
Yiming Zhang1,2, Yuxin Hu1, Haonan Li1 , Wenxuan Shi1 , Zhenyu Ning3,1,
Xiapu Luo2, Fengwei Zhang1

1Southern University of Science and Technology, 2The Hong Kong Polytechnic University,
3Hunan University

1

Alligator in Vest: A Prac1cal Failure-Diagnosis
Framework via Arm Hardware Features

Failure Diagnosis in Produc1on
• So#ware failures are unavoidable in produc4on environments
• Exis4ng failure diagnosis approaches (i.e., Postmortem Analysis and Record&Replay

based approaches) usually is unsa4sfied in produc4on:
× The complexity and limited informa@on impede analysis using memory crashed coredump.
× Record&Replay incurs heavy overhead.
⚠ Broadly studied on x86 plaIorms [1,2,5,6], but s@ll is an open problem on Arm
architecture

Ø To overcome the limita4ons, we propose a novel hardware-assisted framework on Arm
named Inves&gator for failure diagnosis in produc4on

2

Failure Diagnosis in Production
• So#ware failures are unavoidable in produc4on environments
• Exis4ng failure diagnosis approaches (i.e., Postmortem Analysis and Record&Replay

based approaches) usually is unsa4sfied in produc4on:
× The complexity and limited informa@on impede analysis using memory crashed coredump.
× Record&Replay incurs heavy overhead.
⚠ Broadly studied on x86 plaIorms [1,2,5,6], but s@ll is an open problem on Arm
architecture

Ø To overcome the limita4ons, we propose a novel hardware-assisted framework on Arm
named Inves&gator for failure diagnosis in produc4on

2

Failure Diagnosis in Produc1on
• So#ware failures are unavoidable in produc4on environments
• Exis4ng failure diagnosis approaches (i.e., Postmortem Analysis and Record&Replay

based approaches) usually is unsa4sfied in produc4on:
× The complexity and limited informa@on impede analysis using memory crashed coredump.
× Record&Replay incurs heavy overhead.
⚠ Broadly studied on x86 plaIorms [1,2,5,6], but s@ll is an open problem on Arm
architecture

Ø To overcome the limita4ons, we propose a novel hardware-assisted framework on Arm
named Inves&gator for failure diagnosis in produc4on

2

Failure Diagnosis in Produc1on
• So#ware failures are unavoidable in produc4on environments
• Exis4ng failure diagnosis approaches (i.e., Postmortem Analysis and Record&Replay

based approaches) usually is unsa4sfied in produc4on:
× The complexity and limited informa@on impede analysis using memory crashed coredump.
× Record&Replay incurs heavy overhead.
⚠ Broadly studied on x86 plaIorms [1,2,5,6], but s@ll is an open problem on Arm
architecture

Ø To overcome the limita4ons, we propose a novel hardware-assisted framework on Arm
named Inves&gator for failure diagnosis in produc4on

2

Failure Diagnosis in Produc1on
• So#ware failures are unavoidable in produc4on environments
• Exis4ng failure diagnosis approaches (i.e., Postmortem Analysis and Record&Replay

based approaches) usually is unsa4sfied in produc4on:
× The complexity and limited informa@on impede analysis using memory crashed coredump.
× Record&Replay incurs heavy overhead.
⚠ Broadly studied on x86 plaIorms [1,2,5,6], but s@ll is an open problem on Arm
architecture

Ø To overcome the limita4ons, we propose a novel hardware-assisted framework on Arm
named Inves&gator for failure diagnosis in produc4on

2

Failure Diagnosis in Produc1on
• So#ware failures are unavoidable in produc4on environments
• Exis4ng failure diagnosis approaches (i.e., Postmortem Analysis and Record&Replay

based approaches) usually is unsa4sfied in produc4on:
× The complexity and limited informa@on impede analysis using memory crashed coredump.
× Record&Replay incurs heavy overhead.
⚠ Broadly studied on x86 plaIorms [1,2,5,6], but s@ll is an open problem on Arm
architecture

ØTo overcome the limita4ons, we propose a novel hardware-assisted framework on Arm
named Inves&gator for failure diagnosis in produc4on

2

Agenda

• Background
• Investigator: Analyzer for Failure Diagnosis in Production Environments
• Experimental Results
• Summary and Future Work

3

Agenda

• Background
• InvesBgator: Analyzer for Failure Diagnosis in ProducBon Environments
• Experimental Results
• Summary and Future Work

3

Background

• ETM (Embedded Trace Microcell)
• It is a hardware feature of Arm.
• It traces the instruc;ons executed by CPU

with almost no overhead.

