‘ Southern University Q TI{L H()N(r I<()_N(_]
U SUSTeCh of Science and Q' POLYTECHNIC UNIVERSITY

Technology e N .
HHEH TR

COMPASS Lab

COMPuter And System Security Lab

Alligator in Vest: A Practical Failure-Diagnosis
Framework via Arm Hardware Features

Yiming Zhang'?, Yuxin Hu?, Haonan Li', Wenxuan Shi!, Zhenyu Ning3?1,
Xiapu Luo?, Fengwei Zhang?

1Southern University of Science and Technology, 2The Hong Kong Polytechnic University,
3Hunan University

Failure Diagnosis in Production

e Software failures are unavoidable in production environments

What happened
s O before the crash?

Failure Diagnosis in Production

e Software failures are unavoidable in production environments

 Existing failure diagnosis approaches (i.e., Postmortem Analysis and Record&Replay
based approaches) usually is unsatisfied in production:

What happened
s O before the crash?

Failure Diagnosis in Production

e Software failures are unavoidable in production environments

 Existing failure diagnosis approaches (i.e., Postmortem Analysis and Record&Replay
based approaches) usually is unsatisfied in production:

X The complexity and limited information impede analysis using memory crashed coredump.

What happened
s O before the crash?

Failure Diagnosis in Production

e Software failures are unavoidable in production environments

 Existing failure diagnosis approaches (i.e., Postmortem Analysis and Record&Replay
based approaches) usually is unsatisfied in production:
X The complexity and limited information impede analysis using memory crashed coredump.

X Record&Replay incurs heavy overhead.

Failure Diagnosis in Production

e Software failures are unavoidable in production environments
 Existing failure diagnosis approaches (i.e., Postmortem Analysis and Record&Replay
based approaches) usually is unsatisfied in production:
X The complexity and limited information impede analysis using memory crashed coredump.
X Record&Replay incurs heavy overhead.

. Broadly studied on x86 platforms [1,2,5,6], but still is an open problem on Arm
architecture

Failure Diagnosis in Production

e Software failures are unavoidable in production environments
 Existing failure diagnosis approaches (i.e., Postmortem Analysis and Record&Replay
based approaches) usually is unsatisfied in production:
X The complexity and limited information impede analysis using memory crashed coredump.
X Record&Replay incurs heavy overhead.

. Broadly studied on x86 platforms [1,2,5,6], but still is an open problem on Arm
architecture

»To overcome the limitations, we propose a novel hardware-assisted framework on Arm
named Investigator for failure diagnosis in production

Agenda

Agenda

* Background
* Investigator: Analyzer for Failure Diagnosis in Production Environments
* Experimental Results

e Summary and Future Work

@/

Background

* ETM (Embedded Trace Microcell)
* |tis a hardware feature of Arm.

Embedded
Instruction frace Trace trace
Execution Macrocell output
(ETM)
4 y
Cache load/store
Instructions
Cortex-A72

Embedded
Trace
Buffer
(ETB)

System on-chip

Figure. ETM.

Background

* ETM (Embedded Trace Microcell)
* |tis a hardware feature of Arm.

|t traces the instructions executed by CPU
with almost no overhead.

Embedded
Instruction frace Trace trace
Execution Macrocell output
(ETM)
A
Cache load/store
Instructions
Cortex-A72

Embedded
Trace
Buffer
(ETB)

System on-chip

Figure. ETM.

Background

* ETM (Embedded Trace Microcell)
* |tis a hardware feature of Arm.

It traces the instructions executed by CPU
with almost no overhead.

* PMU (Performance Monitor Unit)

* Itis a group of counters that can count any
of the events available in the core.

Embedded
Instruction frace Trace trace
Execution Macrocell output
(ETM) Embedded
4 Trace
Buffer
Cache load|store (ETB)
Instructions
Cortex-A72 System on-chip
Figure. ETM.
O
PMU
>
CPU Figure. PMU. APP

Background

* ETM (Embedded Trace Microcell)
* |tis a hardware feature of Arm.

|t traces the instructions executed by CPU
with almost no overhead.

* PMU (Performance Monitor Unit)

* Itis a group of counters that can count any
of the events available in the core.

