
HyperTEE: A Decoupled TEE Architecture with
Secure Enclave Management

Yunkai Bai†, Peinan Li†*, Yubiao Huang†, Michael C. Huang‡, Shijun Zhao†,
Lutan Zhao†, Fengwei Zhang§, Dan Meng†, Rui Hou†*

†Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS
and School of Cyber Security, University of Chinese Academy of Sciences. Email: {baiyunkai, lipeinan,

huangyubiao, zhaoshijun, zhaolutan, mengdan, hourui}@iie.ac.cn, *Corresponding author: Rui Hou and Peinan Li
†University of Rochester. Email: michael.huang@rochester.edu

§Southern University of Science and Technology. Email: zhangfw@sustech.edu.cn

Abstract—Trusted Execution Environment (TEE) architectures
have been deployed in various commercial processors to pro-
vide secure environments for confidential programs and data.
However, as a relatively new feature against security threats,
existing designs still face a number of problems. Exploiting the
management vulnerabilities, attackers can disclose secrets via
controlled-channel or micro-architecture side-channel attacks.
To address these problems, this paper proposes a novel TEE
architecture, named HyperTEE. In our architecture, enclave
management tasks are decoupled from the original computing
subsystem to a dedicated, physically isolated Enclave Manage-
ment Subsystem (EMS). A properly architected EMS prevents
current management vulnerabilities and offers more secure en-
clave communication. We implemented the HyperTEE prototype
on the FPGA platform. Experiments show that HyperTEE only
introduces less than 1% area overhead, and 2.0% and 1.9%
performance overhead on average for enclaves and non-enclave
workloads, respectively.

I. INTRODUCTION

Trusted Execution Environment (TEE) is a crucial CPU
security feature with widespread commercial adoption, in-
cluding Intel SGX [1], [2] and TDX [3], AMD SEV [4],
[5], ARM TrustZone [6], and CCA [7]. Its design goal is to
establish a secure environment (enclave) dedicated to the pro-
tection of sensitive programs and data. Despite its increasing
popularity, TEE remains a relatively new feature and is set
against evolving security threats. As a result, it requires further
enhancements to achieve robust security.

In TEEs, there are two categories of tasks: enclave man-
agement tasks and enclaves themselves. Typically, attacks
targeting enclave themselves involve analysis on control flows
and the deduction of secrets, which just compromises confi-
dentiality. In contrast, attacks on management tasks pose sig-
nificantly more severe security risks, as listed in Table I. Such
attacks not only breach confidentiality but also undermines
integrity through undetected modifications to enclave codes
and data. Furthermore, they can compromise the availability of
the entire TEE by intentionally justifying legitimate enclaves
as untrustworthy and preventing their execution. Therefore, it
is necessary to improve the security of enclave management
tasks. Numerous attacks on management tasks have been
revealed and they can be classified into two types:

TABLE I
COMPARISON OF SECURITY RISKS.

Security Threats Attack Enclave
Management Tasks

Attack Enclaves
Themselves

Compromise Confidentiality Yes Yes
Compromise Integrity Yes No

Compromise Availability Yes No

Attack Type 1: Microarchitectural side-channel attacks.
In modern TEEs, management tasks are executed within an
environment that is logically isolated but physically shared
with untrusted environment. This exposes them to various
microarchitectural side channels [8]–[24]. With these vulner-
abilities, attackers can obtain critical keys in SGX attestation
management tasks. Recent TDX design is also vulnerable to
such threats. Generally, disclosure of sensitive data within
individual enclaves just compromises their own confidentiality,
but disclosure of attestation key of management task poses far
more severe threats to the entire platform beyond confiden-
tiality compromises. Such disclosure might allow attackers to:
① compromise integrity by tampering with enclave binaries,
enabling it to bypass attestation check and thus carry out mali-
cious operations. In contrast, merely breaching confidentiality
of enclave themselves results in information leakage but can
not cause malicious operations on them. ② compromise system
availability by falsely declaring the platform untrustworthy to
users, preventing the launch of any enclaves.

Attack Type 2: Controlled-channel attacks. In preva-
lent commercial TEE designs, enclave management tasks
are deployed in untrusted operating systems (SGX) or hy-
pervisors (SEV). This exposes opportunities for privileged
attackers to exploit management tasks and take control over
enclave execution, giving rise to numerous exploits known as
controlled-channel attacks [25]–[33]. For instance, privileged
attackers can disclose sensitive data of enclaves by observing
three types of events in memory management: ① Allocation-
based attacks: monitor on-demand memory allocation requests
from enclaves [32]; ② Page table management-based attacks:
compromise and observe access/dirty states in page table
entry [25]–[31]; ③ Page swapping-based attacks: swap out

105

2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO)

979-8-3503-5057-9/24/$31.00 ©2024 IEEE
DOI 10.1109/MICRO61859.2024.00018

20
24

 5
7t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

M
ic

ro
ar

ch
ite

ct
ur

e
(M

IC
RO

) |
 9

79
-8

-3
50

3-
50

57
-9

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

M
IC

RO
61

85
9.

20
24

.0
00

18

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 21,2025 at 09:18:18 UTC from IEEE Xplore. Restrictions apply.

enclave pages and observe swap-in events by enclaves [32],
[33]. Although some proposals employ trusted modules to per-
form these tasks, there still exist risks. In TDX module, page
allocation and swapping can still be observed by untrusted
hypervisor [34], leading to information leakage. Keystone
proposes that enclaves perform these tasks, but attackers could
potentially use malicious enclaves to attack the OS [32].

Upon examining existing TEE architectures and vulner-
abilities, exploring alternative designs is crucial to provide
secure enclave management tasks. Notably, several commer-
cial processors have integrated dedicated cores to provide
security services, such as Apple’s Secure Enclave Proces-
sor (SEP) [35], Google’s Titan [36], Qualcomm’s Secure
Processing Unit (SPU) [37], and AMD’s Platform Security
Processor (PSP) [38]. SEP, SPU, and Titan are designed
primarily to facilitate vendor-specific security functions such
as encryption services, biometric authentication, and pattern
lock verification, but they do not offer secure management
for user-programmed applications directly. PSP undertakes
the encryption and attestation of confidential virtual machines
(CVMs) in SEV architecture. However, most critical manage-
ment tasks still rely on the untrusted hypervisor deployed on
original computing cores, thus vulnerable to aforementioned
attack threats [31], [39]–[41].

In this paper, we propose a novel decoupled TEE archi-
tecture, named HyperTEE: enclave management tasks are
offloaded to dedicated cores for security, while the enclaves
are executed in original cores to maintain high performance
and workload diversity. With such a decoupled architecture,
HyperTEE can effectively improve the security of enclave
management tasks. In contrast, management tasks within
TEE architectures such as TDX and SEV remain vulnerable
to controlled-channel and microarchitectural side-channel at-
tacks. The major contributions include:
• Design of a physically decoupled TEE architecture.

HyperTEE consists of two subsystems: Computing Sub-
system (CS) and Enclave Management Subsystem (EMS),
utilizing original computing cores and dedicated cores
respectively. Enclave management tasks are decoupled to
EMS as enclave primitives. Applications within CS can
invoke these primitives through HyperTEE APIs. Illegal
cross-privilege invocation and forgery of primitive requests
are eliminated by a trusted call gate, EMCall. Primitive
requests are transmitted via a dedicated mailbox and
protected against unauthorized access and timing side-
channel attacks. The hardware of EMS, dubbed HyperTEE
IP, is architected carefully to minimize complexity while
maintaining security requirements. CS and EMS enforce a
unidirectional isolation manner, allowing EMS to access
CS memory and I/O resources, but not vice versa. In
this way, controlled-channel and microarchitectural side-
channel vulnerabilities on enclave management tasks are
prevented. Our experiments show that the area overhead
of HyperTEE IP is less than 1% of the whole SoC chip.

• Design of an enclave memory management with secure
allocation, page table management, and page swapping.

Enclave memory management tasks are deployed on EMS,
but simply offloading is insufficient to ensure security. To
thwart allocation-based, page table management-based, and
page swapping-based attacks, we propose specific counter-
measures: ① An enclave memory pool obscures on-demand
page allocation requests from potential attackers. ② Each
enclave is assigned a dedicated private page table that
is protected as enclave memory, preventing unauthorized
compromises and observation. ③ Enclave pages to be
swapped are managed by EMS, which randomly selects the
number and specific pages involved, thereby minimizing
valuable traces. Besides, a bitmap-based enclave memory
isolation is employed to prevent unauthorized access and
facilitate non-contiguous enclave memory regions.

• Design of an efficient enclave-to-enclave communication
based on encrypted shared memory. Communication
based on enclave shared memory has become prevalent
due to its high efficiency. But the management of enclave
shared memory should be carefully designed to prevent
potential security threats: Assigning encryption keys for
the shared memory is crucial but the keys may be ille-
gally shared or brute-force cracked; Shared pages may be
maliciously mapped to unauthorized attacker applications,
allowing them to read enclave secrets directly. Thus, in our
design: ① EMS assigns dedicated keys for enclave shared
memory, within which identity verification and registration
authorization are employed to prevent key disclosure and
brute-force attacks. ② EMS tracks the ownership of each
shared enclave page and performs a series of access
controls to prevent unauthorized access.

• FPGA prototyping for performance and cost analysis.
We implemented the HyperTEE architecture on an FPGA-
based RISC-V prototype system. Experiments show that
HyperTEE introduces an average performance overhead of
2.0% and 1.9% for the enclave (RV8 and wolfSSL) and
non-enclave processes (SPEC CPU2017 int), respectively.

II. BACKGROUND

A. Trusted Execution Environment

Trusted Execution Environment (TEE) is designed to pro-
vide an isolated environment to protect sensitive applica-
tions and their data. Initially, TrustZone [6] provides a ‘se-
cure world’ to execute all trusted applications. Subsequently,
application-level TEEs like SGX enable individual applica-
tions to protect their data and code within enclaves. The
latest development, VM-level TEEs such as SEV [4], [5],
TDX [3], and CCA [7], extend this concept to secure entire
virtual machines. Like in SGX, we call the trusted execution
environment for each application as an enclave. To ensure the
security of enclaves, various management tasks are necessary.
Memory isolation is required to protect enclave data from
being accessed by non-enclave or other enclaves. Remote
attestation and local attestation are necessary to guarantee that
enclaves are not tampered with and the execution platform is
trusted. In addition, enclave memories are usually encrypted
and measured to protect their confidentiality and integrity.

106

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 21,2025 at 09:18:18 UTC from IEEE Xplore. Restrictions apply.

HW

SoC Chip

 Operating System

CS Cores

Computing Subsystem

HyperTEE IP

Enclave Management Subsystem

EMS Runtime

On-chip Fabric

iHub

SW

EnclaveEnclave

Mgt Tasks

Host AppHost App

Fig. 1. Architecture overview of HyperTEE.

B. Threat Model

Our threat model is similar to existing TEE designs and
assumes that attackers have the following capabilities:
• Software attacks. The attacker may compromise the priv-

ileged system software, including the operating system and
hypervisor, to break the confidentiality and integrity of
enclave codes and data. This can be achieved by construct-
ing controlled channel attacks [25]–[31], [39], [40], [42],
[43]. The attacker may construct microarchitectural side
channels to disclose secrets in management tasks, such as
attestation key [12], [19], [21], [24].

