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Failure Diagnosis in Production

e Software failures are unavoidable in production environments
 Existing failure diagnosis approaches (i.e., Postmortem Analysis and Record&Replay
based approaches) usually is unsatisfied in production:
X The complexity and limited information impede analysis using memory crashed coredump.
X Record&Replay incurs heavy overhead.

. Broadly studied on x86 platforms [1,2,5,6], but still is an open problem on Arm
architecture

»To overcome the limitations, we propose a novel hardware-assisted framework on Arm
named Investigator for failure diagnosis in production
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* ETM (Embedded Trace Microcell)
* |tis a hardware feature of Arm.

|t traces the instructions executed by CPU
with almost no overhead.

* PMU (Performance Monitor Unit)

* Itis a group of counters that can count any
of the events available in the core.

* PMU interrupt is generated when the PMU
counter overflows.
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Record Module: ETM Manager

» Accurate trace without losing data

e Using PMU to count instruction number
to estimate the size of ETM buffer

* Trace dump in PMI handler
» Fine-grained timestamps identifying the
order across threads

e Countdown-Counter as an external
source to maximize ETM timestamp
generation.

» Filtered tracing
e Context ID and Address range.
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» Turn off the ETM for kernel space trace

» Carputer: Recording the effects of non-deterministic events from syscalls.
» Record syscalls with different strategies to reduce overhead.

Table. The classification of syscall.

S’}r‘scalls Example Feature Record Requirement
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The RS-Type syscalls read information related to system status.

Reading Status getpid The results of these syscalls may be transferred by the return value.

We directly record the memory or register they changed.

The WS-Type syscalls change the status of the system, but do not

Writing Status - epoll_create directly change the memory and registers of program.

We ignore them unless they fail and return an error code.

Reading Content read The RC-Type read content from an external input. We choose to truncate the content and record only the first 256 bytes.

Writing Content write The WC-Type syscalls write content to an external source. We consider that they would not affect the execution status of the target program.
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» Turn off the ETM for kernel space trace

» Carputer: Recording the effects of non-deterministic events from syscalls.
» Record syscalls with different strategies to reduce overhead.
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* infers the state of memory and register after the execution of each instruction based on an initial
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e Control Flow Builder: ETM trace+ binary
* reconstruct each instruction that the program executes

 Data Flow Builder: reconstruct the data flow

* infers the state of memory and register after the execution of each instruction based on an initial
program state (i.e., checkpoint)

» for syscalls that cannot be inferred, recovers the data flow by parsing recorded information
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Facilitating Failure Diagnosis Procedure

e Detector: adapting the existing work [5]
e Narrow down the cause of a failure from the

reconstructed control-data flow. Atomicity Viclation Ordervielation
* E.g., Concurrency failure detection RWR WR
* |dentify failing address R &
* Find alias variables and the memory locations via R W
inclusion-based points-to analysis [4] WRW

 Statistical approach using patterns

* Eliminate patterns that present in normal executions
without failure

Figure. Patterns for concurrency failure
prediction.
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e C/C++ buggy cases collected from bugbases

Table. Bugs diagnosed by Investigator.

Program-BugID Bug type Symptom & Match M
#1 #V #1 #V
1 shared_counter-N/A SAV assertion failure 225 8 Yes 4 1
2 log_proc_sweep-N/A SAV segmentation fault 234 19 Yes 6 1
3 bank_account-N/A SAV race condition fault 366 14 Yes 5 1
E 4 string_buffer-N/A SAV assertion failure 328 39 Yes 6 1
5 circular_list-N/A MAV race condition fault 2,108 117 Yes 10 2
6 mysql-169 MAV assertion failure 3,867 9 Yes 12 2
7 mutex_lock-N/A DL deadlock 64 8 Yes 4 2
8 SQLite-1672 DL deadlock 7,139 84 Yes 12 2
9 pbzip2-N/A ov use-after-free 8,053 89 Yes 6 1
10 aget-N/A MAV assertion failure 7,350 76 Yes 18 2
11 memcached-127 SAV race condition fault 10,171 69 Yes 21 1
R 12 mysql-3596 SAV segmentation fault 32,839 97 Yes 10 1
13 apache-21287 SAV double free 331,639 268 Yes 22 1
14 curl-965 SEQ unhandled input pattern 11,412 74 Yes 20 1
15 curl-2017-1000101 SEQ out of bounds read 9,161 57 Yes 18 1
16 cppcheck-2782 SEQ unhandled input pattern 232,489 83 Yes 24 1
17 cppcheck-3238 SEQ null pointer dereference 280,113 94 Yes 27 1
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Table. Bugs diagnosed by Investigator.
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16 cppcheck-2782 SEQ unhandled input pattern 232,489 83 Yes 24 1
17 cppcheck-3238 SEQ null pointer dereference 280,113 94 Yes 27 1

» Effectiveness: Patches indicating the location that the developers fix the bug match our diagnosis

results
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Summary and Future Work

* Investigator: a new hardware-assisted framework on Arm for failure diagnosis
in production.

* Designing methods to record execution pertaining to failures with low
overhead.

e Conducting accurately execution flow recovery, which provides developers
with sufficient information for root cause analysis.

**Extend Investigator to support other root cause diagnosis methods




Thanks for listening!
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