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Abstract

Protecting system observability records (logs) from compromised
OSs has gained significant traction in recent times, with several
note-worthy approaches proposed. Unfortunately, none of the pro-
posed approaches achieve high performance with tiny log protec-
tion delays. They also leverage risky environments for protection
(e.g., many use general-purpose hypervisors or TrustZone, which
have large TCB and attack surfaces). HITCHHIKER is an attempt
to rectify this problem. The system is designed to ensure (a) in-
memory protection of batched logs within a short and configurable
real-time deadline by efficient hardware permission switching, and
(b) an end-to-end high-assurance environment built upon hard-
ware protection primitives with debloating strategies for secure log
protection, persistence, and management. Security evaluations and
validations show that HrTcHHIKER reduces log protection delay by
93.3-99.3% compared to the state-of-the-art, while reducing TCB
by 9.4-26.9X. Performance evaluations show HiTcHHIKER incurs a
geometric mean of less than 6% overhead on diverse real-world pro-
grams, improving on the state-of-the-art approach by 61.9-77.5%.
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1 Introduction

System observability is the capability achieved by logging sensitive
activities across different system layers, including the operating
system (OS) [75], network [114], and applications [66]. In modern
enterprises, logs provide invaluable insights into attacks for post-
mortem investigations: a report notes that 75% of analysts find logs
to be the most valuable forensic investigation asset [11].

Attackers are well aware of the importance of logs, and thus
intentionally destroy or tamper with logs to hide their footprints in
victim computers [12]. They typically achieve this after escalating
privilege into the OS [12]—a realistic threat given the complex and
buggy codebase of commodity kernels [57, 83].

To counter log tampering and ensure attack investigations, sev-
eral systems have been proposed to protect logs against a com-
promised OS. They provide tamper-evident log hashes [68, 73, 88,
89, 97], or preserve both integrity and availability [39, 40, 56, 62]
of the logs before system compromise. While these systems take
significant strides towards system observability protection, they
still have the following limitations (§3).
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o Risky protection environments with large TCB and attack surfaces.
In-memory protection solutions [56, 62, 97] employ general-
purpose privileged components (e.g., hypervisors with guest vir-
tual machines, or TrustZone with secure OSs) to isolate host
memory and manage logs. These full-fledged components main-
tain bloated interfaces to support their feature-rich clients (vir-
tual machines or trusted applications), which are not directly
required by log protection. As such, their redundant interfaces
bring notorious attack surfaces [48, 51, 98].

Significant synchronization slowdowns in I/O intensive workloads.
For those in-host-memory protection systems [40, 62, 97], as soon
as each log is generated, it is copied to the isolated privileged
memory to be managed and finally persisted (onto a protected
disk). Considering the high log throughput under realistic work-
loads within different layers of logging sources—applications,
system calls, and network, our evaluation shows that this incurs
up to a 52.6% slowdown. This overhead is considerable given the
tight budget of production systems.

Large exposure protection time windows for log tampering attacks.
Alternative solutions [39, 76, 95] batch logs in the untrusted host
memory, and periodically protect logs by transferring them into
an external local tamper-proof device or remote storage. Their
inherent I/O latency exposes a large protection window, during
which logs remain vulnerable in host memory, with the best case
being 15ms [39]. Our study shows that proof-of-concept (PoC)
kernel exploits (not specifically designed for speed) can tamper
with all logs within exposed windows.

In this work, we present HrTcHHIKER. HITCHHIKER is an observ-
ability protection system built on two key design principles (§4)
that overcomes aforementioned prior work limitations.

To ensure logs are maintained in a high-assurance in-memory
environment, HITcHHIKER takes a first principles approach to en-
vironment design (§4.1). In particular, only components directly
required for log protection are included, and large software compo-
nents are debloated to minimize TCB and attack surface. Addition-
ally, the task of remote log management is delegated to a protected
process under the native OS. The combination of these strategies
reduces HriTcHHIKER’s TCB by 9.4-26.9X compared to prior work,
and helps build a significantly less vulnerable system.

To achieve high performance while protecting against tampering
attacks, HITCHHIKER ensures that logs are protected in memory
asynchronously but within a short, configurable real-time dead-
line (§4.2). In-memory protection is further sped up by using hard-
ware memory permission switching primitives, instead of mem-
ory copies. HITCHHIKER achieves a protection deadline between
1.015ms and 100.12pus, 93.3-99.3% lower than I/O-based asynchro-
nous systems. Under such settings, the system reduced performance
overhead by 61.9 — 77.5% compared to existing work.

There are three challenges towards HITcHHIKER’s design based
on the aforementioned principles (§5). First, it is unclear how to de-
sign the high-assurance environment without significant hardware
or software porting and deployment effort. Second, it is challenging
to enforce real-time configurable protection deadlines on a system
that produces logs at different layers, especially when an attacker
may possess unprivileged access before OS compromise. The third
is to natively delegate the log management process execution to an
untrusted OS, with the notion of assured correctness.
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HrrcHHIKER leverages platform-available hardware protection
primitives [5, 7, 36] as the building blocks to maintain its secure en-
vironment. Automatic debloating techniques [63, 104] are employed
to port software components essential for log availability. Addition-
ally, unmodified native processes with attestation philosophies [85]
are adopted, minimizing software redesign efforts (§5.1).

To enforce short, configurable protection deadlines, HrTcHHIKER
unifies logs produced at different layers into its kernel buffers. There,
HritcHHIKER leverages a precise hardware timer for log protection—
using real-time memory permission switches—that is isolated from
extra delays that a non-privileged attacker may induce. All pro-
tected logs are eventually, yet assuredly, persisted to disk (§5.2).

HiTcHHIKER secures native log management process by memory
view and execution context enforcement. The process’s memory
permissions are restricted from the untrusted OS, while system calls
are secured through transparent context switch interposition. The
integrity of remote tasks is further ensured by end-to-end secure
channels and provisioned cryptographic secrets (§5.3).

We implemented the prototype of HrrcHHIKER on an ARM ma-
chine (§6). Both the Stage-2 Page Table (S2PT [7]) and the Granule
Protection Table (GPT [17]) are implemented as the memory per-
mission primitive for log protection, respectively. Observability logs
are generated using the extended-Aqua Tracee [2] with eBPF [9], a
widely-used technique for security observability auditing [87]. We
will release the artifact of our implementation prototype [13].

Using our prototype, we analyzed and evaluated HITcHHIKER’s
log protection guarantees (§7). Worst-case stress testing shows
HrTcHHIKER guarantees a 1.015ms to 100.13us protection dead-
line, which is 93.3% to 99.3% lower than the state-of-the-art asyn-
chronous protection [39]. Under our most powerful tested attack,
HrrcHHIKER protected the vast majority of the log traces (>97%)
even configured with its most relaxed deadline. Importantly, all lost
logs were for the last step (kernel module loading), while all logs
related to exploitation and escalation were always saved.

We evaluated HITcHHIKER's performance (§8) with both micro-
benchmarks and commonly used real-world programs. Experimen-
tal results show that HITcHHIKER introduces a geometric mean
overhead of 1.8% for log-sparse and 9.9% for log-intensive pro-
grams (6% cumulative geometric mean). The overhead is up to
77.5% and 61.9% lower than the state-of-the-art protection system
under log-sparse and intensive programs, respectively. This shows
that HrTcHHIKER can be readily deployed today to achieve high
performance and secure log protection in enterprise computers.

2 Background
2.1 System Observability

Observability logs provide visibility into enterprise computer’s se-
curity posture, and are captured by Security Information and Event
Management (SIEM) from the industry [8, 11] and academia [54,
106]. Based on standard security practices [21], we consider three
main sources (or layers) of logs: (a) application logs for program ex-
ecution semantics [66], (b) audit logs for OS system call events [75],
and (c) network logs for network traffic surveillance [54].

As common in both widely-deployed available software [2, 9, 30]
and the literature [82, 91, 92], there are three main components in
a conventional observability log collection stack (Fig. 1a).
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Figure 1: Overviews of (a) conventional observability systems and (b-d) observability protection systems (O : trusted components).

First, an in-kernel log generator is to capture system events and
generate logs. Given the kernel’s privileged ability to oversee and
control the entire system [9], events among different layers can
be captured by various probes (e.g., Linux Kprobe and Tracepoint).
Second, a userspace log daemon is to manage logs. Once captured,
logs are transmitted from the kernel to the user daemon to support
log management tasks (e.g., filter, query, and remote retrieval). Last,
a storage device finally keeps all logs persistent locally.

2.2 Threat Model and Assumptions

Like recent work in log protection [39, 62, 68, 88, 89], we assume
the enterprise host system is initially benign, but a non-privileged
remote adversary starts to attack it at time ;. The adversary ex-
ploits software and kernel vulnerabilities in the host system to (a)
circumvent the common defenses (e.g., ASLR, DEP, and stack ca-
naries) and (b) compromise the full system at time f.. Being aware
of mechanisms of the system observability, the adversary attempts
to tamper with the logs in kernel memory or on storage, striving
to hide the attack footprints (i.e., logs between ¢ and t.) [15].