• Physical attacks. The attacker may carry out cold boot
attacks to extract sensitive data from the memory [44]–
[47]. Similar to SGXv2, SEV, and TDX, we do not
consider physical memory replay attacks, which require
expensive equipment and professional expertise.

• Malicious enclaves. The attacker may construct a ma-
licious enclave to interfere with the execution of other
enclaves or to break the isolation enforced by the privileged
system software [14].

We do not consider intentional enclave secret leakage by
enclave codes, or the security risks posed by unsafe enclave
codes. Denial-of-service (DoS) attacks are also out of scope.
For microarchitectural side-channel attacks on enclave execu-
tion, HyperTEE is at the same security level as existing TEEs.

III. HYPERTEE ARCHITECTURE

A. Design Overview

Deploying enclave management tasks within untrusted ex-
ecution environment is demonstrated to pose severe security
risks [12], [19], [21], [24]–[31]. To provide robust security, we
propose the HyperTEE architecture, which divides the entire
system into two subsystems: the original computing subsystem
(CS) and the Enclave Management Subsystem (EMS), as
illustrated in Figure 1. EMS is a standalone subsystem with
its own dedicated hardware and software resources. Enclave
management tasks are deployed on EMS to eliminate con-
trolled channels and protect them against microarchitectural
side-channel attacks. Enclaves themselves are still executed on
CS to leverage the high-performance processing capabilities.

The primary hardware component of EMS is the HyperTEE
IP, which contains EMS private core, memory, and necessary
I/O devices to execute software management tasks and store
corresponding management data. CS cores and HyperTEE IP
are connected through an on-chip fabric, mediated by iHub.
Considering that enclaves executed on CS may access any CS

SDK Libraries (HyperTEE APIs, Libraries , etc.)

 Configuration File Configuration File
// Enclave configuration
 Stack size: 1MB
 Heap size: 1MB
 … ...

 Configuration File
// Enclave configuration
 Stack size: 1MB
 Heap size: 1MB
 … ...

Compilation

HostApp Binary
Attestation & Data Sealing
 Measurement of EnclaveEnclave Binary

 HostApp Code HostApp Code
 void main () {
 // Get input from stdin
 char* input = ... ;
 // Hyper-TEE APIs
 int EID = Enclave_Create (demo);
 Enclave_Enter (EID, input);
 ...
 Encalve_Destroy (EID);
 }

 HostApp Code
 void main () {
 // Get input from stdin
 char* input = ... ;
 // Hyper-TEE APIs
 int EID = Enclave_Create (demo);
 Enclave_Enter (EID, input);
 ...
 Encalve_Destroy (EID);
 }

 Enclave Code Enclave Code
 void demo (char* input) {
 // Process Secret
 ...

 // Hyper-TEE API
 Enclave_Exit ();
 }

 Enclave Code
 void demo (char* input) {
 // Process Secret
 ...

 // Hyper-TEE API
 Enclave_Exit ();
 }

Binaries

Attestation & Data Sealing
Hash GeneratorCompiler

Fig. 2. Programming and compilation of HyperTEE.

TABLE II
HYPERTEE PRIMITIVES.

Mgt. Task Primitive Priv. Semantics

Life Cycle
Management

ECREATE OS Create an enclave
EADD OS Load codes and data to an enclave
EENTER OS Start executing an enclave
ERESUME OS Resume enclave execution
EEXIT User Exit enclave execution
EDESTROY OS Destroy an enclave

Memory
Management

EALLOC User Allocate enclave memory
EFREE User Release enclave memory
EWB OS Swap enclave memory

Communication
Management

ESHMGET User Apply shared memory from EMS
ESHMAT User Attach shared memory to enclaves
ESHMDT User Detach enclave shared memory
ESHMSHR User Share memory with an enclave
ESHMDES User Destroy enclave shared memory

Key Management
and Attestation

EMEAS OS Measure code and data of enclave
EATTEST User Sign enclave and platform

memory region, iHub supports both uni-directional isolation
and secure management requests/responses to achieve efficient
enclave memory accesses and minimize the attack surface.
iHub allows uni-directional access to the entire CS memory
space and I/O devices by EMS. Conversely, EMS private
memory and its I/O devices remain invisible to CS.

B. Enclave Management Decoupling and Programming Model

HyperTEE adopts a programming model and compilation
process similar to SGX, allowing an untrusted host application
(HostApp) to use primitives for managing an enclave’s envi-
ronment. Differently, our primitives are implemented as soft-
ware management tasks on EMS. They are invoked by what
we call EMCall, similar to a remote procedure call (RPC).
Although this paper primarily focuses on implementation
for application-level TEE, VM-level TEE can be supported
inherently, which is discussed in Section IX.

Programming model. As shown in Figure 2, programmers
use HyperTEE APIs provided by the SDK to call enclave
primitives. Such a call is translated into the RPC-like EMCall.
In addition to preparing the HostApp and enclave codes, a con-
figuration file is needed to declare the resource requirements of
the enclave, including heap and stack memory sizes, etc. Upon
compilation, executable files for HostApp and the enclave as
well as the measurement value for the enclave are generated.

Trusted call gate: EMCall. EMCall is implemented at the
highest privilege level on CS side (for example, machine mode

107

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 21,2025 at 09:18:18 UTC from IEEE Xplore. Restrictions apply.

for RISC-V [48], EL3 privilege level for ARM [49], SMM
mode for x86 [50]). Since EMCall interacts with sensitive
information with EMS, it is included in the trusted computing
base (TCB). In our current implementation, EMCall is in
firmware. To guarantee its security, the integrity is checked
during secure boot and it is protected in the highest privilege
mode, preventing unprivileged accesses or interference from
untrusted software. Additionally, the EMCall memory is pro-
tected with encryption and integrity checks.

Secure decoupling of enclave primitives. In HyperTEE,
enclave management is performed through enclave primitives.
These primitives are categorized into four types and listed
in Table II, and all of them are decoupled to EMS. When
CS software needs to invoke primitives, it does so through
the trusted EMCall which assembles and transmits primitive
requests to EMS in non-speculative mode. To prevent potential
vulnerabilities, several security mechanisms are employed:

① Restrict cross-privilege primitive requests: Each enclave
primitive is restricted to be invoked only within a specific
privilege mode. EMCall checks the current privilege register
during primitive invocation and blocks any cross-privilege re-
quest. ② Prevent primitive request forgery: For each primitive
request, EMCall encapsulates the current enclave identification
(enclaveID) as an argument. In this way, attackers cannot
impersonate other enclaves or access the primitive responses
to them. ③ Prevent illegal arguments with sanity check: Upon
receipt of a primitive request, EMS conducts a sanity check
on its arguments to ensure legitimacy, preventing maliciously
crafted requests. ④ Atomically update CS registers during
enclave context switches: While executing EENTER and ERE-
SUME primitives, both enclave control structures and context
registers have to be updated. Sensitive updates to enclave
control structures are managed by EMS, whereas updates to
CS registers, which are inaccessible to EMS, are handled
directly by the EMCall. To prevent potential compromises
or interference from untrusted CS interrupt handling, EMCall
performs CS register updates atomically.

Secure handling of exception/interrupt in enclaves:
During the enclave execution, any interrupts or exceptions
encountered are initially processed by EMCall, which records
critical information like the cause, program counter (PC), etc.
Subsequently, according to the type of interrupt or exception,
EMCall determines whether it is directed to EMS or CS.
In our current implementation, exceptions related to memory
management, such as page faults and misaligned memory
accesses, are handled by EMS, while others, such as timer
interrupts and illegal instructions, are responded by CS OS.

C. Enclave Management Requests and Responses

To request the enclave management, CS can send enclave
primitive requests to EMS through a dedicated mailbox in
iHub. Specifically, HostApp or Enclave on CS can call EMCall
to transmit primitive requests to mailbox, which will trigger
EMS to execute corresponding routine to read the requests.
Figure 3 depicts the communication flow between CS and
EMS. When a CS application initiates an enclave primitive

EMS RuntimeCS EMCall

Task Queue Task Queue

Mailbox

Rx

Interrupt

Request Queue

Response Queue

Polling

SW

HW

Tx Rx Tx

Primitive Requests

Receiver Transmitter DMA

Management Tasks

Threads

Fig. 3. Communication between CS and EMS.

request, EMCall generates request packets and stores them in
a ring task queue for transmission (Tx). Once there is a request
packet in Tx, a transmitter module automatically moves it to
the request queue in mailbox and an interrupt is triggered
to inform EMS. Then, EMS fetches the requests to its own
task queue for receiving (Rx). As multiple requests may be
invoked concurrently, EMS creates multiple threads to perform
the management tasks. After the threads complete the requests,
EMS generates response packets and sends them to CS via the
response queue in mailbox. Due to potential vulnerabilities in
the CS’s interrupt handling module, EMCall employs a polling
method to retrieve response packets securely.

Protect primitive transmission from unauthorized ac-
cesses. During the transmission procedure, both task queues
in EMCall and queues in mailbox are invisible to CS.
Each primitive request is bound with its response exclusively
through a unique identification, and a request cannot access
the other response packets. Notably, only primitive requests
and responses are transmitted through the mailbox. Enclave
private data are not required for enclave management tasks.

Prevent timing side channels on EMS. Though attackers
are unable to execute their codes on EMS, they might attempt
to deduce secrets by observing the response latency of EMS
primitives. However, several measures in HyperTEE collec-
tively introduce substantial noise, obfuscating precise observa-
tion and effectively thwarting potential attacks. In attacks that
target EMS management tasks, from the perspective of CS
attackers, EMS tasks are scheduled in primitive granularity,
preventing any interference or intentional slowing to execute
specific victim gadgets [8], [51]–[53]. Moreover, any potential
observation is disturbed by the obfuscation during EMCall
polling primitive responses. In cases where one enclave might
attempt to attack another, additional complexities arise: ①
Different enclave primitives sent to EMS are scheduled ran-
domly on EMCall and transmissions on mailbox are non-
interferable. ② When EMS receives these primitive requests,
they are handled concurrently across multiple cores, stripping
attackers of any influence over the execution order or timing.

D. Architecting the HyperTEE IP

The relationship between EMCall, EMS Runtime, and cor-
responding hardware components is shown in Figure 4. Given

108

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 21,2025 at 09:18:18 UTC from IEEE Xplore. Restrictions apply.

