure Loader Block (SLB). It shows a linear growth
in runtime as the size of the SLB increases. From Table 3, we can see that
the SKINIT instruction takes about 12 milliseconds for 4KB of SLB. However,
SMM switching only takes about 4 microseconds, which is about three orders
of magnitude faster than the SKINIT instruction. Furthermore, SMM switching
time is independent from the size of the SMI handler. This is because IOCheck
does not need to measure the secure code every time before executing it, and we
lock the secure code in SMRAM.

Note that IOCheck trusts the BIOS boot while Flicker does not. IOCheck
requires a secure BIOS boot to ensure the SMM code is securely loaded into
SMRAM. However, the DRTM approach (e.g., Intel TXT) also requires that the
SMM code is trusted. Wojtczuk and Rutkowska demonstrate several attacks [12,
39, 40] against Intel TXT by using SMM if the SMM-Transfer Monitor is not
present. From this point of view, both systems must trust the SMM code.

7 Limitations and Discussions

IOCheck is a runtime firmware and configuration integrity checking framework.
We also demonstrate the feasibility of this approach using a commercial network
card. However, the current prototype of IOCheck is specific to the target system,
which uses an Intel 82574L network card and JATON VIDEO-498PCI-DLP
Nvidia video card. Human effort is required to expand the functionality (e.g.,
checking BMC or Disk Controller).

SMM uses isolated memory (SMRAM) for execution. The initial size of SM-
RAM is 64 KB, ranging from SMM BASE to SMM BASE + 0xFFFF. The default
value of SMM BASE is 0x30000, and Coreboot relocates it to 0xA0000. As the
size of our SMI handler code is only 1,409 bytes, the small capacity of SMRAM
may limit the scalability of IOCheck. However, the chipset in our testbed allows
for an additional 4MB memory in a region called TSeg within SMRAM. Fur-
thermore, SICE [41] demonstrates that SMM can support up to 4GB of isolated
memory that can be used for memory-intensive operations such as virtualization.

Wojtczuk and Rutkowska [42] use cache poisoning to bypass the SMM lock
by configuring the Memory Type Range Registers (MTRR) to force the CPU to
execute code from the cache (which they injected) instead of SMRAM. Duflot
also independently found the same vulnerability [43]. This vulnerability was fixed



A Framework to Secure Peripherals at Runtime 233

with Intel’s addition of the System Management Range Register (SMRR). More
recently, Butterworth et al. [25] used a buffer overflow vulnerability during the
BIOS update process in SMM, although this was a bug in the particular BIOS
version. Our SMM code in Coreboot does not have the same vulnerable code
that facilitates this attack. To the best of our knowledge, there is no general
attack that can bypass the SMM lock and compromise SMM.

The implementation of IOCheck contains 310 lines of C code. This part of the
code may contain vulnerabilities that could be exploited by attackers. To reduce
the possibility of vulnerable code, we sanitize the input of the SMI handler to
reduce the attack surface. For instance, we do not accept any data input to the
SMI handler except for the target firmware and configurations. We also carefully
check the size of the input data to avoid overflow attacks [25].

SMM was not originally designed for security purposes. Researchers may ar-
gue that this makes it unsuitable for security operations. Additionally, some re-
searchers feel that SMM is not essential to x86. However, there is no indication
that Intel will remove SMM. Moreover, Intel introduced the SMM-Transfer Mon-
itor [44] that virtualizes SMM code in order to defeat attacks [40] against TXT.
In our case, SMM can be thought of as a mechanism to provide an isolated com-
puting environment and hardware support to meet the system’s requirements.

8 Related Work

To identify malware running in I/O devices, Li et al. propose VIPER [20], a
software-based attestation method to verify the integrity of peripherals’ firmware.
VIPER runs a verifier program on the host machine, and it trusts the operat-
ing system. NAVIS [19] is an anomaly-detection system checking the memory
accesses performed by the NIC’s on-chip processor. It builds a memory layout
profile of the NIC and raises an alert if any unexpected memory access is de-
tected. The NAVIS program runs inside of the operating system and assumes
the OS is trusted. Compared to VIPER and NAVIS, IOCheck is not running in
the normal Protected Mode. It uses SMM to check the integrity of the firmware,
which significantly reduces the TCB. In addition, IOCheck checks the configu-
rations of I/O devices, which further protects them.