Before t., the observability log generator is honestly deployed
inside the OS to capture logs. Thus, all logs are initially generated
and maintained correctly. For instance, the attacker cannot trick the
OS into corrupting logging mechanisms in applications before .
Post OS compromise (after #.), adversaries gain full system control.
Hence, logs after t. are worthless for forensic analysis [39, 62].

Assumptions. We make standard assumptions that enterprise
parties (OS vendors and administrators), computer hardware, and
firmware (e.g., UEFI) are trustworthy. In addition, cryptographic
protocols and key management schemes work correctly. Moreover,
we assume the secure boot protocol is trustworthy for authenti-
cating system configurations, ensuring the system is always be-
nign initially. We finally assume only forensics-critical logs (in §2.1)
should be protected, as they are the primary targets of the adver-
saries. System display messages, such as dmesg [14], are out of
scope. Regardless, the administrator can configure the observability
generator to specify what logs to be protected (§6).

3 Motivation

3.1 Observability Protection

An observability protection system is deployed to shield both log
integrity and availability. In general, there are two main aspects to
the observability log (from any sources) protection.
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Table 1: The percentage of discovered vulnerabilities in
general-purpose system components and interfaces [47, 48,
51, 98] used by prior in-memory log protection systems.

Hypervisor (virtual machine manager) TrustZone
VM memory| CPU Code Device | Trusted| TZ |TZ memory
manage. |virtualiz. | emulation| I/O Apps. |kernel| manage.
25.7% 21.5% 13.2% 9% 33.2% 27.8% 17.1%

First, a log protection scheme determines when to shield logs from
the untrusted OS after their generation. This can be synchronous or
asynchronous. In the former case, each log is secured immediately
after generation (i.e., blocking a syscall until its corresponding log
entry is protected). In the latter case, logs are batched in the OS
memory after generation and periodically protected.

Second, a secure log environment is required to safely hold and
manage logs in a persistent manner. This environment is either a
combination of a secure in-memory environment and a protected
disk, or only a secure disk (e.g., remote storage).

Existing solutions. In terms of synchronous log protection, Om-
niLog [62] is the state-of-the-art system (Fig. 1b). It blocks the
system and synchronizes the log by copying it to a privileged host
system layer, a so-called security monitor. The high I/O latency
makes it impractical to directly store each log entry synchronously
to disk. Hence, OmniLog constructs an in-memory secure environ-
ment based on its security monitor (i.e., the hypervisor and ARM
TrustZone). Logs are kept in this environment before being eventu-
ally written to a protected disk. Other solutions [56, 97] follow a
similar approach to building a secure environment.

Alternatively, solutions [39, 95] asynchronously protect logs
by using write-once-read-many (WORM) or custom device. Due to
inherent I/O latencies, such systems are forced to use asynchronous
protection. In this regard, HardLog [39] (Fig. 1c) is the state-of-the-
art. It batches logs in OS memory and periodically sends them to a
custom audit device, which stores logs from the host. Such audit
devices also support secure log management tasks, like remote
retrieval. Besides that, some asynchronous systems also batch and
transmit logs to a network storage server [76, 102].

3.2 Limitations of Current Protection Solutions

L1: Risky environments with large TCB and attack surface.
Prior work [56, 62, 97] adopts the hypervisor or TrustZone (TZ) to
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Table 2: Multi-layer observability log throughput, log capture
overhead, and synchronous log protection [62] overhead. Au-
dit Log: system call logs [30]; App. Log: application logs [66];
Net. Log: network event logs [101].

Program #Multi-layer Observability Throughput Overhead (%)
Audit Log App. Log Net.Log Total? | Native-OBS OmNILoG
Nginx 53,038 25,144 594 78,776 4.2% 15.4%
Redis 40,857 152 37,528 78,537 6.4% 52.6%
MySQL 76,228 5,151 20,583 101,962 13.8% 27%

1 Throughput (logs/second) is counted by the conventional log generator (Native-
OBS; §6) under the real-world workload detailed in Tab. 6 (§8.2).

2 Each log entry is around 256 bytes on average size.

protect logs in memory. However, their bloated interfaces enlarge
the vulnerabilities within the secure environment.

Logs are kept and managed within the trusted kernels, such as
feature-rich virtual machines or the TZ secure kernels (e.g., OP-
TEE [22]). Supporting such environments involves complex inter-
faces, such as CPU virtualization, code emulation, and TZ manage-
ment. Unfortunately, those full-fledged general-purpose interfaces
enlarge the vulnerabilities [45, 47, 98] of the secure environment.
For instance, a single vulnerability in the TZ driver interface results
in the entire secure world compromise [48].

Tab. 1 then concretely concludes the discovered vulnerabilities
within general hypervisor and TZ interfaces. Considering the severe
vulnerabilities in the hypervisor, 72.07% and 80.81% of the common
vulnerabilities and exposures (CVEs) in KVM [93] and Xen [33] can
lead to host exploitations, respectively [51]. Meanwhile, more than
65% of CVEs in TZ kernel-supported systems [48] have severe (> 7)
common vulnerability scoring system (CVSS [32]) scores.

L2: Slow synchronous protection in log intensive scenarios.
Modern computers can produce lots of observability logs when
running realistic I/O-intensive real-world programs. Under such
scenarios, synchronously protecting every produced log, even in
memory, imposes a notable slowdown.

To concretely show the slowdown, we synchronously protected
logs produced by three high-performance programs: web server
(Nginx), in-memory key-value store (Redis), and on-disk relational
database (MySQL). Programs are tested with default configurations
and benchmark settings of apachebench [1], memtier_bench [20],
and sysbench [27], respectively. We employed the synchronous
protection of OmniLog [62] (detailed setup can be found in §8).

Tab. 2 illustrates the performance impact incurred by OmniLog
and the conventional observability generator (Native-OBS), which
stores logs within the kernel’s memory, against native execution.
We observe that OmniLog’s synchronous protection incurs 0.9 —
7.2x more overhead than Native-OBS. Due to the high throughput
of observability logs, synchronous protection for each log requires
frequent system interruption, involving context switches to the
privileged layer (e.g., changing the protection ring in x86 or the
exception level in ARM), and copying the log to the protected
memory inside a privileged layer, which is time-consuming.

L3: Insecure I/O-based asynchronous log protection window.
Current asynchronous protection systems [39, 88, 89, 95] expose
a long time window before logs are protected to remote or local
tamper-proof storage through slow I/O operations. For instance,
the state-of-the-art, HardLog [39], provides a lengthy 15ms delay.
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Unfortunately, adversaries can exploit kernel vulnerabilities and
obtain root access within very few syscalls [23], each of which only
requires thousands of cycles, and tamper with in-kernel logs.

To understand the tampering problem, consider the DirtyP-
ipe [74] attack due to improper preservation of permissions. Given
a flaw of a simple improper PIPE_BUF_FLAG_CAN_MERGE flag in ker-
nel, the vulnerability offers adversaries the capability to quickly
rewrite arbitrary files (e.g., /etc/passwd) to escalate privileges. We
reproduced its PoC exploit to load a kernel module to delete the
logs. We found that it took within around 12ms (detailed case study
in §7.3), resulting in scenarios where all attack traces were lost
in 15ms windows. This exploit arises from a semantic bug. Unlike
common memory corruption vulnerabilities, exploiting such bugs
does not require slow object manipulation or heap spraying [83],
making them brutal and “efficient” for adversaries.

Please note that this simple example does not show that a 15ms
protection delay is insufficient to prevent logs from being tampered
with in the majority of kernel attacks. However, it does indicate
that PoC exploits (which are not designed to be fast) for common
attacks are able to allow log tampering within a 15ms protection
window. This underscores the necessity of reducing the protection
window to substantially increase the difficulty of such attacks.

4 HircHHIKER Overview

HrTcHHIKER is an efficient and high-assurance observability protec-
tion system. This section describes HITcHHIKER’s two key design
principles (§4.1-§4.2) and its system deployment model (§4.3). Given
the rising use of ARM-based computers in both enterprise machines
and cloud computing infrastructures, we use ARM as the reference
architecture of this paper. We further discuss the efforts of porting
HrtcHHIKER to support other architectures in Appendix §D [110].

4.1 High Assurance Log Environment Design

To overcome L1, HITcHHIKER protects logs in a trusted in-memory
environment that is redesiged from the ground-up by leveraging
three high-assurance strategies discussed in this section.

Fig. 1d shows HiTcHHIKER's trusted environment. It contains
a security monitor (HITcHHIKER Monitor or HKM) and a pro-
tected log daemon (HrircHHIKER Daemon or HKD). The monitor
is required to partition and configure system resources to achieve
isolation. It can be implemented in any higher privileged layer
than the OS, i.e., both the hypervisor mode (EL2 in ARM) and
system management mode (EL3 in ARM). However, HITCHHIKER
implements the monitor as an EL3 runtime service [28, 37]. This is
because EL3 can be kept small (and privileged) even in enterprise
computers that want to run virtual machines [3], since it would not
have to include the hypervisor’s TCB.

