
IOCheck: A Framework to Enhance the
Security of I/O Devices at Runtime

Fengwei Zhang

Center for Secure Information Systems
George Mason University

Fairfax, VA 22030
fzhang4@gmu.edu

Abstract—Securing hardware is the foundation for implement-
ing a secure system. However, securing hardware devices remains
an open research problem. In this paper, we present IOCheck,
a framework to enhance the security of I/O devices at runtime.
It leverages System Management Mode (SMM) to quickly check
the integrity of I/O configurations and firmware. IOCheck does
not rely on the operating system and is OS-agnostic. In our
preliminary results, IOCheck takes 4 milliseconds to switch to
SMM which introduces low performance overhead.

Keywords—Integrity, Firmware, I/O Configurations, SMM

I. INTRODUCTION

With the increasing complexity of hardware devices,
firmware functionality is expanding, exposing new vulner-
abilities to attackers. The National Vulnerabilities Database
(NVD [1]) shows that 119 firmware vulnerabilities have been
found since 2010. An attacker can exploit these vulnerabilities
in firmware [2] or a tool for updating firmware [3].

After compromising the firmware of an I/O device (e.g.,
NIC card), attackers alter memory via DMA [2], [4], [5] or
compromise surrounding I/O devices [6], [7]. Fortunately, the
Input Output Memory Management Unit (IOMMU) mecha-
nism can protect the host memory from DMA attacks. It maps
each I/O device to a specific area in the host memory and
any invalid access fails. However, this mechanism relies on
correct IOMMU configurations (e.g., the base address of the
root entry table). These configuration registers and tables can
be modified by an attacker as well [8].

A Trusted Platform Module (TPM [9]) can protect the
integrity of firmware and IOMMU configurations while boot-
ing, but it cannot protect them at runtime. Recently, Intel
introduced Trusted eXecution Technology (TXT), providing a
trusted way to load and execute system software (e.g., OS or
VMM). This is achieved by performing software measurements
with the help of the TPM. Intel TXT does not make any
assumptions about the system state, and it provides a dynamic
root of trust. Thus, the TXT can be used to check the runtime
integrity of I/O configurations and firmware. AMD has a
similar technology called Secure Virtual Machine (SVM).
However, both TXT and SVM introduce a significant overhead
on the late launch operation (e.g., TPM quote in [10]).

In this paper, we present IOCheck, a framework to enhance
the I/O devices’ security at runtime. It leverages System

Management Mode (SMM), a CPU mode in the x86 archi-
tecture, to quickly check the integrity of I/O configurations
and firmware. Unlike previous systems [11], [12], IOCheck
enumerates all of the I/O devices on the motherboard, and
checks the integrity of their corresponding configurations and
firmware. IOCheck does not rely on the operating system,
which significantly reduces the Trust Computing Base (TCB).
In addition, IOCheck is able to achieve better performance
compared to TXT or SVM approaches. For example, the SMM
switching time is much faster than the late launch method in
Flicker [10], [13]. We will demonstrate that IOCheck is able to
check the integrity of array of I/O devices including the BIOS,
IOMMU, network card, video card, keyboard, and mouse.

Contributions. The purpose of this work is to make the
following contributions:

• We provide a framework to enhance the security of
I/O devices by checking their integrity at runtime.

• IOCheck is implemented in the hardware layer and
does not rely on the operating system, which intro-
duces a minimal TCB.

• IOCheck is able to enumerate all of the I/O devices
on motherboard and check the integrity of each one.

• We demonstrate that our system can detect all of the
tested firmware exploitations and I/O configuration
modifications.

• We show that our system introduces low operating
overhead.

II. BACKGROUND

A. Computer Hardware Architecture

Figure 1 shows the hardware architecture of a typical
computer. The Central Processing Unit (CPU) connects to
the Northbridge via the Front-Side Bus. The Northbridge has
Memory Management Unit (MMU) and IOMMU, collectively
called the memory controller hub. The Northbridge also con-
nects to the memory, graphics card and Southbridge. The
Southbridge, also called the I/O controller hub, connects a
variety of I/O devices including USB, SATA, and Super I/O,
among others. Note that the BIOS is also connected to the
Southbridge. IOCheck aims to check and verify the static
configurations and firmware of I/O devices.

