IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 6, JUNE 2018

1535

FINE-CFI: Fine-Grained Control-Flow Integrity
for Operating System Kernels

Jinku Li

Abstract—The operating system kernel is often the security
foundation for the whole system. To prevent attacks, control-
flow integrity (CFI) has been proposed to ensure that any control
transfer during the program’s execution never deviates from its
control-flow graph (CFG). Existing CFI solutions either work in
user space or are coarse-grained; thus they cannot be readily
deployed in kernels or are vulnerable to state-of-the-art attacks.
In this paper, we present FINE-CFI, a system that enforces
fine-grained CFI for operating system kernels. Unlike previous
systems, FINE-CFI constructs the kernel’s fine-grained CFG with
a retrofitted context-sensitive and field-sensitive pointer analysis,
then enforces CFI with this CFG. At the same time, FINE-
CFI provides comprehensive protection to the control data in
the kernel’s interrupt context. Combining the above two kinds
of protection, we can thus defeat those formidable ret2usr and
kernel code-reuse attacks. We have developed a compiler-based
prototype and implemented this technique in Linux 3.14 Kkernel.
Our evaluation indicates that FINE-CFI prevents all the gadgets
found by an open-source gadget-finding tool from being misused,
as well as all the attacks from the RIPE benchmark and malicious
attempts to modify control data in the interrupt context; and
it also reduces the number of indirect control-flow targets
by 99.998%, thus largely raising the bar for attackers. Our
evaluation also shows that the performance overhead introduced
by FINE-CFI is less than 10% on average.

Index Terms— Control-flow integrity, kernel

fine-grained, intrusion prevention.

protection,

I. INTRODUCTION

OST commodity operating systems are written in
unsafe languages, e.g., C/C++, hence are vulnera-
ble to memory safety attacks. Specifically, attackers can
exploit a buffer overflow vulnerability to overwrite a function
pointer or return address data in memory to redirect the
program execution to anywhere they want.
As operating system kernel is often the security foundation
for the whole system, researchers have proposed a number

Manuscript received July 7, 2017; revised November 23, 2017 and
January 9, 2018; accepted January 13, 2018. Date of publication January 25,
2018; date of current version February 12, 2018. This work was supported
in part by the Natural Science Basic Research Plan in Shaanxi Province of
China under Grant 2015JM6351, in part by the Key Program of the National
Natural Science Foundation of China under Grant U1405255, and in part
by the Shaanxi Science and Technology Coordination and Innovation Project
under Grant 2016TZC-G-6-3. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Mauro Conti.
(Corresponding author: Jinku Li.)

J. Li, X. Tong, and J. Ma are with the School of Cyber Engineer-
ing, Xidian University, Xi’an 710071, China (e-mail: jkli@xidian.edu.cn;
txmxidian@gmail.com; jfma@mail.xidian.edu.cn).

F. Zhang is with the Department of Computer Science, Wayne State
University, Detroit, MI 48202 USA (e-mail: fengwei@wayne.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2018.2797932

, Xiaomeng Tong, Fengwei Zhang, and Jianfeng Ma

of solutions to counter memory safety attacks. For instance,
DEP (Data Execution Prevention) [1], or WX (Write XOR
Execute) [2], prevents code injection attacks by marking a
memory page as writable or executable, but not both at the
same time. That is to say, it blocks attacks that inject malicious
code as data while later execute it as code. Unfortunately,
such a guarantee cannot defend against code-reuse attacks,
e.g., return-into-libc [3], return-oriented programming [4]-[7],
or jump-oriented programming [8]. These code-reuse attacks
can be performed by only misusing legitimate code snip-
pets (or “gadgets”) and chaining them together with some
special instructions, e.g., ret or indirect jmp. Researchers
have demonstrated that these code-reuse attacks can achieve
Turing-complete computations, thus can do anything they
want. To defeat code-reuse attacks, ASLR (Address Space
Layout Randomization) [9] places code and data segments
at random addresses, making it harder for attackers to
reuse existing code for execution. Unfortunately, ASLR can
be bypassed via information leaks, or timing side channel
attacks [10].

From another perspective, most memory safety attacks work
by hijacking a program’s control flow to redirect its execu-
tion [11]. Control-Flow Integrity (CFI) [12] has been proposed
to thwart such attacks. CFI ensures that a program’s control
flow follows a statically computed Control-Flow Graph (CFG).
It inserts inline reference monitor code into the program and
enforces safety check during execution. When the program
deviates its CFG, its execution is stopped and often an alarm
is raised or logged. As CFI is resistant to code injection, code-
reuse, and information leakage attacks, it has been widely
studied for more than ten years.

