
HART: Hardware-assisted Modular Tracing on
ARM

Yunlan Du1,∗, Zhenyu Ning2,∗, Jun Xu3, Zhilong Wang4,
Yueh-Hsun Lin5, Fengwei Zhang2, Xinyu Xing4, Bing Mao1

1Nanjing University
2Southern University of Science and Technology

3Stevens Institute of Technology
4Pennsylvania State University
5JD Silicon Valley R&D Center

∗These authors contributed equally to this work

ESORICS, Sep 15, 2020

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 1



Outline

I Introduction

I Background

I HART: Hardware-Assisted Runtime Tracing framework

I HASAN: HART-based Address Sanitizer

I Evaluation

I Conclusion

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 2



Outline

I Introduction

I Background

I HART: Hardware-Assisted Runtime Tracing framework

I HASAN: HART-based Address Sanitizer

I Evaluation

I Conclusion

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 3



Introduction

The vulnerabilities in kernel modules have been a serious threat for
the security of the Linux kernel.

- Caused by lacking of code correctness and testing rigorousness

- CVE patches to kernel drivers comprise roughly of 19%
commits from 2005 to 2017 [1, 2].

- In 2017, 41% of 660 collected bugs in Android ecosystem
came from kernel components most of which were device
drivers [3].

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 4



Introduction

- To solve the problem, many solutions have been proposed

- But, the problem is far from solved

Approach

Category

Binary

-support

Non

-intrusive

Low

overhead

Representative Works

(in the Order of Time)

Memory

Debugger

7 7 7

Slub debug [4], Kmemleak [5],

Kmemcheck [6], KASAN [7]

Integrity

Protection

7 7 Q

KOP [8], HyperSafe [9], HUKO [10],

KCoFI [11], DFI for kernel [12]

Kernel

Isolation

7 7 Q

Nooks [13], SUD [14], Livewire [15],

SafeDrive [16], SecVisor [17]

Table: Existing kernel protection works.

(3 = yes, 7 = no, Q = partially supported.)

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 5



Introduction

- To solve the problem, many solutions have been proposed

- But, the problem is far from solved

Approach

Category

Binary

-support

Non

-intrusive

Low

overhead

Representative Works

(in the Order of Time)

Memory

Debugger
7 7 7

Slub debug [4], Kmemleak [5],

Kmemcheck [6], KASAN [7]

Integrity

Protection
7 7 Q

KOP [8], HyperSafe [9], HUKO [10],

KCoFI [11], DFI for kernel [12]

Kernel

Isolation
7 7 Q

Nooks [13], SUD [14], Livewire [15],

SafeDrive [16], SecVisor [17]

Table: Existing kernel protection works.
(3 = yes, 7 = no, Q = partially supported.)

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 5



Introduction

Motivation: Build a high-performance tracing
framework for unmodified kernel modules without
module source code

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 6



Outline

I Introduction

I Background

I HART: Hardware-Assisted Runtime Tracing framework

I HASAN: HART-based Address Sanitizer

I Evaluation

I Conclusion

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 7



Embedded Trace Macrocell

Embedded Trace Macrocell (ETM) is a hardware component on
Arm processors. It is able to tracing the instruction execution and
memory access with negligible overhead.

CPU

Instruction Execution Embedded Trace Macrocell
(ETM)

System on Chip

Embedded Trace Buffer
(ETB)

Trace

Trace Output

(Data access, Control flow)

Figure: A general hardware model of ETM.

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 8



Outline

I Introduction

I Background

I HART: Hardware-Assisted Runtime Tracing framework

I HASAN: HART-based Address Sanitizer

I Evaluation

I Conclusion

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 9



Hardware-Assisted Runtime Tracing framework

- HART, a Hardware-Asssited Runtime Tracing framework

ETM ETB

Target
Module HART

Client

Hook
Kernel Space

SoC

User Space Data
Control

PMU

q PMU Control
q ETM Control
q ETB Control
q Trace Decoder

Figure: Architecture of HART framework.

