
Towards Transparent Introspection

Kevin Leach
University of Virginia

MIT Lincoln Laboratory
kjl2y@virginia.edu

Chad Spensky
University of California, Santa Barbara

MIT Lincoln Laboratory
cspensky@cs.ucsb.edu

Westley Weimer
University of Virginia
weimer@virginia.edu

Fengwei Zhang
Wayne State University

fengwei@wayne.edu

Abstract—There is a growing need for the dynamic analysis
of sensitive systems that do not support traditional debugging or
emulation environments. Analysis can alter program behavior,
necessitating transparency. For example, as the cat and mouse
game between malware authors and malware analysts progresses,
malicious software can increasingly detect and confound debug-
gers. Analysts must understand variable values, stack traces,
and factors influencing dynamic behavior, but recent malware
samples leverage any piece of information or artifact available
that signals the presence of a debugger or emulator. In this
work, we advance the state-of-the-art for transparent program
analysis by introducing a low-artifact introspection technique.
Our approach uses hardware-assisted live memory snapshots
of process execution on native targets (e.g., x86 processors),
coupled with static reasoning about programs. We produce high-
fidelity data and control flow information with minimal detectable
artifacts that could influence benign subject behavior or be
leveraged for anti-analysis. We evaluate our system using two
hardware implementations (x86-supported System Management
Mode and PCI-based SlotScreamer devices) and two software
configurations (benign and evasive programs). We also analyze
the theoretical and practical limitations of our technique. We
discuss an expert case study in which we apply our technique to
a malware reverse engineering task. Finally, we present results
of a human study in which 30 participants performed debugging
tasks using information provided by our approach; our tool
was as useful as a gdb baseline, but applies transparently. Our
dynamic analysis approach permits transparent introspection
to access previously-unavailable information about a process’s
internal state with minimal instrumentation artifacts.

I. INTRODUCTION

From embedded domains to virtualization to security, many
software systems that require dynamic analysis cannot use
traditional debuggers. Standard approaches, such as gdb, incur
significant overhead or pause the subject program entirely,
which can interfere with normal execution or timing. Many
hardware-based approaches, such as the JTAG [39] standard
for embedded testing, may introduce delays or be inapplicable
in secure settings [39]. Advances in trace-based [38] or re-
play [43], [48] debugging often have lower overhead, but such
post-mortem analyses can be too late for many issues. The
essential problem here is that of the heisenbug, in which the
very act of debugging incurs overhead or perturbs the system
and thus changes the behavior to be studied [33]. We use
the general term program introspection to encompass standard
debugging and analysis actions, such as observing variable
values, inspecting dynamic stack traces, or determining what
influences the conditional behavior of unknown software.

We say that a dynamic analysis system, such as a debugger
or introspection tool, is transparent if computational and

environmental observations made by the subject system do
not differ between analyzed runs and unanalyzed runs. A
system that is not transparent instead introduces artifacts that
can reveal that system’s presence. Artifacts can be direct,
such as the Windows API isDebuggerPresent method,
or indirect, such as measurements of elapsed times between
operations.

Two factors have led to a recent surge of interest in
transparent process analysis techniques. First, hardware ad-
vances have made memory analysis techniques practical, low-
overhead, and affordable [44], [53]. Second, the twin rise
of virtualization and appearance of environment-aware mal-
ware [6], [9], [12], [13], [19] mean that there are many more
systems that require transparent dynamic analyses. DARPA’s
recent announcement of the Transparent Computing Pro-
gram [15] emphasizes the need for such techniques. An effec-
tive introspection system in this context must be transparent,
provide accurate information, and support analysis tasks.

We propose a system that provides transparent intro-
spection capabilities by asynchronously acquiring snapshots
of program memory at runtime. Given such snapshots, we
bridge the semantic gap (i.e., reconstruct important program
data), converting from operating system information to process
address spaces to variables, buffers, and stack frames of
interest to the analyst. With the advent of new commodity
hardware and virtual machine techniques capable of quickly
reading system memory, we believe a transparent program
introspection framework is now possible. We propose and
evaluate HOPS, a lightweight, native, accurate, asynchronous
introspection technique that usefully supports analysis tasks.

We evaluate HOPS with respect to those three properties.
We consider the transparency of our system and the artifacts
it might produce, with a focus on time overhead. We measure
the accuracy of our system’s variable value and stack trace
information against ground truth. Finally, we conduct a human
study of 30 participants to evaluate our system’s ability to
support standard debugging tasks, as well as an expert case
study to evaluate our system’s ability to support a malware
reverse engineering task. We find that HOPS is generally
accurate for variable values and stack traces, is able to support
conventional maintenance tasks as well as gdb, and supports
domain-specific reverse engineering tasks. In addition, because
we focus on zero-overhead approaches, HOPS can be used in
systems where traditional debuggers cannot apply.

II. BACKGROUND

In this section, we introduce the hardware support that
permits an effective implementation of HOPS.

A. System Management Mode

System Management Mode (SMM) [25] is a mode of
execution similar to Real and Protected modes available on
x86 platforms. It provides a transparent mechanism for im-
plementing platform-specific system control functions, such as
power management. SMM is triggered by asserting the System
Management Interrupt (SMI) pin on the CPU. This pin can be
triggered in a variety of ways, which include writing to an
I/O port or generating message signaled interrupts with a PCI
device. Next, the CPU saves its state to a special region of
memory called System Management RAM (SMRAM). Then,
it atomically executes the SMI handler stored in SMRAM. SM-
RAM cannot be addressed by the other modes of execution1.
Thus, SMRAM can be used as secure storage. The SMI handler
is loaded into SMRAM by the BIOS at boot time. The SMI
handler has unrestricted access to the physical address space
and can run any instructions requiring any privilege level. The
RSM instruction forces the CPU to exit from SMM and resume
execution in the previous mode.

B. SlotScreamer

SlotScreamer [20] is a recently-introduced memory foren-
sic device with software running on a USB3380 chip. The chip
consists of a PCI Express connector that attaches to the mother-
board of the system under test and a USB3 port connecting to a
remote system. The device firmware can generate arbitrary PCI
packets. The remote system fakes DMA packets to rapidly read
memory from the system under test. This produces a smear of
memory in which contents may change while being gathered.
Using this technique is not perfectly transparent as it updates
the DMA access performance counter. While SlotScreamer is
a promising new device, it has not yet been formally evaluated
in debugging scenarios.

III. APPROACH

A. HOPS — Transparent Process Introspection

We present HOPS, an approach for hardware-supported
low-overhead asynchronous debugging. Transparency is crit-
ical for benign systems with heisenbugs as well as security-
critical software or malware samples that may behave dif-
ferently when executing in a debugger or virtual machine
framework. Essentially, our approach iteratively inspects snap-
shots of physical memory (recorded via special hardware) and
then uses a combination of operating system and compiler
techniques to locate local, global, and stack-allocated variables
and their values as well as to determine the current call stack.
Because we may operate on off-the-shelf optimized code and
only assume access to memory (e.g., we cannot access CPU
registers), our approach may not be able to report the values
of some variables (such as those that are stored in registers) or
some stack frames (such as those associated with functions that
have been inlined). Nonetheless, we demonstrate empirically
in Section V that our approach provides rich information for
common maintenance and security analysis tasks in practice.

1) Input Assumptions: We detail the assumptions of our
approach that delineate its applicability.

1Requests for SMRAM addresses forward to video memory by default.

Assembly Code. We assume access to the assembly code of
the target executable, but not knowledge of the exact assembler
or compiler flags or options used to produce that executable.
For example, we may know that the target machine is running a
particular version of the Apache HTTP Server, but not whether
the deployed version was compiled with “–O2” or “–O3”. We
can make use of the source code, when applicable.