An array of user-level CFI systems have been designed, and
most of them are coarse-grained [12]-[15]. For instance, Bin-
CFI [13] uses two tags (or labels) to indicate the valid control
transfer targets. One tag is for all the indirect call/jmp sites,
the other is for all the return sites. CCFIR [14] leverages three
tags, one for all the indirect call/jmp sites, one for return sites
of “non-sensitive” functions, and a special one for return sites
of sensitive functions (e.g., system() function that can be used
to execute a file or create a process). FECFI [15] classifies
function pointers by the number of arguments for C code
(leading to an effective limit around eight) or into a single
class. Unfortunately, researchers have demonstrated that all
these coarse-grained CFI systems can be bypassed [16]-[19].

As a result of the attacks on coarse-grained CFI
systems, several fine-grained CFI solutions have been
proposed [20]-[22]. For instance, CCFI [22] enforces
fine-grained CFI by computing and storing a message

1556-6013 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0003-0709-7434

1536

authentication code of control flow objects each time they
are stored in memory, and checking every time the value
is loaded from memory. By doing so, CCFI prevents
the attacker from writing an arbitrary address to hijack
execution. CPI [20] instead provides protection by iden-
tifying and collecting all the program’s sensitive point-
ers into a safe region, and preventing all the normal
code from accessing this region. Although researchers have
demonstrated CPI’s ineffectiveness on x86-64 and ARM
architecture [23], CPI’s authors argue that their imple-
mentation alternatives using hardware-enforced segmentation
(e.g., on x86-32) or software fault isolation cannot be sub-
verted [24]. Note that these fine-grained invariants of CFI
may be immune to those attacks targeting coarse-grained CFI
systems, but all these invariants in user level do not provide
protection for the control data in kernels, thus are vulner-
able to ret2usr attacks. It is worth clarifying that a classic
ret2usr attack [25] only corrupts non-interrupt control data
(e.g., a kernel function pointer or return address), however,
the novel ret2usr attacks could corrupt CS and IP in the
interrupt context, to transfer execution control-flow to the
user-space code controlled by attackers with kernel privileges.
As a result, it is also important to protect control data in the
interrupt context.

On the other hand, additional challenges are present to
enforce kernel’s control-flow integrity. The first challenge is
due to the asynchronous nature of context switching and
interrupt handling in kernels. In particular, when an interrupt
occurs, the interrupted program’s context information is saved
to memory for later restoring when the program is resumed.
Note that the saved context information could be possibly
tampered with by attackers to hijack the control flow. Different
from the control-flow transfer with an indirect call/jmp or ret
instruction, we cannot predetermine when and where an inter-
rupt may occur, as interrupts could occur at any time or any
valid instruction boundary. The second challenge comes from
the heavy use of single code pointers in various structures in
kernel code, and these pointers may scatter across the whole
kernel. To enforce fine-grained CFI for the kernel, it is required
to identify all these code pointers and leverage them to infer
the point-to set for each indirect function call, which is not
an easy task to implement. The third challenge is that the
performance overhead introduced by the enforcement should
be as low as possible, as the operating system kernel is the
foundation for all the applications.

Despite the challenges, several kernel-level CFI systems
have been presented by researchers [26]-[28]. For instance,
HyperSafe [26] enforces CFI protection for a tiny hypervisor
(kernel). However, HyperSafe does not provide protection
for control data in the interrupt context, thus is vulnerable
to ret2usr attacks. In contrast, KCoFI [27] provides com-
plete control-flow integrity for commodity operating system
kernels. KCoFI protects not only the transfer targets of all the
indirect call/jmp and ret instructions, but also the control data
(e.g., return address) in context switching, interrupt handling,
and signal handler dispatch, thus is immune to ret2usr and
kernel code-reuse attacks. However, KCoFI incurs a high
performance overhead (over 100%), which slows down the
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whole system including all the applications on it. What’s
worse, to escape from sophisticated whole-program analy-
sis or complete memory safety enforcement, KCoFI only
provides coarse-grained CFI for the indirect call/jmp and
return sites. Specifically, KCoFI leverages only one label
for the targets of all the indirect call/jmp and return sites.
As mentioned earlier, the coarse-grained CFI systems can be
subverted by attacks chained with new gadgets [16]-[19].
Compared with KCoFI, indexed hooks [28] enforces two
different-grained invariants of CFI, i.e., coarse-grained CFI
and fine-grained CFI. Specifically, for the fine-grained CFI,
indexed hooks sets up multiple jump tables with the input of
a fine-grained CFG, and each table contains the legal target
addresses for a specific indirect call/jmp or ret instruction.
When an indirect transfer occurs, indexed hooks ensures that
its target address is one item in its jump table. To obtain the
fine-grained CFG, indexed hooks leverages dynamic analysis,
which runs a FreeBSD virtual machine on QEMU [29] to
profile the targets of indirect calls. Note that dynamic analysis
has an incomplete coverage as it is impossible to reach all the
indirect calls. The experiments show that only 42.67% indirect
calls are reached in its profiling. For those unreachable indirect
calls, indexed hooks conservatively assumes a maximum set,
which contains the addresses of all the functions that may be
invoked. This assumption could lead to a coarse-grained CFI,
which has been demonstrated vulnerable by researchers. Thus,
we argue that we need a lightweight and real fine-grained CFI
for operating system kernels, which can not only provide fine-
grained CFI for all the indirect control transfer instructions
(i.e., indirect call/jmp, and ret), but also protect control data
in the interrupt context, to defeat the ret2usr and kernel code-
reuse attacks.