Compromised firmware normally performs DMA attacks against the main
memory, and IOMMU (e.g., Intel VT-d or AMD-Vi) is an efficient defense. How-
ever, Sang et al. [11] identify an array of vulnerabilities on Intel VT-d. Wojtczuk
et al. [12] use a bug in the SINIT module of the SENTER instruction to mis-
configure VT-d, and then attackers are able to compromise the securely loaded
hypervisor using a classic DMA attack so it can bypass Intel TXT. Although the
main goal of this attack is to circumvent Intel TXT, we can learn that VT-d is
easy to misconfigure and then an attacker can launch a DMA attack. Moreover,
Stewin [10] explains several reasons that we cannot trust IOMMU as a counter-
measure against DMA attacks. However, IOCheck is a generic framework that
can check IOMMU configurations and provide further protection for I/O devices.

BARM [10] aims to detect and prevent DMA-based attacks. It is based on
modeling the expected memory bus activity and comparing it to the actual



234 F. Zhang et al.

activity. BARM relies on the OS and software applications to record all I/O bus
activity in the form of I/O statistics, while IOCheck uses SMM without trusting
any code in PM. IronHide [45] is a tool to analyze potential I/O attacks against
PCs. It can be used either as an offensive or defensive tool. On the offensive
side, it can be used to sniff out the I/O buses, spoof the bus address used by
other I/O controller, and log/inject keystrokes. On the defensive side, it injects
faults over the I/O buses to simulate various I/O attacks and to identify various
possible vulnerabilities. However, IronHide requires a specialized PCI-Express
device, while IOCheck uses existing technology in chipsets.

Recently, SMM-based systems have been brewing in the security area
[46–50]. HyperCheck [46] checks the integrity of hypervisors and uses a net-
work card to transmit the registers and memory contents to a remote server for
verification. Therefore, a compromised network card would be problematic in
HyperCheck. HyperSentry [47] also uses SMM for hypervisor integrity checking,
and it uses Intelligent Platform Management Interface (IPMI) to stealthily trig-
ger an SMI. IPMI relies on BMC and its firmware to operate, while IOCheck can
mitigate those attacks against firmware. Spectre [49] is a periodically polling-
based system that introspects the host memory for malware detection. It uses
SMM to periodically check the host memory for heap overflow, heap spray, and
rootkit attacks. However, IOCheck aims to enhance the security of I/O devices,
and we use random-polling and event-driven approaches to mitigate transient
attacks against the periodic polling-based systems. In addition, researchers use
SMM to implement stealthy rootkits [51], which requires an unlocked SMRAM
to load the rootkit. As explained in [51], all post-2006 machines have locked
SMRAM in the BIOS. IOCheck locks the SMM in Coreboot so that SMRAM is
inaccessible after booting.

9 Conclusions

In this paper, we present IOCheck, a framework to enhance the security of I/O
devices at runtime. It checks the firmware and configurations of I/O devices and
does not require the trust on the OS. We implement a prototype of IOCheck us-
ing random-polling-based and event-driven approaches, and it is robust against
transient attacks. We demonstrate the effectiveness of IOCheck by checking the
integrity of Intel 82574L NIC and Jaton VIDEO-498PCI-DLP VGA. The exper-
imental results show that IOCheck is able to successfully detect firmware and
I/O configuration attacks. IOCheck only takes about 10 milliseconds to check
the firmware and configurations, and it introduces a low overhead on both Mi-
crosoft Windows and Linux platforms. Furthermore, we compare IOCheck with
the DRTM approach and show that the switching time of IOCheck is three orders
of magnitude faster than that of the DRTM approach.

Acknowledgement. The authors would like to thank all of the reviewers for
their valuable comments and suggestions. This work is supported by the United
States Air Force Research Laboratory (AFRL) through Contract FA8650-10-C-
7024, National Science Foundation CRI Equipment Grant No. CNS-1205453, and



A Framework to Secure Peripherals at Runtime 235

ONR Grant N00014-13-1-0088. Opinions, findings, conclusions and recommen-
dations expressed in this material are those of the authors and do not necessarily
reflect the views of the U.S. Government, Air Force, or Navy.

References

1. National Institute of Standards, NIST: National Vulnerability Database,
http://nvd.nist.gov (access time March 4, 2014)

2. Mitre: Vulnerability list, http://cve.mitre.org/cve/cve.html
3. Bonkoski, A.J., Bielawski, R., Halderman, J.A.: Illuminating the Security Issues

Surrounding Lights-out Server Management. In: Proceedings of the 7th USENIX
Conference on Offensive Technologies (WOOT 2013) (2013)

4. Duflot, L., Perez, Y.A.: Can You Still Trust Your Network Card? In: Proceedings
of the 13th CanSecWest Conference (CanSecWest 2010) (2010)

5. Chen, K.: Reversing and Exploiting an Apple Firmware Update. Black Hat (2009)
6. Stewin, P., Bystrov, I.: Understanding DMA Malware. In: Flegel, U., Markatos,