1



CPU
Northbridge

(memory controller hub)
MMU and IOMMU

Graphic card slot

Memory bus

Memory slots

Southbridge
(I/O controller hub)

PCI bus

PCI slots

BIOS Super I/O

LPC bus

Keyboard

Mouse

Serial port

IDE

SATA

Audio

USB

CMOS

Front-side bus

PCIe bus

Internal bus

Fig. 1. Typical Hardware Layout of a Computer

B. System Management Mode

System Management Mode (SMM) is a CPU mode in the
x86 architecture. It is similar to Real and Protected Modes. It
provides an isolated execution environment for implementing
system control functions such as power management.

SMM is implemented by the BIOS. Before the system
boots up, the BIOS loads SMM code into System Manage-
ment RAM (SMRAM), a special memory region which is
inaccessible from any other CPU modes. SMM is triggered
by asserting the System Management Interrupt (SMI) pin on
the motherboard. Both hardware and software are able to assert
this pin, although the specific method depends on the chipset.
After assertion, the system automatically saves its CPU states
into SMRAM, then executes the SMI handler code. A RSM
instruction is executed at the end of the SMI hander to switch
back to Protected Mode.

III. RELATED WORK

To identify the malware running in I/O devices, Li et al.
proposed VIPER [11], a software-based attestation method
to verify the integrity of peripherals’ firmware. VIPER runs
a verifier program on the host machine, and it trusts the
operating system. NAVIS [12] is an anomaly detection system
checking the memory accesses performed by the NIC’s on-chip
processor. It builds a memory layout profile of the NIC, and
raises an alert if any unexpected memory access is detected.
NAVIS program runs inside of the operating system, and
assumes the OS is trusted. Compared to VIPER and NAVIS,
IOCheck is a hardware-based method for firmware integrity
checking, which significantly reduces the TCB. In addition,
IOCheck checks the configurations of I/O devices, which
provides a further protection on the I/O devices.

Sang et al. discusses IOMMU vulnerabilities [8] and sev-
eral I/O attacks [7] on Intel-based systems. Additionally, other
researchers use an embedded microcontroller in the chipset to
check the integrity of system memory [14], implement DMA
malware [4], and introduce Ring -3 rootkits [15]. IOCheck is
a framework to mitigate these attacks to enhance the security
of I/O devices.

Recently, SMM-based systems have been brewing in the
security area. HyperCheck [16], HyperSentry [17], SPEC-
TRE [13] are SMM-based systems introspecting host memory
for integrity checking or malware detection, while IOCheck
aims to enhance the security of I/O devices. In addition, re-
searchers use SMM to implement stealthy rootkits [18], which
requires an unlocked SMRAM to load the rootkit into SMM.
IOCheck locks the SMM in the BIOS so that SMRAM is
inaccessible after system boots. Wojtczuk and Rutkowska [19]
demonstrate an attack to bypass SMM lock using cache poison-
ing. It configures Memory Type Range Registers (MTRR) to
force the CPU to execute code from cache instead of SMRAM.
Fortunately, this architecture vulnerability has been fixed by
the vendor.

IV. THREAT MODEL AND ASSUMPTIONS

A. Threat Model

1) I/O Configuration Attacks: Recently, Intel introduced
the virtualization technology for directed I/O (VT-d), which
implements the IOMMU mechanism for Intel-based platforms.
IOMMU is able to block DMA attacks by remapping the
addresses accessed by hardware devices. However, an attacker
can bypass IOMMU by manipulating configuration registers
and tables [8]. Additionally, an attacker can also manipulate
the PCI configuration space or Super I/O configurations for
malicious purposes. IOCheck aims to check these configura-
tions at runtime.

2) Firmware Attacks: The firmware of I/O devices con-
tains vulnerabilities which can be exploited by attackers. For
instance, Duflot et al. demonstrate that a remote attacker can
compromise a Broadcom NIC firmware by sending crafted
UDP packets [2]. Additionally, an attacker with ring 0 privilege
can reflash the firmware to implement a persistent rootkit (e.g.,
BIOS rootkit). IOCheck is capable of verifying the runtime
integrity of firmware.