Figure. ETM.

4

• PMU (Performance Monitor Unit)
• It is a group of counters that can count any

of the events available in the core.
• PMU interrupt is generated when the PMU

counter overflows.

Background

• ETM (Embedded Trace Microcell)
• It is a hardware feature of Arm.
• It traces the instruc;ons executed by CPU

with almost no overhead.

Figure. ETM.

4

• PMU (Performance Monitor Unit)
• It is a group of counters that can count any

of the events available in the core.
• PMU interrupt is generated when the PMU

counter overflows.

Background

• ETM (Embedded Trace Microcell)
• It is a hardware feature of Arm.
• It traces the instructions executed by CPU

with almost no overhead.

Figure. ETM.

4

Figure. PMU.

• PMU (Performance Monitor Unit)
• It is a group of counters that can count any

of the events available in the core.
• PMU interrupt is generated when the PMU

counter overflows.

Background

• ETM (Embedded Trace Microcell)
• It is a hardware feature of Arm.
• It traces the instruc;ons executed by CPU

with almost no overhead.

Figure. ETM.

4

Figure. PMU.

• PMU (Performance Monitor Unit)
• It is a group of counters that can count any

of the events available in the core.
• PMU interrupt is generated when the PMU

counter overflows.

Inves&gator Architecture

• It consists of two modules:
• An record module with soFware-based

collec;on in produc;on host.

• An analysis module implemen;ng execu;on
recovery and analysis methods in offline server.

5

Inves&gator Architecture

• It consists of two modules:
• An record module with soFware-based

collec;on in produc;on host.

• An analysis module implemen;ng execu;on
recovery and analysis methods in offline server.

5

Non-deterministic Event Capturer

Recording Stage (Online)

ETM ETR

ETM Manager Ke
rn

el

+ Checkpoints

Non-volatile storage

H
ar

dw
ar

e

Root Cause Detector

Config
Trace
Output

Library Hook

ETM Data

ETM
Data

Event
Data

Record Information

Control
Flow

Analysis Stage (Offline)

Control Flow Builder

Data Flow Builder
Data
Flow

Target Program U
se

r

Figure. Design of Inves@gator

Inves&gator Architecture

• It consists of two modules:
• An record module with soFware-based

collec;on in produc;on host.

• An analysis module implemen;ng execu;on
recovery and analysis methods in offline server.

5

Non-deterministic Event Capturer

Recording Stage (Online)

ETM ETR

ETM Manager Ke
rn

el

+ Checkpoints

Non-volatile storage

H
ar

dw
ar

e

Root Cause Detector

Config
Trace
Output

Library Hook

ETM Data

ETM
Data

Event
Data

Record Information

Control
Flow

Analysis Stage (Offline)

Control Flow Builder

Data Flow Builder
Data
Flow

Target Program U
se

r

Figure. Design of Inves@gator

Inves&gator Architecture

• It consists of two modules:
• An record module with soFware-based

collec;on in produc;on host.

• An analysis module implemen;ng execu;on
recovery and analysis methods in offline server.

5

Non-deterministic Event Capturer

Recording Stage (Online)

ETM ETR

ETM Manager Ke
rn

el

+ Checkpoints

Non-volatile storage

H
ar

dw
ar

e

Root Cause Detector

Config
Trace
Output

Library Hook

ETM Data

ETM
Data

Event
Data

Record Information

Control
Flow

Analysis Stage (Offline)

Control Flow Builder

Data Flow Builder
Data
Flow

Target Program U
se

r

Figure. Design of Inves@gator

Record Module: ETM Manager

Ø Accurate trace without losing data
• Using PMU to count instruc;on number

to es;mate the size of ETM buffer
• Trace dump in PMI handler

Ø Fine-grained ;mestamps iden;fying the
order across threads

• Countdown-Counter as an external
source to maximize ETM ;mestamp
genera;on.

Ø Filtered tracing
• Context ID and Address range.