E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 21–41. Springer,
Heidelberg (2013)

7. Aumaitre, D., Devine, C.: Subverting Windows 7 x64 Kernel With DMA Attacks.
In: HITBSecConf Amsterdam (2010)

8. Triulzi, A.: Project Maux Mk.II. In: CanSecWest (2008)
9. Sang, F., Nicomette, V., Deswarte, Y.: I/O Attacks in Intel PC-based Architectures

and Countermeasures. In: SysSec Workshop (SysSec 2011) (2011)
10. Stewin, P.: A Primitive for Revealing Stealthy Peripheral-Based Attacks on the

Computing Platform’s Main Memory. In: Stolfo, S.J., Stavrou, A., Wright, C.V.
(eds.) RAID 2013. LNCS, vol. 8145, pp. 1–20. Springer, Heidelberg (2013)

11. Sang, F., Lacombe, E., Nicomette, V., Deswarte, Y.: Exploiting an I/OMMU vul-
nerability. In: 5th International Conference on Malicious and Unwanted Software
(MALWARE 2010), pp. 7–14 (2010)

12. Wojtczuk, R., Rutkowska, J.: Another Way to Circumvent Intel� Trusted Execu-
tion Technology (2009),
http://invisiblethingslab.com/resources/misc09/Another

13. Wojtczuk, R., Rutkowska, J.: Following the White Rabbit: Software Attacks
against Intel R© VT-d (2011)

14. Trusted Computing Group: TCG PC Client Specific Implementation Specification
for Conventional BIOS (February 2012),
http://www.trustedcomputinggroup.org/files/resource files/

CB0B2BFA-1A4B-B294-D0C3B9075B5AFF17/

TCG PCClientImplementation 1-21 1 00.pdf

15. Trusted Computing Group: TPM Main Specification Level 2 Version 1.2, Revision
116 (2011),
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

16. Trusted Computing Group: TCG D-RTM Architecture Document Version 1.0.0
(June 2013), http://www.trustedcomputinggroup.org/
resources/drtm architecture specification

17. Intel: Trusted Execution Technology, http://www.intel.com/content/www/us/en/
trusted-execution-technology/trusted-execution-technology-

security-paper.html

18. McCune, J., Parno, B., Perrig, A., Reiter, M., Isozaki, H.: Flicker: An Exe-
cution Infrastructure for TCB Minimization. In: Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems (2008)

http://nvd.nist.gov
http://cve.mitre.org/cve/cve.html
http://invisiblethingslab.com/resources/misc09/Another
http://www.trustedcomputinggroup.org/files/resource_files/CB0B2BFA-1A4B-B294-D0C3B9075B5AFF17/TCG_PCClientImplementation_1-21_1_00.pdf
http://www.trustedcomputinggroup.org/files/resource_files/CB0B2BFA-1A4B-B294-D0C3B9075B5AFF17/TCG_PCClientImplementation_1-21_1_00.pdf
http://www.trustedcomputinggroup.org/files/resource_files/CB0B2BFA-1A4B-B294-D0C3B9075B5AFF17/TCG_PCClientImplementation_1-21_1_00.pdf
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/drtm_architecture_specification
http://www.trustedcomputinggroup.org/resources/drtm_architecture_specification
http://www.intel.com/content/www/us/en/trusted-execution-technology/trusted-execution-technology-security-paper.html
http://www.intel.com/content/www/us/en/trusted-execution-technology/trusted-execution-technology-security-paper.html
http://www.intel.com/content/www/us/en/trusted-execution-technology/trusted-execution-technology-security-paper.html


236 F. Zhang et al.

19. Duflot, L., Perez, Y.-A., Morin, B.: What If You Can’t Trust Your Network Card?
In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp.
378–397. Springer, Heidelberg (2011)

20. Li, Y., McCune, J., Perrig, A.: VIPER: Verifying the Integrity of PERipherals’
Firmware. In: Proceedings of the 18th ACM Conference on Computer and Com-
munications Security (CCS 2011) (2011)

21. Moon, H., Lee, H., Lee, J., Kim, K., Paek, Y., Kang, B.: Vigilare: Toward Snoop-
based Kernel Integrity Monitor. In: Proceedings of the 19th ACM Conference on
Computer and Communications Security (CCS 2012) (2012)

22. Wang, J., Sun, K., Stavrou, A.: A Dependability Analysis of Hardware-Assisted
Polling Integrity Checking Systems. In: Proceedings of the 42nd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN 2012) (2012)