In this work, we present FINE-CFI, which enforces
fine-grained control-flow integrity for operating system
kernels. Unlike previous systems, FINE-CFI constructs
kernel’s fine-grained CFG with a retrofitted context-sensitive
and field-sensitive pointer analysis, then enforces CFI with
this CFG. As well, FINE-CFI provides protection to the
control data in kernel’s interrupt context. With both of them,
FINE-CFI can effectively defeat those formidable ret2usr and
kernel code-reuse attacks.

To enforce fine-grained CFI for a kernel, we need a fine-
grained CFG of the kernel. To obtain the fine-grained CFG,
the key is to get the point-to set for every and each indirect
call/jmp instruction. To address this problem, we propose a
retrofitted point-to analysis approach. The main innovation of
our approach is that we introduce a new vector, called struct
location vector, to infer the targets for indirect function calls.
We introduce such a vector as we observe that there are a large
number of function pointer initializations and assignments
inside struct variables in kernel space, and the function pointer
locates in the same field of the struct in its lifetime, i.e., from
the initialization or assignment to be consumed by indirect
function calls. As a result, it largely reduces the number
of targets of indirect call/jmp instructions and improves the
precision of results.

While for the protection of control data in the interrupt
context, the static analysis approach is not applicable as we
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cannot predetermine when and where an interrupt may occur.
Consequently, we propose a hypervisor-based approach, which
backups the runtime context information (e.g., the CS and IP)
in the hypervisor when an interrupt arrives, and then ver-
ifies that information by comparing the values in current
kernel stack and in the hypervisor when the interrupt returns.
By doing so, we enforce the protection for control data in the
interrupt context.

To validate our approach, we have developed a proof-of-
concept prototype with the open-source LLVM compiler [30]
and implemented this technique in Linux 3.14/x86-amd64
kernel. As a compiler-based approach, we need to recompile
the protected OS kernel source code and enforce protection
for it. Then, we conduct a number of attacking and benchmark-
based experiments on the system, and the results demonstrate
the effectiveness and efficiency of our approach.

In summary, our paper makes the following contributions:

« We propose a retrofitted static analysis approach, and
leverage it to obtain the point-to sets of indirect call/jmp
instructions. Our approach largely reduces the number of
targets of indirect call/jmp instructions (average 13.14 for
each indirect call/jmp instruction). Further, we construct
the fine-grained CFG of the kernel and use it to enforce
fine-grained CFI for the kernel.

« We propose a hypervisor-based approach to provide
protection for control data in the interrupt context. Com-
bining the above two kinds of protection, we thus can
defeat the ret2usr and kernel code-reuse attacks.

« To validate our approach, we have developed a compiler-
based prototype, called FINE-CFI. In particular, we lever-
age LLVM compiler to enforce protection for Linux
3.14/x86-amd64 kernel. Then we perform a systematic
security analysis and a number of attacks to FINE-CFI.
The results indicate that FINE-CFI prevents all the
attacks and it reduces the number of indirect control-
flow targets by 99.998%, thus largely raises the bar
for attackers. We also perform several benchmark-based
performance measurements, the results show that the
performance overhead introduced by our system is less
than 10% on average with fine-grained CFI for all indirect
call/jmp and ret instructions, as well as the protection of
control data in the interrupt context.

The rest of the paper is organized as follows. First we
describe the threat model and assumptions, and present the
key techniques in Section II. Then we show the implemen-
tation details and evaluation results in Sections III and IV,
respectively. After that, we discuss possible limitations of our
current prototype in Section V and describe related work in
Section VI. Finally, we conclude our paper in Section VII.