Memory Snapshots. Most critically, we assume access
to periodic samples or snapshots of physical memory. Such
snapshots could be provided via a hardware-based system
(e.g., [7], [11], [14], [46], [50]), or through virtual machine
introspection. In Section V, we evaluate our approach using
both x86-supported System Management Mode and also PCI-
based SlotScreamer devices to gather memory snapshots.

We focus on PCI-e as the ideal candidate for memory
introspection because of its promising throughput rates. The
rate at which we can obtain snapshots is limited theoretically
by peak PCI-e transfer speeds (i.e., to 15.754GB/s, or roughly
to 3.85 million page samples per second). In practice, how-
ever, most implementations can expect to achieve an effective
transfer rate of 250MB/s per PCI lane, or 4GB/s total using
16 lanes [3]. This equates to 1.05 million page samples per
second, or roughly 3200 cycles per page acquisition on our
experimental platform (see Section V). We evaluate using
SlotScreamer, which is a special PCI-express board with a
USB3 interface permitting DMA access to a host’s memory
from a remote system [20]. SlotScreamer permits acquiring
smears of memory very rapidly (theoretically, it is band-
limited by USB3, which permits reading memory at 4.8Gbps
or roughly 146 page samples per second).

Alternatively, we can acquire snapshots via System Man-
agement Mode on x86 machines. SMM remains available on
extant and current x86 systems, admitting broad applicability.
Using SMM allows the capture of pages of memory at a time,
albeit with high overhead (roughly 12µs to capture a page of
memory).

In either case, we seek to reconstruct useful semantic
information from these acquired snapshots.

Normal Systems. We do not consider any modification
to the target machine or the target executable beyond the
hardware required to log memory snapshots. That is, one plug-
in PCI device for SlotScreamer or an unchanged x86 processor
for SMM. In particular, we do not replace, patch, or otherwise
change the target executable or the OS on the target machine.

2) Architecture: Our approach follows a pipelined archi-
tecture in which raw snapshots of physical memory are passed
through a number of analyses, each of which refines or
approximates the information available. The raw snapshots
are collected at regular intervals. We focus on reporting the
values of variables (local, global, or stack-allocated) as well
as determining the dynamic stack trace. Figure 1 illustrates the
proposed approach. We start with raw snapshots and combine
existing OS introspection techniques (e.g., SPECTRE [52],
Volatility [5]) to reason about variable and stack trace informa-
tion in a particular program being tested (denoted Code Under
Test in the figure).

3) Physical Memory Snapshots: First, we direct the mem-
ory snapshot hardware to log physical pages related to the

2

Semantics

Userspace

Kernel

Hardware

System Under Test (SUT)

Variables Function Calls

Code Under Test

OS Introspection

PCIe and/or SMM
Memory Acquisition

Remote Host

Use cases

Read Variables

Read Stack Trace

Assumed component – Hardware-assisted memory acquisition (PCIe, SMM)

Hops component – Transparent program introspection

Fig. 1. Architecture of the proposed HOPS system. We assume access to
hardware that can transparently acquire snapshots of system memory from
the System Under Test. Combined with OS introspection techniques [5], [52]
to find the program being tested (Code Under Test), we use these snapshots
to reason about variable and stack trace information in the Code Under Test
on an external system (Remote Host).

Instrumented Binary

P
ro
gr
am

M
em

or
y

Globals

Locals

High addr

Low addr

← x = start of globals

← y = frame pointer

← Var a

← Var b

addr(a)− x = k1

Deployed Binary

Globals’

Locals’

start of globals →

frame pointer →

Var a→

Var b→
addr(b)− y = k2

Fig. 2. We hypothesize for some binaries that two variables exist at the
same offsets between two different compiled version. In both versions, we
hypothesize that a variable a exists at the same offset from the start of the
globals (x in the figure). Similarly, we also hypothesize that stack allocated
variables (b) exist at a fixed offset from the frame pointer (y).

target executable. This is a matter of bridging the semantic
gap between raw bit patterns and logical program data and
code. This is done by inspecting in-kernel data structures in
physical memory to find the virtual address space mapping for
the target process. From the virtual address space mapping,
we can obtain a sequence of physical pages that correspond
to the process’s virtual address space. In addition, from in-
kernel data structures, such as the process control block, we
note the memory ranges associated with the stack segment,
data segment, and code segment. Interpretation of relevant
kernel data structures is well-described in the semantic gap
literature [22], [26], [29], [32], [52]. HOPS can use any such
black-box analysis to bridge the semantic gap.

4) Reporting Variables: Given a correctly-ordered snapshot
of a process’s virtual address space as well as the locations of
the various segments, our analysis proceeds by enumerating
hypotheses about the locations of variables. These hypotheses
are heuristically ordered by decreasing level of confidence. We
start with the standard techniques used by debuggers.

For global variables, we use information from the symbol
table (e.g., PE in memory for Windows executables, ELF for
Linux). For locals, we focus on variables that were stack
allocated (by the writer of the assembly code or by the
compiler). We use debugging information when available.

Some variables do not admit localization in this manner
(e.g., variables that are stored in registers). In such cases, our
second hypothesis is based on the relative location of the those
variables in an instrumented binary on a test machine. Recall
that we do not assume knowledge of the exact assembler,
linker or compiler flags used to produce the target executable.
Thus, we track the relative locations of variables (e.g., global

Example Dynamic Stack Trace

S
ta
ck

T
ra
ce

Time t (cycles)

main main

foo

main

foo

bar

main

foo

main

foo

qux

main

foo

main

10 20 30 40 50 60 70

Fig. 3. Example ground truth dynamic stack trace. The dynamic stack trace
is a time series of static call stacks showing which functions are called over
time in the program.

Example Observed Stack Trace

S
ta
ck

T
ra
ce

Time t (cycles)

main main

foo

main

foo

main

foo

bar

main

foo

main

10 15 20 30 60 70

Fig. 4. This example set of stack trace observations demonstrates the
tradeoffs between accuracy and transparency. Sampling too frequently may
require additional resources or introduce artifacts without yielding additional
information (e.g., sampling at t = 15 and t = 20). Conversely, sampling too
coarsely may miss function calls (e.g., between t = 30 and t = 60).

a is stored at offset x from the data segment while local
variable b is stored at offset y from the frame pointer) and
hypothesize that those offsets will be the same for the target
executable. This hypothesis does not always hold, but it allows
us to recover information for additional variables in practice.
Figure 2 explains this hypothesis visually.

5) Reporting Stack Traces: In addition to the values of
particular local and global variables, we also produce snapshots
of the stack trace and the values of variables in caller contexts.
We consider a number of standard calling conventions (e.g.,
stdcall, cdecl, fastcall) and attempt to locate the chain of
activation records on the stack following standard debugger
techniques [51]. For example, the name of the calling function
is determined by finding the return address on the stack and
mapping it to the nearest enclosing entry point in the code
segment via the symbol table.

We also consider samples for which there is no source
available. We can operate on labeled disassembly, as produced
by IDA Pro or a similar tool. In such cases, synthetic label
names or unique heuristic names are used [24] (e.g., “printf-
like function #2” may label a function that behaves like
the printf function). While walking the stack, we gather
hypotheses about the locations and values of stack-allocated
variables (such as the actual arguments or locals in-scope in
parent contexts), as above.

Figures 3 and 4 illustrate our notion of a dynamic stack
trace and the potential tradeoffs between transparency and
introspection accuracy. We refer to the sequence of activation
records (i.e., stack frames) present at a particular point in a
program’s execution as a static call stack. A dynamic stack
trace of a program is a time series of static call stacks. Ideally,
a dynamic stack trace includes a new static stack frame every
time the subject program calls or returns from a procedure.
Recording the static call stack after every instruction would

3

observe every call and return, but would likely be resource-
and timing-intensive and introduce anti-analysis artifacts. Con-
versely, recording too few static call stacks results in a dynamic
stack trace that may miss important behavior.