* PMU interrupt is generated when the PMU
counter overflows.

Embedded
Instruction frace Trace trace
Execution Macrocell output
(ETM) Embedded
4 Trace
Buffer
Cache load|store (ETB)
Instructions
Cortex-A72 System on-chip
Figure. ETM.
O
PMU
>
CPU Figure. PMU. APP

Investigator Architecture

Investigator Architecture

Recording Stage (Online) Non-volatile storage
_) + Checkpoints @
Target Program Library Hook J 2
* It consists of two modules: |\ ————— ——— _J
[Non-deterministic Event Capturer FCJ
o)
[ETM Manager E;’I[\: X
O Config |ETMData o
ETM Tace of ETR 3
Output d @
T

Record Information

\ 4
Analysis Stage (Offline)

Control

[Control Flow Builder
Flow

Root Cause Detector

[) Data

i ——=—>
Data Flow Builder] Flow

Figure. Design of Investigator

Investigator Architecture

Recording Stage (Online) Non-volatile storage
_ 1 + Checkpoints @
Target Program [Library Hook J 2
* It consists of two modules: |\ ————— ——————————— _J
 An record module with software-based [Non-deterministic Event Capturer [
collection in production host. [ETM Manager Jo 12
T Config T TE™MData o
Trace o 2
ETM Output > ETR %
I

Record Information

\ 4
Analysis Stage (Offline)

Control

[Control Flow Builder
Flow

Root Cause Detector

Data

i | LN
[Data Flow Builder e

Figure. Design of Investigator

Investigator Architecture

Recording Stage (Online) Non-volatile storage
_ 1 + Checkpoints @
Target Program [Library Hook J 2
* It consists of two modules: |\ ————— ——— _J
e An record module with software-based | Non-deterministic Event Capturer T
collection in production host. [ETM Manager Jo 12
T Config T TE™MData o
. . . . Trace o =
* An analysis module implementing execution ETM ouput > ETR s
recovery and analysis methods in offline server. =
Record Information
A 4
Analysis Stage (Offline)
[Control Flow Builder Clc__’lntro' A
ow
Root Cause Detector
[Data Flow Builder ,[:)Ia+>
) J

Figure. Design of Investigator

Record Module: ETM Manager

@ PMU

G‘g ETM

Trigger event

Output

Processor 3:‘3&
interrupt
Output
ETR
Countdown-
Counter

Figure. ETM Manager

P dedicated

buffer

Save

Record Module: ETM Manager

@ PMU

a‘a ETM

Trigger event

Save

Processor a:iE
interrupt
Output - P
Output = utpu d|z|p dedicated
buffer
Countdown-
Counter

Figure. ETM Manager

v

Record Module: ETM Manager

» Accurate trace without losing data

Processor 3:‘3&
interrupt

L PMU
C ———

d(.]E dedicated

buffer

Output Output g
% ETM ETR —p gz
Trigger event

Countdown-

Counter

Figure. ETM Manager

Record Module: ETM Manager

» Accurate trace without losing data

* Using PMU to count instruction number
to estimate the size of ETM buffer

Processor

@ PMU

a‘a ETM

interrupt

o

Output

Trigger event

ETR

Output

Countdown-
Counter

Figure. ETM Manager

P dedicated

buffer

Save

Record Module: ETM Manager

» Accurate trace without losing data

e Using PMU to count instruction number
to estimate the size of ETM buffer

* Trace dump in PMI handler

Processor

CL.) PMU

interrupt

Output

Ox ™
a —

ETR

Output

Trigger event

Countdown-
Counter

Figure. ETM Manager

> d

P dedicated

buffer

Record Module: ETM Manager

» Accurate trace without losing data

e Using PMU to count instruction number
to estimate the size of ETM buffer

* Trace dump in PMI handler

» Fine-grained timestamps identifying the
order across threads

Processor

@ PMU

a‘a ETM

interrupt

o

Output

Trigger event

ETR

Output

Countdown-
Counter

Figure. ETM Manager

P dedicated

buffer

Save

Record Module: ETM Manager

» Accurate trace without losing data

e Using PMU to count instruction number
to estimate the size of ETM buffer

* Trace dump in PMI handler
» Fine-grained timestamps identifying the
order across threads

e Countdown-Counter as an external
source to maximize ETM timestamp
generation.