II. SYSTEM DESIGN
A. Overview

1) Threat Model and Assumptions: In this work, we assume
that attackers can obtain the highest privilege inside the OS
(e.g., the root privilege in Linux) and full access to the system
memory space. At the same time, we assume that attackers can
overwrite the control data (e.g., function pointers or return
addresses) in kernel memory to deviate kernel’s control
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flow by exploiting a kernel memory corruption vulnerability
(e.g., heap overflow). On the other hand, we assume that
the OS kernel code integrity is guaranteed by a trustworthy
hypervisor, and the hypervisor’s self-protection mechanisms
are enabled so that the data saved in it cannot be maliciously
overwritten.

With the proposed threat model and assumptions, our goal is
to eliminate (or mitigate) the possibility that an adversary can
perform attacks by hijacking the control flow. Accordingly,
we leverage LLVM intermediate code to construct a fine-
grained CFG of kernel and limit all control-flow shifts into it.
In the meantime, we save the state of the interrupted program
into an interrupt stack constructed by us in the hypervisor, and
validate the control data (i.e., return address) when the guest
OS kernel attempts to return from an interrupt handler. Next,
we describe the technical details that relate to the enforcement
of CFI and the protection of control data in the interrupt
context.

B. Constructing Fine-Grained CFG

To enforce fine-grained CFI for a kernel, we must
obtain the fine-grained CFG of the kernel. There are three
types of control flow shift in the CFG: 1) direct function
call (via direct call instruction), 2) indirect function call
(via indirect call/jmp instruction), and 3) function return
(via ret instruction). Among them, the target of a direct
function call and its callee’s return are easy to obtain. This is
because direct call instruction encodes its target address in the
machine code, and the invoked function always returns to the
instruction that immediately follows the call instruction. For
the indirect function call, its invoked function still returns to
the instruction that immediately follows the call instruction,
but its target (set) cannot be directly obtained since it uses
a function pointer as its target. Indirect call/jmp instruction
typically needs to preload its target address into the (function)
pointer, which is determined at runtime as a variable. There-
fore, to obtain the fine-grained CFG, the key is to get the
point-to set for every and each indirect call/jmp instruction.

There are two traditional approaches to get the point-to
set of indirect function call. One is the static analysis of
source code, and another is the runtime dynamic profiling
of binary. While neither of them could solve this problem
well, because the former is too complex and the latter has
incomplete coverage. As the intermediate-representation (IR)
code of compiler is a low-level strongly-typed language-
independent representation which preserves most of the type
information and enough context information that are required
by our analysis, it is an effective way to determine the target set
of an indirect function call by traversing the function pointer’s
transfer process in IR code.

In this work, we propose a retrofitted point-to analysis
approach to IR, which is based on such an observation: for
any indirect call/jmp instruction, as long as it is executed,
backtracking from its function pointer, we can always find the
locations where its function pointer is assigned or initialized;
on the other hand, for the entry address of a function, as long
as it is assigned or initialized to a function pointer, it usually
(possibly through several transfers) would be consumed
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by one or more indirect call/jmp instructions. Both processes
involve the transfer of function pointers, which can be
leveraged to determine the point-to sets of indirect call/jmp
instructions.

Note that for a large code base, e.g., the code base of a
whole commodity operating system kernel, function signature-
based policy is practical to obtain the point-to sets for indi-
rect call/jmp instructions. In particular, the classic function
signature-based policy always allows an indirect call site to
invoke functions with the same function signature as itself,
i.e., the same return type as well as the same number and
type of arguments. Meanwhile, the classic function signature-
based policy is not precise enough for a fine-grained CFI
enforcement.

To improve the precision of analysis results, we introduce
a new vector, called struct location vector, to infer the targets
for each indirect call/jmp instruction. Next, we first give the
formal definition of struct location vector, then we provide the
basic worklist algorithm of our pointer analysis.

Definition 1 (Struct Location Vector): The struct location
vector of a function pointer is the location of the function
pointer member in a (nested) struct.

To better represent the cases in nested structs, we use
the name of the struct, the element’s order number, and
the nested member’s order numbers to reach the function
pointer member in the struct, to denote its struct location
vector. Thus, the struct location vector of a function pointer
is denoted as (%struct.name, ele_order, mem_order_1, ...,
mem_order_i, ...), in which ele_order denotes the element’
order number in a %struct.name-typed array and mem_order_i
denotes the member’s order number of layer i in %struct.name
struct to reach the function pointer (i>=1). For example, vector
(%ostruct.sb,0,2) denotes that a function pointer locates at the
2nd member of layer 1 in a %struct.sb struct, which is the
Oth element in a %struct.sb-typed array.