6

dedicated
buffer

PMU

Processor

ETM ETR
Output

interrupt

Output

Countdown-
Counter

Trigger event

Save

Figure. ETM Manager

Record Module: ETM Manager

Ø Accurate trace without losing data
• Using PMU to count instruc;on number

to es;mate the size of ETM buffer
• Trace dump in PMI handler

Ø Fine-grained ;mestamps iden;fying the
order across threads

• Countdown-Counter as an external
source to maximize ETM ;mestamp
genera;on.

Ø Filtered tracing
• Context ID and Address range.

6

dedicated
buffer

PMU

Processor

ETM ETR
Output

interrupt

Output

Countdown-
Counter

Trigger event

Save

Figure. ETM Manager

Record Module: ETM Manager

ØAccurate trace without losing data
• Using PMU to count instruc;on number

to es;mate the size of ETM buffer
• Trace dump in PMI handler

Ø Fine-grained ;mestamps iden;fying the
order across threads

• Countdown-Counter as an external
source to maximize ETM ;mestamp
genera;on.

Ø Filtered tracing
• Context ID and Address range.

6

dedicated
buffer

PMU

Processor

ETM ETR
Output

interrupt

Output

Countdown-
Counter

Trigger event

Save

Figure. ETM Manager

Record Module: ETM Manager

ØAccurate trace without losing data
• Using PMU to count instruction number

to estimate the size of ETM buffer
• Trace dump in PMI handler

Ø Fine-grained timestamps identifying the
order across threads

• Countdown-Counter as an external
source to maximize ETM timestamp
generation.

Ø Filtered tracing
• Context ID and Address range.

6

dedicated
buffer

PMU

Processor

ETM ETR
Output

interrupt

Output

Countdown-
Counter

Trigger event

Save

Figure. ETM Manager

Record Module: ETM Manager

ØAccurate trace without losing data
• Using PMU to count instruc;on number

to es;mate the size of ETM buffer
• Trace dump in PMI handler

Ø Fine-grained ;mestamps iden;fying the
order across threads

• Countdown-Counter as an external
source to maximize ETM ;mestamp
genera;on.

Ø Filtered tracing
• Context ID and Address range.

6

dedicated
buffer

PMU

Processor

ETM ETR
Output

interrupt

Output

Countdown-
Counter

Trigger event

Save

Figure. ETM Manager

Record Module: ETM Manager

ØAccurate trace without losing data
• Using PMU to count instruc;on number

to es;mate the size of ETM buffer
• Trace dump in PMI handler

ØFine-grained ;mestamps iden;fying the
order across threads

• Countdown-Counter as an external
source to maximize ETM ;mestamp
genera;on.

Ø Filtered tracing
• Context ID and Address range.

6

dedicated
buffer

PMU

Processor

ETM ETR
Output

interrupt

Output

Countdown-
Counter

Trigger event

Save

Figure. ETM Manager

Record Module: ETM Manager

ØAccurate trace without losing data
• Using PMU to count instruc;on number

to es;mate the size of ETM buffer
• Trace dump in PMI handler

ØFine-grained ;mestamps iden;fying the
order across threads
• Countdown-Counter as an external

source to maximize ETM ;mestamp
genera;on.

Ø Filtered tracing
• Context ID and Address range.

6

dedicated
buffer

PMU

Processor

ETM ETR
Output

interrupt

Output

Countdown-
Counter

Trigger event

Save

Figure. ETM Manager

Record Module: ETM Manager

ØAccurate trace without losing data
• Using PMU to count instruc;on number

to es;mate the size of ETM buffer
• Trace dump in PMI handler

ØFine-grained ;mestamps iden;fying the
order across threads
• Countdown-Counter as an external

source to maximize ETM ;mestamp
genera;on.

ØFiltered tracing
• Context ID and Address range.

6

dedicated
buffer

PMU

Processor

ETM ETR
Output

interrupt

Output

Countdown-
Counter

Trigger event

Save

Figure. ETM Manager

Record Module: handle non-determinis&c events from syscalls

7

Trade-off: Provide accurate data flow including syscall impact for failure diagnosis
without high overhead
Ø Turn off the ETM for kernel space trace
Ø Carputer: Recording the effects of non-determinis4c events from syscalls.

Ø Record syscalls with different strategies to reduce overhead.