HyperTEE IP

Main Memory Private Flash

 Firmware

EMS Runtime

 Operating System

I/O Device

Enclave Communication
ManagementEMCall

Enclave Life Cycle
Management

Mem Ctrl I/O Ctrl

SoC Chip

I/O Ctrl LLC

Computing Subsystem Enclave Management Subsystem

Crypto eFuse

EMS Private Mem

Supervis
or

Core

Enclave Memory
Management

Key Management
and Attestation

 Core N
iHub

On-chip Fabric On-chip Fabric

Highest Privilege
Mode

Kernel
Mode

User
Mode

 Core 1 Core 0 ···

Highest Privilege
Mode

Host App EnclaveHost App Enclave

IO_AccessIO_Access

Mem_AccessMem_Access

MailboxMailbox

Fig. 4. Architecture details of HyperTEE.

that measurement, attestation, and many other encryption op-
erations are necessary for enclave primitives, a crypto engine
is deployed to accelerate these operations. To protect the EMS
Runtime image from potential compromise, it is encrypted
and hashed before being stored in a private flash. To ensure
the security of the root key, it is programmed into a one-
time programmable device eFuse during the manufacturing
stage, which cannot be modified thereafter. To reduce the
implementation overhead, we propose three optimizations:

① Minimal complexity: Given that the computation patterns
of enclave management tasks are relatively fixed and simple,
a design with minimal complexity is sufficient to deliver
efficient services. We conduct experiments and the results in
Section VII-B indicate that for a high-end embedded processor
(no more than 4 cores), a single in-order core is sufficient to
provide efficient enclave management. For a high-performance
processor (32 or 64 cores), a dual-core out-of-order design
is sufficient. This ensures that HyperTEE IP occupies only a
minimal area of the entire SoC chip.

② Unidirectional cache coherence: Benefiting from the
management features in HyperTEE, there is an opportunity
to employ a unidirectional cache coherence protocol. The
analysis is as follows: i) Enclave private data: These data
locate in CS cache or memory and EMS does not need to
access them in management scenarios, thereby eliminating
the requirement of cache coherence. ii) Enclave management-
related data (e.g. enclave page tables, control structures):
Both CS and EMS may update these data. However, EMS
performs updates only during the primitive execution, which
is infrequent and involves less data. Therefore, a software-
based method can be used to explicitly flush them to memory,
allowing CS to access the latest data in subsequent accesses.
When EMS requires these data, the existing cache coherence
supported by on-chip fabric can provide the latest data to iHub.
iii) Private data of enclave management tasks: CS cannot
access these data and it does not load them into its private
cache. Thus, when EMS accesses these data, it bypasses LLC
and CS private cache and loads directly into EMS private
cache, without the need for maintaining cache coherence with
CS. The coherence between EMS private cache and memory is
supported by iHub and on-chip fabric. In summary, CS cache
responds to EMS data requests through existing hardware,

while EMS cache does not respond to CS requests.
③ Isolated EMS address space: Although EMS has private

memory from the design perspective, it can exclusively own
part of CS memory in practice. During the first stage of SoC
boot, the chip initialization logic can configure the address
spaces of EMS and CS by the memory controller.

IV. ENCLAVE MEMORY MANAGEMENT

In HyperTEE, enclave memory management tasks are de-
ployed on EMS, ensuring the security of memory allocation
and page table management. An isolation mechanism is pro-
posed to protect enclave memory from untrusted operating
systems, applications, and other enclaves. Besides, memory
encryption and integrity protection are integrated.

A. Enclave Memory Allocation and Page Table Management

Prevent allocation-based controlled channel attacks with
an enclave memory pool. Specifically, EMS proactively
requests pages from CS OS and stores them in an enclave
memory pool. When new requests arrive, they can obtain pages
directly from this pool without notifying CS OS. This method
conceals the allocation events effectively. Similarly, EFREE
primitives release relevant pages to the pool. Before being
returned to CS OS, EMS will zero these pages. Notably, the
pool is dynamically enlarged when the number of used pages
exceeds a threshold set by EMS. Furthermore, this threshold
is randomized once the pool enlarges, complicating attempts
by attackers to reverse-engineer the threshold.

To ensure the integrity of codes, all enclaves must un-
dergo remote attestation before execution, requiring static
allocation during creation. When the ECREATE primitive is
invoked, EMS selects pages from enclave memory pool and
then maps them to the corresponding enclave. Furthermore,
EMS supports dynamic augment of enclave memory during
execution. When an enclave requires more heap memory, the
EALLOC primitive can be invoked. While encountering a page
fault exception caused by a page miss, EMCall handles the
exception and sends a request to EMS for memory allocation.
Before being mapped, corresponding pages will be zeroed first.

Prevent page management-based controlled channel at-
tacks by assigning a dedicated page table for each enclave.
For each enclave, EMS maintains a dedicated enclave page
table separate from the original page table. EMS handles the

109

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 21,2025 at 09:18:18 UTC from IEEE Xplore. Restrictions apply.

page table management and creates virtual-to-physical address
mappings. The page table is stored in enclave memory and
inaccessible to both the enclave itself and any untrusted soft-
ware, thus eliminating potential compromises and malicious
observation [25]–[31]. While switching to the enclave context,
EMCall updates page table base address register to reference
the enclave page table.

Prevent swapping-based controlled channel attacks
through concealing information of swapped enclave pages.
In HyperTEE, CS OS cannot access enclave page tables. While
performing enclave page swapping, CS OS must invoke EMS
to execute EWB primitives to return the enclave pages to be
swapped. EMS then selects a random number of pages from
the enclave memory pool, encrypts them, clears their original
bitmap bits, invalidates corresponding PTE, and returns the
physical page addresses to CS OS. Then, relevant pages
can be swapped out to persistent storage. It is noteworthy
that during this process, swapping-based controlled channel
attacks can be mitigated: ① The lack of visibility into enclave
address mappings prevents attackers from precisely swapping
out pages used by specific victim gadgets. ② EMS returns
unused pages from the enclave memory pool, thus preventing
direct swap-out of actively used enclave pages. ③ By randomly
selecting multiple pages for swap-out and swap-in, EMS ob-
scures access patterns that might reveal sensitive information.

Data movement between HostApp and Enclave. As the
page table of enclave and its HostApp are kept separated, an
enclave is unable to directly access data within the address
space of HostApp. To allow data movement between HostApp
and an enclave, HyperTEE supports mapping a shared memory
region from HostApp to enclave. The size of the shared
memory can be declared in the configuration file. Remote users
can transmit encrypted sensitive data to HostApp, which then
transfers them to the enclave through the shared memory.

B. Enclave Memory Isolation

Isolating enclave memory from untrusted software and other
enclaves is essential for confidentiality. In HyperTEE, two
isolation mechanisms are deployed.

Isolate enclave memory from untrusted CS software
through hardware-based bitmap checking. To isolate en-
clave from untrusted memory, most TEE designs deploy per-
mission check in page table walker (PTW), such as designating
contiguous memory regions [1], [54] or utilizing address range
checks [55]–[57]. However, an optimal solution would offer
scalability and efficiency in allocating non-contiguous regions.
Therefore, HyperTEE adopts a bitmap to record the state of
every memory page, with each bit indicating whether a page
belongs to enclave memory. The memory region of bitmap
itself is marked as enclave memory for security.

HyperTEE integrates a bitmap checking logic into CS PTW.
As shown in Figure 5, when a non-enclave memory access
misses in TLB, PTW loads its PTE. Then, the translated
physical page number is used to retrieve the bitmap. If the
bitmap indicates it is not an enclave page, this access can be
performed correctly. Otherwise, an access exception is thrown.

SoC Chip
CS core

PTW
EMS core

Enclave
bitmap_offsetbitmap_index

47 18 17 12 11 0

paddr

BM_BASE IS_ENCLAVE

···

Bitmap bits

iHub

Enclave Memory
Management

Access
Exception

Update
TLB

Memory Bitmap Region

Bitmap UpdateBitmap Read

HostApp

On-chip
Fabric

On-chip
Fabric

Fig. 5. Isolate enclave memory from host through bitmap checking after
page table walking. BM BASE register saves base address of Bitmap Region.
IS ENCLAVE register indicates whether the core is in enclave mode. Both
of them can only be updated at the highest privilege mode.

Once verified, the TLB is updated to indicate that this page has
been checked. Subsequent memory accesses hit in the TLB can
thus proceed. To prevent circumvention of bitmap checking via
stale TLB entries, EMCall flushes related TLB entries while
encountering enclave context switches and bitmap changes.
Notably, to prevent potential attacks, EMS protects enclave
page table entries by disabling TLB sharing, a strategy aligned
with existing literature [58].

Isolate enclave memory from other enclaves through
page ownership checking. EMS maintains a page ownership
table in private memory. Each entry records the unique en-
claveID that owns a specific physical page. Before mapping
a physical page to an enclave, EMS looks up and verifies the
page ownership with the physical page number to ensure that
the page has not been mapped to another enclave.

C. Enclave Memory Encryption and Integrity

Memory encryption. HyperTEE leverages a commercial
multi-key memory encryption engine, similar to Intel MK-
TME [59] and AMD SME [60]. Each enclave is assigned a
unique encryption key and identification (KeyID), configured
only by EMS via iHub and stored in the engine. The KeyID
is stored to the high bits of PTE by EMS and is obtained
by any memory access after address translation. In our imple-
mentation, the width of CS core front-side memory bus is 56
bits, among which the lowest 40 bits are used for the physical
address, and the highest 16 bits are used for the KeyID. In case
of KeyID exhaustion, EMS can suspend an enclave to release
a KeyID. During this procedure, EMCall performs TLB flush
and cache flush to avoid incorrect reuse.

Memory integrity. HyperTEE employs SHA-3 based MAC
(28-bit) [61] employed by commercial TEEs [2]–[4], which
is more suitable for large-size enclave memory than Merkle
Trees [62]. In case of an integrity violation, an exception is
triggered to prevent physical tampering attacks.

V. ENCLAVE COMMUNICATION MANAGEMENT

Enclave communication is critical and common in many
real-world scenarios. In a typical scenario where an enclave in-
teracts with I/O devices [63]–[66], the user enclave must send
data and commands to the driver enclave which then forwards
them to I/O devices. In existing TEEs, the communication

110

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 21,2025 at 09:18:18 UTC from IEEE Xplore. Restrictions apply.

is performed on non-enclave memory, which requires time-
consuming software encryption and decryption for security.
Recently, communication approaches based on shared enclave
memory have been proposed [43], [67], [68] and become
prevalent due to high efficiency as plaintext communication.
However, this method faces three security challenges: ① Key
assignment: How to assign a dedicated shared encryption key
and avoid disclosure or brute-force cracking. ② Page sharing:
How to share enclave pages without compromising existing
isolation among different enclaves. ③ Access control: How to
protect the shared memory against a range of security threats,
including unauthorized tampering [43], [69], releases, and I/O
accesses. In HyperTEE, EMS can manage the shared memory
and guarantee security during communication.

A. Shared Encryption Key Assignment

Benefiting from the physical isolation between CS and
EMS, EMS can assign the keys securely for sharing enclave
pages. To avoid interference between shared and private pages,
EMS assigns unique keys for enclave shared memory, separate
from private memory keys. EMS allows the sharing among
multiple enclaves to support complex communication sce-
narios such as broadcasting. Given the unpredictable feature
of communication participants and the possibility of new
enclaves joining, it is unfeasible to negotiate keys accord-
ing to the collective information of all participants before
communication. Thus, we propose to derive keys using the
initial sender EnclaveID and the shared memory identification
(ShmID) assigned by EMS. Similar to enclave private memory,
EMS writes the KeyID and corresponding key to the memory
encryption engine directly. To ensure the security of keys for
shared memory, two techniques are employed.