The first strategy is to implement HkM with only directly re-
quired components for log protection, namely, control over memory
and device protection primitives. Memory protection is required to
isolate trusted components (HkM and HxD) from malicious CPU
access by the OS. Device protection is required to (a) reserve a
storage disk for log availability and (b) prevent malicious attacks
from untrusted device access (i.e., DMA attacks). HKM controls
EL3-supported memory protection primitives for memory protec-
tion, while it leverages the System Memory Management Unit
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Table 3: Cost of different memory protection mechanisms.

Primitive #CPU cyclecost per log buffer size (Iess means better)

64B 256B 512B 4KB 16KB 32KB  64KB
EL3-memcpy 1,785 2,783 4,680 24,672 98978 198,776 400,903
S2PT 44822 4,482%2 44822 4,482 449 4,516 4,636
GPT 43832 4,383%2 43832 4383 4410 4398 4,490

1 CPU runs at 1.2GHz. The cost of the Secure Monitor Call (SMC) context switch
round-trip is included. Detailed system configuration is illustrated in §6.

2 S2PT and GPT’s protection granularities are at the page level. Protecting
small-sized buffers will remain at the same cost as protecting a page (4KB).

(SMMU) [62, 100] for device protection. The options of memory
protection primitives are explained in §4.2, and we describe all
implementation details regarding these features in §6.

The second strategy is to avoid large software components within
the security monitor. Specifically, a storage device driver is required
to persist logs. However, porting a commodity driver software into
HkM is undesirable—a simple Linux SATA driver has more than
10k lines of code and complex kernel dependencies [63]. Thus,
HrtcHHIKER implements a secure, minimized version (§5.1.2).

The third strategy is to ensure log management tasks (e.g., remote
retrieval) through a protected daemon process in the untrusted OS.
This avoids including trusted kernels like Linux and OP-TEE [22]
used by prior work [62, 97] into the system’s TCB. While a com-
promised OS may prevent the scheduling of the log daemon, it is
unable to alter the integrity or availability of logs, nor the integrity
of log management tasks such as retrieval (§5.1.3).

4.2 Deadline-Enforced Log Permission Switch

To overcome L2-L3, HiTcHHIKER protects logs in-memory within
short real-time deadlines set by administrators by using efficient
hardware permission switches.

In-memory protection inherently provides tighter deadlines than
1/0-based protection [39], which suffers from large device latencies
and interference from other devices. Naively, at configured dead-
lines, logs may be copied from the OS to the protected memory [62].
However, short deadlines required for security result in frequent
copying. This causes non-negligible protection overheads in sce-
narios where logs are frequently produced (e.g., up to 32% runtime
performance overhead as we show in §8.2).

Switching log buffer permissions using hardware permission
primitives can mitigate large copy overheads. To illustrate this,
Tab. 3 compares copying different sizes of log buffers to the privi-
leged monitor layer (ARM’s management mode or EL3 [3] as used
by prior work [62, 97]), against protecting them by (one of) hard-
ware permission primitives! supported by HIrcHHIKER:

« Stage-2 Page Table (S2PT), enabled by the virtualization extension,
offers a second level of MMU translation which is transparent to
the OS. It supports page-level memory access control by config-
uring the related table entry’s permission bits [7].

«+ Granule Protection Table (GPT) is an in-memory table structure
from Real Management Extension (RME) of Confidential Comput-
ing Architecture (CCA). It defines page-level physical memory’s
accessible CPU states during MMU translation [36].

TrustZone Address Space Controller (TZASC [4]) is an alternative primitive. However,

its bus-transaction-level protection granularity lacks flexibility. See Appendix §D [110]
for TZASC discussion and features on other platforms.
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We find that switching permissions on log buffers (over 4KB)
proves more efficient than log copying. Copying is bound by the
size of costly memory-intensive operations that are only efficient
for smaller buffers (less than 512B). Hardware permission switching
maintains stable costs by (a) modifying permission control registers
or data structures to alter hardware permissions and (b) invalidating
stale entries in the translation-lookaside buffer (TLB). This requires
significantly less CPU and memory operations.

4.3 System Deployment Model

We consider the same enterprise deployment model for Hrrchu-
HIKER as existing research [62]. Specifically, we consider that the
enterprise OS vendor (e.g., Microsoft, Red Hat Enterprise Linux)
will instantiate the monitor (HkM) during system boot. There is a
clear example of this in the past. Microsoft Windows 11 instantiates
a hypervisor-level monitor during boot-up (for kernel memory and
integrity protection), and also enforces firmware-level (UEFI) ex-
tensions to support this monitor [31]. We also consider that the OS
vendor will modify the logging facility to invoke HxM for log pro-
tection (§5.2) and management. The latter include minor changes to
retrieve logs remotely using the protected log daemon (HkD) and lo-
cally from audit system tools. Finally, for remote retrieval (§5.3), we
assume that the enterprise system administrator will provision cryp-
tographic keys, as is common practice for other IT administration
standards like Intel’s Active Management Technology (AMT) [10].

5 HrrcHHIKER Design

This section describes the main challenges towards HITcHHIKER’s
design, and the following sections describe how we address them.
C1: Reducing software porting and deployment efforts. Given
strict requirements to ensure high assurance, it is challenging to
design an infrastructure where these strategies are satisfied with-
out significant deployment effort (e.g., completely rebuilt storage
drivers for persistence or adapting secure log daemon).

C2: Enforcing short multi-layer log protection deadlines. Un-
like prior work that only deals with OS logs, protecting logs from
different layers, including applications and network logs, and under
the (at least unprivileged) access of an adversary, makes it challeng-
ing to enforce uniform and very short deadlines.

C3: Delegating log management to untrusted OS securely.
Any task naively delegated to the OS becomes untrustworthy after
its compromise. Since it is agnostic to administrators when the OS
is compromised, the OS can provide completely wrong responses
after compromise even without tampering with logs.

5.1 Secure Environment Software Stack

HritcHHIKER's security monitor (HKM) configures protection prim-
itives to create isolated protection domains (§5.1.1). Within the
isolated protection domain, HrTcHHIKER synthesizes a debloated
log storage device driver into HKM during offline stages (§5.1.2).
Besides the debloated log driver, the monitor maintains a process-
basedlog daemon enclave in the isolated domain by execution state
and context switch protection (§5.1.3).

5.1.1 Protection domain bootstrap and enforcement. During
initialization, HKM is loaded using secure boot (§6). It establishes
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two protection domains. For each domain, HKM defines specific
memory view permissions (Fig. 2-left).

OS domain. Untrusted components (i.e., OS and applications) are
executing within this domain. They can only access their own
memory, as well as shared memory and unprotected log buffers
(which are dynamically protected, explained in next paragraphs).
Protected domain. Trusted components (i.e., HKD and HKM) are
executing within this domain. HKD contains two threads (whose
role is explained in §5.2) and it is allowed to access all log buffers.
HkM manages its own code and data, as well as the device driver
interface (§5.1.2) and HkD’s protected execution states and page
table (§5.1.3) within the protected domain as well.

.

Depending on the hardware protection primitive, each domain’s
memory view is enforced by maintaining separate S2PTs or GPTs.
In particular, GPT configuration is as follows. In the OS domain’s
GPT, only untrusted components are marked as normal-world ac-
cessible [36]. HKD memory region is marked as none-accessible,
while HKM is marked as root-world-assessible (EL3-exclusive). When
switching to the protected domain’s GPT, HKD memory is marked
as normal-world accessible. Such a design is agnostic to the Realm
world [17] and, therefore, does not interfere with GPT’s original
functionality (i.e., supporting confidential VMs in Realm world [35]).
Configurations of S2PT are similar to GPTs—the OS domain’s S2PT
only grants access to the untrusted components, while the other
can access trusted components [69].

With enforced memory views, HKkM dynamically protects log
buffers by removing the OS domain GPT or S2PT’s access permis-
sion to buffers. CPU cores that execute in the OS domain share GPT
(or S2PT) entries in TLB [36]. As such, a synchronized memory
view is maintained for the OS domain, even though different cores
may concurrently protect log buffers (e.g., by requesting HKM to
change the OS domain’s GPT entries) at runtime (§5.2).

To switch between domains (e.g., to execute HKD or protect log
buffers), the OS executes a Secure Monitor Call (SMC [25]) to HKM.
At such calls, HKM validates the request and switches the GPT/S2PT
to perform the requested functionality (e.g., log protection). A de-
tailed list of SMC interfaces implemented by HrrcHHIKER and their
validations can be found in Tab. 11 under Appendix §B in [110].

Note that, in addition to GPT/S2PT, HkM leverages System Mem-
ory Management Unit (SMMU) to prevent DMA attacks against
the protected domain. The SMMU limits the addressable physical
memory ranges of a device [100]. SMMU configuration interfaces
(memory-mapped I/O interfaces and stream tables) are only acces-
sible by HKM within the protected domain (by aforementioned
memory permission restrictions).