Processor

@ PMU

n‘a ETM

interrupt

o

Output

Trigger event
Countdown-
Counter

ETR

Output

Figure. ETM Manager

P dedicated

buffer

Save

Record Module: ETM Manager

» Accurate trace without losing data

e Using PMU to count instruction number
to estimate the size of ETM buffer

* Trace dump in PMI handler
» Fine-grained timestamps identifying the
order across threads

e Countdown-Counter as an external
source to maximize ETM timestamp
generation.

» Filtered tracing
e Context ID and Address range.

Processor

@ PMU

interrupt ::::

% ETM

Output

Output

ETR

Trigger event

Countdown-
Counter

Figure. ETM Manager

P dedicated

buffer

Save

Record Module: handle non-deterministic events from syscalls

Trade-off: Provide accurate data flow including syscall impact for failure diagnosis
without high overhead

Record Module: handle non-deterministic events from syscalls

Trade-off: Provide accurate data flow including syscall impact for failure diagnosis
without high overhead

» Turn off the ETM for kernel space trace

Record Module: handle non-deterministic events from syscalls

Trade-off: Provide accurate data flow including syscall impact for failure diagnosis
without high overhead

» Turn off the ETM for kernel space trace

» Carputer: Recording the effects of non-deterministic events from syscalls.

Record Module: handle non-deterministic events from syscalls

Trade-off: Provide accurate data flow including syscall impact for failure diagnosis
without high overhead

» Turn off the ETM for kernel space trace

» Carputer: Recording the effects of non-deterministic events from syscalls.
» Record syscalls with different strategies to reduce overhead.

Table. The classification of syscall.

S’}r‘scalls Example Feature Record Requirement
ypes

The RS-Type syscalls read information related to system status.

Reading Status getpid The results of these syscalls may be transferred by the return value.

We directly record the memory or register they changed.

The WS-Type syscalls change the status of the system, but do not

Writing Status - epoll_create directly change the memory and registers of program.

We ignore them unless they fail and return an error code.

Reading Content read The RC-Type read content from an external input. We choose to truncate the content and record only the first 256 bytes.

Writing Content write The WC-Type syscalls write content to an external source. We consider that they would not affect the execution status of the target program.

Record Module: handle non-deterministic events from syscalls

Trade-off: Provide accurate data flow including syscall impact for failure diagnosis
without high overhead

» Turn off the ETM for kernel space trace

» Carputer: Recording the effects of non-deterministic events from syscalls.
» Record syscalls with different strategies to reduce overhead.

Table. The classification of syscall.

Syscalls Example Feature Record Requirement
Types

The RS-Type syscalls read information related to system status.

Reading Status getpid The results of these syscalls may be transferred by the return value.

We directly record the memory or register they changed.

The WS-Type syscalls change the status of the system, but do not

Writing Status - epoll_create directly change the memory and registers of program.

We ignore them unless they fail and return an error code.

Reading Content read The RC-Type read content from an external input. We choose to truncate the content and record only the first 256 bytes.

Writing Content write The WC-Type syscalls write content to an external source. We consider that they would not affect the execution status of the target program.

Analysis Module: Execution Flow Recovery

Analysis Module: Execution Flow Recovery

e Control Flow Builder: ETM trace+ binary
* reconstruct each instruction that the program executes

Analysis Module: Execution Flow Recovery

e Control Flow Builder: ETM trace+ binary
* reconstruct each instruction that the program executes

 Data Flow Builder: reconstruct the data flow

Analysis Module: Execution Flow Recovery

e Control Flow Builder: ETM trace+ binary
* reconstruct each instruction that the program executes

 Data Flow Builder: reconstruct the data flow

* infers the state of memory and register after the execution of each instruction based on an initial
program state (i.e., checkpoint)

01 // checkpoint. -==> X29 = 0x7fe3665450 [Ox7fe3665488] =
[ex7fe3665490] = 2

02 ldr x0, [x29,#56] ---> x0 =1

03 1dr x1, [x29,#64] ---> x1 = 2

04 add x0, x0, x1 ~-==> X0 = 3, x1 =2

5 eor x1, x1, xi1 -==> X1 =20

Figure. Data flow construction.