Guarantee confidentiality of keys. When a receiver en-
clave applies to share pages with sender enclave, it authenti-
cates with the sender through local attestation, during which
the EnclaveID and ShmID can be transmitted. Subsequently,
the receiver enclave employs these two IDs as arguments of
ESHMAT primitive, which invokes EMS to assign KeyID
and store it in the relevant PTE. During this process, the
software on CS side can only access the enclaveID and ShmID.
Confidentiality of KeyID and Key is guaranteed.

Prevent brute-force key cracking. As for a shared memory
region, an attacker may intentionally guess the ShmID in
a brute-force method to gain access rights and break its
confidentiality. To mitigate this threat, when a receiver enclave
wants to share the region, it must first register the application
with the sender enclave. If approved, the sender enclave
requests EMS to append the receiver enclaveID to the legal
connection list through ESHMSHR primitive. Thus, any illegal
attempt to map this shared memory will be forbidden.

B. Ownership Management for Shared Enclave Page

EMS extends page ownership to allow pages to be shared
between enclaves or between an enclave and a peripheral.

Enclave-Enclave shared memory. When an enclave re-
quests EMS to create shared memory via ESHMGET prim-

itive, EMS allocates a physical memory region and marks
these pages as shared memory in page ownership table. Sub-
sequently, these pages will not be mapped as private enclave
memory, and a unique ShmID is assigned. Corresponding
bitmap bits are set as well to prevent unauthorized non-enclave
accesses. If a receiver enclave wishes to share the memory,
it applies the ShmID from the sender enclave after local
attestation. Then, using the ESHMAT primitive, the sender or
receiver enclave can invoke EMS to map the shared memory.

Enclave-Peripheral shared memory. Similar to enclave-
enclave shared memory, EMS also supports allocating enclave-
peripheral shared memory. Differently, a peripheral cannot ac-
tively request EMS to map shared memory to its address space,
instead, it relies on configuration from the driver enclave.
Therefore, in our design, it is the driver enclave that requests
EMS to grant the enclave memory access rights to I/O devices.
Take typical devices with DMA engines as an example, EMS
configures the physical address range, which determines the
accessible memory region during data moving. In our current
implementation platform, IOMMU is not supported, so we
primarily focus on the peripherals with DMA engines. For
peripherals relying on IOMMU, it is EMS to manage the
IOMMU page tables to enhance security.

C. Access Control to Thwart Unauthorized Tampering

Protecting the communication process against potential
threats from malicious participants is imperative. First, a re-
ceiver enclave may illegally modify shared memory designated
as read-only, leading to unexpected results. Second, a receiver
enclave may intentionally send requests to release and re-
claim the shared memory, disrupting ongoing communications.
Third, attackers may exploit an I/O DMA to circumvent the
CS memory isolation mechanism and gain access to enclave
memory. Targeting these threats, we propose countermeasures.

Permission check to prevent unprivileged tampering.
When an initial sender enclave requests EMS to allocate shared
memory, it specifies the maximum access permission for the
receiver enclaves. When a receiver enclave wants to share the
memory, it negotiates with the sender enclave to authorize its
access permission. Meanwhile, the permissions are recorded in
legal connection list for the shared memory. When the receiver
enclave requests the EMS to map the shared memory through
ESHMAT primitive, the permissions are set to its page tables.
During communication, any attempt to modify permissions is
handled by the sender enclave, which invokes EMS to update
the permission in both legal connection list and page tables.

Identity and active connection check to prevent ma-
licious release. To avoid malicious enclaves from releasing
or reclaiming shared memory, EMS records the initial sender
enclaveID in shm control structure during memory creation.
The number of active connections is updated while executing
ESHMAT/ESHMDT primitives. When there is no active con-
nection, shared memory can be released and reclaimed only
by the initial sender enclave through ESHMDES primitive.

Address legality check to prevent I/O compromises. The
physical addresses of DMA accesses are continuous generally.

111

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 21,2025 at 09:18:18 UTC from IEEE Xplore. Restrictions apply.

Therefore, HyperTEE employs the DMA whitelist in CS
hardware. This whitelist consists of a set of register pairs and
each register pair concludes the address, size, and permission
to restrict the legal region for each DMA. Any DMA access
beyond the legal region will be discarded. The whitelist is
implemented as control registers within the on-chip fabric and
is exclusively configurable by EMS.

VI. OTHER MANAGEMENT TASKS
Secure boot. Upon power on, EMS is booted up after

the chip original initialization logic, and then followed by
CS. Specifically, EMS BootROM is first executed to verify
the EMS Runtime, which is encrypted and stored in EMS
private flash. The hash value of Runtime is verified against
pre-calculated hash value stored in an on-chip EEPROM to
avoid physical tampering. Then, the hash of CS firmware and
EMCall are verified similarly to prevent tampering. Finally,
the CS OS starts its booting process.

Key management. HyperTEE derives all keys from the
root keys, including Endorsement Key (EK) issued by cer-
tificate authority and Sealed Key (SK) randomly generated.
Both EK and SK are burnt into the eFuse of EMS during
manufacturing. Enclaves can invoke primitives on EMS to
obtain keys for different purposes. For instance, the enclave
memory encryption keys can be derived according to SK,
enclave measurement. Attestation key (AK) can be derived
from SK and a random salt. All key operations are carried out
on EMS and are invisible to CS. When keys are no longer
useful, EMS erases them with random values.

Remote attestation. HyperTEE implements remote attesta-
tion based on typical SIGMA protocol [70], which is widely
employed in mainstream TEEs [1], [54], [56], [71], to prove
the integrity of both hardware platform and enclaves. During
secure boot and enclave creation, EMS measures the software
TCB of platform and enclave to generate the measurement
of them respectively. The attestation flow mainly contains: ①
Remote user negotiates a symmetric key with enclave using
Diffie-Hellman protocol. ② Enclave sends the certificates of
platform and enclave to remote user for verification. The cer-
tificates are generated by EMS through signing the measure-
ments of platform and enclave via EK and AK respectively.
③ Remote user verifies the integrity of platform and enclave,
then sends its certificates to the enclave for verification.

Local attestation. Local attestation is enforced to prove
the identities of enclaves and whether they are on the same
platform. Same as existing TEEs, HyperTEE leverages the
Elliptic-Curve Diffie–Hellman (ECDH) [72] key exchange
protocol, including the major steps: ① When an enclave (chal-
lenger) attempts to attest with another enclave (verifier), they
negotiate a symmetric key. Challenger sends its measurement
to verifier. ② Verifier requests EMS to sign its measurement
with a report key (derived from challenger measurement and
SK) as a certificate and returns to challenger. ③ Challenger
requests EMS to verify the certificate with the report key and
sends its own certificate to verifier to prove its identity.

Data sealing. To protect enclave data in persistent storage,
EMS derives a sealing key based on the enclave measurement

TABLE III
KEY PARAMETERS OF HYPERTEE FPGA PROTOTYPE.

Parameter CS core EMS core in HyperTEE IP
Weak Medium Strong

Pipeline Type OoO In-order OoO OoO
Fetch / Decode 8/4 1/1 4/2 8/4
Mem/ Int/ Fp 2/3/1 1/1/1 1/2/1 2/3/1

BTB 256 × 4w 128 entries 128 × 2w 256 × 4w

PHT TAGE
2048 entries

GShare
512 entries

TAGE
1024 entries

TAGE
2048 entries

Int/ Fp PhyRegs 128/128 None 96/96 128/128
ROB/ STQ/ LDQ 128/32/32 None 96/16/16 128/32/32

I/D/L2 TLB 32/32/1024 8/8/0 16/16/0 32/32/0
L1 I/D Cache 64/64 KB 16/16 KB 32/32 KB 64/64 KB

L2 Cache 1MB 256KB 512KB 512KB

Crypto engine – AES: 1.24Gbps, SHA-256: 16.1Gbps
RSA Sign: 123ops/s Verify: 10Kops/s

DNN Accelerator (Gemmini [73])
Parameter PE Global Buf Accumulator Dataflow

Value 16×16 256KB 64KB OS/WS

and the device-unique SK. The relevant data is then encrypted
with the sealing key to HostApp memory. Finally, HostApp
can transfer the encrypted data to the disk.

VII. EVALUATION

A. Methodology

We implement a prototype of HyperTEE on Synopsys
HAPS-80 S104 FPGA platform. Table III lists the major pa-
rameters. The cores are designed based on open-source RISC-
V out-of-order processor BOOM [74] and in-order processor
Rocket [75]. To investigate the complexity of EMS core in
HyperTEE IP, we explore different combinations of EMS
core and CS core. Moreover, we analyze the performance
of enclave primitives and memory management. We evaluate
the performance of enclave communication under two typical
I/O device usage scenarios: one using an open-source DNN
accelerator called Gemmini [73], and the other using a NIC
controller. Additionally, we utilize typical Synopsys ASIC
design flow and tools to investigate the hardware overhead.

Several benchmarks are selected for evaluation: ① To an-
alyze the configuration of EMS, we port the wolfSSL and
RV8 to enclaves. wolfSSL is an open-source SSL/TLS library
that supports encryption, digests, and signature verification.
RV8 is another typical benchmark that is widely used in
many TEE studies [55]–[57]. ② To evaluate the impact on
memory access latency, we utilize the MemStream. Addi-
tionally, we evaluate the impact of bitmap checking on non-
enclave applications through SPEC CPU2017 Integer Rate and
Speed [76] with reference input size. ③ In case of enclave
communication, we employ typical DNN inference workloads
including ResNet50 [77], MobileNet [78] and four multi-layer
perceptions (MLP) [79]–[82]. The model codes and weights
are considered confidential and protected in enclaves, while
dataset input operations remain in HostApp.

In our experiments, we name different scenarios in the for-
mat “running environment-security mechanism”. Specifically,
“running environment” includes non-enclave Host and Enclave
environment. The major security mechanisms include:

112

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 21,2025 at 09:18:18 UTC from IEEE Xplore. Restrictions apply.

1.0 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

0%

20%

40%

60%

80%

100%

EM
S

Se
rv

ice
 Le

ve
l O

bj
ec

t (
SL

O)

Better

EMS WeakCore1
EMS WeakCore2
EMS Core1
EMS Core2
EMS Core4
CS Core8
CS Core16
CS Core32
CS Core64

Fig. 6. Efficiency evaluation of resolving concurrent primitive requests from
CS cores to EMS cores.

• Native: None of security mechanisms are enabled.
• M encrypt: Memory encryption and integrity are enabled.
• Bitmap: Bitmap checking is enabled. Notably, there is no

bitmap checking for enclave applications, only non-enclave
applications are affected by this mechanism.
For instance, Host-Native represents that the applications

execute in Host without any security mechanisms enabled.
This is considered as the baseline in our evaluation. The
Enclave-M encrypt represents that memory encryption and
integrity mechanisms are enabled on enclave execution.