6) Output: One basic output of our technique is a dynamic
stack trace: A sequence of static call stacks, one call stack per
snapshot of physical memory. Each call stack lists the name
of each called function and the values of its actual arguments.
In addition, the analyst can request to inspect the value of a
particular local, global, or stack-allocated variable. Both call
stack reports and variable value inspections are asynchronous.

Note that any presented information may be incorrect. For
example, no information may be available about variables opti-
mized away by the compiler or stored in registers. However, we
hypothesize that optimized-away variables are not implicated
in standard maintenance or security use-cases. For example,
if the variable x is optimized away after x=4;, a developer
with access to the source code may be able to reason about
conditions involving x even if HOPS cannot report its value.
In security settings, if a variable in the source is optimized
away and not present in the deployed code, it is unlikely that
that variable could be used maliciously.

Similarly, a hand-crafted leaf function that uses a non-
standard calling convention (e.g., a custom hybrid of callee-
saves and caller-saves for registers without pushing the return
address) may not show up on a heuristic stack trace. However,
such behavior is not commonly observed in general software
systems (e.g., it is not easy to express in standard C), and in
particular is not common in malware in the wild: stack and
heap overflow, heap spray, and return-oriented programming
(ROP [34]) and jump-oriented programming (JOP [8]) attacks
depend on the traditional stack model for both Linux and
Windows platforms.

IV. USE CASES AND PROTOCOLS

In this section, we describe intended use cases for HOPS
that set the stage for restrictions about the environment used
by our algorithm. We describe the general implementation of
the algorithm and protocol used to conduct our human study.
Experiment-specific details are described in Section V.

We envision three use cases for our system. In all use cases,
we begin with a binary that we want to study. If the source
code to this binary is available (as is likely in the first and
second cases but unlikely in the third), we take advantage of
it to formulate additional hypotheses about variable locations
(see Section III-A4). In all cases, we desire to find and
report 1) variables of interest in program memory, and 2) a
dynamic stack trace of activation records to help understand
the semantics of the program.

UC1 — Maintenance Analysis of Benign Binaries. In our
standard use case, HOPS supports the maintenance of non-
malicious software by providing information about variable
values and stack traces. We consider standard maintenance
tasks such as fault localization, refactoring, or debugging that
would normally be supported by a tool such as gdb. In this use
case, the source code is likely to be available, but heisenbugs,
timing dependencies, or similar issues still require the use
of a transparent analysis technique. The primary metric is

the fraction of maintenance questions the analyst is able to
answer correctly when supported by information from HOPS.
Secondary metrics include HOPS’s accuracy when reporting
variable values and stack traces, and HOPS’s transparency.

UC2 — Security Analysis of Benign Binaries. The sec-
ond use case is for software deployed in large enterprises
where multiple instances of the same software are running
on multiple hosts and an exploit occurs. In this case, we
have vulnerable software running and, as the exploit occurs,
we want to know which memory locations are implicated.
We have a limited amount of time between when malicious
data is placed into program memory and when malicious
behavior begins. Thus, we want to study which buffers may
be implicated by malicious exploits in commercial off-the-shelf
software. In this use case an additional metric is the speed of
our asynchronous debugging approach: for example, we may
require that information about potentially-malicious data be
available quickly enough to admit classification by an anomaly
intrusion detection system.

UC3 — Security Analysis of Malicious Binaries. In auto-
mated malware triage systems, we desire to analyze a large
corpus of malware samples as quickly as possible. Unfortu-
nately, existing solutions to this problem depend on virtualiza-
tion. For example, the common Anubis [4] framework, which
analyzes binaries for malicious behavior, depends on Xen for
virtualization, which allows stealthy or VM-aware malware
to subvert the triage system. In contrast, our system assumes
the presence of low-overhead sampling hardware that enables
fast access to a host’s memory. Our algorithm is thus charged
with introspecting the malware process when running in the
triage system. In such a triage system, we want to understand
a sample’s behavior in part by knowing the values of variables
and producing a dynamic stack trace as the sample executes.
For example, the system might inspect control variables and
function calls to determine how the malware sample detects
virtualization or might inspect snapshots of critical but short-
lived buffers for in-memory keys. In this use case, the primary
metric of concern is the fraction of critical malware aspects
(e.g., artifacts used to evade analysis) an analyst can identify
while supported by information from HOPS. A secondary
metric is accuracy with respect to variable values and stack
trace information.

Similarly, we envision an extension of this use case for
reducing the manual effort involved in reverse engineering
state of the art stealthy malware samples. Our proposed system
enables debugging-like capabilities that are transparent to the
sample being analyzed. This power allows analysts to save time
reverse engineering the anti-VM and anti-debugging features
employed by current malware so that they can focus on
understanding the payload’s behavior.

Human Study Protocol

The goal of our human study is to measure how well
humans can perform debugging and maintenance tasks when
supported by HOPS—exploring our first use case, the mainte-
nance analysis of benign programs. Simply put, we presented
each participant with a snippet of code and the output from
either HOPS or gdb. We then measured participant accuracy
on maintenance questions regarding that snippet. Multiple
snippets were shown to each participant in a survey.

4

Participants were presented instructions for completing the
survey, as well as example questions and possible answers.
This training helps address mistakes attributed to confusion or
training effects. Each snippet was shown with corresponding
output from a debugging tool—either from HOPS or gdb—
randomly selected for each participant on each question.
Additionally, each snippet was shown with a corresponding
question meant to test understanding of the snippet during
execution. Participants were asked to answer the question in
free form text. Finally, participants were presented with an
exit survey asking for personal opinions on the debugging
tools and experience. We describe participant selection, snippet
selection, and question selection in detail.

7) Participant Selection: We require participants that have
at least novice software development skills. We solicited
responses from 24 third and fourth year undergraduate students
enrolled in a computer security course and 6 graduate students.
Participants were kept anonymous and were offered a chance to
win one of two $50 Amazon gift cards or class extra credit (via
randomized completion codes). We removed participants from
consideration if they scored more than one standard deviation
below the average score or if they failed to provide responses
to all questions. We impose this restriction due to the difficulty
of controlling for C development and debugging experience.
Participants were made aware of these requirements and that
their potential reward depended on it.

8) Snippet Selection: The goal of the human study was
to simulate debugging or maintenance in a controlled envi-
ronment. We selected snippets of code from the two open
source projects, nullhttpd 0.5.0 (1861 LOC) and wu-ftpd 2.6.0
(29,167 LOC). To create a snippet, we first randomly selected
a function defined in the source code of each project. Only
functions that were at least 10 lines long and were reachable
by one of our test cases were considered. Similarly, functions
longer than 100 lines were truncated to their first 100 lines.
We then chose a random reachable point within that function.

The snippet thus consisted of that function, with the partic-
ular reachable point visibly marked as a breakpoint—as if the
participant had placed a breakpoint on that line in a debugger
and run the program until the breakpoint was reached and
execution paused. Every snippet corresponded to a point by
the test suite, debugging information was obtained by running
the program on the test suite and invoking gdb or HOPS at
that point. Ultimately, 23 snippets were created. Snippet counts
and size limits were selected to ensure a reasonable completion
time by the participants.

9) Software Maintenance Questions: This study measures
how the information provided by our technique aids a devel-
oper when reasoning about code. We require participants to
answer questions that are indicative of debugging activities that
developers might ask during the maintenance process. Sillito et
al. identify several different types of questions real developers
ask during maintenance tasks [41]. Following previous human
study protocols involving software maintenance [21], we used
these three human study questions (HSQ):

HSQ1 What conditions must hold true to reach line X
during execution?

HSQ2 What is the value of variable “y” on line X?
HSQ3 At line X , which variables are in scope?

Many questions discussed by Sillito et al. were general
in nature and would not have been applicable for gauging
participants’ understanding of the snippets used in the study
(e.g., one question reads “Does this type have any siblings in
the type hierarchy?”, which is not applicable to our subject C
programs). Questions are randomly assigned to each snippet.