23. Zaddach, J., Kurmus, A., Balzarotti, D., Blass, E.O., Francillon, A., Goodspeed, T.,
Gupta, M., Koltsidas, I.: Implementation and Implications of a Stealth Hard-Drive
Backdoor. In: Proceedings of the 29th Annual Computer Security Applications
Conference (ACSAC 2013) (2013)

24. Triulzi, A.: The Jedi Packet Trick Takes Over the Deathstar: Taking NIC Back-
doors to the Next Level. In: The 12th Annual CanSecWest Conference (2010)

25. Butterworth, J., Kallenberg, C., Kovah, X.: BIOS Chronomancy: Fixing the Core
Root of Trust for Measurement. In: Proceedings of the 20th ACM Conference on
Computer and Communications Security (CCS 2013) (2013)

26. Coreboot: Open-Source BIOS, http://www.coreboot.org/
27. VIA: VT8237R Southbridge, http://www.via.com.tw/
28. Broadcom Corporation: Broadcom NetXtreme Gigabit Ethernet Controller,

http://www.broadcom.com/products/BCM5751
29. Salihun, D.: BIOS Disassembly Ninjutsu Uncovered,

http://bioshacking.blogspot.com/2012/02/

bios-disassembly-ninjutsu-uncovered-1st.html
30. Salihun, D.: Malicious Code Execution in PCI Expansion ROM (June 2012),

http://resources.infosecinstitute.com/pci-expansion-rom/
31. Flashrom: Firmware flash utility, http://www.flashrom.org/
32. Advanced Micro Devices, Inc.: BIOS and Kernel Developer’s Guide for AMD

Athlon 64 and AMD Opteron Processors
33. William, H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes:

The Art of Scientific Computing. Cambridge University Press, New York (2007)
34. MD5 Hash Functions, http://en.wikipedia.org/wiki/MD5
35. Intel: 82574 Gigabit Ethernet Controller Family: Datasheet,

http://www.intel.com/content/www/us/en/ethernet-controllers/

82574l-gbe-controller-datasheet.html
36. Jeff: RWEverything Tool, http://rweverything.com/
37. SuperPI, http://www.superpi.net/
38. Advanced Micro Devices, Inc.: AMD K8 Architecture,

http://commons.wikimedia.org/wiki/File:AMD_K8.PNG
39. Wojtczuk, R., Rutkowska, J.: Attacking Intel Trust Execution Technologies (2009),

http://invisiblethingslab.com/resources/bh09dc/Attacking
40. Wojtczuk, R., Rutkowska, J.: Attacking Intel TXT via SINIT Code Execution

Hijacking (November 2011),
http://www.invisiblethingslab.com/resources/2011/

Attacking Intel TXT via SINIT hijacking.pdf
41. Azab, A.M., Ning, P., Zhang, X.: SICE: A Hardware-level Strongly Isolated Com-

puting Environment for x86 Multi-core Platforms. In: Proceedings of the 18th
ACM Conference on Computer and Communications Security (CCS 2011) (2011)

http://www.coreboot.org/
http://www.via.com.tw/
http://www.broadcom.com/products/BCM5751
http://bioshacking.blogspot.com/2012/02/bios-disassembly-ninjutsu-uncovered-1st.html
http://bioshacking.blogspot.com/2012/02/bios-disassembly-ninjutsu-uncovered-1st.html
http://resources.infosecinstitute.com/pci-expansion-rom/
http://www.flashrom.org/
http://en.wikipedia.org/wiki/MD5
http://www.intel.com/content/www/us/en/ethernet-controllers/82574l-gbe-controller-datasheet.html
http://www.intel.com/content/www/us/en/ethernet-controllers/82574l-gbe-controller-datasheet.html
http://rweverything.com/
http://www.superpi.net/
http://commons.wikimedia.org/wiki/File:AMD_K8.PNG
http://invisiblethingslab.com/resources/bh09dc/Attacking
http://www.invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf
http://www.invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SINIT_hijacking.pdf


A Framework to Secure Peripherals at Runtime 237

42. Wojtczuk, R., Rutkowska, J.: Attacking SMM Memory via Intel CPU Cache Poi-
soning (2009)

43. Duflot, L., Levillain, O., Morin, B., Grumelard, O.: Getting into the SMRAM:
SMM Reloaded. In: Proceedings of the 12th CanSecWest Conference (CanSecWest
2009) (2009)

44. Intel: Intel R© 64 and IA-32 Architectures Software Developer’s Manual
45. Sang, F.L., Nicomette, V., Deswarte, Y.: A Tool to Analyze Potential I/O Attacks