5.1.2 Debloated driver synthesis and protection. HITcHHIKER
synthesizes a debloated driver prior to system bootstrap, which is
later instantiated into HKM during initialization. Driver debloating
is achieved by record-and-replay mechanisms [63, 104] for storage
drives (e.g., SATA, USB, etc), as a one-time effort.

Considering a block storage device as a finite state machine,
driver operations are distilled into a sequence of driver-device in-
teractions, each of which is a state transition. These interactions
remain consistent irrespective of variations in I/O workloads [63].
During recording, sample I/O jobs are issued to log the storage
to templatize the following interactions (detailed in §6): (1) the
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sequences and content of Memory-mapped I/O (MMIO) write oper-
ations to the log storage, (2) the allocation of direct-memory-access
(DMA) buffers for the log storage, and (3) interrupt request (IRQ)
numbers invoked by the log storage, along with the completion
status. The template is then installed into HKM.

HKM sets up and protects the driver from the template during
initialization to enable communication with the log storage disk. In
particular, the driver’s MMIO regions (which are fixed addresses)
are only mapped to the protected domain. Similarly, DMA buffers
to hold I/O payloads are pre-allocated in the protected domain.

Thus, the untrusted OS cannot manipulate the driver interface.
To ensure interrupts from the log storage disk are routed to the
protected driver only, HKM updates the IRQ table in the EL3 in-
terrupt management framework [16]. At runtime, whenever a log
persistence or deletion command is issued, HKM replays the tem-
plate with dynamic parameters (e.g., MMIO control sequences with
payloads filled in the DMA buffers), to directly read or write the
corresponding log disk sectors.

5.1.3 Protected userspace daemon execution. HITCHHIKER
enables loading an unmodified program into a protected userspace
process (or enclave) as HKD. This allows administrators to build log
management functionality easily. This section describes how HkD’s
memory and execution state are protected in the protected domain
with secure context switches. §5.3 explains how log management
tasks are achieved using HkD.

Memory and execution state protection. HkD (including its
memory and execution stack) is loaded into the protected domain, in
a manner inspired by SGX [85] and recent research [41, 69, 70, 112].
Specifically, during machine provisioning, the binary’s SHA-256
integrity hash is pre-installed onto protected storage. During system
boot, the OS allocates its process context, loads the binary within a
reserved region, and requests HKM to attest to its initial integrity
(i.e., via the hash). To prevent time-of-check-to-time-of-use attacks,
the monitor protects the process region (by the aforementioned
protection domain) before attestation.

After attestation, HKD’s pages are pinned to memory (i.e., no
swapping). The monitor then copies the page tables of the process
into its own memory region. As HKD’s page table is maintained
inside the monitor’s memory, the OS cannot make any changes to
verified mappings, thereby preventing page remapping attacks [70].
Pinning is acceptable since HKD would typically require a small
amount of memory (less than 8MB in our implementation).

HKD is initialized with two threads: a consumer thread and
a manager thread. The former thread consumes protected logs,
while the latter issues log persistence operations (§5.2) and securely
interacts with remote tasks (§5.3).

Secure context switch handling. Like any user process or SGX
enclaves [85], the task scheduling of HKD is controlled by the un-
trusted OS. However, the OS cannot directly transition into HkD’s
context, as it is in the protected domain. Therefore, whenever the
OS wants to schedule the threads of HkD, it calls the monitor using
SMC (§5.1.1). In such calls, HKM restores HKD’s context state and
memory permission view.

Once scheduled, HKD cannot exit directly to the OS for system
calls or interrupts due to protection domain enforcement. To se-
curely and transparently support HKD exits, HKM enables a custom
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Figure 2: HITCHHIKER memory layout and permission views (left) and workflow (right). The OS and applications () are inside
the OS domain (UT). HrircHHIKER Monitor (0 HKM) and Daemon (00 HKD) are inside the protected domain (TR). Memory views
of two domains are maintained by their separated hardware primitive configurations, respectively (i.e., two S2PTs/GPTs, §5.1).

exception vector table when executing HkD, in which all exceptions
are interposed by a trampoline SMC (Fig. 2, @-@). Thus, at HKD
exits, the monitor saves HKD’s context state before exiting to the
OS (@). Whenever the OS calls the monitor to reschedule HkD, the
context is restored (®). HKM ensures that system call results are
sanitized to prevent IAGO attacks [49] (e.g., OS returns a malicious
pointer). We explain how network system calls are sanitized in §5.3.
In the future, if other system calls, such as file system support, are
needed by the program, a TCB-conscious library operating system
(LibOS) [99] can be integrated with HkD.

5.2 Deadline-Enforced Unified Log Protection

HiTcHHIKER enforces a short log protection deadline by employing
a periodic hardware timer by the OS. The administrator configures
a real-time protection delay of T, + €, where T}, is the timer inter-
rupt frequency and € is the latency incurred while protecting logs
in memory. We found that modern hardware timers have a high
resolution [104]. Therefore, T}, can be set as a tight log protection
time interval (e.g., 100us—1ms).

This section first explains how different logs are collected in
a unified location to standardize the protection window. Then, it
explains how the timer ensures logs are protected in memory within
a set deadline. Finally, it describes how protected logs are securely
persisted in the background to guarantee eventual availability.

5.2.1 Unified log collection in kernel buffer pools. Capturing
logs at different locations (e.g., network drivers, applications) in
an ad-hoc manner to protect them can increase protection delay.
HrTcHHIKER avoids this by unified capturing logs within the ker-
nel before protection (@@ in Fig. 2). It requires two aspects for
unification: (a) a central region to hold all logs and (b) a mechanism
to generate the captured events as logs to that region.

To create a central region, HrTcHHIKER allocates a pool of per-
core buffers within the kernel observability generator’s memory.
For each kernel thread, logs are always written to the current per-
core buffer within the pool, thereby avoiding cross-core contention
as multiple kernel threads can write logs simultaneously.
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A per-core pool of (at least two) buffers is required, because
HrrcHHIKER dynamically switches the current buffer’s permission
under the OS’s domain for protection (explained in §5.2.2). Hence,
there should always be an available buffer as the current to the OS.
The size of the buffers is administrator-configured, and the buffers
are pre-allocated during system initialization. If the buffer becomes
full, very rare in honest scenarios based on proper configuration in
our evaluation (§8) and prior work [62], the generator waits for a
buffer to be consumed and returned. This prevents attackers from
overwriting their attack trace even if they generate many spurious
logs from userspace [89] before full system compromise.

HiTcHHIKER captures the logs (@) by extended Berkeley Packet
Filter (eBPF [9]), a widely-used generator [87? ] in prior work (see
implementation details in §6). A challenge in capturing application
logs is locating and automatically intercepting the routines where
logs are generated. HITcHHIKER addresses this by using contextual
tracking of file system calls. In particular, applications leverage
the OS file system to write logs. Thus, the generator records write
syscalls and extracts file paths in kernel structures (e.g., dentry in
vismount) to match them with administrator-defined log file paths
(e.g., /var/log) [2]. For application log file writes, HITCHHIKER
extracts the log string using an eBPF helper bpf_probe_read_user.
For logs from network and system calls, HITcHHIKER injects BPF
programs into kernel tracepoints to attach all system calls, task
scheduling, and socket-related events. HITcHHIKER follows Linux
Auditd’s format [30] to generate system call log entries, which
include parameters, return values, and other fields (e.g., process
identifiers and timestamps). For network traffic logging, HrrcH-
HikeR logs source and destination IPs, ports, and other packet data
from the kernel socket structure of network traffic.

5.22 Controlled hardware timer-based buffer protection.
The OS deploys a hardware timer based on configured frequency
Tp to direct a kernel thread to initiate log protection. As the OS is
initially benign, it will correctly deploy the timer before compro-
mise. To ensure the short protection window, HiTcHHIKER controls
the delay after the timer expires (each T}) to ensure that protection
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is achieved in an isolated small period (€). All these aspects are
explained in the following paragraphs.

Once logs are captured, HITcHHIKER writes them to the current
buffer (Fig. 2, €). When a timer deadline is reached, a kernel thread
calls HKkM (€)-@) to temporarily switch the OS access permission
to the current buffer, marking the buffer as inaccessible to the
OS domain (@-@). After protection is complete and execution
returns to the OS, a new buffer is fetched from the pool to be the
current buffer (@-@)). The previous (now protected) buffer will be
re-inserted into the pool after consumption (§5.2.3).

To correctly capture logs and protect them by constant timer
preemptions, both log buffer writing and protection are executed in
atomic contexts. Otherwise, the preemptions between log writings
and protections will not only disrupt the deadline but cause faults
(e.g., by writing logs to a just-protected buffer before fetching a
new current buffer). To this end, HITcHHIKER enforces each core
to acquire a lock before every log buffer write. On timer interrup-
tion, the timer thread acquires those locks before protection. Since
the lock is released after every log buffer write, this timer thread
acquires it within a tiny delay (less than a hundred CPU cycles on
average in our experiments).