V. EVALUATION

We consider four primary research questions when evalu-
ating HOPS.

RQ1. On average, what fraction of local, global, and stack-
allocated variable values can our system correctly
report under multiple hardware regimes?

RQ2. How accurately can our system correctly report dy-
namic stack traces as a function of the asynchronous
sampling rate of memory snapshots?

RQ3. Is the information provided useful for reasoning about
debugging tasks compared to the state of the art?

RQ4. Could the information provided by our system help
analysts reason about VM-aware malware?

At any given point in time, some subset of the target pro-
gram’s variables are available. For RQ1, we measure success
at each time step in terms of the fraction of those variables for
which our technique reports the correct value (w.r.t. ground
truth). Similarly, at any given point in time during execution,
there is a particular stack of activation records. We further
evaluate the performance of our technique when implemented
atop both SMM and SlotScreamer to establish our approach’s
feasibility on current hardware. For RQ2, we introduce a
metric that requires functions to be reported and correctly
ordered (w.r.t. ground truth). We then evaluate HOPS in terms
of this metric as a function of the sampling rate (i.e., how
often asynchronous memory snapshots are made available).
For RQ3, we conduct a human study in which 30 participants
answer debugging questions about snippets of code using infor-
mation from HOPS and gdb. Finally, for RQ4, we consider a
case study involving a VM-aware program sample that checks
a number of different artifacts to detect analysis and report the
fraction of those artifact queries that can be identified using
HOPS.

A. Experimental Setup and Benchmarks

We evaluate HOPS using two indicative security-critical
systems, nullhttpd 0.5.0 and wu-ftpd 2.6.0, each of which
has an associated security vulnerability and publicly-available
exploit. For nullhttpd, we consider a remote heap-based buffer
overflow [2], while for wu-ftpd, we consider a format string
vulnerability [1]. In addition to these exploits, for each pro-
gram we consider non-malicious indicative test cases taken
from previous research [28]. For example, one of the web
server test cases retrieves a webpage, while one of the FTP
server test cases logs in anonymously and transfers a file.
Table I summarizes the test cases used in our experiments.
As in Section IV, when the source code is available, our
approach uses it to construct additional hypotheses about
variable locations, but we do not assume that the compiler
flags used in the deployed executable are known or the same.
In these experiments, we simulate that disparity by gathering

5

TABLE I. DESCRIPTION OF TEST CASES USED IN OUR EXPERIMENTS.

calls Description # calls Description
Test nullhttpd wuftpd

1 239 GET standard HTML page 407 Change directory
2 239 GET empty file 453 Get /etc/passwd, text
3 239 GET invalid file 457 Get /bin/dmesg, binary
4 240 GET binary data (image) 22 Attempt executing binary
5 245 GET directory 267 Login with invalid user
6 385 POST information 22 Exploit: format string [1]
7 180 Exploit: buffer overrun [2]

hypotheses from programs compiled with “–O2” but evaluating
against different binaries produced with “–O3”.

Evaluating RQ1 and RQ2 requires that we establish ground
truth values of variables and stack traces at every program
point. For the purposes of evaluation only, we employ source-
level instrumentation [31] to gather these values. Because our
approach is based on memory snapshots and local, global, and
stack-allocated variables, we instrument and evaluate at all
points where a variable enters or leaves scope or is placed on
the stack, including all function calls, function entry points,
and loop heads. We also separately instrument for timing
information, using the Intel rdtsc instruction. Recording
the timing information for instrumentation points introduces
a small overhead (2% on average on these benchmarks). Note
that any instrumentation overhead applies only to gathering
ground truth information for our experimental evaluation and
is not part of our proposed algorithm.

We also note that, as with a standard debugger [24],
[51], heap-allocated variables are accessed in our system by
traversing expressions that start with local or global variables
(“roots”). For example, after glob_ptr = malloc(...),
if an analyst wishes to inspect glob_ptr->x, the request
is handled in four steps: 1) locate the (constant) address of
glob_ptr in the data segment; 2) read the (dynamic) value
stored there from the memory snapshot; 3) add the (constant)
offset associated with x; and 4), read the (dynamic) value
stored there from the memory snapshot. Accuracy on heap-
allocated variable expressions thus reduces to accuracy on
local, global, or stack-allocated variables.

In addition, for RQ4, we also consider pafish v04, an open
source program for Windows that uses a variety of common
artifacts to determine the presence of a debugger or VM,
printing out the results of each check. Evaluating RQ4 requires
that we know the ground truth set of artifacts that pafish
considers to detect analysis. We obtain this set by manual
inspection of the pafish code and comments.

Software and SlotScreamer experiments concerned with
RQ1 and RQ2 were conducted on a 3.2GHz Intel Xeon X5672
machine with 48GB RAM. This system uses 64-bit Linux 3.2.
SMM-based experiments were conducted using 32-bit Linux
2.6 on a system with an AMD Sempron CPU and 4GB RAM.
In each case, we consider two versions of the same binary—
ultimately, this means the runtime locations of variables will
change due to address randomization. To facilitate experi-
mental reproducibility and determinism, we disabled Address
Space Layout Randomization (ASLR). However, it is possible
to account for ASLR by bridging the semantic gap in kernel
memory to find the offset used for randomization.

For RQ4, we ran pafish on a 64-bit Windows 7 system with

TABLE II. VARIABLE INTROSPECTION ACCURACY.

nullhttpd wuftpd
Soft SMM PCI Soft SMM PCI

Locals 43% 66% 41% 46% 48% 45%
Stack 65% 13% 58% 56% 31% 54%

Globals 100% 83% 96% 92% 93% 90%

Overall 69% 54% 65% 65% 57% 76%

two Intel Xeon E5-2660 CPUs at 2.2GHz and 48GB RAM.

B. RQ1 — Variable Value Introspection

We evaluate the accuracy of HOPS with respect to asyn-
chronous requests for variable values: what fraction of vari-
ables will our technique accurately report, averaged over every
variable in scope at every function call, function entry, and loop
head? To admit a more fine-grained analysis of our technique,
we partition the set of all in-scope program variables into
local, global, and stack-allocated. For this experiment, the set
of local variables for a function is all locally-declared variables
including those in various nested local scopes, as allowed in
C. The set of global variables for a function is all global
variables in scope at that function (e.g., not including global
variables declared after that function or static variables
in other modules). The set of stack-allocated variables of
a function includes the function’s arguments as well as the
local and stack-allocated variables of all (transitive) callers of
the function. We do not consider variables that are optimized
away by the compiler because variables that are not present
at run-time are unlikely to be implicated by exploits and may
admit maintenance reasoning via context clues (see Section III
for a qualitative explanation, as well as Section V-D for a
quantitative justification). At each point, we query the value
of each variable using our system and report the result. The
result is correct if it matches the ground truth: for strings, this
takes the form of a string comparison while all other variables
(e.g., integers, pointers) are compared numerically.

Table II reports the results. The “Soft” columns record
our accuracy via software simulation (rather than any special
hardware). The “SMM” columns report our accuracy using
x86 System Management Mode. The “PCI” columns report
our accuracy using PCI-e based SlotScreamer hardware.

For each program, the results are averaged over all test
inputs (non-malicious indicative tests and one malicious ex-
ploit) and all relevant points (all function calls, all function
entries, all loop heads). Specifically, these results help address
the question, “if an analyst were to ask at a random point to
introspect the value of a random variable, what fraction of such
queries would our system be able to answer correctly?”

These results show 83–100% accuracy for global variables.
This high introspection accuracy is because many of these
variables are available at a constant location described in the
subject program’s symbol table. However, our approach still
produces reasonable introspection accuracy for local and stack-
allocated variable queries. For these variables, the values are
not necessarily unavailable, but the hypotheses considered by
our system do not account for differences caused by dynamic
allocation of structures (or, indeed, whether compiler optimiza-
tions change the structures or layout altogether). Conversely,
some values are not available to our technique based on its

6

design assumptions (e.g., variables that live exclusively in
registers). Over the three snapshot-gathering techniques, HOPS
answered 54–76% of variable introspection queries correctly.
We consider what these accuracy results mean in the context
of supporting software maintenance questions in Section V-D.