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 10



Selective Tracing

Challenge 1: Selective Tracing

- As a hardware component, ETM is lacking of OS semantics

- Filters in ETM are limited

- Hard to identify the trace of target module from the output

- Size of trace buffer is limited

- Tracing the entire execution in the processor leads to frequent
overflow

- To trace the other components in the system is a waste of
resource

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 11



Selective Tracing

Solution: Selective Tracing via hooking and wrapping

HART symbols:
addr2 T hart__kmalloc

module .text
addr: ebfffffe bl 0 <__kmalloc>

kernel symbols:
addr1 T __kmalloc

module .text
addr: ebfffffe bl 0 <__kmalloc>

rewrite

rewrite

Stock
Kernel

HART

module code in mem:
addr1: < func1_entry >

module .data
addr: func1_sym

updateStock
Kernel

HART code in mem:
addr2: < func1_hart_entry >

module .data
addr: func1_sym

update
HART

(b) Relocation of external calls(a) Relocation of internal function references

- Hook the entrances and exits during the module loading stage

- Achieved by callbacks registered via trace-point, without
intrusion to the kernel

- Replace entrances and exits with wrappers at relocation stage

- Including code points in .data and .text segments

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 12



Continuous Tracing

Challenge 2: Continuous Tracing

- The size of the trace buffer in SoCs are limited

- According to our observation, normally 4k trace buffer is
implemented

- Could be fully occupied in milliseconds or seconds

- The overflow of the trace buffer leads to losing of trace

- The trace buffer is a ring buffer

- Older trace data will be overridden after overflow

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 13



Continuous Tracing

Solution: Continuous Tracing via timely interrupts

- Leverage PMU to issue an interrupt before overflow

- In general, at most 6 byte trace data per instruction

- We make 670 instructions as the threshold, and issue an
interrupt after every 670 instructions are executed

- During the interrupt, validate and extract the trace with
careful designed algorithm

Valid Trace Stale TraceStale Trace

rd_off wr_off

rd_rnd/wr_rnd + 1
Trace Growing Direction

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 14



High-performance Tracing

Challenge 3: High-performance Tracing

- The overhead of ETM tracing is negligible

- But, it takes performance to handle the trace

- Extracting data from the trace buffer

- Decoding the trace data

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 15



High-performance Tracing

Solution: High-performance Tracing via elastic decoding

- A dedicated decoding thread

- Yielding CPU based on the workload of the decoding thread

- Calculating extracted data size

- To yield according to the data size

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 16



Outline

I Introduction

I Background

I HART: Hardware-Assisted Runtime Tracing framework

I HASAN: HART-based Address Sanitizer

I Evaluation

I Conclusion

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 17



HART-based Address Sanitizer

HASAN: a HART-based address sanitizer, reusing the scheme of
AddressSanitizer [18]

- Redzones for out of bound detection

- Wrapping objects with redzones

- Accessing the redzones leads to fault

- Shadow memory for memory tags

- 0xbf000000 to 0xffffffff as kernel space in our system

- Allocate 130M continuous virtual space as shadow memory

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 18



HART-based Address Sanitizer

HASAN: a HART-based address sanitizer.

- With module source code:

- Both HASAN and KASAN can achieve heap & stack protection

- Without module source code:

- HASAN achieves heap protection

- KASAN would not work at all

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 19



HART-based Address Sanitizer

Heap protection without module source code

- Achieved by hooking the slab interfaces for memory
management

Category Allocation De-allocation

Kmem cache
kmem cache alloc

kmem cache create

kmem cache free

kmem cache destroy

Kmalloc
kmalloc krealloc

kzalloc kcalloc
kfree

Page operations
alloc pages

get free pages

free pages

free pages

Table: Memory management interfaces HASAN hooked.