B. Evaluation of HyperTEE IP

Exploring EMS core configuration for different CS
setups. While offloading enclave management tasks to a
dedicated core, selecting an appropriate EMS core configu-
ration within a specific CS setup is important. We conduct
experiments to evaluate Service Level Objectives (SLO) for
resolving concurrent primitive requests across various EMS
core configurations within a given CS configuration. Due to
FPGA hardware limitations, direct emulation of complex CS
scenarios is infeasible, and we adopt software simulation.
Specifically, multiple processes are employed to simulate CS
and EMS cores, with each process representing a single core.
CS cores concurrently initiate primitive requests to EMS cores
using Inter-Process Communication (IPC). The primitives in-
volved in evaluation include necessary enclave creation prim-
itives and 16384 dynamic memory allocation (2MB) primi-
tives. Utilizing latency data sampled from FPGA prototype,
we adjust the EMS configuration with different computation
capabilities and measured response latency. While improv-
ing the computation capability yielded minimal performance
improvement, we consider that the EMS core configuration
effectively meets performance requirements.

The experiment results are shown in Figure 6. For each
curve, the baseline latency is defined as the maximum latency
required to resolve 99% of requests (SLO) in non-enclave
mode. Each point on a curve represents the percentage of
primitives that can be resolved in enclave mode within x
times the baseline latency. Under the same CS core setup,
increasing the number of EMS cores improves efficiency in
resolving concurrent primitive requests, and corresponding
curve is closer to y-axis. It can be observed that a minimal

aes dhrystone miniz norx primes qsort sha512 wolfSSL average
4.0%

0.0%

5.0%

10.0%

15.0%

No
rm

al
ize

d
pe

rfo
rm

an
ce

 o
ve

rh
ea

d

2.
5%

2.
5%4.

0%

3.
1%

3.
1%

13.7%

4.
4%

4.
5%

8.
2%

2.
1%

2.
1%

6.
1%

0.
1%0.
2%

2.
9%

-1
.2

%
-1

.2
%-0
.1

%

0.
4%0.
6%

3.
0% 4.

2%4.
3%

7.
6%

1.
9%

2.
0%

5.
7%

Weak
Medium
Strong

Fig. 7. Performance overhead of different EMS core configurations.

EMS configuration can handle enclave management for CS
cores. In particular, for a high-performance processor (32
or 64 cores), a dual-core out-of-order design can achieve
similar SLO as the quad-core design, making the dual-core
configuration adequate. Similarly, for a desktop processor (16
cores), a dual-core in-order design proves sufficient. In terms
of a high-end embedded processor (no more than 4 cores), a
single in-order core meets the requirement.

Performance of different EMS core configurations. To
evaluate the overall performance overhead on enclaves while
introducing EMS cores, we select the configuration of CS
core and three configurations of EMS cores listed in Table III.
Experiment results in Figure 7 show that the average overheads
for three representative configurations are 5.7%, 2.0%, and
1.9% respectively. It can be observed that medium configura-
tion outperforms weak configuration by 3.7%, but there is only
a 0.1% difference between medium and strong configurations.
This is because management tasks are generally simple and
do not require advanced microarchitecture. In subsequent
experiments, we select medium configuration to analyze the
performance of different mechanisms in HyperTEE.

Performance of enclave primitives execution. We investi-
gated the performance overhead deriving from the primitive
execution and conducted a comparative analysis with and
without the deployment of a crypto engine, which is integrated
in existing dedicated cores [37], [38]. As depicted in Table IV,
without the crypto engine, enclave primitives account for
almost 10.4% of the total execution time in non-enclave mode.
About three quarters of the 10.4% (7.8% to be exact) is
attributable to the EMEAS primitive. While deploying a crypto
engine, the execution time of enclave primitives is decreased
from 10.4% to 2.5% of non-enclave mode. Time consumed
by EMEAS primitive is also decreased from 7.8% to 0.1%.
Note that the average performance overhead of All Primitives
in Enclave-Crypto is slightly higher than the overall overhead
(2.5%) in Figure 7. The reason is that static memory allocation
during enclave creation shortens the execution time of enclaves
in addition to primitive acceleration.

C. Performance Evaluation of Enclave Memory Management

Notably, enclave memory management tasks such as mem-
ory allocation, encryption, and integrity protection only impact
the performance of enclave applications. Memory isolation
with hardware bitmap checking only affects non-enclave appli-
cations. So we evaluate their performance impacts respectively.

113

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 21,2025 at 09:18:18 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
EXECUTION TIME OF ENCLAVE PRIMITIVES COMPARED TO EXECUTION

TIME IN HOST-NATIVE.

Enclave-Noncrypto Enclave-Crypto
All Primitives EMEAS All Primitives EMEAS

aes 6.8% 5.1% 1.6% 0.06%
dhrystone 19.0% 14.3% 4.5% 0.18%

miniz 8.1% 6.1% 1.9% 0.08%
norx 10.4% 7.8% 2.5% 0.10%

primes 5.1% 3.9% 1.2% 0.05%
qsort 2.8% 2.1% 0.7% 0.03%

sha512 10.8% 8.1% 2.6% 0.10%
wolfSSL 19.9% 15.0% 4.7% 0.19%
Average 10.4% 7.8% 2.5% 0.10%

128 KB 256 KB 512 KB 1 MB 2 MB0

8

16

24

32

40

La
te

nc
y(

K
cy

cle
s)

Host-Native
Enclave-M_encrypt

(a) Memory allocation.

4MB 8MB 16MB 32MB 64MB0

25

50

75

100

125

La
te

nc
y(

m
ill

io
n

cy
cle

s) Host-Native
Enclave-M_encrypt

(b) Memory encryption and integrity.

Fig. 8. Performance of enclave memory management.

Performance overhead of enclave memory allocation. In
HyperTEE, the allocation of enclave memory pages requires
specific requests to EMS, which introduces execution latency.
To evaluate this overhead, we measure the latency to execute
the malloc and EALLOC in non-enclave applications and
enclaves respectively, with different memory sizes ranging
from 128KB to 2MB, repeating each size 1000 times. As
shown in Figure 8(a), enclave applications exhibit a per-
formance overhead of 6.3% to 49.7%, compared to non-
enclave applications. This overhead is primarily attributed to
the transmission of primitives between the CS and EMS, and
the execution within the EMS core, which is relatively weaker
than the CS core. However, in most real-world programs,
memory allocation requests are not frequent, resulting in
minimal overall performance overhead.

Performance overhead of memory encryption and in-
tegrity. The latency caused by memory encryption and in-
tegrity protection only occurs when accessing off-chip mem-
ory. MemStream benchmark has a high cache miss rate and
can reflect the worst performance overhead of encryption and
integrity. As recommended by the MemStream, the memory
sizes are at least four times greater than the size of last-level
cache. Therefore, we evaluate the memory size ranging from
4MB to 64MB. Figure 8(b) shows that the average latency
overhead is 3.1%. Notably, in most real-world applications,
the performance overhead is further reduced benefiting from
higher cache hit rates than MemStream.

While taking into account all memory management, the
average performance overhead for wolfSSL in enclave mode
is 0.9%, as demonstrated in Figure 9.

Performance overhead of memory isolation. Considering
that non-enclave memory accesses are checked at page table
walker after TLB miss, we evaluate the performance overhead

RNG

AES-
128-CBC-enc

AES-
128-CBC-dec

AES-
128-GCM-enc

AES-
128-GCM-dec

GMAC Tab
le 4-bit

CHACHA

CHA-POLY
MD5

POLY1305
SH

A

HMAC-M
D5

HMAC-SH
A

PBKDF2

RSA
 2048 public

RSA
 2048 priv

ate

DH 2048 ke
y g

en

DH ag
ree

EC
C 256 ke

y g
en

EC
DHE 256 ag

ree

EC
DSA

 256 sig
n

EC
DSA

 256 ve
rify

Ave
rag

e
0.00%

1.00%

2.00%

3.00%

No
rm

al
ize

d

pe

rfo
rm

an
ce

 o
ve

rh
ea

d

1.
6%

0.
5%

<0
.1

% 0.
4%

0.
1% 0.

5%

2.
2% 2.

5%

0.
1%

<0
.1

% 0.
5%

<0
.1

%

<0
.1

%

2.
7%

0.
3%

1.
1%

0.
5% 0.
6%

1.
2%

1.
2%

1.
9% 2.

1%

0.
9%

Fig. 9. Performance impact of enclave memory management on enclave
applications (wolfSSL).

500.perlb
ench_r

502.gcc_
r

505.m
cf_

r

523.xa
lancbmk_r

525.x2
64_r

531.deepsje
ng_r

541.leela_r

548.exch
ange2_r

557.xz
_r

600.perlb
ench_s

602.gcc_
s

605.m
cf_

s

623.xa
lancbmk_s

641.leela_s

648.exch
ange2_s

Average0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

No
rm

al
ize

d

pe

rfo
rm

an
ce

 o
ve

rh
ea

d

2.3%
1.7% 1.6%

4.6%

1.0%
1.6%

0.9%
0.1%

3.0%
2.2%

2.7%

1.4%

4.5%

1.2%

0.1%

1.9%

Fig. 10. Performance overhead of enclave memory isolation on non-enclave
applications in Host-Bitmap (SPEC CPU 2017).

on non-enclave applications. As shown in Figure 10, the
average overhead is 1.9%, which is minimal because only
one additional bitmap retrieve operation is introduced and the
bitmap checking is performed in parallel with the original
permission check. For most cases, the overhead is marginal
due to high spatial locality and TLB hit rates. While in the
case of memory-intensive xalancbmk_r, the TLB miss rate
(0.8%) is much higher than other cases (<0.2%), and thus
more bitmap checking operations are introduced, leading to
relatively high overhead (4.6%).

Performance overhead of TLB flush triggered by bitmap
updates. During enclave execution, bitmap updates require
TLB flush to guarantee security, which may incur performance
overhead for non-enclave applications. Notably, most bitmap
updates centralize in static allocation during enclave creation
and dynamic enclave memory augment via EALLOC. This
means that such updates are relatively infrequent. Evaluation
of enclave workloads demonstrates that there are only 16.72
flushes per billion instructions on average. With this flush
frequency, the average performance overhead on non-enclave
SPEC CPU2017 benchmark is less than 0.7%. To evaluate
the performance overhead of TLB flushes on enclaves with
more context switches, we select miniz in rv8, a typical
data compression program, with memory size ranging from
2MB to 32MB. As for enclave context switch frequency, we
select standard frequency (100Hz) as baseline, and improve
the frequency to 1.5×, 2×, and 4×. As shown in Figure 11,
while increasing the switch frequency, a minimal overhead is
introduced. When the memory size is 32MB at the frequency
in 400Hz, the performance overhead is no more than 1.81%.

D. Performance Evaluation of Enclave Communication

To evaluate the performance of enclave communication, we
use two typical I/O usage scenarios that involve user enclave

114

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 21,2025 at 09:18:18 UTC from IEEE Xplore. Restrictions apply.

2MB 4MB 8MB 16MB 32MB
0%

0.5%

1.0%

1.5%

2.0%
Pe

rfo
rm

an
ce

 O
ve

rh
ea

d

0.
91

%

0.
85

%

1.
31

%

1.
01

%

0.
91

%

1.
38

%

1.
16

%

0.
99

%

1.
53

%

1.
29

%

1.
15

%

1.71%

1.
31

%

1.
20

%

1.81%150 Hz
200 Hz
400 Hz

Fig. 11. Performance overhead of TLB flush on enclaves.