1) SMM Implementation: We used SMM to transparently
collect pages of memory during execution of each program. We
determine the location in physical memory of process pages
using the CR3 register of the program under test as described
in SPECTRE [52]. The SMI handler has access to the CR3
register of the currently executing process in SMRAM. From
this value, we 1) find the circularly-linked list of processes (i.e.,
task_struct) in kernel memory, 2) iterate through the list
to find the process under test, and 3) find the virtual memory
mappings to help derive addresses of associated pages. We
noted that the kernel could potentially swap processes out,
in which case the mappings in the process’s page table may
not be directly applicable. For the purposes of experimental
evaluation, we disable swapping as it is unlikely to be an
issue in our proposed use cases. We then use our technique
to determine the hypothesized location of each variable within
the page. We compare this value against ground truth data and
report the ratio of correctly identified variables. The results
are similar overall to the software simulated and PCI-based
results. The SMM platform shows worse performance with
stack parameters passed to functions. This is most likely due
to the differing calling conventions, compiler versions, and
number of available registers between the two platforms used
in these experiments.

2) SlotScreamer Implementation: The accuracy results
when HOPS is deployed atop SlotScreamer are shown in the
“PCI” columns in Table II. SlotScreamer transparently collects
smears of memory during execution of each test program. We
bridge the semantic gap as above. We use our technique to
determine the hypothesized location of each variable in the test
program within physical memory. We then use Inception [30]
so that SlotScreamer acquires the memory smear. We compare
each reported value against ground truth data and report the ra-
tio of correctly identified variables. The results are comparable
to the software simulation. SlotScreamer’s higher performance
on stack variables and lower performance on global variables is
best explained by asynchronous updates to memory (memory
smears are not atomic views of pages).

C. RQ2 — Stack Trace Introspection and Sampling Rate

For this research question we evaluate the portion of dy-
namic stack trace information that our technique can accurately
report given a memory snapshot every k cycles. We report
a single activation record as a tuple consisting of a function
name and a list of actual argument values. A single static stack
trace (at a given point in time) is thus a sequence (stack) of
activation records.

We are ultimately interested in changes to the stack over
time: a full dynamic stack trace is a sequence of static
stack traces (each one corresponding to a point in time). For
simplicity of presentation, we elide variable values (for which
our accuracy is evaluated in RQ1) and denote a dynamic stack
trace as a sequence of tuples (t, s) where t is the time in cycles
and s the static call stack (e.g., f1 → f2 → f3) corresponding
to the activation records live at time t.

Page 1

0 2000 4000 6000 8000 10000 12000
0

10

20

30

40

50

60

70

80

90

100

Nullhttpd Call Stack Introspection Accuracy

T1 (Get Text)

T2 (Get Empty)

T3 (404 Error)

T4 (Get Image)

T5 (Get Dir List)

T6 (Post Form)

T7 (Exploit)

Cycles Between Memory Samples

Pe
rc

en
t

of
 C

al
ls

 R
ep

or
te

d
C

or
re

ct
ly

Fig. 5. Call stack introspection accuracy for Nullhttpd as a function of the
number of machine cycles between memory samples. The reference line at
3200 corresponds to current hardware. On all tests sampling every 1200 cycles
yields perfect accuracy.

Page 1

0 4000 8000 12000 16000 20000 24000
0

10

20

30

40

50

60

70

80

90

100

Wuftpd Call Stack Introspection Accuracy

T1 (chdir)

T2 (get text)

T3 (get binary)

T4 (site exec)

T5 (bad login)

T6 (exploit)

Cycles Between Memory Samples

Pe
rc

en
t

of
 C

al
ls

 R
ep

or
te

d
C

or
re

ct
ly

Fig. 6. Call stack introspection accuracy for Wuftpd as a function of the
number of machine cycles between memory samples. The reference line at
3200 corresponds to current hardware. On all tests sampling every 4800 cycles
yields perfect accuracy.

Our ground truth answer is equivalent to having a full mem-
ory snapshot available at every cycle. That is, a ground truth
dynamic stack trace corresponds to 100% of the function calls
that were invoked or returned from during that execution. For
this experiment, we consider function calls only in userspace
(e.g., program functions like main and library functions like
printf are included, but actions taken by the kernel on behalf
of system calls like write are not).

The metric used for this experiment is the number of
function calls missed in our output stack trace that were present
in the ground truth stack trace. For example, if the ground truth
sample contains 〈(1, f1), (2, f1 → f2), (3, f1 → f2 → f3)〉
and we sample at cycles 1, 3, 5, . . . , then our approach would
report a stack trace missing the call to f2 at t = 2. Our
metric counts the total number of such omissions. Because
the stack trace length differs among test cases and programs,
we normalize this value to 100%. Thus, a stack trace identical
to the ground truth corresponds to an accuracy of 100% while
the example above missing program behavior at t = 2 has an
accuracy of 66%. In other words, the final value we report
is f−m

f , where m is the number of misses and f is the
number of function calls in the ground truth data. While
other evaluation metrics are possible for dynamic stack traces
(e.g., edit distance, LCS), we prefer this metric because it is
conservative and corresponds to our algorithmic framework
(see Figure 4).

7

Figure 5 reports the results for stack trace introspection
for nullhttpd. As discussed in Section III, current PCI-e DMA
hardware can read roughly 1 million pages per second or 1
page every 3200 cycles. Thus, current hardware approximately
corresponds to 3200 cycles between memory snapshots in
these figures. Our introspection system loses accuracy when
functions execute faster than the chosen inter-sample cycle
count. Each test case causes a different execution path to be
taken, thus explaining the difference in results between test
cases. For nullhttpd, we remain 100% accurate until the inter-
sample cycle counter reaches approximately 1800 cycles. After
this time, the accuracy steadily declines until the inter-sample
cycle count exceeds the total execution time of the program—
at that point, the accuracy is 0%. Note that with the 3200 cycle
sample rate, we observe a stack trace accuracy over 50% for
all test cases.

Figure 6 reports the accuracy for stack trace introspection
for wuftpd. This program, which contains longer-running pro-
cedures, admits perfect call stack introspection up to a sam-
pling interval of 4800. With available PCI-e DMA hardware,
HOPS would report 100% accurate stack traces for all test
cases. For such programs and workloads, a faster sampling
rate (i.e., a smaller inter-cycle rate) may allow for even greater
introspection transparency.

D. RQ3 — Human Study

We conducted a human study to measure how helpful
or informative HOPS is to humans in practice. The study
involved 30 participants (24 undergraduate and 6 graduate
students). Each participant was shown 23 snippets of code
and corresponding debugging output from either HOPS or
gdb, and then asked a debugging question. Each question was
randomly selected from a pool of three questions (HSQ1–3 in
Section IV-9). We measured the accuracy of each participant
on each question as well as the time taken to answer each
question. We calculate accuracy by manually grading each
participant’s responses: each answer given by each participant
is assigned a score from 0.0 to 1.0. For HSQ1 and HSQ3, the
correct answer may consist of multiple parts (e.g., multiple
conditions may be required to reach a particular line of code).
For these cases, the participant’s score is the fraction of
correctly identified conditions or variables. For HSQ2, the
participant’s score is either 0 or 1.

We divide our human study results into two groups: the
gdb group (control) and the HOPS group (treatment). We
find that the control and treatment groups answered questions
with an average accuracy of 59.2% and 68.0%, respectively2.
The HOPS treatment group is at least as accurate as the
control group with statistical significance (p < .01 using
the Wilcoxon rank-sum test). Additionally, the control group
took an average of 105±6.4 seconds to answer each question
while the treatment group took an average of 118±8.2 seconds
on each question. Differences in timing were not statistically
significant.