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 20



Outline

I Introduction

I Background

I HART: Hardware-Assisted Runtime Tracing framework

I HASAN: HART-based Address Sanitizer

I Evaluation

I Conclusion

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 21



Evaluation

Experiment setup:

- Freescale i.MX53 Quick Start Board

- Raspberry Pi 3+ for KASAN

- We implement HASAN in 32-bit i.MX53 QSB, but KASAN
only support 64-bit systems

- lmbench, and 6 widely-used kernel modules with standard
benchmarks

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 22



Overhead to the main kernel

Func. Setting Native KASAN Overhead
stat 3.08 16.4 5.3

Processes open clos 8.33 36.7 4.4
(ms) sig hndl 6.06 20.4 3.4

fork proc 472 1940 4.1
Local Pipe 18.9 45.8 2.4

Comm. AF UNIX 26.6 97.9 3.7
latency UDP 41.4 127.6 3.1

(ms) TCP 53.4 176.4 3.3
0K File Create 44.0 136.1 3.1
0K File Delete 35.2 227.1 6.5

File & VM 10K File Create 99.9 370.2 3.7
system 10K File Delete 64.2 204.7 3.2
latency Mmap Latency 188000 385000 2.0

(ms) Prot Fault 0.5 0.5 1.0
Page Fault 1.5 2.3 1.5
100fd selct 6.6 13.7 2.1

Table: Performance evaluation on KASAN with lmbench. HART and
HASAN introduce no overhead to the main kernel, so the results are
omitted here.

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 23



Performance evaluation

Module Benchmark Result

Type Name Name Setting

Native img + KASAN img +

HART HASAN Native KASAN

module module module module

Network

HSTCP [19] iperf [20] Local Comm. 1.00 1.00 0.29 0.28

TCPW [21] iperf [20] Local Comm. 0.92 0.91 0.28 0.28

H-TCP [22] iperf [20] Local Comm. 0.94 0.94 0.26 0.25

File System

HFS+ [23] IOZONE [24]

Wr/fs=4048K/reclen=64 1.00 1.00 0.96 0.95

Wr/fs=4048K/reclen=512 0.88 0.87 0.96 0.94

Rd/fs=4048K/reclen=64 0.92 0.89 0.98 0.92

Rd/fs=4048K/reclen=512 0.90 0.89 0.99 0.99

UDF [25] IOZONE [24]

Wr/fs=4048K/reclen=64 0.95 0.93 0.99 0.97

Wr/fs=4048K/reclen=512 0.97 0.97 1.00 0.92

Rd/fs=4048K/reclen=64 0.98 0.97 0.99 0.98

Rd/fs=4048K/reclen=512 0.97 0.96 1.00 0.98

Driver USB STORAGE[26] dd [27]

Wr/bs=1M/count=1024 1.00 1.00 1.00 0.43

Wr/bs=4M/count=256 1.00 1.00 0.99 0.43

Rd/bs=1M/count=1024 0.99 0.99 0.99 0.75

Rd/bs=4M/count=256 1.00 1.00 1.00 0.76

Avg. - - - 0.95 0.94 0.85 0.72

Table: Performance evaluation with kernel modules and benchmarks.

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 24



Tracing evaluation

Module Retrieving times

Type Name HART HASAN

Network

HSTCP 4243 3964

TCP-W 3728 3584

H-TCP 3577 3595

File HFS+ 30505 30278

Driver USB STORAGE 9316 9325

Module Max size(Byte) Min size(Byte) Average size(Byte) Full ETB

Type Name HART HASAN HART HASAN HART HASAN HART HASAN

Network

HSTCP 1100 1196 20 20 988 1056 0 0

TCP-W 1460 1456 20 20 1128 1088 0 0

H-TCP 1292 1304 20 20 1176 1168 0 0

File HFS+ 1652 1756 20 20 144 148 0 0

System UDF 2424 2848 20 20 240 232 0 0

Driver USB STORAGE 1544 1692 20 20 448 448 0 0

Table: Tracing evaluation of HART and HASAN.