Record Module: handle non-determinis&c events from syscalls

7

Trade-off: Provide accurate data flow including syscall impact for failure diagnosis
without high overhead
ØTurn off the ETM for kernel space trace
Ø Carputer: Recording the effects of non-determinis4c events from syscalls.

Ø Record syscalls with different strategies to reduce overhead.

Record Module: handle non-deterministic events from syscalls

7

Trade-off: Provide accurate data flow including syscall impact for failure diagnosis
without high overhead
ØTurn off the ETM for kernel space trace
ØCarputer: Recording the effects of non-determinis4c events from syscalls.

Ø Record syscalls with different strategies to reduce overhead.

Record Module: handle non-determinis&c events from syscalls

7

Trade-off: Provide accurate data flow including syscall impact for failure diagnosis
without high overhead
ØTurn off the ETM for kernel space trace
ØCarputer: Recording the effects of non-determinis4c events from syscalls.

ØRecord syscalls with different strategies to reduce overhead.

Table. The classifica@on of syscall.

Record Module: handle non-determinis&c events from syscalls

7

Trade-off: Provide accurate data flow including syscall impact for failure diagnosis
without high overhead
ØTurn off the ETM for kernel space trace
ØCarputer: Recording the effects of non-determinis4c events from syscalls.

ØRecord syscalls with different strategies to reduce overhead.

Table. The classifica@on of syscall.

Analysis Module: Execu&on Flow Recovery

8

• Control Flow Builder: ETM trace+ binary
• reconstruct each instruc;on that the program executes

• Data Flow Builder: reconstruct the data flow
• infers the state of memory and register aFer the execu;on of each instruc;on based on an ini;al

program state (i.e., checkpoint)
• for syscalls that cannot be inferred, recovers the data flow by parsing recorded informa;on

Analysis Module: Execu&on Flow Recovery

8

• Control Flow Builder: ETM trace+ binary
• reconstruct each instruction that the program executes

• Data Flow Builder: reconstruct the data flow
• infers the state of memory and register after the execution of each instruction based on an initial

program state (i.e., checkpoint)
• for syscalls that cannot be inferred, recovers the data flow by parsing recorded information

Analysis Module: Execu&on Flow Recovery

8

• Control Flow Builder: ETM trace+ binary
• reconstruct each instruc;on that the program executes

• Data Flow Builder: reconstruct the data flow
• infers the state of memory and register aFer the execu;on of each instruc;on based on an ini;al

program state (i.e., checkpoint)
• for syscalls that cannot be inferred, recovers the data flow by parsing recorded informa;on

Analysis Module: Execu&on Flow Recovery

8

• Control Flow Builder: ETM trace+ binary
• reconstruct each instruc;on that the program executes

• Data Flow Builder: reconstruct the data flow
• infers the state of memory and register aFer the execu;on of each instruc;on based on an ini;al

program state (i.e., checkpoint)
• for syscalls that cannot be inferred, recovers the data flow by parsing recorded informa;on

Figure. Data flow construc@on.

Analysis Module: Execution Flow Recovery

8

• Control Flow Builder: ETM trace+ binary
• reconstruct each instruc;on that the program executes

• Data Flow Builder: reconstruct the data flow
• infers the state of memory and register aFer the execu;on of each instruc;on based on an ini;al

program state (i.e., checkpoint)
• for syscalls that cannot be inferred, recovers the data flow by parsing recorded informa;on

Figure. Data flow construc@on.

Facilita&ng Failure Diagnosis Procedure

• Detector: adap;ng the exis;ng work [5]
• Narrow down the cause of a failure from the

reconstructed control-data flow.
• E.g., Concurrency failure detec;on

• Iden;fy failing address
• Find alias variables and the memory loca;ons via

inclusion-based points-to analysis [4]
• Sta;s;cal approach using paXerns
• Eliminate paXerns that present in normal execu;ons

without failure

9

Facilita&ng Failure Diagnosis Procedure

• Detector: adapting the existing work [5]
• Narrow down the cause of a failure from the

reconstructed control-data flow.
• E.g., Concurrency failure detection

• Identify failing address
• Find alias variables and the memory locations via

inclusion-based points-to analysis [4]
• Statistical approach using patterns
• Eliminate patterns that present in normal executions