B. Assumptions

IOCheck uses SMM to check the integrity of hardware
configurations and firmware. An attacker is able to tamper

2



System
Management

Mode

I/O Device 1

I/O Device 2

.

.

.

Periodically check

firmware/configurations

Found attack

Audiable ’beep’

Assert an SMI Enter SMM

Execute RSM Exit SMM

Fig. 2. Architecture of IOCheck

with the firmware by exploiting zero-day vulnerabilities. Since
IOCheck does not rely on the operating system, we assume the
attacker has ring 0 privilege. We assume the system is equipped
with a TPM which measures the integrity of the initial BIOS
image, which guarantees the SMM code is securely loaded into
SMRAM and SMRAM is locked in the BIOS. Cache poisoning
attacks [19] modifying the SMI handler is out of the scope of
this paper. IOCheck does not consider Denial of Service (DoS)
attack because an attacker with ring 0 privilege can block the
SMI assertion. Furthermore, we assume the attacker does not
have physical access to the machine.

V. SYSTEM FRAMEWORK

IOCheck is a framework that enhances the security of
I/O devices at runtime, and it checks the static configurations
and code of I/O devices. Figure 2 shows the architecture of
IOCheck. The box on the left lists all of the I/O devices on
a motherboard, and System Management Mode on the right
periodically checks the integrity of I/O configurations and
firmware. If an attack is found, IOCheck alerts with an audible
beep to notify the user.

A. Configurations of I/O Devices

Before the system boots up, the BIOS initializes all of the
hardware devices on the motherboard and set corresponding
configurations to them. These devices rely on the configura-
tions to operate correctly. Next, we use the PCI configuration
space and IOMMU configuration as examples.

1) PCI Configuration Space: Each PCI or PCI Express
controller has a configuration space. Device drivers read these
configurations to determine what resources (e.g., memory
mapped location) have been assigned by the BIOS to the
devices. Note that the PCI configurations should be static
after the BIOS initialization. However, an attacker with ring 0
privilege can modify the PCI configuration space. For example,
the attacker can relocate the device memory by changing
the Base Address Register in the PCI configuration space.
Additionally, PCI/PCIe devices that support Message Signaled
Interrupts (MSI) contain registers in the PCI configuration
space to configure MSI signalling; Wojtczuk and Rutkowska
demonstrate that the attacker in the driver domain of a VM can
generate malicious MSIs to compromise a Xen hypervisor [20].
Note that IOCheck assumes the PCI configuration remains the
same after BIOS initialization, and does not consider “Plug-
and-Play” PCI/PCIe devices.

2) IOMMU Configurations: IOMMU restricts memory ac-
cess of I/O devices. For example, it can prevent a DMA attack
from a compromised I/O device. The IOMMU is composed
of a set of DMA Remapping Hardware Units (DRHU). They
are responsible for translating addresses from I/O devices
to physical addresses in the host memory. The DRHU first
identifies a DMA request by BDF-ID (Bus, Device, Function
number). Next, it uses the BDF-ID to locate the page tables
associated with the requested I/O controller. Lastly, it translates
the DMA virtual Address (DVA) to host physical address
(HPA), which is similar to the MMU translation.

Although IOMMU gives us a nice protection from DMA
attacks, it relies on correct configurations to operate appro-
priately. [8], [20] have demonstrated several ways to bypass
IOMMU. IOCheck aims to mitigate these attacks by checking
the integrity of the critical configurations of IOMMU at
runtime.

For example, the DMA Remapping (DMAR) Advanced
Configuration and Power Interface (ACPI) table should never
change after booting. The DMAR ACPI table describes the
number of DRHUs present in the system and I/O controllers
associated with each of them. It is set by the BIOS before
the system boots up. In addition, the base address of the
configuration tables for DMA remapping unit should be static.
IOCheck aims to check the integrity of these static configura-
tions. Table I shows the static configuration of the IOMMU.

B. Firmware Integrity

IOCheck aims to check the firmware of all I/O devices
including the network card, graphics card, keyboard, and
mouse. Next, we use a NIC and BIOS as examples.