1 MB 2 MB 4 MB 8 MB
0

2000

4000

6000

8000

M
illi

on
 C

yc
le

s

1024
259

2286

467

3586

886

6865

1399

ResNet50

1 MB 2 MB 4 MB 8 MB
0

2000

4000

6000

8000

M
illi

on
 C

yc
le

s

1069
303

2417

599

3535

836

7850

2385

MobileNet

MLP1 MLP2 MLP3 MLP4
0

100

200

300

M
illi

on
 C

yc
le

s

158

4

153

2

139

2

250

9

MLPs

1 MB 2 MB 4 MB 8 MB
0

2000

4000

6000

M
illi

on
 C

yc
le

s

805
16

1477

21

2828

32

5530

65

Network Application

Conventional:
Hyper-TEE:

Mem Copy
Mem Copy

SW Enc/Dec
SW Enc/Dec

Computation
Computation

Fig. 12. Performance evaluation of enclave communication.

to driver enclave and driver enclave to peripheral commu-
nication. ① AI accelerator (Gemmini [73]) usage in enclaves:
Figure 12 shows the experiment results. In ResNet50, software
encryption and decryption account for the majority of overall
execution time (more than 74.7%) in conventional designs, and
this proportion increases as the size of input data increases. By
eliminating the bottleneck, HyperTEE achieves a performance
speedup of more than 4.0×. Similarly, MobileNet shows a
boost of more than 3.3×. For MLPs, with fewer network layers
than ResNet50 and MobileNet, the proportion of time for
encryption and decryption is higher, leading to performance
improvements of more than 27.7×. ② NIC controller usage
in enclaves: Our experiments show that network applications
have less computation, and the encryption and decryption
operations occupy more than 98.0% of the total transmission
time. HyperTEE achieves 50× performance improvement.

E. Hardware Overhead

Based on TSMC 7nm technology, we utilize Synopsys ASIC
design flow and tools to assess the implementation cost of
HyperTEE. Table V shows the synthesis results with physical
place and route information for different CS configurations.
Notably, the EMS area consists of the core and other hardware
modules, including the crypto engine that occupies 0.20mm2.
It can be observed that in all cases, EMS cores occupy
less than 1% of SoC chip. For the high-performance 64-core
case, EMS cores occupy only 0.25%. Timing analysis shows
that adopting HyperTEE architecture has a negligible timing
impact on CS cores. The maximum frequency of CS core and
EMS core are 2.5GHz and 750MHz respectively.

TABLE V
AREA OVERHEAD OF EMS CORES FOR DIFFERENT CONFIGURATIONS.

CS Core 4 8 16 32 64
CS Area 35mm2 74mm2 151mm2 304mm2 612mm2

EMS Core 1 Weak Core 2 Weak Cores 2 Medium Cores
EMS Area 0.34mm2 0.51mm2 1.5mm2

Overhead 0.97% 0.46% 0.34% 0.49% 0.25%

VIII. SECURITY ANALYSIS

A. Trusted Computing Base

The TCB of HyperTEE includes the following components.
① Hardware: the whole SoC package, which contains CS
hardware, EMS hardware, as well as peripheral devices used
by the enclaves. ② Firmware: the SoC initialization codes
and secure booting codes of the EMS, and the firmware
of the CS (e.g., codes for handling the EMCall). The SoC
initialization codes and secure booting codes are generated in
the manufacturing phase and are stored securely within on-
chip storage, which cannot be altered after being shipped.
③ EMS Runtime: It comprises 3843 lines of code written in
memory-safe Rust programming language. The memory safety
problems in the interface with EMCall are eliminated, such as
buffer overflows. Its codebase is small enough to be formally
verified by state-of-the-art frameworks [41], [83], which can
verify codebases comprising tens of thousands of lines.

B. Security Comparison with Existing TEEs

In terms of the execution of enclaves themselves, HyperTEE
maintains the same security level as other TEEs, all sus-
ceptible to microarchitectural side-channel attacks. However,
HyperTEE significantly outperforms these architectures in the
security of enclave management tasks, as demonstrated in
Table VI. For instance, enclave management tasks in SGX
are untrusted and are exposed to various controlled-channel
and microarchitectural attacks. TDX, the new generation of
SGX, employs a dedicated TDX module (logically isolated
and physically shared) to perform enclave management tasks.
It can defend against page table management-based controlled-
channel attacks but is still vulnerable to other three types of
controlled-channel attacks. In contrast, HyperTEE can defend
against all these controlled-channel attacks. Moreover, Hy-
perTEE effectively mitigates microarchitectural side-channel
attacks on enclave management tasks via physical isolation.

C. Attack Surface Analysis

CS cache hierarchy. The data managed by EMS that can be
loaded into CS cache hierarchy only includes the bitmap, en-
clave control structure, and PTEs. When attackers try to create
cache side channels targeting EMS Runtime, their observation
is limited to updates to these data. Actually, updates to these
data occur only when CS applications proactively invoke
primitive requests to EMS. This implies that any cache state
changes resulting from updates to these data are a consequence
of CS-initiated actions and do not reveal sensitive information
about EMS tasks. Therefore, constructing side channels in CS
cache hierarchy is impractical.

115

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 21,2025 at 09:18:18 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
DEFENSE CAPABILITY AGAINST MANAGEMENT TASK ATTACKS.

TEE
Controlled channel Attacks µArch

AttacksMemory Management Communication
Allocation Page table Swapping Management

SGX # # # # #
SEV # # # # G#
TDX # # # #
CCA # # # #

TrustZone # #
KeyStone # G#
Penglai # # # G#
CURE # # # G#

HyperTEE

#represents that the attacks cannot be defended. represents the attacks
can be defended. G#represents that some attacks can be defended while
others cannot.

CS PTW. An attacker may exploit PTW to load enclave
data and construct side channels by manipulating page tables.
This can be prevented in HyperTEE. First, this channel cannot
be constructed from an enclave since attackers cannot modify
enclave page tables. Second, in non-enclave applications, even
though attackers can manipulate PTEs to map to enclave
memory, PTW cannot decrypt enclave data correctly. This is
because different KeyIDs are used while loading non-enclave
page tables and enclave data. Moreover, the KeyIDs cannot be
modified by attackers.

Mailbox. To prevent forging fake requests, HyperTEE only
allow EMCall to send primitive requests through mailbox.
When EMS receives primitive requests, a sanity check is
performed on parameters to filter out susceptible requests.
Moreover, to read primitive responses from the mailbox,
EMCall employs a polling method, avoiding the untrusted
interrupt handling codes in CS OS. Besides, a primitive request
and its response are exclusively bound by EMCall, preventing
malicious enclaves from reading other primitive responses.

On-chip Fabric. Attackers can exploit the traffics on the
on-chip fabric [84], [85]. However, such attacks are imprac-
tical in our design. First, attackers are constrained to invoke
management tasks on EMS at the granularity of primitives,
significantly complicating their ability to precisely observe the
specific victim instruction sequences. Additionally, during the
execution of a targeted victim primitive, attackers are unable
to prevent EMS from initiating other memory or I/O accesses.
Then, it is difficult for attackers to distinguish whether an
operation observed is from the victim instruction sequence or
other concurrent tasks accurately.

IX. DISCUSSION

Support for VM-level TEEs. From the design perspective,
HyperTEE can naturally support the lifecycle management of
CVMs and the deployment of encrypted VM images by adding
dedicated primitives in EMS. EMS can perform CVM memory
management and provide memory isolation and encryption. In
scenarios where CVMs communicate with each other, EMS
can also allocate protected shared memory between CVMs.
To support CVM snapshot, save, and restore, EMS ensures the
confidentiality and integrity of CVM memory by encrypting

it using AES algorithm and creating a Merkle tree. The
encryption key and the root hash value are stored in the
private memory of EMS. To support CVM migration, EMS can
perform remote attestation between the source and destination
nodes to establish an encrypted channel for transmitting the
CVM encryption key and root hash value, and then transfer
the encrypted CVM. We leave this in the future work.

TEE for GPU. HyperTEE adopts the same solution as
existing designs to support TEE for GPU [63], [64], [66]. ①
Dedicated driver enclave for the GPU driver: user enclaves can
send data and commands to the driver enclave, which forwards
them to the GPU. ② Control path isolation: HyperTEE binds
the GPU control path exclusively to an enclave (Section IV-B)
and uses bitmap checking to prevent access from non-secure
world software. ③ Data path protection: HyperTEE utilizes
the EMS communication management task (Section V-B) to
create bitmap-protected shared memory between the GPU and
the driver enclave for data and command transmission. Ad-
ditionally, IOMMU-enabled GPUs can be supported as well,
with IOMMU being managed by EMS for security, including
register configuration, IOTLB cache invalidation, and address
translation table maintenance. The address translation table
records memory regions accessible to GPU DMA and protects
enclave memory from unauthorized DMA accesses.

Control Flow Integrity (CFI) and memory safety of
enclave codes. It is promising to integrate conventional CFI
protection and memory safety into HyperTEE to avoid vulner-
abilities in enclave codes. There are three typical approaches:
software instrumentation [86], [87], hardware monitoring [88],
[89], and software monitoring [90]–[92]. The first two ap-
proaches only need the support of compilers or hardware
on CS, enabling seamless integration in HyperTEE without
modification. The third approach uses hardware to record
enclave control flow transfers in a buffer, which are analyzed
by a monitoring task. Once detecting malicious behaviors, the
enclave is terminated. This monitoring task can be deployed
in the EMS, with access to the buffer in the enclave’s private
memory. While the task may change CS cache states, these
changes are only associated with the monitoring tasks and are
irrelevant to the enclave or sensitive management tasks, thus
posing no risks to them.

Orthogonal with countermeasures against microarchi-
tectural side-channel attacks on enclave execution. Re-
garding microarchitectural side channels on the execution of
enclaves themselves, HyperTEE has the same security level
as existing TEEs. There are many countermeasures and some
of them have been deployed in commercial processors. For
instance, CAT [93], CEASER [94], [95], and other stud-
ies [54]–[57], [96], [97] propose to perform cache partition
or randomization. Additionally, invalidating branch prediction
tables [98]–[101] upon context switches or privilege changes
effectively prevents attackers from deducing secrets from
branch history. As for many attacks that exploit frequent
interrupts [51], [52], Varys [102] proposes to terminate en-
clave execution upon detecting abnormal interrupt frequency.
Importantly, these studies are orthogonal to HyperTEE and

116

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 21,2025 at 09:18:18 UTC from IEEE Xplore. Restrictions apply.

can be incorporated to enhance security.

X. RELATED WORK

Multi-core processor architecture with dedicated secu-
rity cores. Several commercial processors have integrated ded-
icated cores [35]–[38] to provide security services. SEP [35],
Titan [36], and SPU [37] aim to protect vendor-provided
sensitive functions, but they do not protect user-programmed
applications. PSP [38] provides encryption and attestation
services for CVMs in SEV. Some academic studies [103],
[104] propose to provide secure boot or other services. How-
ever, most critical management tasks including page table
management and memory allocation remain in the original
computing cores, exposing enclaves to controlled-channel and
microarchitectural side-channel attacks. Differently, Hyper-
TEE is the first decoupled architecture, within which enclave
management tasks are offloaded to dedicated cores for security,
while the enclaves are executed in original cores to maintain
high performance and workload diversity.