HrrcHHIKER forcibly isolates € (the time delay between the timer
thread invocation and log protection finished by HKM) to a small
value. Otherwise, adversaries may significantly extend € to cor-
rupt the protection deadline. This property is regulated by (a) pri-
oritizing the timer interrupt kernel thread and (b) enforcing the
aforementioned atomic execution of the log protection procedure.
The former (interrupt prioritization) prevents the timer thread in-
vocation from being delayed by other interrupts (e.g., by raising
spurious interrupts [77]). The latter (atomic permission switch-
ing execution) ensures the permission switch procedure execution
cannot be extended by other task preemptions or IRQs.

5.2.3 Fast buffer consumption with eventual persistence.
HxD consumes the protected buffer and then returns it into the ker-
nel buffer pool. It consumes buffers efficiently using multi-threading
and real-time techniques [39]. Since HKD might not be scheduled
after OS compromise, HKM ensures all remnant buffers (in the
protected domain) are persisted before shutdown events.

HkD separates its threads (§5.1.3) to the consumer thread for
log consumption and the manager thread for log persistence and
admin task response. By doing so, heavy I/O and network jobs are
dispatched to the manager thread. In addition, the consumer thread
is prioritized by (an honest) OS over other threads. Moreover, all
hardware interrupts, except for the protection scheme timer, are
disabled by the OS during the thread’s execution.

HkD requests the monitor to persist the consumed logs through
the debloated driver. Since HKD is at userspace, it cannot directly
issue I/O operations. Hence, the manager thread executes an ioctl
system call as a proxy, which then invokes SMC to request HKM.
This is just a notification mechanism, all message passing between
HxM and HkD is done using a reserved communication buffer within
HkD’s memory. When there are no logs, HKD goes to sleep.

The monitor intercepts power management operations to ensure
all protected logs are persisted. In particular, it intercepts the Power
State Coordination Interface (PSCI) and issues an I/O command to
persist all protected logs forcibly before power events [39, 62].
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Fig. 2 illustrates the procedure. The consumer thread consumes
logs in the protected buffer (D-(2)), and asks the monitor (B-€)
to edit the OS domain’s permission to return the buffer (€@-@&)).
Meanwhile, the manager thread requests HKM to persist them into
secure storage via the debloated driver interface ((3-@). Finally,
before power events, HKM issues an I/O command via its debloated
driver to force all protected logs to be persisted to the storage.

5.3 Secure Delegated Remote Log Management

HrrcHHIKER empowers HKD to securely support remote log man-
agement tasks, such as retrieval, prior to OS compromise. After the
OS compromise, the integrity of any completed management task
is ensured, and the OS can only prevent new task completion—until
administrators recover it—by not scheduling HkD. To achieve such
guarantees, HKD sets up a secure channel to a remote adminis-
trator, using provisioned cryptographic secrets, over a sanitized
0OS-delegated network transport.

5.3.1 Daemon secret establishment. At machine provision-
ing (§4.3), the IT administrator installs the log daemon HxD, and
sets up cryptographic secrets for runtime secure communication.
To ensure secure communication, the administrator provisions a
key pair. The secret portion of the key is installed on the protected
disk, while the public portion is kept by administrators for later
authentications. Besides that, admins also install their own public
key into the protected disk to ensure a two-way authenticated and
secure channel can be created. Since the protected storage disk
can only be accessed by the monitor, during HkD loading, HKM
securely installs the provisioned keys within a reserved region of
HxkD. Thus, the key remains protected from the untrusted OS.

5.3.2 Secure channel on sanitized delegated network. While
HritcHHIKER sends and receives packets through OS network inter-
faces, it ensures packets are secured end-to-end between HkD and
the administrator. This is ensured by the Transport Layer Security
(TLS) protocol and the key pair provisioned. Therefore, adversaries
cannot impersonate the remote admin (e.g., forge and issue log dele-
tion requests and responses). The remaining paragraphs illustrate
how HKD network system calls are supported and sanitized.

HxM interposes HkD’s network service system call invocations
and returns (i.e., context switches) to perform secure domain inter-
positions. The interposition is enforced through HkD’s specialized
exception vector table, which is transparent to the OS (§5.1.3). As
such, HkD’s execution context is securely saved and managed by
HkM. At syscall invocations, before restricting the memory permis-
sion view to enter the OS, syscall pointer parameters are redirected
to a shared buffer that is accessible in the OS. Otherwise, the OS
(within in restricted permission view) cannot access HKD’s memory
buffer pointed by the syscall parameters.

Once the syscall returns, the monitor sanitizes the return values
before resuming HkD. In particular, to prevent pointer-based IAGO
attacks [49], HKM ensures that no pointer is returned for a region
that belongs to HkD’s domain. Moreover, HKM copies the packet
data from the shared buffer into HKD’s buffer. Then, HKM transits
to the protected domain (enables HKD’s memory permission view),
restores the context, and enforces its maintained HKD page and
vector tables. Finally, HKM transits the CPU execution to HKD.
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Table 4: HITcHHIKER component implementation breaks
down in source lines of code (LoC).

Component Base SLoC
HircHHIKER Monitor (HKM) 2.7K in total
Hardware permission - GPT configuration TF-A [37] 399
Hardware permission - S2PT configuration TF-A [37] 738
Debloated driver Sata_sil24 [24] 566
HxD context interposition TF-A [37] 1,106
Operating System 3K in total
Observability generator Tracee [2], Libbpf [18] 860
Timer and buffer pool management Linux kernel module 1,618
HxD binary loader Linux kernel module 584
HitcHHIKER Daemon (HKD) 0.8K in total
Consumer thread B 208
Manager thread - 622

Fig. 2 (X-@, ®-®), @-@) illustrates the interposed context
switch. Whenever HKD requests network services (¥), @), it traps
to HKM (@-@) by its customized exception vector table. HKM
then saves its context, redirects pointer parameters, transits to the
OS domain (@), and then exits to the OS (§)). Whenever the OS
finishes the service, HKM interposes the return (€))) and performs
the context switch on the OS’ behalf. It restores the saved contexts,
enables HKD’s domain (@), enforces its page and vector table, and
directly returns to HKD’s execution context (B)).

6 Implementation

We prototyped HiTcHHIKER for an ARM-Juno R2 board featuring
six CPU cores (a dual-core Cortex-A72 and a quad-core Cortex-
A53) alongside 8GB SDRAM. A 256GB SATA WD BLUE SSD was
connected to the board for secure log storage, and a 1TB Sandisk
Extreme Pro SSD was used by the OS for normal filesystem storage.
The board runs Linux 5.3 as the OS, using Trusted-Firmware-A
(TF-A) arm_cca_v0.3 [37] at EL3 as the base of HKM. For the GPT
implementation, there is no commercial hardware that supports
Realm Management Extension (RME). To validate the functionali-
ties of HITcHHIKER, we developed a functional prototype on ARM
Fixed Virtual Platform (FVP) with RME support. To further emu-
late the performance of GPT on our board, we followed common
practices (described in the following paragraphs). Tab. 4 offers a
breakdown of source code lines modified or introduced.

HKM and protection domain enforcement. HkM’s bootloader
images are burnt into the secure boot region (trusted boot ROM
and SRAM), which is not accessible to the normal OS once boot.
During boot, the host memory is partitioned, specified by TF-A
(bl_regions) and device tree. Contiguous physical memory regions
are reserved for HkD and the log buffer pool by specifying the
Linux contiguous memory allocator [79]. All the partitions (their
ranges) can be easily adjusted and configured by administrators.

We reserve memory in TF-A to maintain two GPT/S2PT table
instances. For S2PT implementation, we set up HCR_EL2.VM during
boot to enable the second-level address translation. All S2PT control
interfaces (VTCR_, VITBR_EL2) are directly configured by TF-A.

We emulate GPT’s performance by following common prac-
tice [81, 100, 112]. First, we emulate the GPT control interface cost
by substituting all control registers (GPCCR_, GPTBR_EL3) with idle
EL3 ones. Second, we program GPT table structures per GPT speci-
fications [36] by using TF-A official code. Third, we flush the entire

3906

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

TLB entries after every GPT configuration change. Even if the cost
of hardware GPT checks (expected to exhibit good caching behav-
ior) is not included, this will not affect the relative overhead since
GPT checks are applied to the full system [81].

Limitation. Our prototype currently lacks support for SMMU inter-
face protection against untrusted hypervisors; however, it does not
impact our evaluation. Implementing it would involve extending
two SMC interfaces within HkM, and modifying the SMMU driver
with approximately 0.6k LoC as indicated by prior work [100].