Against PCs. IEEE Security & Privacy (2013)
46. Zhang, F., Wang, J., Sun, K., Stavrou, A.: HyperCheck: A Hardware-assisted In-

tegrity Monitor. IEEE Transactions on Dependable and Secure Computing (2013)
47. Azab, A.M., Ning, P., Wang, Z., Jiang, X., Zhang, X., Skalsky, N.C.: HyperSentry:

Enabling Stealthy In-Context Measurement of Hypervisor Integrity. In: Proceed-
ings of the 17th ACM Conference on Computer and Communications Security
(CCS 2010) (2010)

48. Reina, A., Fattori, A., Pagani, A., Cavallaro, L., Bruschi, D.: When Hardware
Meets Software: A Bulletproof Solution to Forensic Memory Acquisition. In: Pro-
ceedings of the Annual Computer Security Applications Conference (ACSAC 2012)
(2012)

49. Zhang, F., Leach, K., Sun, K., Stavrou, A.: SPECTRE: A Dependable Introspec-
tion Framework via System Management Mode. In: Proceedings of the 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN
2013) (2013)

50. Zhang, Y., Pan, W., Wang, Q., Bai, K., Yu, M.: HypeBIOS: Enforcing VM Iso-
lation with Minimized and Decomposed Cloud TCB. Technical report, Virginia
Commonwealth University (2012)

51. Embleton, S., Sparks, S., Zou, C.: SMM rootkits: A New Breed of OS Independent
Malware. In: Proceedings of the 4th International Conference on Security and
Privacy in Communication Networks (SecureComm 2008) (2008)

52. PCI-SIG: PCI Local Bus Specification Revision 3.0,
http://www.pcisig.com/specifications/

Appendix

Table 4. IOMMU Configurations

Register/Table Name Description
Root-entry table address Defines the base address of the root-entry table (first-level

table identified by bus number)
Domain mapping tables Includes root-entry table and context-entry tables

(second-level tables identified by device and function num-
bers)

Page tables Defines memory regions and access permissions of I/O
controllers (third-level tables)

DMA remapping ACPI table Defines the number of DRHUs present in the system and
I/O controllers associated with each of them

http://www.pcisig.com/specifications/


238 F. Zhang et al.

CPU
Northbridge

(memory controller hub)
MMU and IOMMU

Graphic card slot

Memory bus

Memory slots

Southbridge
(I/O controller hub)

PCI bus

PCI slots

BIOS Super I/O

LPC bus

Keyboard

Mouse

Serial port

IDE

SATA

Audio

USB

CMOS

Front-side bus

PCIe bus

Internal bus

Fig. 2. Typical Hardware Layout of a Computer

PHY

MAC

Transmit Switch, Filter

Rx/Tx FIFO

NC-SI

RMII I/F SMBus

I/F

Rx/Tx FIFO

Rx/Tx DMA

PCIe I/F

Link

Management

Controller
Operating System

RMII SMBus PCIe

Fig. 3. Architecture Block Diagram of Intel 82574L [35]

Table 5. PCI Expansion ROM Format [52]

(a) PCI Expansion ROM Header Format for x86

Offset Length Value Description
0h 1 55h ROM signature, byte 1
1h 1 AAH ROM signature, byte 2
2h 1 xx Initialization size
3h 3 xx Entry point for INIT function
6h-17h 12h xx Reserved
18h-19h 2 xx Pointer to PCI data structure

(b) PCI Data Structure Format

Offset Length Description
0h 4 Signature, the string ”PCIR”
4h 2 Vendor identification
6h 2 Device identification
8h 2 Reserved
Ah 2 PCI data structure length
Ch 1 PCI data structure revision
Dh 3 Class code
10h 2 Image length
12h 2 Revision level of code/data
14h 1 Code type
15h 1 Indicator
16 2 Reserved


	A Framework to Secure Peripherals at Runtime
	1 Introduction
	2 Background
	2.1 Computer Hardware Architecture
	2.2 Firmware Rootkits
	2.3 System Management Mode and Coreboot

	3 Threat Model and Assumptions
	3.1 Threat Model
	3.2 Assumptions

	4 System Framework
	4.1 Triggering an SMI
	4.2 Checking I/O Configurations and Firmware
	4.3 Reporting an Alert and Exiting SMM

	5 System Implementation
	5.1 Triggering an SMI
	5.2 Checking I/O Configurations and Firmware
	5.3 Reporting an Alert and Exiting SMM

	6 Evaluation and Experimental Results
	6.1 Code Size
	6.2 Attack Detection
	6.3 Breakdown of SMI Handler Runtime
	6.4 System Overhead
	6.5 Comparison with the DRTM Approach

	7 Limitations and Discussions
	8 Related Work
	9 Conclusions
	References
	Appendix