Enclave memory management. Memory management in
conventional TEEs [1], [4], [105] relies on untrusted OS or
hypervisor, leading to various controlled-channel attacks. One
solution is to deploy the management within enclaves [6],
[7], [55], [56]. However, malicious enclaves may exploit
management tasks within enclaves to attack other non-enclave
software [32], [106], [107]. Another approach is to utilize
trusted hypervisors or software modules at a dedicated priv-
ilege mode [3], [108], [109], but they are vulnerable to
microarchitectural side-channel attacks. In contrast, HyperTEE
decouples enclave memory management to the physically
isolated EMS cores, effectively eliminating all these threats.

Enclave communication management. Some studies [54],
[57] support enclave communication through data copy or page
remap via the highest privilege level, but they require time-
consuming privilege switches. Timber-V [110] proposes to
employ shared enclave memory but it lacks permission man-
agement, which is susceptible to compromises by malicious
enclaves. PIE [67] proposes to restrict the access permission
of shared memory to read-only. Elasticlave [43] introduces
a management mechanism to allow more access permission.
However, it does not address three problems, including how
to assign and protect shared encryption keys; how to allow
memory sharing in both enclave-to-enclave and enclave-to-
peripheral communication; how to prevent compromises from
I/O devices. In HyperTEE, all these problems are tackled.

XI. CONCLUSION

This paper proposes HyperTEE, a novel TEE architecture
that divides the entire system into two subsystems: the orig-
inal CS for enclave and the EMS for enclave management
tasks. Enclave management tasks are deployed on EMS to
eliminate controlled-channel attacks and protect them against
microarchitectural side-channel attacks. Experiment results on
FPGA prototype demonstrate that HyperTEE introduces 2.0%
and 1.9% performance overhead on average for enclaves and
non-enclave processes respectively.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
comments and suggestions. We thank Xin Tian for proto-
type implementation and technical support. We thank Prof.
Yungang Bao, Prof. Dan Tang and Biwei Xie, Jian Chen,
Shan Liu, Jian Zhang, Yinan Xu and Prof. Ninghui Sun
from the XiangShan team at Beijing Institute of Open Source
Chip (BOSC) and Institute of Computing Technology, Chinese
Academic of Sciences (ICT, CAS) for their invaluable support
in subsequent work on the integration of HyperTEE to the
open-source high-performance RISC-V XiangShan processor.
This work is supported by the National Science Fund for
Distinguished Young Scholars under Grant No. 62125208.

REFERENCES

[1] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution.” Hasp@ isca, vol. 10, no. 1,
2013.

[2] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-
Hurd, and C. Rozas, “Intel® software guard extensions (intel® sgx)
support for dynamic memory management inside an enclave,” in
Proceedings of the Hardware and Architectural Support for Security
and Privacy 2016, 2016, pp. 1–9.

[3] Intel, “Intel® trust domain extensions (intel® tdx),” https:
//www.intel.com/content/www/us/en/developer/articles/technical/intel-
trust-domain-extensions.html, 2022.

[4] D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption,” White
paper, 2016.

[5] A. SEV-SNP, “Strengthening vm isolation with integrity protection and
more,” White Paper, January, 2020.

[6] A. ARM, “Security technology building a secure system using trust-
zone technology (white paper),” ARM Limited, 2009.

[7] ARM, “Arm confidential compute architecture,” https://www.arm.com/
architecture/security-features/arm-confidential-compute-architecture,
2022.

[8] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring fine-grained control flow inside {SGX} enclaves with branch
shadowing,” in 26th {USENIX} security symposium ({USENIX} secu-
rity 17), 2017, pp. 557–574.

[9] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Pono-
marev, “Branchscope: A new side-channel attack on directional branch
predictor,” ACM SIGPLAN Notices, vol. 53, no. 2, pp. 693–707, 2018.

[10] T. Huo, X. Meng, W. Wang, C. Hao, P. Zhao, J. Zhai, and M. Li,
“Bluethunder: A 2-level directional predictor based side-channel attack
against sgx,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 321–347, 2020.

[11] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. B. Abu-
Ghazaleh, “Spectre returns! speculation attacks using the return
stack buffer,” CoRR, vol. abs/1807.07940, 2018. [Online]. Available:
http://arxiv.org/abs/1807.07940

[12] F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin, N. Heninger,
A. Moghimi, and Y. Yarom, “Cachequote: Efficiently recovering long-
term secrets of sgx epid via cache attacks,” 2018.

[13] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How sgx
amplifies the power of cache attacks,” in International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 2017, pp.
69–90.

[14] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using sgx to conceal cache attacks,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2017, pp. 3–24.

[15] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A.-R. Sadeghi, “Software grand exposure:{SGX} cache attacks
are practical,” in 11th USENIX Workshop on Offensive Technologies
(WOOT 17), 2017.

[16] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on
intel sgx,” in Proceedings of the 10th European Workshop on Systems
Security, 2017, pp. 1–6.

117

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 21,2025 at 09:18:18 UTC from IEEE Xplore. Restrictions apply.

[17] M. Hähnel, W. Cui, and M. Peinado, “{High-Resolution} side channels
for untrusted operating systems,” in 2017 USENIX Annual Technical
Conference (USENIX ATC 17), 2017, pp. 299–312.

[18] A. Moghimi, J. Wichelmann, T. Eisenbarth, and B. Sunar, “Memjam: A
false dependency attack against constant-time crypto implementations,”
International Journal of Parallel Programming, vol. 47, no. 4, pp. 538–
570, 2019.

[19] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,” in
2019 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 142–157.

[20] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom,
“Cacheout: Leaking data on intel cpus via cache evictions,” in 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 2021, pp.
339–354.

[21] S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom, “SGAxe: How
SGX fails in practice,” https://sgaxeattack.com/, 2020.

[22] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida, “Crosstalk:
Speculative data leaks across cores are real,” in 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, 2021, pp. 1852–1867.

[23] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary data
sampling,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 753–768.

[24] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx, “Foreshadow: Extracting the keys to the intel SGX
kingdom with transient Out-of-Order execution,” in 27th USENIX
Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, p. 991–1008. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck

[25] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 640–656.

[26] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page
faults from telling your secrets,” in Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, 2016, pp.
317–328.

[27] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution,” in 26th {USENIX} Security Symposium
({USENIX} Security 17), 2017, pp. 1041–1056.

[28] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land:
Understanding memory side-channel hazards in sgx,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 2421–2434.

[29] D. Kim, D. Jang, M. Park, Y. Jeong, J. Kim, S. Choi, and B. B.
Kang, “Sgx-lego: Fine-grained sgx controlled-channel attack and its
countermeasure,” computers & security, vol. 82, pp. 118–139, 2019.

[30] D. Moghimi, J. Van Bulck, N. Heninger, F. Piessens, and B. Sunar,
“{CopyCat}: Controlled {Instruction-Level} attacks on enclaves,” in
29th USENIX Security Symposium (USENIX Security 20), 2020, pp.
469–486.

[31] M. Li, Y. Zhang, Z. Lin, and Y. Solihin, “Exploiting unprotected
{I/O} operations in {AMD’s} secure encrypted virtualization,” in 28th
USENIX Security Symposium (USENIX Security 19), 2019, pp. 1257–
1272.

[32] M. Orenbach, A. Baumann, and M. Silberstein, “Autarky: Closing
controlled channels with self-paging enclaves,” in Proceedings of the
Fifteenth European Conference on Computer Systems, 2020, pp. 1–16.

[33] S. Aga and S. Narayanasamy, “Invisipage: oblivious demand paging for
secure enclaves,” in Proceedings of the 46th International Symposium
on Computer Architecture, 2019, pp. 372–384.

[34] Intel, “Architecture specification: Intel® trust domain extensions (in-
tel® tdx) module,” https://cdrdv2.intel.com/v1/dl/getContent/733568,
2024.

[35] Apple, “Secure enclave,” https://support.apple.com/guide/security/
secure-enclave-sec59b0b31ff/web, 2022.

[36] Google, “Pixel 6: Setting a new standard for mobile security,”
https://security.googleblog.com/2021/10/pixel-6-setting-new-standard-
for-mobile.html, 2022.

[37] Qualcomm, “Secure processing unit spu230 core security tar-
get lite,” https://www.commoncriteriaportal.org/files/epfiles/1045b pdf.
pdf, 2024.

[38] R. Lai, “Amd security and server innovation,” UEFI PlugFest-March
(2013), pp. 18–22, 2013.

[39] M. Li, Y. Zhang, H. Wang, K. Li, and Y. Cheng, “{CIPHERLEAKS}:
Breaking constant-time cryptography on {AMD}{SEV} via the ci-
phertext side channel,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 717–732.

[40] ——, “Tlb poisoning attacks on amd secure encrypted virtualization,”
in Annual Computer Security Applications Conference, 2021, pp. 609–
619.

[41] S.-W. Li, X. Li, R. Gu, J. Nieh, and J. Z. Hui, “A secure and formally
verified linux kvm hypervisor,” in 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 2021, pp. 1782–1799.

[42] M. Li, Y. Zhang, and Z. Lin, “Crossline: Breaking” security-by-crash”
based memory isolation in amd sev,” in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, 2021,
pp. 2937–2950.

[43] J. Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena, “Elasticlave:
An efficient memory model for enclaves,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 4111–4128.

[44] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest
we remember: cold-boot attacks on encryption keys,” Communications
of the ACM, vol. 52, no. 5, pp. 91–98, 2009.

[45] M. Gruhn and T. Müller, “On the practicability of cold boot attacks,” in
2013 International Conference on Availability, Reliability and Security.
IEEE, 2013, pp. 390–397.

[46] P. Stewin and I. Bystrov, “Understanding dma malware,” in Inter-
national Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2012, pp. 21–41.

[47] C. Schwarz, V. Reusch, and M. Planeta, “Dma security in the presence
of iommus,” Tagungsband des FG-BS Frühjahrstreffens 2022, 2022.

[48] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanovic,
“The risc-v instruction set manual volume 2: Privileged architecture
version 1.7,” University of California at Berkeley Berkeley United
States, Tech. Rep., 2015.

[49] A. Holdings, “Arm architecture reference manual, armv8, for armv8-a
architecture profile,” ARM, Cambridge, UK, White Paper, 2019.

[50] Intel, “Intel® 64 and ia-32 architectures software developer’s manual,”
Volume 2: Instruction Set Reference, Part, 2022.

[51] J. Van Bulck, F. Piessens, and R. Strackx, “Sgx-step: A practical attack
framework for precise enclave execution control,” in Proceedings of the
2nd Workshop on System Software for Trusted Execution, 2017, pp. 1–
6.

[52] ——, “Nemesis: Studying microarchitectural timing leaks in rudimen-
tary cpu interrupt logic,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp.
178–195.