Debloated driver synthesis. To synthesize a debloated driver
offline, we used the default SATA driver (sata_sil24) [24] on our
system for recording. In principle, any driver can be used. The
recording is performed by sample I/O that writes directly to the
log device (e.g., /dev/sda), with flags O_DIRECT | O_SYNC to bypass
the file system (e.g., journaling) and block abstractions. To record
MMIO and DMA operations, our recorder instruments the lowest
kernel functions (readl, writel, and dma_alloc) before I/O. During
debloated driver setup in HKM, its device IRQ is isolated from the
OS (plat_ic_set_interrupt_type) and routed to HKM by setting
the SCR_EL3.FIQ bit in TF-A (§5.1.2).

HKD and timer interrupt prioritization. HkD’s initialization
is supported by a customized binary loader (in a kernel module).
Its thread execution stacks and specialized exception vector table
are reserved during HKM setup (§5.1.3). To prioritize the protection
timer interrupt over others, we utilized TF-A’s interrupt manage-
ment framework (the function plat_ic_set_interrupt_priority).
In particular, we programmed the Interrupt Priority GIC MMIO reg-
isters (GICD_IPRIORITYR) to grant the timer interrupt with the high-
est priority (GIC_HIGHEST_NS_PRIORITY) in the normal world.
Note that the kernel (at EL1) can also access this register. Currently,
we do not protect attackers from tricking the vulnerable kernel
into changing the timer configuration. We discuss such attacks and
techniques to enable full timer protection in Appendix §D [110].

Observability generator. The generator is built and extended
upon Aqua Tracee [2], a widely deployed eBPF-based forensics
tool [87]. We extended the Linux BPF helpers with a new one
named bpf_write_current_buf and integrated it into libbpf. The
helper’s underlying kernel function unifies log generation into our
current kernel buffers (§5.2.1). Deploying and verifying such an
extended BPF helper is straightforward and aligns with common
practices [82], requiring ~50 lines of change for the BPF verifier.

7 Security Evaluation
7.1 Security Claims and Analysis

We analyze HiTcHHIKER’s log integrity and availability guarantees
through a sequence of security claims (S1-S5).

S1. All observability logs before OS compromise are captured.

Prior to system compromise, the log generator operating within
the OS faithfully captures all (OS, application, and network) logs
within the current kernel log buffer. The administrator configures
the buffer pool to allocate enough space (§8) for logging. If buffers
are exhausted within the pool, the generator will pause the event
and wait for a buffer to be consumed by HkD (§5.2.1). Hence, the
attacker cannot prevent events from being logged, and neither can
they flood the buffers with numerous spurious event logs to force
the system into dropping previously-logged entries [89].
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S2. All collected logs will be protected in memory within the config-
ured, short real-time deadline (T + €).

The OS, which is initially benign, faithfully configures a hard-
ware timer based on the frequency (T}) specified by the administra-
tor. This cannot be modified by the attacker until they compromise
the OS. Once a timer interrupt is fired, a kernel thread calls HkM
(using an SMC) to protect logs. The delay between when the inter-
rupt is fired and logs are protected () is kept small and regulated
because (a) the buffer permission switch procedure being executed
in an atomic context with preemption and IRQ disabled, (b) the
timer interrupt handling is always prioritized (§5.2.2), and (c) buffer
permission switch is fast. As such, adversaries cannot prolong ei-
ther T, or € via launching malicious interrupts [77] or flooding the
buffer with numerate events [89] (further validated in §7.2).

S3. All protected logs in memory cannot be accessed by the OS.

Once the log protection SMC is handled by HKM (i.e., at T + €),
the log buffer’s memory access permission under the OS domain is
removed. The log buffer is also protected by SMMU; hence, device-
based DMA attacks are prevented. HKM uses the same mechanisms—
memory permission and SMMU—to protect itself and the data struc-
tures of SMMU from the OS (§6). Hence, any malicious access to
the protected domain is prevented.

S4. All protected logs in memory will be persisted in the secure log
storage disk before system shutdown.

HkD’s consumer thread, which is securely loaded (§5.1.3), asyn-
chronously issues I/O commands through HkM’s debloated driver
interface to persist protected logs (§5.2.3). Prior to compromise, the
OS will schedule the consumer thread to ensure logs are persisted.
After compromise, the OS cannot modify HkD’s operations due to
domain enforcement, and it can only refuse to schedule the thread.
If this happens, the logs will remain in protected memory until a
system shutdown event is triggered by the OS. Assuming no power
or hardware failures (which cannot be controlled by our attacker),
HxM will intercept all shutdown events and leverage its protected
driver to persist all remnant in-memory logs to disk.

S5. All stored logs will only be deleted (e.g., after retrieval to remote
storage) by the system administrator.

A compromised OS cannot directly send log deletion commands
to the protected disk, since the disk is isolated, and can only be
accessed by the debloated driver in HKM (§5.1.2). HKM only accepts
log deletion requests from HkD, which will only send such a request
if it receives a command from the system administrator. In partic-
ular, HKD and the system administrator leverage a cryptographic
key pair—securely provisioned in the protected disk (§5.3.1) and
loaded by HKM during initialization (§5.1.3)—to establish a secure,
authenticated secure channel through the OS-controlled network
(§5.3.2). Since the OS cannot extract or modify these keys, it cannot
compromise the channel (e.g., impersonate the administrator). Even
though the request notification between HKD and HkM is relayed
by the OS (using an SMC), the request parameters (e.g., which disk
sectors to clear) are protected in HKD’s memory (§5.2.3).

7.2 Protection Deadline Analysis

This section describes the worst-case deadlines (T, + €) found for
in-memory log protection, given different configurations of timer
frequency (Tp) on our test system.
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Figure 3: CDF shows the relation between different protec-
tion timer T, (1ms, 500us, and 100us) deadline settings and
HiTcHHIKER’s actual in-memory protection window (delay).

Settings. We ran two workloads. The first workload is from a
stressful benchmark, getpid-flood, based on prior work [39]. This
benchmark executes one million getpid system calls in a loop to
intensively generate logs. The second workload is from a real-world
program, Nginx, which produces diverse logs. For Nginx, we used
benchmark ab [1] under settings in Tab. 6. We evaluated HitcH-
HIKER in three configurations of Ty: 1ms, 500us, and 100us. Both
S2PT and GPT are employed as the HITcHHIKER's permission primi-
tive, respectively, and we report the worst-case experimental results.
The experiment was repeated 100 times.

Results. Fig. 3 shows the cumulative distribution function (CDF)
of the time taken to protect logs with different T;,. Under the getpid-
flood benchmark, when T is assigned values of 1ms, 500us, and
100us, 99.6%, 99.1%, and 92.8% of logs, respectively, were protected
in a window less than the assigned T. Each configuration had an
additional delay (€) in the worst case, which ranged between 12.12ps
and 14.96us. In the case of nginx, 99.5%, 99.3%, and 95.5% of logs
were protected within T, (ranging from 1ms to 100us, respectively).
The worst-case values of € ranged between 11.52us and 13.73ps. As
Nginx’s workloads also generate considerable logs (around 79k per
second), its CDF is similar to getpid-flood (which generates logs at
around 178k per second) but slightly better. Under both settings, the
delay € was negligible and stable, due to HrTcHHIKER’s enforcement
mechanisms (§5.2.2) and fast permission switches (§4.2).

Recall that the state-of-the-art asynchronous protection sys-
tem [39] incurs a best-case deadline of 15ms. Hence, with config-
urable deadlines between roughly 1.012ms and 115us, HITcHHIKER
exposes 93.3% — 99.3% shorter attack windows. The next section
shows how such short protection windows further prevent log
tampering attacks when compared to prior work.

7.3 Log Tampering Case Study

To evaluate whether HrTrcHHIKER's short deadlines provide a sig-
nificant hurdle for adversaries to tamper with logs, we simulated a
powerful local attacker to delete logs in memory as fast as possible.

Attack setup. We consider powerful local attackers who know
the log buffers’ physical addresses. Attackers also already held the
foothold to access the system (at time ¢5). Such settings avoid time to
establish footholds. To begin with, attackers exploit kernel vulnera-
bilities to escalate privileges to root at t.. Upon system corruption,
attackers halt the log generator and delete logs in memory.

We reproduced ten kernel CVEs with PoC exploits to escalate
privileges to root. CVEs were selected from well-known security
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Table 5: Local attack time and log event statistics. #Total Logs:
the number of log events captured during the attack. #Lost
Logs: the number of events that are cleared by the attacker.
T, 15ms: state-of-the-art asynchronous protection [39].

Attack Time Statistics (ms) Attack Trace Event Statistics (#)
Exploit Escalate Load Clear | #Total #Lost Logs (Min/Avg/Max)
DirtyPipe privilege .ko Buffer| Logs T,:100us 1ms 15ms [39]

3.73 3.76 4.89 0.02 1,407 0/2/7 3/16/35 7/618/all

assessment forums (e.g., Seclist, Openwall) with high Common Vul-
nerability Scoring System (CVSS) [32] scores. Also, they were col-
lected from two categories [50]: (i) semantic bugs like improper
permissions or security checks, and (ii) memory corruptions (e.g.,
stack or heap-related temporal and spatial corruptions).