Because humans are at least as accurate using HOPS
when answering indicative software maintenance questions, we
conclude that HOPS could usefully support standard software

2Human study materials and anonymized responses are available at
http://church.cs.virginia.edu/hops-materials/all.tar.gz.

TABLE III. LIST OF ARTIFACTS USED BY PAFISH.

Method or Artifact HOPS Success
Debuggers
IsDebuggerPresent 7
CheckRemoteDebuggerPresent 7
OutputDebugString X

General Sandboxes
GetCursorPos X
GetUserName 7
GetModuleFileName X
Disk legitimacy X
Disk size X
GetTickCount X

QEMU Registry Keys
Device names X
BiosVersion X

Sandboxie
sbiedll.dll 7

VirtualBox
Registry information X
Drivers X
MAC Address X
Window 7
Processes X

VMWare
Device names X
VMWare Tools X
Drivers X

Wine
kernel32.dll features X

Hooking
various n/a

maintenance analysis tasks. We do not claim that HOPS is
generally better than gdb—indeed, gdb has many features,
such as changing variable values or poking memory, that HOPS
does not support. However, HOPS is transparent, allowing it to
be used in heisenbug or security-analysis tasks where gdb is
inapplicable. Previously, developers had little to no information
in such situations; HOPS transparently provides information
that is accurate enough to usefully support analysis tasks.

E. RQ4 — Pafish Case Study

This case study evaluates the utility of the information
provided by our approach in assessing the artifacts inspected
by VM-aware malware. We manually annotated pafish to
collect ground truth data, as in RQ1 and RQ2.

Pafish is an open-source program for Windows that essen-
tially runs through a list of checks to determine if various
debuggers, emulators, or virtualization techniques are being
employed by the system. For each check, the program reports
whether or not the associated artifact was found.

Pafish is particularly useful in evaluating HOPS because 1)
it is is amenable to complete ground-truth annotation (unlike
a “wild” malware sample, for which we could entirely miss a
stealthy check and thus have false negatives) and 2) it helps
answer RQ4 in a general manner (because it contains a large
number of indicative artifact checks), which ultimately gives
confidence that our tool applies to our considered use cases.

8

Using HOPS, we can introspect visible variables and dy-
namic stack traces as in RQ1 and RQ2. We consider the ques-
tion: “are the variables and stack traces values that HOPS re-
ports accurate enough to conclude which anti-debugging tech-
niques pafish is employing?” While analyst skill plays a role in
such tasks, for this evaluation we used a conservative criterion,
indicating success only for cases in which variables and
function calls directly implicating the artifact were introspected
correctly. For example, calling the OutputDebugString
method in Windows would cause an error if a debugger is not
attached. HOPS reports the call to OutputDebugString
(ultimately culminating in a write-like system call), as well
as its parameter (a stack variable in RQ1). From this, an
analyst could accurately determine the artifact being employed
in this scenario (i.e., OutputDebugString’s conditional
behavior).

Table III summarizes which of the 22 artifacts considered
by pafish can be detected with our stack tracing and variable
introspection technique. A X indicates that an analyst could
use introspection information from HOPS to determine that
pafish is using the given anti-analysis method or artifact.
A 7 indicates that perfect variable or stack trace introspection
information would allow the analyst to determine that the given
anti-analysis method is being used, but in practice HOPS does
not provide accurate information about the relevant variables
or stack frames (i.e., we cannot sample quickly enough with
current hardware). For example, the IsDebuggerPresent
API call is very fast. As a result, our current sampling rate
is too coarse to capture the calls to this function. In fact, all
five of the failing cases result from too coarse a sampling rate.
In these situations, HOPS could acquire accurate stack traces,
and thus implicate the artifacts, with a faster sampling rate
(i.e., improved hardware). Finally, some methods or artifacts
are beyond the scope of our technique. For instance, checking
for hooked functions does not require calling any functions
at all (instead, it scans virtual addresses of API functions
for particular signatures, using values in registers). However,
HOPS requires activation records created by function calls or
variables stored in memory, so even with perfect memory
introspection accuracy, HOPS could not reveal such artifact
usage. We refer to these types of artifacts as being not
applicable to our approach and denote them with an “n/a” in
Table III.

Overall, Table III shows that we can accurately discern
when pafish attempts to use 16 of the 22 artifacts in its
suite. That is, for these 16 artifacts, our technique can be
applied to provide useful information to an analyst who can
conclude that a specific artifact was used. As an example,
Pafish uses the GetCursorPos API call to determine the
position of the mouse cursor. It calls this twice and concludes
it is being analyzed if the mouse does not move at all after 2
seconds. Figure 7 shows a run of our system against pafish.
We elide other function calls and focus specifically on the
code near its use of GetCursorPos. We show that HOPS
allows an analyst to see the calls to GetCursorPos and
Sleep (samples 2, 3, and 4 in the Figure). At these points, we
can also correctly introspect the values of the stack allocated
variables p1 and p2, which are pointers to POINT structures
with x and y fields that correspond to the cursor’s position. In
summary, our system permits the analyst to see 1) the stack
trace including the two GetCursorPos invocations, and 2) the

Pafish Stack Trace

S
ta

ck
T

ra
ce

Time t (cycles)
Sample x

main

0

... main

gs m a

12821779
1

main

gs m a

GCP

13089882
2

main

gs m a

Sleep

14157321
3

main

gs m a

GCP

3879031005
4

Code around sample 1

t = ... int gensandbox mouse act(){
12821779 POINT p1, p2;
13089882 GetCursorPos(&p1);
14157321 Sleep(2000);
3879031005 GetCursorPos(&p2);

if (p1.x==p2.x && ...)
traced("found");

else
3879559528 nottraced("not found");

Fig. 7. Stack trace gathered against pafish, specifically focused on the
GetCursorPos artifact. The top of the figure shows the stack trace acquired
by HOPS over time as a function of CPU clock cycles. At the bottom, the
source code is annotated by the timestamp at which the line runs. At these
points of time, we are capable of acquiring the values of structures p1 and
p2. The traced line is never executed during this run because the mouse
was moved.

variables in which the cursor’s x and y positions are stored.
This information implicates the exact artifact used (i.e., lack
of mouse movement over time).

F. Evaluation Conclusions

This evaluation of our system against three programs (i.e.,
nullhttpd, wuftpd, and pafish) provides promising results in
terms of accuracy and is indicative for the types of programs
and workloads in our use cases. Our empirical results measure
the tradeoff between introspection accuracy and transparency
(sampling rate) for our low-artifact analysis technique. Es-
sentially, HOPS constructs meaningful debugging information
(variables and stack traces) from raw memory dumps provided
via low artifact hardware (e.g., via PCI-e DMA). Recall
that the ultimate goal of this system is to assist program
analysis, whether for software maintenance, manual analysis or
automated triage. In this regard, HOPS is 84% accurate over all
variables and test cases considered (cf. Table II, but note that
there are more globals and stack-allocated variables than local
variables). Third, in a human study involving 30 participants,
information provided by HOPS was no worse than information
provided by gdb when supporting debugging questions with
statistical significance. Lastly, we again demonstrate that HOPS
is useful in practice by testing it against pafish, an open-source
artifact detection platform. HOPS is capable of detecting when
Pafish uses 16 out of 22 artifacts during its execution.

By implementing HOPS on two different hardware plat-
forms, we demonstrated its generalizability under multiple
hardware regimes. However, both hardware implementations
have restrictions in terms of transparency. First, using SMM-
based introspection incurs high overhead (roughly 12µs to
access one page), meaning that a malware sample could mea-
sure time elapsed during execution. Secondly, SlotScreamer
potentially influences performance counters, which could be
measured by stealthy malware with ring 0 privilege. Similarly,

9

in systems where the PCI express bus is under high load, the
use of SlotScreamer could adversely affect throughput.