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 25



Effectiveness evaluation

Vulnerability Detection

CVE-ID Type PoC HASAN KASAN

CVE-2016-0728 Use-after-free REFCOUNT overflow [28] Y Y

CVE-2016-6187 Out-of-bound Heap off-by-one [29] Y Y

CVE-2017-7184 Out-of-bound xfrm replay verify len [30] Y Y

CVE-2017-8824 Use-after-free dccp disconnect [31] Y Y

CVE-2017-2636 Double-free n hdlc [32] Y Y

CVE-2018-12929 Use-after-free ntfs read locked inode [33] Y Y

Table: Effectiveness evaluation on HASAN.

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 26



Outline

I Introduction

I Background

I HART: Hardware-Assisted Runtime Tracing framework

I HASAN: HART-based Address Sanitizer

I Evaluation

I Conclusion

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 27



Conclusion

- We present HART, a hardware-based high-performance
tracing framework specially for kernel modules

- Based on the HART, we build a modular security solution,
HASAN, to effectively detect memory corruptions without
requiring the source code of the module

- The evaluation result shows that HASAN can achieve the
detection with only 5%-6% performance overhead, which is
significantly superior to the state-of-the-art solution KASAN

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 28



References I
[1] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F. Kaashoek, “Linux kernel vulnerabilities:

State-of-the-art defenses and open problems,” in Proceedings of the Second Asia-Pacific Workshop on
Systems. ACM, 2011, p. 5.

[2] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and G. Vigna, “Dr. checker: A soundy analysis
for linux kernel drivers,” in 26th USENIX Security Symposium (USENIX Security 17). USENIX Association,
2017, pp. 1007–1024.

[3] M. Linares-Vásquez, G. Bavota, and C. Escobar-Velásquez, “An empirical study on android-related
vulnerabilities,” in Mining Software Repositories (MSR), 2017 IEEE/ACM 14th International Conference on.
IEEE, 2017, pp. 2–13.

[4] “slub,” https://www.kernel.org/doc/Documentation/vm/slub.txt, 2017.

[5] “Kmemleak,” https://www.kernel.org/doc/html/v4.14/dev-tools/kmemleak.html, 2019.

[6] “Getting started with kmemcheck – the linux kernel documentation,”
https://www.kernel.org/doc/html/v4.14/dev-tools/kmemcheck.html, 2019.

[7] “Home google/kasan wiki,” https://github.com/google/kasan/wiki, 2018.

[8] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang, “Mapping kernel objects to enable systematic
integrity checking,” in Proceedings of the 16th ACM conference on Computer and communications security.
ACM, 2009, pp. 555–565.

[9] Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to provide lifetime hypervisor control-flow
integrity,” in Security and Privacy (SP), 2010 IEEE Symposium on. IEEE, 2010, pp. 380–395.

[10] X. Xiong, D. Tian, P. Liu et al., “Practical protection of kernel integrity for commodity os from untrusted
extensions,” in NDSS, vol. 11, 2011.

[11] J. Criswell, N. Dautenhahn, and V. Adve, “Kcofi: Complete control-flow integrity for commodity operating
system kernels,” in Security and Privacy (SP), 2014 IEEE Symposium on. IEEE, 2014, pp. 292–307.

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 29

https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/html/v4.14/dev-tools/kmemleak.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kmemcheck.html
https://github.com/google/kasan/wiki


References II

[12] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, “Enforcing kernel security invariants with data flow
integrity.” in NDSS, 2016.

[13] M. M. Swift, S. Martin, H. M. Levy, and S. J. Eggers, “Nooks: An architecture for reliable device drivers,” in
Proceedings of the 10th workshop on ACM SIGOPS European workshop. ACM, 2002, pp. 102–107.

[14] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Donnelly, P. Barham, and R. Black, “Fast
byte-granularity software fault isolation,” in Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles. ACM, 2009, pp. 45–58.

[15] S. Boyd-Wickizer and N. Zeldovich, “Tolerating malicious device drivers in linux.” in USENIX Annual
Technical Conference. Boston, 2010.

