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Framework via Arm Hardware Features



Failure Diagnosis in Produc1on
• So#ware failures are unavoidable in produc4on environments
• Exis4ng failure diagnosis approaches (i.e., Postmortem Analysis and Record&Replay

based approaches) usually is unsa4sfied in produc4on:
× The complexity and limited informa@on impede analysis using memory crashed coredump.
× Record&Replay incurs heavy overhead.
⚠ Broadly studied on x86 plaIorms [1,2,5,6], but s@ll is an open problem on Arm 
architecture

Ø To overcome the limita4ons, we propose a novel hardware-assisted framework on Arm 
named Inves&gator for failure diagnosis in produc4on
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Background

• ETM (Embedded Trace Microcell)
• It is a hardware feature of Arm.
• It traces the instruc;ons executed by CPU 

with almost no overhead.

Figure. ETM.
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• PMU (Performance Monitor Unit)
• It is a group of counters that can count any 

of the events available in the core.
• PMU interrupt is generated when the PMU 

counter overflows.
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Figure. PMU.
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Inves&gator Architecture

• It consists of two modules: 
• An record module with soFware-based 

collec;on in produc;on host.

• An analysis module implemen;ng execu;on 
recovery and analysis methods in offline server.
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Record Module: ETM Manager

Ø Accurate trace without losing data
• Using PMU to count instruc;on number 

to es;mate the size of ETM buffer
• Trace dump in PMI handler

Ø Fine-grained ;mestamps iden;fying the 
order across threads

• Countdown-Counter as an external 
source to maximize ETM ;mestamp 
genera;on.

Ø Filtered tracing
• Context ID and Address range.
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Record Module: handle non-determinis&c events from syscalls

7

Trade-off: Provide accurate data flow including syscall impact for failure diagnosis 
without high overhead
Ø Turn off the ETM for kernel space trace
Ø Carputer: Recording the effects of non-determinis4c events from syscalls.

Ø Record syscalls with different strategies to reduce overhead.
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Analysis Module: Execu&on Flow Recovery

8

• Control Flow Builder: ETM trace+ binary
• reconstruct each instruc;on that the program executes

• Data Flow Builder: reconstruct the data flow
• infers the state of memory and register aFer the execu;on of each instruc;on based on an ini;al 

program state (i.e., checkpoint)
• for syscalls that cannot be inferred, recovers the data flow by parsing recorded informa;on
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Facilita&ng Failure Diagnosis Procedure 

• Detector: adap;ng the exis;ng work [5]
• Narrow down the cause of a failure from the 

reconstructed control-data flow.
• E.g., Concurrency failure detec;on

• Iden;fy failing address
• Find alias variables and the memory loca;ons via 

inclusion-based points-to analysis [4]
• Sta;s;cal approach using paXerns
• Eliminate paXerns that present in normal execu;ons 

without failure

9



Facilita&ng Failure Diagnosis Procedure 

• Detector: adapting the existing work [5]
• Narrow down the cause of a failure from the 

reconstructed control-data flow.
• E.g., Concurrency failure detection

• Identify failing address
• Find alias variables and the memory locations via 

inclusion-based points-to analysis [4]
• Statistical approach using patterns
• Eliminate patterns that present in normal executions 

without failure

9



Facilita&ng Failure Diagnosis Procedure 

• Detector: adap;ng the exis;ng work [5]
• Narrow down the cause of a failure from the 

reconstructed control-data flow.
• E.g., Concurrency failure detec;on

• Iden;fy failing address
• Find alias variables and the memory loca;ons via 

inclusion-based points-to analysis [4]
• Sta;s;cal approach using paXerns
• Eliminate paXerns that present in normal execu;ons 

without failure

9



Facilita&ng Failure Diagnosis Procedure 

• Detector: adap;ng the exis;ng work [5]
• Narrow down the cause of a failure from the 

reconstructed control-data flow.
• E.g., Concurrency failure detec;on

• Iden;fy failing address
• Find alias variables and the memory loca;ons via 

inclusion-based points-to analysis [4]
• Sta;s;cal approach using paXerns
• Eliminate paXerns that present in normal execu;ons 

without failure

9



Facilita&ng Failure Diagnosis Procedure 

• Detector: adap;ng the exis;ng work [5]
• Narrow down the cause of a failure from the 

reconstructed control-data flow.
• E.g., Concurrency failure detec;on

• Iden;fy failing address
• Find alias variables and the memory loca;ons via 

inclusion-based points-to analysis [4]
• Sta;s;cal approach using paXerns
• Eliminate paXerns that present in normal execu;ons 

without failure

Figure. PaEerns for concurrency failure 
predic@on.

9

Atomicity Violation Order violation 

RWR WR

WWR RR

RWW WW

WRW



Facilitating Failure Diagnosis Procedure 

• Detector: adap;ng the exis;ng work [5]
• Narrow down the cause of a failure from the 

reconstructed control-data flow.
• E.g., Concurrency failure detec;on

• Iden;fy failing address
• Find alias variables and the memory loca;ons via 

inclusion-based points-to analysis [4]
• Sta;s;cal approach using paXerns
• Eliminate paXerns that present in normal execu;ons 

without failure

Figure. PaEerns for concurrency failure 
predic@on.

9

Atomicity Violation Order violation 

RWR WR

WWR RR

RWW WW

WRW



How is the overhead incurred by Investigator?

10

• Comparison between Inves1gator and REPT [6], a state-of-the-art diagnosis tool that is designed for in-
produc1on deployment on x86 architecture:

• Inves1gator avg. 3.88%, highest 9.3% 
• REPT avg. 3.06%, highest 9.68%

• The extra overhead comes from two aspects: 
① tracing the executed instruc1ons using ETM;
② retrieving the syscall data leveraging Capturer.
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Is the root cause diagnosing in Investigator effective?
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• Effec1veness: Patches indica1ng the loca1on that the developers fix the bug match our diagnosis 
results

• C/C++ buggy cases collected from bugbases
• Facilita1on: a small number of instruc1ons and variables from a large-scale control and 

data flow
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Summary and Future Work
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• Inves@gator: a new hardware-assisted framework on Arm for failure diagnosis 
in produc@on.

• Designing methods to record execu@on pertaining to failures with low 
overhead.

• Conduc@ng accurately execu@on flow recovery, which provides developers 
with sufficient informa@on for root cause analysis.

v Extend Inves@gator to support other root cause diagnosis methods
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