Analysis Module: Execution Flow Recovery

e Control Flow Builder: ETM trace+ binary
* reconstruct each instruction that the program executes

 Data Flow Builder: reconstruct the data flow

* infers the state of memory and register after the execution of each instruction based on an initial
program state (i.e., checkpoint)

» for syscalls that cannot be inferred, recovers the data flow by parsing recorded information

01 // checkpoint. -==> X29 = 0x7fe3665450 [Ox7fe3665488] =
[ex7fe3665490] = 2

02 ldr x0, [x29,#56] ---> x0 =1

03 1dr x1, [x29,#64] ---> x1 = 2

04 add x0, x0, x1 ~-==> X0 = 3, x1 =2

5 eor x1, x1, xi1 -==> X1 =20

Figure. Data flow construction.

Facilitating Failure Diagnosis Procedure

Facilitating Failure Diagnosis Procedure

e Detector: adapting the existing work [5]

* Narrow down the cause of a failure from the
reconstructed control-data flow.

Facilitating Failure Diagnosis Procedure

e Detector: adapting the existing work [5]

* Narrow down the cause of a failure from the
reconstructed control-data flow.

e E.g., Concurrency failure detection
* Identify failing address

Facilitating Failure Diagnosis Procedure

e Detector: adapting the existing work [5]
* Narrow down the cause of a failure from the
reconstructed control-data flow.
* E.g., Concurrency failure detection
* Identify failing address

* Find alias variables and the memory locations via
inclusion-based points-to analysis [4]

Facilitating Failure Diagnosis Procedure

e Detector: adapting the existing work [5]
e Narrow down the cause of a failure from the

reconstructed control-data flow. Atomicity Viclation Ordervielation
* E.g., Concurrency failure detection RWR WR
* |dentify failing address R &
* Find alias variables and the memory locations via R W
inclusion-based points-to analysis [4] WRW

 Statistical approach using patterns , ,
Figure. Patterns for concurrency failure

prediction.

Facilitating Failure Diagnosis Procedure

e Detector: adapting the existing work [5]
e Narrow down the cause of a failure from the

reconstructed control-data flow. Atomicity Viclation Ordervielation
* E.g., Concurrency failure detection RWR WR
* |dentify failing address R &
* Find alias variables and the memory locations via R W
inclusion-based points-to analysis [4] WRW

 Statistical approach using patterns

* Eliminate patterns that present in normal executions
without failure

Figure. Patterns for concurrency failure
prediction.

How is the overhead incurred by Investigator?

10

How is the overhead incurred by Investigator?

The extra overhead comes from two aspects:
(1) tracing the executed instructions using ETM;
(2) retrieving the syscall data leveraging Capturer.

10

How is the overhead incurred by Investigator?

e The extra overhead comes from two aspects:
(1) tracing the executed instructions using ETM;
(2) retrieving the syscall data leveraging Capturer.

Table. Unixbench overhead incurred by Investigator.

N 9.3
é 10 - 53 628 16 778 .
o

0
S 10 1
-
O -1
> 10
o
G

-2
i 10 7 %\0'0 Q\ﬂ»@c’ \@\ "f)b \ &&\ X\Q\)\‘ X\X'O% \,\00 ,&6‘3& 6‘&6‘5\ C‘b,\\

&0 2
Ox\ﬁ QOQ%& " CoQﬂ& «i\\‘o\)% %\ﬂx& %&,Ce. @QQ&\ - &%Q& {;@6\
QT Qe T g @ < ¢ X %&Q %&Q
S g

10

How is the overhead incurred by Investigator?

e The extra overhead comes from two aspects:
(1) tracing the executed instructions using ETM;
(2) retrieving the syscall data leveraging Capturer.

Table. Unixbench overhead incurred by Investigator.

& 9.3
é 10 - 53 628 1.6 778 .
-

0
S 10
T
> 10 |
S
G

-2
i 10 7%\0{\ Q\ﬂ‘ep \@\ 56%\ &&\ X\Q\)\' a{\'{\% \,\00 ,&6‘3& e‘b’é,%\ C‘b,\\

. X
o o Lt o W e O 0 @8
(< .