[53] I. Puddu, M. Schneider, M. Haller, and S. Čapkun, “Frontal attack:
Leaking {Control-Flow} in {SGX} via the {CPU} frontend,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 663–
680.

[54] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in 25th {USENIX} Security
Symposium ({USENIX} Security 16), 2016, pp. 857–874.

[55] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-
R. Sadeghi, and E. Stapf, “{CURE}: A security architecture with
customizable and resilient enclaves,” in 30th {USENIX} Security
Symposium ({USENIX} Security 21), 2021.

[56] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song,
“Keystone: An open framework for architecting trusted execution
environments,” in Proceedings of the Fifteenth European Conference
on Computer Systems, 2020, pp. 1–16.

[57] E. Feng, X. Lu, D. Du, B. Yang, X. Jiang, Y. Xia, B. Zang, and
H. Chen, “Scalable memory protection in the penglai enclave,” in 15th
{USENIX} Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 21), 2021, pp. 275–294.

[58] Y. Zhang, Y. Hu, Z. Ning, F. Zhang, X. Luo, H. Huang, S. Yan, and
Z. He, “{SHELTER}: Extending arm {CCA} with isolation in user
space,” in 32nd USENIX Security Symposium (USENIX Security 23),
2023, pp. 6257–6274.

118

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 21,2025 at 09:18:18 UTC from IEEE Xplore. Restrictions apply.

[59] Intel, “Intel architecture memory encryption technologies specifi-
cation.” https://software.intel.com/content/dam/develop/external/us/en/
documents-tps/multi-key-total-memory-encryption-spec.pdf, 2023.

[60] D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption,” White
paper, 2016.

[61] S. Gueron, “A memory encryption engine suitable for general purpose
processors,” Cryptology ePrint Archive, 2016.

[62] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Conference on the theory and application of cryptographic
techniques. Springer, 1987, pp. 369–378.

[63] S. Weiser and M. Werner, “Sgxio: Generic trusted i/o path for intel
sgx,” in Proceedings of the seventh ACM on conference on data and
application security and privacy, 2017, pp. 261–268.

[64] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh, “Heteroge-
neous isolated execution for commodity gpus,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 455–468.

[65] K. Xia, Y. Luo, X. Xu, and S. Wei, “Sgx-fpga: Trusted execution
environment for cpu-fpga heterogeneous architecture,” in 2021 58th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2021, pp.
301–306.

[66] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution
environments on {GPUs},” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), 2018, pp. 681–696.

[67] M. Li, Y. Xia, and H. Chen, “Confidential serverless made efficient
with plug-in enclaves,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2021, pp. 306–
318.

[68] D. Lee, K. Cheang, A. Thomas, C. Lu, P. Gaddamadugu, A. Vahldiek-
Oberwagner, M. Vij, D. Song, S. A. Seshia, and K. Asanovic, “Cer-
berus: A formal approach to secure and efficient enclave memory
sharing,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022, pp. 1871–1885.

[69] J. Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena, “Elasticlave: An
efficient memory model for enclaves,” https://www.usenix.org/system/
files/sec22 slides-yu jason.pdf, 2022.

[70] H. Krawczyk, “Sigma: The ‘sign-and-mac’approach to authenticated
diffie-hellman and its use in the ike protocols,” in Annual international
cryptology conference. Springer, 2003, pp. 400–425.

[71] S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng, “Sectee: A
software-based approach to secure enclave architecture using tee,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 1723–1740.

[72] D. J. Bernstein, “Curve25519: new diffie-hellman speed records,” in
Public Key Cryptography-PKC 2006: 9th International Conference on
Theory and Practice in Public-Key Cryptography, New York, NY, USA,
April 24-26, 2006. Proceedings 9. Springer, 2006, pp. 207–228.

[73] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,
D. Grubb, H. Liew, H. Mao, A. Ou, C. Schmidt, S. Steffl, J. Wright,
I. Stoica, J. Ragan-Kelley, K. Asanovic, B. Nikolic, and Y. S. Shao,
“Gemmini: Enabling systematic deep-learning architecture evaluation
via full-stack integration,” in 2021 58th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2021, pp. 769–774.

[74] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Sonicboom: The
3rd generation berkeley out-of-order machine,” in Fourth Workshop on
Computer Architecture Research with RISC-V, vol. 5, 2020.

[75] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The
rocket chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, vol. 4, pp. 6–2, 2016.

[76] J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec cpu2017:
Next-generation compute benchmark,” in Companion of the 2018
ACM/SPEC International Conference on Performance Engineering,
2018, pp. 41–42.

[77] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[78] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” CoRR,
vol. abs/1704.04861, 2017. [Online]. Available: http://arxiv.org/abs/
1704.04861

[79] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
“Deep, big, simple neural nets for handwritten digit recognition,”
Neural computation, vol. 22, no. 12, pp. 3207–3220, 2010.

[80] U. Meier, D. C. Ciresan, L. M. Gambardella, and J. Schmidhuber,
“Better digit recognition with a committee of simple neural nets,” in
2011 international conference on document analysis and recognition.
IEEE, 2011, pp. 1250–1254.

[81] X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech enhancement based
on deep denoising autoencoder.” in Interspeech, vol. 2013, 2013, pp.
436–440.

[82] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng,
“Multimodal deep learning,” in ICML, 2011.

[83] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and
D. Costanzo, “{CertiKOS}: An extensible architecture for building
certified concurrent {OS} kernels,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), 2016, pp.
653–669.

[84] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the ring(s): Side
channel attacks on the CPU On-Chip ring interconnect are practical,”
in 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 645–662. [Online]. Available: https://
www.usenix.org/conference/usenixsecurity21/presentation/paccagnella

[85] M. Dai, R. Paccagnella, M. Gomez-Garcia, J. McCalpin, and M. Yan,
“Don’t mesh around: Side-Channel attacks and mitigations on
mesh interconnects,” in 31st USENIX Security Symposium (USENIX
Security 22). Boston, MA: USENIX Association, Aug. 2022, pp.
2857–2874. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/dai

[86] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Trans-
actions on Information and System Security (TISSEC), vol. 13, no. 1,
pp. 1–40, 2009.

[87] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “Ccfi:
Cryptographically enforced control flow integrity,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015, pp. 941–951.

[88] L. Delshadtehrani, S. Canakci, B. Zhou, S. Eldridge, A. Joshi, and
M. Egele, “{PHMon}: A programmable hardware monitor and its
security use cases,” in 29th USENIX Security Symposium (USENIX
Security 20), 2020, pp. 807–824.

[89] Intel, “Intel® 64 and ia-32 architectures software developer’s manual,”
Volume 3B: system programming guide, Part, vol. 2, no. 11, pp. 1–64,
2011.

[90] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin, “Pt-cfi: Transparent backward-
edge control flow violation detection using intel processor trace,”
in Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy, 2017, pp. 173–184.

[91] V. Van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical context-sensitive
cfi,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, 2015, pp. 927–940.

[92] M. R. Khandaker, W. Liu, A. Naser, Z. Wang, and J. Yang, “Origin-
sensitive control flow integrity,” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 195–211.

[93] I. Corp, “Introduction to cache allocation technology in the intel®
xeon® processor e5 v4 family,” https://www.intel.com/content/www/
us/en/developer/articles/technical/introduction-to-cache-allocation-
technology.html, 2022.

[94] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018, pp.
775–787.

[95] ——, “New attacks and defense for encrypted-address cache,” in
2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA), 2019, pp. 360–371.

[96] D. Townley, K. Arıkan, Y. D. Liu, D. Ponomarev, and O. Ergin, “Com-
posable cachelets: Protecting enclaves from cache {Side-Channel}
attacks,” in 31st USENIX Security Symposium (USENIX Security 22),
2022, pp. 2839–2856.

[97] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen,
and A.-R. Sadeghi, “Dr. sgx: Automated and adjustable side-channel
protection for sgx using data location randomization,” in Proceedings
of the 35th Annual Computer Security Applications Conference, 2019,
pp. 788–800.

119

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 21,2025 at 09:18:18 UTC from IEEE Xplore. Restrictions apply.

[98] L. Zhao, P. Li, R. Hou, M. C. Huang, J. Li, L. Zhang, X. Qian,
and D. Meng, “A lightweight isolation mechanism for secure branch
predictors,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2021, pp. 1267–1272.

[99] T. Zhang, T. Lesch, K. Koltermann, and D. Evtyushkin, “Stbpu: A rea-
sonably safe branch predictor unit,” arXiv preprint arXiv:2108.02156,
2021.

[100] I. Corp, “speculative execution side channel mitigations,”
https://www.intel.com/content/dam/develop/external/us/en/documents/
336996-speculative-execution-side-channel-mitigations.pdf, 2022.

[101] B. Grayson, J. Rupley, G. Z. Zuraski, E. Quinnell, D. A. Jiménez,
T. Nakra, P. Kitchin, R. Hensley, E. Brekelbaum, V. Sinha, and
A. Ghiya, “Evolution of the samsung exynos cpu microarchitecture,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 40–51.

[102] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fet-
zer, “Varys: Protecting {SGX} enclaves from practical side-
channel attacks,” in 2018 {Usenix} Annual Technical Conference
({USENIX}{ATC} 18), 2018, pp. 227–240.

[103] D. Cerdeira, J. Martins, N. Santos, and S. Pinto, “{ReZone}: Disarm-
ing {TrustZone} with {TEE} privilege reduction,” in 31st USENIX
Security Symposium (USENIX Security 22), 2022, pp. 2261–2279.

[104] K. Suzaki, “Trusted rv: 64bit risc-v tee with secure coprocessor
and software on them,” https://riscv.or.jp/wp-content/uploads/TRASIO-
RISC-V-Day-Tokyo-Spring-2021-a.pdf, 2024.

[105] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh,
and R. Riley, “Iso-x: A flexible architecture for hardware-managed
isolated execution,” in 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE, 2014, pp. 190–202.

[106] J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia, and
F. Piessens, “A tale of two worlds: Assessing the vulnerability of
enclave shielding runtimes,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp.
1741–1758.

[107] W. Liu, H. Chen, X. Wang, Z. Li, D. Zhang, W. Wang, and H. Tang,
“Understanding tee containers, easy to use? hard to trust,” arXiv
preprint arXiv:2109.01923, 2021.

[108] D. Champagne and R. B. Lee, “Scalable architectural support for
trusted software,” in HPCA-16 2010 The Sixteenth International Sym-
posium on High-Performance Computer Architecture. IEEE, 2010,
pp. 1–12.

[109] Y. Jia, S. Liu, W. Wang, Y. Chen, Z. Zhai, S. Yan, and Z. He, “Hyper-
enclave: An open and cross-platform trusted execution environment,”
in 2022 USENIX Annual Technical Conference (USENIX ATC 22).
USENIX Association, Jul. 2022.

[110] S. Weiser, M. Werner, F. Brasser, M. Malenko, S. Mangard, and
A.-R. Sadeghi, “Timber-v: Tag-isolated memory bringing fine-grained
enclaves to risc-v.” in NDSS, 2019.

120

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 21,2025 at 09:18:18 UTC from IEEE Xplore. Restrictions apply.