1) Network Interface Controller: First, we discuss how
IOCheck checks the integrity of a NIC’s firmware. Modern
network cards continue to become more and more complex. It
usually has its own on-chip processor and memory to support
various functionalities. Typically, a NIC loads the firmware
from Electric Erasable Programmable Read-Only Memory
(EEPROM) to flash memory, and then executes the code on
the on-chip processor. To check the integrity of NIC firmware
at runtime, IOCheck stores a hash value of original firmware
image in the SMRAM while the system executes BIOS code.
After the operating system boots up, IOCheck periodically
reads the NIC firmware code from the flash memory and
calculates the hash value of current image. If the hash value
does not match, an attack against NIC may have occurred.
In addition, IOCheck monitors the Program Counter of the
on-chip CPU through the NIC’s debugging registers, which
can restrict the instruction pointer to the code section of the
memory region. For instance, if the instruction pointer points
to a memory region which stores heap or stack data, then a
code injection and control flow hijacking may have happened.

Monitoring the integrity of the static code and instruction
pointer can prevent an attacker from injecting malicious code
into a firmware, but it cannot detect advanced attacks such
as Return Oriented Programming (ROP) attacks manipulating
the stack without any code injection. To detect these attacks,
we can implement a shadow stack to protect the control
flow integrity of the NIC firmware. Duflot et al. implemented
similar work in NAVIS [12].

3



TABLE I. IOMMU CONFIGURATIONS

Register/Table Name Description
Root-entry table address register Define the base address of the configuration tables
Domain mapping tables Define mapping between I/O controller and page tables
Page tables Define memory regions and access permissions of I/O controller
DMAR ACPI table Define the number of DRHUs and I/O controllers assigned to each of them

2) Basic Input Output System: IOCheck can also check the
runtime integrity of the BIOS. As mentioned, a TPM can check
the integrity of the BIOS at boot time, which helps us securely
load the SMM code from the BIOS to the SMRAM. After
the system boots up, attackers with ring 0 privilege can flash
the BIOS using various tools (e.g., flashrom [21]). However,
they are not able to access locked SMRAM. Thus, we can
use SMM code to check the runtime integrity of the BIOS.
The checking method is similar to other firmware verification
techniques. IOCheck stores a hash value of initial BIOS, and
checks if any alterations occur while the system is running.

Although the flashed BIOS with malicious code cannot be
executed until the system resets and a TPM will detect this
BIOS attack before booting, IOCheck can detect this attack
earlier than a TPM, which provides a runtime detection and
serves as a complementary defense. Earlier detection of such
attacks can also limit the damage they wreak against the
system.

VI. FUTURE IMPLEMENTATION AND EVALUATION

A. Programming the SMM

IOCheck leverages SMM to check the integrity of I/O
configurations and firmware. It stores the checking code in the
SMI handler. In order to program the SMI handler, we use an
open source BIOS, Coreboot [22]. Coreboot performs some
hardware initialization and then executes additional payload
(e.g., SeaBIOS, UEFI). The Coreboot project is written mostly
in C, which we use to implement IOCheck.

B. Evaluating IOCheck

The evaluation of IOCheck is composed of two parts:
security and performance evaluations. First, we will evaluate
the security of IOCheck by comparing with other systems such
as VIPER [11] and NAVIS [12]. Next, we will evaluate the
performance of IOCheck. From the preliminary experiment
result, the SMM switching time takes about 4 milliseconds,
which is significantly faster than the late launch method in
Flicker [10].

VII. ACKNOWLEDGEMENT

The author would like to thank all of the reviewers for their
valuable comments and suggestions. The author also wish to
thank Kevin Leach, Kun Sun, Jiang Wang, Quan Jia for their
comments on the early draft. Finally, the author would like to
thank Angelos Stavrou for his advising and support.

REFERENCES

[1] National Institute of Standards, NIST. National vulnerability database,
http://nvd.nist.gov. Access time 2013.04.08.

[2] L. Duflot and Y.-A. Perez, “Can you still trus your network card?” in
CanSecWest, 2010.