 Comparison between Investigator and REPT [6], a state-of-the-art diagnosis tool that is designed for in-
production deployment on x86 architecture:

* |nvestigator avg. 3.88%, highest 9.3%
* REPT avg. 3.06%, highest 9.68%

10

How is the overhead incurred by Investigator?

e The extra overhead comes from two aspects:
(1) tracing the executed instructions using ETM;
(2) retrieving the syscall data leveraging Capturer.

Table. Unixbench overhead incurred by Investigator.

IR 9.3
é 10 - 53 628 16 778 .
o
0

S 10 1
5
> 10
o
G

-2

: 2
O‘g\d COQ«S& oo Qﬂ rL COQﬂ& (‘\\‘0\)% . %\ﬂ\\ <© ¥ o @K‘S\‘ ﬂ%\eﬂ&\

AN
Qe N ¥ Q'\Qe Co&eﬂ» ?@o@% . %ooQN %o{\Q

* Comparison between Investigator and REPT [6], a state-of-the-art diagnosis tool that is designed for in-
production deployment on x86 architecture:

* Investigator avg. 3.88%, highest 9.3
* REPT avg. 3.06%, highest 9.68%

% Comparable

10

Is the root cause diagnosing in Investigator effective?

11

Is the root cause diagnosing in Investigator effective?

e C/C++ buggy cases collected from bugbases

Table. Bugs diagnosed by Investigator.

Program-BugID Bug type Symptom & Match M
#1 #V #1 #V
1 shared_counter-N/A SAV assertion failure 225 8 Yes 4 1
2 log_proc_sweep-N/A SAV segmentation fault 234 19 Yes 6 1
3 bank_account-N/A SAV race condition fault 366 14 Yes 5 1
E 4 string_buffer-N/A SAV assertion failure 328 39 Yes 6 1
5 circular_list-N/A MAV race condition fault 2,108 117 Yes 10 2
6 mysql-169 MAV assertion failure 3,867 9 Yes 12 2
7 mutex_lock-N/A DL deadlock 64 8 Yes 4 2
8 SQLite-1672 DL deadlock 7,139 84 Yes 12 2
9 pbzip2-N/A ov use-after-free 8,053 89 Yes 6 1
10 aget-N/A MAV assertion failure 7,350 76 Yes 18 2
11 memcached-127 SAV race condition fault 10,171 69 Yes 21 1
R 12 mysql-3596 SAV segmentation fault 32,839 97 Yes 10 1
13 apache-21287 SAV double free 331,639 268 Yes 22 1
14 curl-965 SEQ unhandled input pattern 11,412 74 Yes 20 1
15 curl-2017-1000101 SEQ out of bounds read 9,161 57 Yes 18 1
16 cppcheck-2782 SEQ unhandled input pattern 232,489 83 Yes 24 1
17 cppcheck-3238 SEQ null pointer dereference 280,113 94 Yes 27 1

Is the root cause diagnosing in Investigator effective?

e C/C++ buggy cases collected from bugbases
e Facilitation: a small number of instructions and variables from a large-scale control and

data flow . .
Table. Bugs diagnosed by Investigator.
Program-BugID Bug type Symptom L Match M
#1 #V #1 #V
1 shared_counter-N/A SAV assertion failure 225 8 Yes 4 1
2 log_proc_sweep-N/A SAV segmentation fault 234 19 Yes 6 1
3 bank_account-N/A SAV race condition fault 366 14 Yes 5 1
E 4 string_buffer-N/A SAV assertion failure 328 39 Yes 6 1
5 circular_list-N/A MAV race condition fault 2,108 117 Yes 10 2
6 mysql-169 MAV assertion failure 3,867 9 Yes 12 2
7 mutex_lock-N/A DL deadlock 64 8 Yes 4 2
8 SOQLite-1672 DL deadlock 7.139 84 Yes 12 2
I 9 pbzip2-N/A ov use-after-free 8,053 89 Yes 6 1 I
10 aget-N/A MAV assertion failure 1,350 76 Yes 138 2
11 memcached-127 SAV race condition fault 10,171 69 Yes 21 1
R 12 mysql-3596 SAV segmentation fault 32,839 97 Yes 10 1
13 apache-21287 SAV double free 331,639 268 Yes 22 1
14 curl-965 SEQ unhandled input pattern 11,412 74 Yes 20 1
15 curl-2017-1000101 SEQ out of bounds read 9,161 57 Yes 18 1
16 cppcheck-2782 SEQ unhandled input pattern 232,489 83 Yes 24 1
17 cppcheck-3238 SEQ null pointer dereference 280,113 94 Yes 27 1