To simulate a powerful attacker, we chose the fastest out of

the ten exploits on our host machine (§6): DirtyPipe [74]. The full
list of reproduced CVEs and their execution times are provided
in Appendix §A [110]. After gaining root, the attacker launches a
malicious kernel module (.ko) to clear logs residing in the unprotected
buffer, erasing the attack evidence. During the attack, HrTcHHIKER
was fully deployed with different protection timer configurations
Tp of 15ms, 1us, and 100us. We ran this attack 50 times by activating
the attack script at random times (same as the §3.2).
Results. Tab. 5 shows the statistics of the attack, indicating an
average total attack time of 12.4ms with 1,407 attack-related logs
generated. Threats from semantic bugs (e.g., DirtyPipe) can be effi-
ciently exploited by attackers (as stated in §3.2 and in Tab. 5), giving
them a high chance of removing considerable attack traces before
a single large protection window (e.g., removed 618 out of 1,407
logs on average given a 15ms protection window), or compromising
full attack traces. Reducing the protection window significantly, by
93.3% to 1ms or by 99.3% to 100us, proves effective in hindering log
tampering. In these scenarios, the attacker can delete only 3% (35
logs) or 0.2% (7 logs) of total logs at most, respectively.

Notably, as the last step for log deletion, installing a malicious
kernel module requires around 4.9ms. This time span significantly
exceeds given a Tj, of 1ms. As a result, all logs during the exploit
of DirtyPipe and escalating privilege were logged and protected,
even with a 1ms Tp. In fact, only the “final millisecond” logs during
module installation were lost. Hence, this deadline (of 1ms) setting
also preserved the availability of the full attack trace.

Memory corruption attack discussion. Admittedly, a pure mem-
ory corruption attack like in-kernel ROP can avoid kernel module
loading after privilege escalation and tamper with logs faster, by
memory write gadgets. However, unlike userspace exploits, chain-
ing gadgets in-kernel for arbitrary code execution may be chal-
lenging and time-consuming. Our reproduced real-world memory
corruption exploits (see Appendix §A in [110]) also demonstrate a
lengthy attack preparation of more than 1s, making it impossible to
use such attacks to compromise logs within 1ms windows. This is
due to the time-consuming nature of manipulating memory layout
(e.g., heap spray), lack of fault tolerance for attack debugging, and
defenses like data execution prevention (DEP) and guarded control
stacks (GCS) [26]. So far, loading a malicious kernel module remains
a popular rootkit [29, 34] to disable logging.
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Table 6: Real-world application and workload description.

Application | Workload Description
Neginx Default 4 worker threads; tested with the ApacheBench
of 10K requests for a default file and 32 client concurrency.
Apache Default settings; tested with the ApacheBench of
10K requests for a default file and 32 client concurrency.
Redis Default 16 databases; tested by memtier_benchmark of 1M
sets and 1M gets for 32 bytes data with 50 clients.
Memcached Default settings; tested by memtier_benchmark of 1M set
and 1M get for 32 bytes data with 50 clients.
MySQL Default 10 tables with table size 10,000; tested by sysbench
oltp_read_write for total 10K transactions (> 200K queries).
7zip Phoronix benchmark pts/compress-7zip.
OpenSSL Phoronix benchmark pts/openssl.
Firefox Speedometer 2.0 benchmark.
GNU Octave | Phoronix benchmark system/octave-benchmark.
Wget No-cache and quiet mode; fetching a default file with 10K runs.

Regardless, when shrinking the protection window to a real-time
value of around 1ms, HrTcHHIKER significantly raises the difficulty
for adversaries to alter the vast majority of their attack traces.

7.4 TCB and Vulnerability Discussion

HrrcHHIKER’s TCB is comprised of HKM and HkD. HKM requires
an additional 2.2k LoC based on TF-A (29k LoC?), while the HKD
requires 0.8k LoC. By debloating the driver via record-and-replay,
it avoids the adoption of a commodity Linux driver that contains
more than 10k LoC and complex kernel dependencies [63].

In total, HITcHHIKER requires a TCB of around 32k LoC. This is
significantly smaller than typical virtualization software (e.g., larger
than 862k LoC with KVM [69]), or the TZ components (e.g., 300k
LoC of OP-TEE) used by existing solutions [62, 97]. Moreover, unlike
prior work, HrrcHHIKER does not rely on full-fledged components
(both hypervisor and TrustZone), thereby avoiding sharing with
their interfaces and attack surfaces (Tab. 1). We further analyzed
the security properties of HITcHHIKER in terms of attack surface
reduction (compared to existing solution [62]) in Appendix §B [110].
In conclusion, HrTcHHIKER reduced their TCB by 9.4 — 26.9X, and
avoided the general-purpose attack surfaces.

8 Performance Evaluation

All experiments were performed on our JUNO R2 computer (§6). For
client-server programs, the client workload operated on a desktop
with Intel(R) Core(TM) i7-10700 CPU, 16GB RAM, and a 512GB
hard disk, connected to the JUNO server via Gigabit Ethernet.
Unless otherwise specified, we measured HITCHHIKERs perfor-
mance with the T, of 1ms, since it can prevent attack trace tam-
pering even in strong attacks (§7.3). We configured HrTcHHIKER's
kernel buffer pool with 16 buffers (a total of 1MB size). This setting
very rarely experienced buffer fill-up delays (§5.2).
Comparison settings. We used four comparison settings to eval-
uate our system, which we describe in the following paragraphs.
Native indicates system performance without any kind of log-
ging. Native-OBS is the performance when logs are captured and
then in memory by the native observability generator (extended

2The LoC of TF-A is calculated by counting the compiled sources. All uncompiled
other platform or SoC-related driver and library sources are excluded.
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Table 7: Throughput under the getpid-flood (§7.2) benchmark.

Relative Percent (%)
100%

Approach
Native-OBS
HitcHHIKER-IM

Tp: 1ms /500ps /100us
HiTtcHHIKER-GPT
Tp: 1ms /500ps /100us
HircHHIKER-S2PT
Tp: 1ms /500ps /100us
HircHHIKER-MCPY

Throughput (logs/sec)
201,038

178,571/172,053/166,500 88.8%/85.5%/8143%

177,399 168,711/154,966 88.2% | 83.9% | 77.1%

173,094 [ 165,253 | 155,603 | 86.1% | 82.2% [ 77.4%

] Y Y
~——

137,757/120,376

——

T, lms/SOO,us/IOOps 150,466 74.8% | 68.5% [ 59.9%
OmnNiLoG 99,143 49.5%
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Figure 4: Overhead of HirTcHHIKER on LMBench [86].

Tracee [2]). Native-OBS does not persist or protect logs, thus serving
as the ideal (maximum) performance in our system with logging.

To show the advantage of hardware permission-based protec-
tion, we also evaluated a HrrcHHIKER variant employing EL3-
memcpy-based (§4.2) protection (labeled HITcHHIKER-MCPY),
which copies logs from the OS domain to the protected. Further-
more, to show the cost of storage operations within our system, we
also evaluated a HrTcHHIKER variant without any such operations,
called HiITcHHIKER-IM. We evaluate HITcHHIKER-S2PT and
HitcHHIKER-GPT, by using S2PT and GPT, respectively.

Finally, we compared HrTcHHIKER with the state-of-the-art syn-
chronous protection approach, OmniLog [62] (referred to as Om-
NILoG). Note that OmniLog is designed for audit (system) log pro-
tection and integrated with Linux Auditd [30]. For a fair comparison,
we made our best efforts to reproduce OmniLog and incorporated
it with our observability generator, focusing only on in-memory
protection (i.e., logs are discarded after synchronously being copied
into EL3 memory by OMNILOG). This avoids storage overhead to
optimistically approximate its performance.

8.1 Micro-benchmarks

This section describes HiTcHHIKER’s throughput breakdown and
its system-event-level performance.

Log throughput breakdown with getpid-flood . To break down
the impact of different aspects of HITcHHIKER (e.g., protection,
persistence), we leveraged the getpid-flood micro-benchmark (§7.2)
to generate logs intensively evaluate the performance.

Results. Tab. 7 illustrates the results. The throughput of Native-
OBS (201,038 logs/second) acts as the reference point, representing
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the theoretical maximum observability log throughput of our sys-
tem. HrTcHHIKER-GPT reaches a throughput of 177,399 entries
per second (88.2% of Native-OBS) under the 1ms deadline setting.
Similarly, at such settings, HITcHHIKER-S2PT has 86.1% of the
Native-OBS throughput. Furthermore, as the timer frequency T,
shortens from 1ms to 100us, there is a corresponding decline in
the relative throughput of HiTcHHIKER (from 88.2% to 77.1%). This
is expected, as more frequent protection enforcement introduces
more system overheads for HrTcHHIKER to respond.