[16] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren, G. Necula, and E. Brewer, “Safedrive:
Safe and recoverable extensions using language-based techniques,” in Proceedings of the 7th symposium on
Operating systems design and implementation. USENIX Association, 2006, pp. 45–60.

[17] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: A tiny hypervisor to provide lifetime kernel code
integrity for commodity oses,” in ACM SIGOPS Operating Systems Review. ACM, 2007, pp. 335–350.

[18] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer: A fast address sanity checker.”
in USENIX Annual Technical Conference, 2012, pp. 309–318.

[19] S. Floyd, “Highspeed tcp for large congestion windows,” https://tools.ietf.org/html/rfc3649, 2003.

[20] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, K. Prabhu, and etc., “iperf - the ultimate speed test tool for
tcp, udp and sctp,” https://iperf.fr/, 2018.

[21] “Tcp westwood+ congestion control,” https://tools.ietf.org/html/rfc3649, 2003.

[22] “H-tcp - congestion control for high delay-bandwidth product networks,”
http://www.hamilton.ie/net/htcp.htm, 2019.

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 30

https://tools.ietf.org/html/rfc3649
https://iperf.fr/
https://tools.ietf.org/html/rfc3649
http://www.hamilton.ie/net/htcp.htm


References III

[23] “Hfs plus,” https://www.forensicswiki.org/wiki/HFS%2B, 2019.

[24] C. Don, C. Capps, D. Sawyer, J. Lohr, G. Dowding, and etc., “Iozone filesystem benchmark,”
http://www.iozone.org/, 2016.

[25] “Universal disk format,” https://docs.oracle.com/cd/E19683-01/806-4073/fsoverview-8/index.html, 2019.

[26] “Config usb storage: Usb mass storage suppor,” https://cateee.net/lkddb/web-lkddb/USB STORAGE.html,
2019.

[27] P. Rubin, D. MacKenzie, and S. Kemp, “dd - convert and copy a file,”
http://man7.org/linux/man-pages/man1/dd.1.html, 2019.

[28] P. P. Team, “Refcount overflow exploit,”
https://github.com/SecWiki/linux-kernel-exploits/blob/master/2016/CVE-2016-0728/cve-2016-0728.c,
2017.

[29] V. Nikolenko, “Heap off-by-one poc,” http://cyseclabs.com/exploits/matreshka.c, 2016.

[30] snorez, “Exploit of cve-2017-7184,”
https://raw.githubusercontent.com/snorez/exploits/master/cve-2017-7184/exp.c, 2017.

[31] M. Ghannam, “Cve-2017-8824 linux: use-after-free in dccp code,”
https://www.openwall.com/lists/oss-security/2017/12/05/1, 2017.

[32] A. Popov, “Cve-2017-2636: exploit the race condition in the n hdlc linux kernel driver bypassing smep,”
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html, 2017.

[33] S. Schumilo, “Multiple memory corruption issues in ntfs.ko (linux 4.15.0-15.16),”
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1763403, 2018.

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 31

https://www.forensicswiki.org/wiki/HFS%2B
http://www.iozone.org/
https://docs.oracle.com/cd/E19683-01/806-4073/fsoverview-8/index.html
https://cateee.net/lkddb/web-lkddb/USB_STORAGE.html
http://man7.org/linux/man-pages/man1/dd.1.html
https://github.com/SecWiki/linux-kernel-exploits/blob/master/2016/CVE-2016-0728/cve-2016-0728.c
http://cyseclabs.com/exploits/matreshka.c
https://raw.githubusercontent.com/snorez/exploits/master/cve-2017-7184/exp.c
https://www.openwall.com/lists/oss-security/2017/12/05/1
https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1763403


Thank you!

Questions?
{duyunlan}@smail.nju.edu.cn

HART: Hardware-assisted Modular Tracing on ARM, ESORICS 2020 32


	Introduction
	Background
	HART
	HASAN
	Evaluation
	Conclusion
	Reference
	Thanks