[3] K. Chen, “Reversing and exploiting an Apple firmware update,” Black
Hat, 2009. [Online]. Available: http://www.blackhat.com/presentations/
bh-usa-09/CHEN/BHUSA09-Chen-RevAppleFirm-PAPER.pdf

[4] P. Stewin and I. Bystrov, “Understanding DMA Malware,” in
Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA’12), ser. Lecture Notes in Computer Science, U. Flegel,
E. Markatos, and W. Robertson, Eds. Springer Berlin Heidelberg,
2012, vol. 7591, pp. 21–41. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-37300-8 2

[5] D. Aumaitre and C. Devine, “Subverting Windows 7 X64
Kernel With DMA Attacks,” in HITBSecConf Amsterdam,
2010. [Online]. Available: http://esec-lab.sogeti.com/dotclear/public/
publications/10-hitbamsterdam-dmaattacks.pdf

[6] A. Triulzi, “Project Maux Mk.II,” in CanSecWest, 2008.
[7] F. Sang, V. Nicomette, and Y. Deswarte, “I/O Attacks in Intel PC-based

Architectures and Countermeasures,” in SysSec Workshop (SysSec),
2011 First, July, pp. 19–26.

[8] F. Sang, E. Lacombe, V. Nicomette, and Y. Deswarte, “Exploiting an
I/OMMU vulnerability,” in 5th International Conference on Malicious
and Unwanted Software (MALWARE’10),, 2010, pp. 7–14.

[9] Trusted Computing Group, “Trusted Platform Module main
specification. version 1.2, revision 103, 2007.” [Online]. Available: http:
//www.trustedcomputinggroup.org/resources/tpm main specification

[10] J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki, “Flicker: An
execution infrastructure for TCB minimization,” in Proceedings of the
3rd ACM SIGOPS/EuroSys European Conference on Computer Systems,
2008.

[11] Y. Li, J. McCune, and A. Perrig, “VIPER: verifying the integrity of
PERipherals’ firmware,” in Proceedings of the 18th ACM conference
on Computer and communications security (CCS’11), 2011.

[12] L. Duflot, Y.-A. Perez, and B. Morin, “What if you can’t trust your
network card?” in Recent Advances in Intrusion Detection (RIAD’11),
ser. Lecture Notes in Computer Science, R. Sommer, D. Balzarotti, and
G. Maier, Eds. Springer Berlin / Heidelberg, 2011, vol. 6961, pp.
378–397.

[13] F. Zhang, K. Leach, K. Sun, and A. Stavrou, “SPECTRE: A De-
pendable Intropsection Framework via System Management Mode,” in
Proceedings of The 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN’13), 2013.

[14] Y. Bulygin and D. Samyde, “Chipset based approach to detect virtual-
ization malware a.k.a. DeepWatch,” Blackhat USA, 2008.

[15] A. Tereshkin and R. Wojtczuk, “Introducing Ring -3 Rootkits,” 2009.
[Online]. Available: http://invisiblethingslab.com/itl/Resources.html

[16] J. Wang, A. Stavrou, and A. Ghosh, “HyperCheck: A hardware-assisted
integrity monitor,” in Proceedings of 13th International Symposium On
Recent Advances In Intrusion Detection, 2010.

[17] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky,
“HyperSentry: enabling stealthy in-context measurement of hypervisor
integrity,” in Proceedings of the 17th ACM Conference on Computer
and Communications Security, 2010.

[18] S. Embleton, S. Sparks, and C. Zou, “SMM rootkits: a new breed
of OS independent malware,” in Proceedings of the 4th International
Conference on Security and Privacy in Communication Netowrks, 2008.

[19] R. Wojtczuk and J. Rutkowska, “Attacking SMM Memory via
Intel CPU Cache Poisoning,” 2009. [Online]. Available: http:
//invisiblethingslab.com/resources/misc09/smm cache fun.pdf

[20] ——, “Following the White Rabbit: Software Attacks against
Intel VT-d,” 2011. [Online]. Available: http://invisiblethingslab.com/itl/
Resources.html

[21] “Flashrom utility.” [Online]. Available: http://www.flashrom.org/
[22] “Coreboot.” [Online]. Available: http://www.coreboot.org/

4