Is the root cause diagnosing in Investigator effective?

e C/C++ buggy cases collected from bugbases
e Facilitation: a small number of instructions and variables from a large-scale control and

data flow . _
Table. Bugs diagnosed by Investigator.
Program-BugID Bug type Symptom CDF Match M
#1 #V #1 #V
1 shared_counter-N/A SAV assertion failure 225 8 Yes 4 1
2 log_proc_sweep-N/A SAV segmentation fault 234 19 Yes 6 1
3 bank_account-N/A SAV race condition fault 366 14 Yes 5 1
E 4 string_buffer-N/A SAV assertion failure 328 39 Yes 6 1
5 circular_list-N/A MAV race condition fault 2,108 117 Yes 10 2
6 mysql-169 MAV assertion failure 3,867 9 Yes 12 2
7 mutex_lock-N/A DL deadlock 64 8 Yes 4 2
8 SOQLite-1672 DL deadlock 7.139 84 Yes 12 2
I 9 pbzip2-N/A ov use-after-free 8,053 89 Yes 6 1 I
10 aget-N/A MAV assertion failure 1,350 76 Yes 138 2
11 memcached-127 SAV race condition fault 10,171 69 Yes 21 1
R 12 mysql-3596 SAV segmentation fault 32,839 97 Yes 10 1
13 apache-21287 SAV double free 331,639 268 Yes 22 1
14 curl-965 SEQ unhandled input pattern 11,412 74 Yes 20 1
15 curl-2017-1000101 SEQ out of bounds read 9,161 57 Yes 18 1
16 cppcheck-2782 SEQ unhandled input pattern 232,489 83 Yes 24 1
17 cppcheck-3238 SEQ null pointer dereference 280,113 94 Yes 27 1

» Effectiveness: Patches indicating the location that the developers fix the bug match our diagnosis

results

11

Summary and Future Work

Summary and Future Work

* Investigator: a new hardware-assisted framework on Arm for failure diagnosis
in production.

Summary and Future Work

* Investigator: a new hardware-assisted framework on Arm for failure diagnosis
in production.

e Designing methods to record execution pertaining to failures with low
overhead.

Summary and Future Work

* Investigator: a new hardware-assisted framework on Arm for failure diagnosis
in production.

e Designing methods to record execution pertaining to failures with low
overhead.

* Conducting accurately execution flow recovery, which provides developers
with sufficient information for root cause analysis.

Summary and Future Work

* Investigator: a new hardware-assisted framework on Arm for failure diagnosis
in production.

* Designing methods to record execution pertaining to failures with low
overhead.

e Conducting accurately execution flow recovery, which provides developers
with sufficient information for root cause analysis.

**Extend Investigator to support other root cause diagnosis methods

Thanks for listening!

Q&A

Reference

* [1] Zuo G, Ma J, Quinn A, et al. “Execution reconstruction: Harnessing failure
reoccurrences for failure reproduction” Proc. PLDI. 2021

* [2] Jun Xu, Dongliang Mu, et al. “Postmortem program analysis with hardware-
enhanced post-crash artifacts”. Proc. USENIX Security. 2017.

* [3] Zhenyu, and Fengwei Zhang. “Ninja: Towards Transparent Tracing and
Debugging on ARM”. Proc. USENIX Security. 2017.

* [4] Lars Ole Andersen. 1994. Program analysis and specialization for the C
programming language. Ph. D. Dissertation. Citeseer.

* [5] Baris Kasikci, Weidong Cui, et al. 2017. “Lazy Diagnosis of In-Production
Concurrency Bugs”. Proc. SOSP. 2017.

* [6] Xinyang Ge, Ben Niu, et al. 2020. “Reverse debugging of kernel failures in
deployed systems”. Proc. USENIX ATC . 2020.