VI. RELATED WORK

There are two broad areas of work related to our technique.
The first is debugging and analysis transparency. We focus on
analysis techniques that reduce the presence of artifacts used to
subvert malware analysis. The second is process introspection
techniques. This body of work is focused on the collection and
understanding of program memory during execution.

A. Malware Analysis and Debugging

HOPS aims to aid analysis situations, such as heisenbugs or
binal samples, that do not permit traditional debugging. Many
techniques, including Ether [17], BitBlaze [42], and Anu-
bis [4], provide debugging mechanisms to assist the analysis of
malware. However, these techniques all rely on some manner
of virtualization (or virtualization extensions like Intel VT).
In contrast, we trade some confidence in analysis accuracy to
achieve a higher level of transparency.

Several research projects have also begun to address the
notion of transparency. V2E [49] combines Ether with more
software emulation to replay malware execution, allowing an
analyst to replay execution. However, V2E can be detected as
it depends on virtualization. Additionally, its introduction of
software emulation to support recording also causes significant
slowdown—this adds to the problem of external timing attacks.
SPIDER [16] implements invisible breakpoints using page
table tricks. However, SPIDER depends on virtualization as
well. Several studies have discovered these techniques [13],
[35], [36], [40].

Aside from virtualization used in debugging, there are also
explicit debuggers popular among malware analysts. For in-
stance, IDA Pro [24] and OllyDbg [51] are popular debuggers
that run alongside malware samples. DynamoRIO [10] uses
process virtualization that executes on the OS and admits
user-built dynamic instrumentation tools. These options require
running software inside the target OS, which is easily detected
by malware. In contrast, the proposed use of HOPS does not
add any software to the target system.

In recent years, Intel’s System Management Mode (SMM)
has appeared in the security literature. SPECTRE [52] uses
SMM to introspect processes on live systems, successfully de-
tecting malware. Similarly, MALT [53] uses SMM to provide
interactive debugging remotely, though it did not address intro-
specting application-level software. SMM has also been used
for system memory acquisition for forensic analysis [37], [47].
These techniques are quite similar to HOPS in their ultimate
goal. However, SMM-based techniques are not generalizable
beyond x86 and suffer from external timing attacks due to
significant performance overhead.

B. Process Introspection

Jain et al. [26] summarize numerous techniques for in-
trospecting VMs and bridging the semantic gap, including
process implanting [23] and process out-grafting [45]. Process
implanting injects a process into the guest VM, relaying
semantic information back to the hypervisor. This produces a

potentially-obvious artifact for malware to observe (in addition
to the VM framework itself). Process out-grafting attempts to
address this problem by instead creating two VMs, one which
runs the malware and one which runs an implanted process.
This better prevents the implanted process from causing no-
ticeable software artifacts at the expense of overhead.

Numerous projects have studied Virtual Machine Intro-
spection [18], [22], [27], [29]. Such techniques focus on
reconstructing semantic information about the guest kernel.
This differs from HOPS in that we are looking at a single
process for the purpose of understanding potential malicious
or stealthy behavior. Additionally, VMI techniques rely on
virtualization, again introducing artifacts that can be used to
subvert the analysis.

VII. CONCLUSIONS

Many software systems, from embedded devices to virtual-
ization to security, cannot make use of standard debuggers. The
act of analyzing a system can change that system, leading to
heisenbugs in benign software and admitting anti-analysis by
stealthy malware. We thus focus on zero-overhead approaches
that leave no artifacts or traces that a program could use
to behave differently when analyzed. We propose HOPS, an
approach to program introspection that infers and reports
variable values and dynamic stack traces from hardware-
provided memory snapshots. Our approach is based on two
key observations. First, it is possible, using existing hardware,
to log snapshots of memory pages with low to no overhead.
Second, it is possible to bridge the semantic gap between raw
memory snapshots and software semantics using a combination
of program analysis, operating system, and security techniques.

Our approach formulates hypotheses about the locations
of variables and stack frames, allowing analysts to introspect
malicious and non-malicious programs. In our experiments,
HOPS was 84% accurate, overall, at reporting the values of lo-
cal, stack-allocated, and global variables. We also implemented
HOPS using x86-based System Management Mode and PCIe-
based SlotScreamer hardware to test our hypotheses on real
hardware. In addition, it was over 50% accurate at reporting
entire dynamic stack traces using conservative memory timings
associated with available hardware. Third, in a human study
involving 30 participants with statistical significance, HOPS
was no worse than gdb at supporting the analysis of standard
maintenance questions. Finally, we examined 22 methods or
artifacts that can be used by stealthy malware to detect analysis
and observed that the introspection information provided by
HOPS was sufficient to reveal 16 of 22 artifacts used by pafish
(and could reveal 5 more with faster hardware). Overall, we
see HOPS as an effective first step towards transparent process
introspection.

VIII. ACKNOWLEDGMENTS

This work was sponsored by the Assistance Secretary of
Defense for Research and Engineering under Air Force Con-
tracts #FA8721-05-C-0002 and #FA8750-15-2-0075 as well as
the National Science Foundation under grants CCF0954024
and CCF1116289. Opinions, interpretations, conclusions and
recommendations are those of the authors and are not neces-
sarily endorsed by the United States Government.

10

REFERENCES

[1] “CVE-2000-0573: Format string vulnerability,” https://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2000-0573, 2000.

[2] “CVE-2002-1496: Heap-based buffer overflow,” https://web.nvd.nist.
gov/view/vuln/detail?vulnId=CVE-2002-1496, 2002.

[3] Altera Corporation, “PCI Express High Performance Reference De-
sign,” http://www.altera.com/literature/an/an456.pdf, 2014.

[4] Anubis, “Analyzing unknown binaries,” http://anubis.iseclab.org.
[5] M. Auty, A. Case, M. Cohen, B. Dolan-Gavitt, M. H. Ligh, J. Levy, and

A. Walters. Volatility framework - volatile memory extraction utility
framework. [Online]. Available: http://www.volatilityfoundation.org/

[6] E. Bachaalany, “Detect if your program is running inside
a Virtual Machine,” http://www.codeproject.com/Articles/9823/
Detect-if-your-program-is-running-inside-a-Virtual.

[7] S. Biedermann and J. Szefer, “Systemwall: An isolated firewall us-
ing hardware-based memory introspection,” in Information Security.
Springer, 2014, pp. 273–290.

[8] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security. ACM, 2011, pp. 30–40.

[9] R. Branco, G. Barbosa, and P. Neto, “Scientific but Not Academical
Overview of Malware Anti-Debugging, Anti-Disassembly and Anti-VM
Technologies,” in Black Hat, 2012.

[10] D. Bruening, Q. Zhao, and S. Amarasinghe, “Transparent dynamic
instrumentation,” in Proceedings of the 8th ACM SIGPLAN/SIGOPS
Conference on Virtual Execution Environments (VEE’12), 2012.

[11] B. D. Carrier and J. Grand, “A hardware-based memory acquisition
procedure for digital investigations,” Digital Investigation, vol. 1, no. 1,
pp. 50–60, 2004.

[12] checkvm: Scoopy doo, http://www.trapkit.de/research/vmm/scoopydoo/
scoopy doo.htm.

[13] X. Chen, J. Andersen, Z. Mao, M. Bailey, and J. Nazario, “Towards
an understanding of anti-virtualization and anti-debugging behavior in
modern malware,” in Proceedings of the 38th Annual IEEE Interna-
tional Conference on Dependable Systems and Networks (DSN ’08),
2008.

[14] Y. Chen, Y. Wang, Y. Ha, M. R. Felipe, S. Ren, and K. M. M. Aung,
“saes: A high throughput and low latency secure cloud storage with
pipelined dma based pcie interface,” in Field-Programmable Technology
(FPT), 2013 International Conference on. IEEE, 2013, pp. 374–377.