without failure

9

Facilita&ng Failure Diagnosis Procedure

• Detector: adap;ng the exis;ng work [5]
• Narrow down the cause of a failure from the

reconstructed control-data flow.
• E.g., Concurrency failure detec;on

• Iden;fy failing address
• Find alias variables and the memory loca;ons via

inclusion-based points-to analysis [4]
• Sta;s;cal approach using paXerns
• Eliminate paXerns that present in normal execu;ons

without failure

9

Facilita&ng Failure Diagnosis Procedure

• Detector: adap;ng the exis;ng work [5]
• Narrow down the cause of a failure from the

reconstructed control-data flow.
• E.g., Concurrency failure detec;on

• Iden;fy failing address
• Find alias variables and the memory loca;ons via

inclusion-based points-to analysis [4]
• Sta;s;cal approach using paXerns
• Eliminate paXerns that present in normal execu;ons

without failure

9

Facilita&ng Failure Diagnosis Procedure

• Detector: adap;ng the exis;ng work [5]
• Narrow down the cause of a failure from the

reconstructed control-data flow.
• E.g., Concurrency failure detec;on

• Iden;fy failing address
• Find alias variables and the memory loca;ons via

inclusion-based points-to analysis [4]
• Sta;s;cal approach using paXerns
• Eliminate paXerns that present in normal execu;ons

without failure

Figure. PaEerns for concurrency failure
predic@on.

9

Atomicity Violation Order violation

RWR WR

WWR RR

RWW WW

WRW

Facilitating Failure Diagnosis Procedure

• Detector: adap;ng the exis;ng work [5]
• Narrow down the cause of a failure from the

reconstructed control-data flow.
• E.g., Concurrency failure detec;on

• Iden;fy failing address
• Find alias variables and the memory loca;ons via

inclusion-based points-to analysis [4]
• Sta;s;cal approach using paXerns
• Eliminate paXerns that present in normal execu;ons

without failure

Figure. PaEerns for concurrency failure
predic@on.

9

Atomicity Violation Order violation

RWR WR

WWR RR

RWW WW

WRW

How is the overhead incurred by Investigator?

10

• Comparison between Inves1gator and REPT [6], a state-of-the-art diagnosis tool that is designed for in-
produc1on deployment on x86 architecture:

• Inves1gator avg. 3.88%, highest 9.3%
• REPT avg. 3.06%, highest 9.68%

• The extra overhead comes from two aspects:
① tracing the executed instruc1ons using ETM;
② retrieving the syscall data leveraging Capturer.

How is the overhead incurred by Investigator?

10

• Comparison between Inves1gator and REPT [6], a state-of-the-art diagnosis tool that is designed for in-
produc1on deployment on x86 architecture:

• Inves1gator avg. 3.88%, highest 9.3%
• REPT avg. 3.06%, highest 9.68%

• The extra overhead comes from two aspects:
① tracing the executed instruc1ons using ETM;
② retrieving the syscall data leveraging Capturer.

How is the overhead incurred by Investigator?

10

Table. Unixbench overhead incurred by Inves@gator.

• Comparison between Inves1gator and REPT [6], a state-of-the-art diagnosis tool that is designed for in-
produc1on deployment on x86 architecture:

• Inves1gator avg. 3.88%, highest 9.3%
• REPT avg. 3.06%, highest 9.68%

• The extra overhead comes from two aspects:
① tracing the executed instructions using ETM;
② retrieving the syscall data leveraging Capturer.

How is the overhead incurred by Inves1gator?

10

Table. Unixbench overhead incurred by Inves@gator.

• Comparison between Investigator and REPT [6], a state-of-the-art diagnosis tool that is designed for in-
production deployment on x86 architecture:
• Investigator avg. 3.88%, highest 9.3%
• REPT avg. 3.06%, highest 9.68%

• The extra overhead comes from two aspects:
① tracing the executed instructions using ETM;
② retrieving the syscall data leveraging Capturer.

How is the overhead incurred by Inves1gator?

10

Table. Unixbench overhead incurred by Investigator.

• Comparison between Inves1gator and REPT [6], a state-of-the-art diagnosis tool that is designed for in-
produc1on deployment on x86 architecture:
• Inves1gator avg. 3.88%, highest 9.3%
• REPT avg. 3.06%, highest 9.68%

Comparable

• The extra overhead comes from two aspects:
① tracing the executed instruc1ons using ETM;
② retrieving the syscall data leveraging Capturer.