HrrcHHIKER-MCPY has a throughput varies between 74.8% and
59.9%, according to the T, setting ranging from 1ms to 100us. This
further shows the advantage of the hardware permission switch
over memory copy. OMNILOG displays a relative throughput of
49.5%, underscoring its significant slowdown due to frequent syn-
chronous system blocks and log protections.

Compared to HrtcHHIKER-IM, which solely employs memory
protection, HrrcHHIKER (S2PT and GPT) experiences an additional
0.6% to 4.2% reduction in throughput depending on the deadline
settings. This overhead is attributed to the activation of HkD’s
manager thread, which causes extra system burdens (e.g., task syn-
chronization and I/0). Nevertheless, the performance impact of the
background log persistence remains limited, primarily due to the
utilization of high-bandwidth SATA SSD.

System event latency. We evaluated HiTcHHIKER's slowdown
upon kernel operations by using the widely adopted [39, 88] Im-
bench [86]. We executed latency benchmarks for (a) file system
creation/deletion, (b) process creation/exit, and (c) syscall.

Results. Fig. 4 shows the evaluation results. HrTcHHIKER-GPT and
HrtcHHIKER-S2PT imposes a geometric mean of 1.69% and 1.71X
overhead more than Native, while adding only 8.4% and 9.3% over-
head to Native-OBS (1.48x more than native), respectively. The
overheads for the memory copy-based approaches, HITcHHIKER-
MCPY and OMNILOG, are respectively 1.99% (20.6%) and 2.25X (31%)
higher than Native-OBS. As the Imbench only generates kernel
events, the large overheads for HrTcHHIKER mainly come from the
Native-OBS (1.48%X more than Native). This overhead is amortized
during real-world workload execution (next section). In the future,
observability generation overhead can be optimized using eBPF
compile-optimization [84] and efficient log collection [82, 95].

8.2 Real-world Programs

This section describes HITcHHIKER's performance on real-world
workloads using common benchmarks. The overhead is compared
with different system settings mentioned in §8.

Settings. We chose five common client-side applications (7zip,
OpenSSL, Firefox, GNU Octave, and Wget) and server-side applica-
tions (Nginx, Apache, Redis, Memcached, and MySQL). We divide
applications by client and server workloads, because the latter
typically produce significantly higher amounts of logs. These appli-
cations have also been evaluated under similar workloads by prior
work [39, 62, 89]. Detailed workloads are described in Tab. 6.

Results. Fig. 5 illustrates the performance overhead incurred by
real-world applications. HITcHHIKER-GPT exhibits a geometric
mean overhead of 1.8% and 9.9% over Native in client-side and
server-side programs, respectively. Similarly, HrrTcHHIKER-S2PT’s
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Figure 5: Real-world workload overheads. From left to right,
the log throughput for each program is: 1907, 589, 32358,
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geometric mean overheads are 2.2% and 9.7%. In contrast, Hitcu-
Hiker-MCPY’s geometric mean overheads are 3.4% and 20.9% over
Native, on client-side and server-side programs, respectively. In the
worst-case, HITCHHIKER-MCPY’s overhead is up to 31.9%, while
HrTcHHIKER’s worst remains at only 13.9%. Recall the protection
cost described in Tab. 3; el3-memcpy is expensive due to its CPU-
intensive nature and its lack of optimizations in EL3 software [19].
Thus, HitTcHHIKER-MCPY imposes an overhead of 0.5 — 1.2X more
than HircHHIKER-GPT and HitcHHIKER-S2PT, which leverage
efficient hardware permission switch (§5.2).

OMNILOG also adopts el3-memcpy for in-memory log protection,
but also synchronously protects every log. It results in a geometric
mean of 8% client-side and 26% server-side overheads over Na-
tive. Client programs typically focus on computational tasks (e.g.,
compression, encryption, and calculation) and thus are “log-sparse”
that generate fewer logs. However, Wget (a web downloader) is an
exceptional client program. Due to its frequent system calls and
network transitions, OMNILOG imposes a 30% overhead over Native
on it. Conversely, server-side applications are characterized as “log-
intensive”, owing to their frequent I/O tasks for invoking system
calls, recording application logs into local file systems, and com-
municating with clients through the network. Thus, given the high
observability log throughput, OMNILOG results in a large overhead
(e.g., up to 52% over Native in Redis) due to intensively blocking the
system execution to wait for log protection. In all scenarios, Om-
NILOG’s synchronous protection incurs 0.12 — 0.65X overheads over
asynchronous memory copying (HrrTcHHIKER-MCPY), or 0.2 — 3%
over hardware-based permission switching (HITcHHIKER).

Takeaway. Despite enforcing short real-time deadlines (around
1ms), HITcHHIKER provides high performance. On log-sparse work-
loads, all solutions provide decent performance (less than 8% over-
head), yet HrTcHHIKER provides near-native performance (2% geo-
metric mean overhead only). On log-intensive applications, synchro-
nous or periodic copying of logs to privileged memory becomes
inefficient (up to 52.6% overheads). Here, HITcHHIKER with per-
mission switch incurs a geometric mean of only 9.9% (up to 15.9%
only), which is up to 77.5% and 61.9% lower than OmniLog on client
and server-side programs, respectively, showing its efficiency.
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9 Timer Protection Discussion

A limitation of our current implementation (§6) is that attackers
may use kernel vulnerabilities in the kernel, even before it is com-
promised, to trick it into manipulating the GIC register; thereby
disabling timer interrupt prioritization. For instance, attackers may
leverage code reuse (e.g., ROP) attacks. We found that the prepa-
ration steps for such attacks typically take a long time (> 100ms,
Appendix §A [110]); thus, the initial logs (before GIC manipulation)
will still be protected to reveal attack preparations. Nevertheless,
such an attack would give attackers an extended window to tamper
with the remaining logs during full system compromise.

There are two potential solutions to prevent the aforementioned
attack. The first solution is to write-protect the MMIO interface of
GIC’s interrupt priority register (e.g., using S2PT or GPT to remove
the permissions for accessing the MMIO page in the OS domain).
By doing so, only the security monitor controls the interface of GIC
interrupt priority registers; thus, any attempts to manipulate them
are interposed by the monitor. The second solution is to isolate
the entire timer interrupt handling into the protected domain. In
particular, the monitor (HKM) may (a) initialize the hardware timer
interrupt and lock it down to a secure interrupt (in GICv2 [104]),
or (b) set the interrupt route model to route it exclusively to EL3
(in GICv3 [16]). We leave exploring and implementing the afore-
mentioned two solutions for future work.

10 Related Work

System Observability. Observability is crucial for system dissec-
tion and analysis with a broad spectrum of applications [78, 87].
Researchers utilize different levels of observability by capturing
program semantics via application logs [67] for anomaly detec-
tion [55, 111] and failure diagnosis [53, 107]; monitoring syscall-
level audit logs [72] for attack detection [65, 108] and investiga-
tion [75, 105]; and utilizing network logs [59] for malware detec-
tion [60, 61], forensics and traffic classification [101, 114]. Fusing
multi-layer observability integrates a holistic security profile. This
is achieved by incorporating application logs [66, 106], network
logs [43, 54], library function logs [103], and instruction traces [109]
with audit logs, strengthens system forensics and supports fine-
grained provenance reconstruction. HITCHHIKER is the first system
for cross-layer system observability protection and maintenance.

Trusted execution environment. Enclaves [6] enable applica-
tions like stream processing [90], mobile app protection [94], con-
trol flow attestation [38], security policy enforcement [46], and
serverless computing [80, 113]. Researchers explored building en-
claves with different abstraction levels, including userspace pro-
cess [52, 70], secure containers [42, 96], and confidential VMs [71,
79]. Works adopt hardware protections like TZASC [45], S2PT [64,
69], GPT [100, 112], or even hardware-software co-design [58] to
support domain enforcement for general-purpose enclaves. Inspired
by those works, HITcHHIKER employs hardware features to tailor
the secure environment exclusively for its secure log management.
Tamper-evident logging. Instead of providing log integrity and
availability against tampering attacks, tamper-evident schemes de-
tect tampering using cryptographic integrity proofs. Logs are either
asynchronously [44, 73, 88, 97] or synchronously [68, 89] signed
by Message Authentication Code (MAC). After creating signatures,
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logs as well as their signatures (as the proof-of-integrity) are se-
curely sealed (encrypted) on local storage and later sent to the
central servers for further authentication. In the future, combining
tamper-evident logging and HrTcHHIKER can lead to the best of
both worlds, namely the real-time availability and tamper evidence.

11 Conclusion

HrTcHHIKER is an efficient and high-assurance observability pro-
tection system. It leverages efficient memory permission switches
and hardware timers to enforce real-time short and configurable
log protection deadlines. By its first principles approach of secure
environment design, it debloats the secure environment and avoids
sharing attack surfaces with other system components. Compared
to prior work, HitchHiker achieves 93.3 — 99.3% shorter log pro-
tection deadlines (protecting the vast majority of logs), 9.4 — 26.9%
smaller TCB, while reducing performance overheads by 61.9—77.5%.
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