[15] DARPA, “Transparent Computing BAA,” http://www.darpa.mil/Our
Work/I2O/Programs/Transparent Computing.aspx, 2014.

[16] Z. Deng, X. Zhang, and D. Xu, “Spider: Stealthy binary program instru-
mentation and debugging via hardware virtualization,” in Proceedings
of the Annual Computer Security Applications Conference (ACSAC’13),
2013.

[17] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware analysis
via hardware virtualization extensions,” in Proceedings of the 15th ACM
Conference on Computer and Communications Security (CCS ’08),
2008.

[18] B. Dolan-Gavitt, T. Leek, J. Hodosh, and W. Lee, “Tappan zee (north)
bridge: mining memory accesses for introspection,” in Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 2013, pp. 839–850.

[19] N. Falliere, “Windows anti-debug reference,” http://www.symantec.
com/connect/articles/windows-anti-debug-reference, 2010.

[20] J. FitzPatrick and M. Crabill, “NSA Playset: PCIE,” in DEFCON 22,
2014.

[21] Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch
maintainability,” in Proceedings of the 2012 International Symposium
on Software Testing and Analysis. ACM, 2012, pp. 177–187.

[22] Y. Fu and Z. Lin, “Space Traveling across VM: Automatically Bridging
the Semantic Gap in Virtual Machine Introspection via Online Kernel
Data Redirection,” in Proceedings of the 33rd IEEE Symposium on
Security and Privacy (S&P’12), 2012.

[23] Z. Gu, Z. Deng, D. Xu, and X. Jiang, “Process implanting: A new active
introspection framework for virtualization,” in Reliable Distributed

Systems (SRDS), 2011 30th IEEE Symposium on. IEEE, 2011, pp.
147–156.

[24] IDA Pro, www.hex-rays.com/products/ida/.

[25] Intel, “Intel R© 64 and IA-32 Architectures Software Developer’s
Manual.” [Online]. Available: http://www.intel.com/content/www/us/
en/processors/architectures-software-developer-manuals.html

[26] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion, “Sok:
Introspections on trust and the semantic gap,” in Security and Privacy
(SP), 2014 IEEE Symposium on. IEEE, 2014, pp. 605–620.

[27] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through
VMM-based out-of-the-box semantic view reconstruction,” in Proceed-
ings of the 14th ACM Conference on Computer and Communications
Security (CCS’07), 2007.

[28] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” Software Engineering,
IEEE Transactions on, vol. 38, no. 1, pp. 54–72, 2012.

[29] T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtuoso: Narrowing the
Semantic Gap in Virtual Machine Introspection,” in Proceedings of the
32nd IEEE Symposium on Security and Privacy (S&P’11), 2011.

[30] C. Maartmann-Moe, “Inception,” http://github.com/carmaa/inception,
2015.

[31] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “Cil: Intermedi-
ate language and tools for analysis and transformation of c programs,”
in Compiler Construction. Springer, 2002, pp. 213–228.

[32] B. D. Payne. Libvmi: Simplified virtual machine introspection.
[Online]. Available: https://github.com/bdpayne/libvmi

[33] C. E. Pitts, “Parallel processing support: so what is a ”heisenbug”
anyway?” in Proceedings of the 17th Annual ACM SIGUCCS
Conference on User Services, Bethesda, Maryland, USA, 1989, 1989,
pp. 237–242. [Online]. Available: http://doi.acm.org/10.1145/73760.
73799

[34] M. Prandini and M. Ramilli, “Return-oriented programming,” Security
& Privacy, IEEE, vol. 10, no. 6, pp. 84–87, 2012.

[35] A. Quist and V. Smith, “Detecting the Presence of Virtual Machines
Using the Local Data Table,” http://www.offensivecomputing.net/.

[36] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting system emulators,”
in Information Security. Springer Berlin Heidelberg, 2007.

[37] A. Reina, A. Fattori, A. Pagani, L. Cavallaro, and D. Bruschi, “When
Hardware Meets Software: A Bulletproof Solution to Forensic Memory
Acquisition,” in Proceedings of the Annual Computer Security Appli-
cations Conference (ACSAC’12), 2012.

[38] S. P. Reiss, “Trace-based debugging,” in Proceedings of the First
International Workshop on Automated and Algorithmic Debugging,
ser. AADEBUG ’93. London, UK, UK: Springer-Verlag, 1993,
pp. 305–314. [Online]. Available: http://dl.acm.org/citation.cfm?id=
646902.710203

[39] K. Rosenfeld and R. Karri, “Attacks and defenses for JTAG,” IEEE
Design & Test of Computers, vol. 27, no. 1, pp. 36–47, 2010. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/MDT.2010.9

[40] J. Rutkowska, “Red Pill,” http://www.ouah.org/Red Pill.html.

[41] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers
ask during software evolution tasks,” in Proceedings of the 14th
ACM SIGSOFT international symposium on Foundations of software
engineering. ACM, 2006, pp. 23–34.

[42] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A new approach
to computer security via binary analysis,” in Proceedings of the 4th
International Conference on Information Systems Security (ICISS’08),
2008.

[43] T. I. Sookoor, T. W. Hnat, P. Hooimeijer, W. Weimer, and
K. Whitehouse, “Macrodebugging: global views of distributed program
execution,” in Proceedings of the 7th International Conference
on Embedded Networked Sensor Systems, SenSys 2009, Berkeley,
California, USA, November 4-6, 2009, 2009, pp. 141–154. [Online].
Available: http://doi.acm.org/10.1145/1644038.1644053

[44] C. Spensky, H. Hu, and K. Leach., “LO-PHI: Low Observable Physical
Host Instrumentation,” in Proceedings of 2016 Network and Distributed
System Security Symposium (NDSS’16), 2016.

11

[45] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu, “Process out-grafting:
An efficient ‘Out-of-VM’ approach for fine-grained process execution
monitoring,” in Proceedings of the 18th ACM Conference on Computer
and Communications Security (CCS’11), 2011.

[46] J. Stüttgen and M. Cohen, “Anti-forensic resilient memory acquisition,”
Digital Investigation, vol. 10, pp. S105–S115, 2013.

[47] J. Wang, F. Zhang, K. Sun, and A. Stavrou, “Firmware-assisted memory
acquisition and analysis tools for digital forensic,” in Proceedings of
the 6th International Workshop on Systematic Approaches to Digital
Forensic Engineering (SADFE ’11), 2011.

[48] Y. Wang, H. Patil, C. Pereira, G. Lueck, R. Gupta, and I. Neamtiu,
“Drdebug: Deterministic replay based cyclic debugging with dynamic
slicing,” in 12th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, CGO ’14, Orlando, FL,
USA, February 15-19, 2014, 2014, p. 98. [Online]. Available:
http://doi.acm.org/10.1145/2544137.2544152

[49] L.-K. Yan, M. Jayachandra, M. Zhang, and H. Yin, “V2E:
Combining hardware virtualization and software emulation for

transparent and extensible malware analysis,” in Proceedings of
the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments (VEE’12), 2012. [Online]. Available: http://doi.acm.org/
10.1145/2151024.2151053

[50] P. Yu, L. Bo, L. Datong, and P. Xiyuan, “A high speed dma transaction
method for pci express devices,” in Testing and Diagnosis, 2009. ICTD
2009. IEEE Circuits and Systems International Conference on. IEEE,
2009, pp. 1–4.

[51] O. Yuschuk, “OllyDbg,” www.ollydbg.de.
[52] F. Zhang, K. Leach, K. Sun, and A. Stavrou, “SPECTRE: A De-

pendable Introspection Framework via System Management Mode,” in
Proceedings of the 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN’13), 2013.

[53] F. Zhang, K. Leach, H. Wang, A. Stavrou, and K. Sun, “Using hardware
features for increased debugging transparency,” in Proceedings of the
36th IEEE Symposium on Security and Privacy, 2015.

12