Is the root cause diagnosing in Investigator effective?

11

• Effec1veness: Patches indica1ng the loca1on that the developers fix the bug match our diagnosis
results

• C/C++ buggy cases collected from bugbases
• Facilita1on: a small number of instruc1ons and variables from a large-scale control and

data flow

Is the root cause diagnosing in Investigator effective?

11

Table. Bugs diagnosed by Inves@gator.

• Effec1veness: Patches indica1ng the loca1on that the developers fix the bug match our diagnosis
results

• C/C++ buggy cases collected from bugbases
• Facilitation: a small number of instructions and variables from a large-scale control and

data flow

Is the root cause diagnosing in Investigator effective?

11

Table. Bugs diagnosed by Inves@gator.

• Effectiveness: Patches indicating the location that the developers fix the bug match our diagnosis
results

• C/C++ buggy cases collected from bugbases
• Facilita1on: a small number of instruc1ons and variables from a large-scale control and

data flow

Is the root cause diagnosing in Inves1gator effec1ve?

11

Table. Bugs diagnosed by Investigator.

• Effectiveness: Patches indicating the location that the developers fix the bug match our diagnosis
results

• C/C++ buggy cases collected from bugbases
• Facilita1on: a small number of instruc1ons and variables from a large-scale control and

data flow

Summary and Future Work

12

• Inves@gator: a new hardware-assisted framework on Arm for failure diagnosis
in produc@on.

• Designing methods to record execu@on pertaining to failures with low
overhead.

• Conduc@ng accurately execu@on flow recovery, which provides developers
with sufficient informa@on for root cause analysis.

v Extend Inves@gator to support other root cause diagnosis methods

Summary and Future Work

12

• Investigator: a new hardware-assisted framework on Arm for failure diagnosis
in production.

• Designing methods to record execution pertaining to failures with low
overhead.

• Conducting accurately execution flow recovery, which provides developers
with sufficient information for root cause analysis.

v Extend Investigator to support other root cause diagnosis methods

Summary and Future Work

12

• Inves@gator: a new hardware-assisted framework on Arm for failure diagnosis
in produc@on.

• Designing methods to record execu@on pertaining to failures with low
overhead.

• Conduc@ng accurately execu@on flow recovery, which provides developers
with sufficient informa@on for root cause analysis.

v Extend Inves@gator to support other root cause diagnosis methods

Summary and Future Work

12

• Inves@gator: a new hardware-assisted framework on Arm for failure diagnosis
in produc@on.

• Designing methods to record execu@on pertaining to failures with low
overhead.

• Conduc@ng accurately execu@on flow recovery, which provides developers
with sufficient informa@on for root cause analysis.

v Extend Inves@gator to support other root cause diagnosis methods

Summary and Future Work

12

• Investigator: a new hardware-assisted framework on Arm for failure diagnosis
in production.

• Designing methods to record execution pertaining to failures with low
overhead.

• Conducting accurately execution flow recovery, which provides developers
with sufficient information for root cause analysis.

vExtend Investigator to support other root cause diagnosis methods

Thanks for listening!

Q & A

13

Reference

• [1] Zuo G, Ma J, Quinn A, et al. “Execu4on reconstruc4on: Harnessing failure
reoccurrences for failure reproduc4on” Proc. PLDI. 2021
• [2] Jun Xu, Dongliang Mu, et al. “Postmortem program analysis with hardware-

enhanced post-crash ar4facts”. Proc. USENIX Security. 2017.
• [3] Zhenyu, and Fengwei Zhang. “Ninja: Towards Transparent Tracing and

Debugging on ARM”. Proc. USENIX Security. 2017.
• [4] Lars Ole Andersen. 1994. Program analysis and specializa4on for the C

programming language. Ph. D. Disserta4on. Citeseer.
• [5] Baris Kasikci, Weidong Cui, et al. 2017. “Lazy Diagnosis of In-Produc4on

Concurrency Bugs”. Proc. SOSP. 2017.
• [6] Xinyang Ge, Ben Niu, et al. 2020. “Reverse debugging of kernel failures in

deployed systems”. Proc. USENIX ATC . 2020.

14