Algorithm 1 shows the basic worklist algorithm of our
pointer analysis. In the algorithm, we leverage two tables,
i.e., table vector_callees.map (VC for short) and table sig-
nature_callees.map (SC for short), to record the mapping of
struct location vector/function names and function signature/
Sfunction names separately. According to the storing and con-
suming of function pointer, we proceed in two steps:

S1: For each global variable’s initialization Gi in IR code,
if a function pointer fp in Gi is initialized with the entry
address of a function callee, then we put (fp’s location vector,
callee) into table VC, and put (callee’s function signature,
callee) into table SC (lines 2-5). For each instruction / in
each function F' in IR code, if the entry address of a function
callee is assigned to a function pointer fp in I, then we put
(callee’s function signature, callee) into table SC; further, if fp
is in a struct variable, then we backtrack from the assignment
in F to get fp’s struct location vector, and put (fp’s location
vector, callee) into table VC (lines 6-12).

S2: For each indirect function callsite /Ci in each function F
in IR code, we backtrack from its function pointer fp until the
beginning of the caller function F (including its arguments),
and infer the point-to set of /Ci according to three cases
encountered: (1) If the function pointer fp is directly assigned
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Algorithm 1 Basic Worklist Algorithm of Our Approach

1: // Step 1: the process of function pointer storing
2: for each Gi € IR do
3:  if fp in Gi is initialized with callee then

4: (fp’s location vector, callee) — VC

5: (callee’s function signature, callee) — SC

6: for each F € IR do

7. for each I € F do

8: if callee is assigned to a fp in I then

9: (callee’s function signature, callee) — SC
10: if fp is in a struct variable then

11: backtrack to get fp’s location vector

12: (fp’s location vector, callee) — VC

13:

14: // Step 2: the process of function pointer consuming
15: for each F € IR do
16:  for each indirect function callsite /Ci € F do

17: backtrack ICi’s fp to the beginning of F

18: if fp is assigned with callee then

19: callee — point-to-set[i]

20: else if fp comes from a struct variable then
21: lookup table VC, callees — point-to-set[i]
22: else

23: lookup table SC, callees — point-to-set[i]

with the entry address of a function callee, then we get
the callee and add it into ICi’s point-to set point-to-set[i]
(lines 18-19); (2) If the function pointer fp comes from a struct
variable, then we look up table VC with fp’s struct location
vector as input to get the callee names, and put them into
point-to-set[i] (lines 20-21); (3) In other cases, we look up
table SC with fp’s function signature as input to get the callee
names, and put them into point-to-set[i] (lines 22-23).

The main innovation of our retrofitted point-to analysis is
that we introduce struct location vector, to infer the targets
of indirect function calls. This is reasonable as we observe
that there are a large number of function pointer initializations
and assignments inside struct variables in kernel space, and
the function pointer locates in the same field of the struct
in its lifetime, i.e., from the initialization or assignment to
be consumed by indirect function calls. Combining struct
location vector with function signature-based policy, it largely
reduces the number of targets of indirect call/jmp instructions
(average 13.14 for each indirect call/jmp instruction, see
details in Section III-B).

In order to describe our algorithm more intuitively, we build
a simple example program, as shown in Figure 1, and present
the process to determine the point-to sets of indirect function
calls in the example program, as shown in Figure 2.

In Figure 1(a), we show a C source file example.c.
In example.c, it defines a global struct variable Ga which
contains a nested struct member b where a function pointer f
locates. In addition, it defines a caller function and four callee
functions, i.e., callee_A, callee_B, callee_C, and callee_D,
which will be possibly invoked by two indirect call instructions
in caller according to the value of flag. In the main function,
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01 typedef struct sb{ 01# @Ga = global %struct.sa {132 0, %struct.sb { 132 0, 132 0, i8* (i32)* @callee_A } }, align 8
02 int i,j; 02 define void @caller(Yostruct.sb* %BB, i8* (164)* %func) #0 {
03 char* (*f)(int);} sb; 03 store %struct.sb* %BB, %struct.sb** %1, align 8
04 typedef struct sa{ 04 store i8* (164)* %func, i8* (164)** %2, align 8
05 int i; 05
06 sb b;} sa; 06#  store i8* (i64)* @callee_C, i8* (164)** %2, align 8
07 char *callee A(inti) {...} 07
08 char *callee B(inti) {...} 08 %7 = load i8* (164)*, i8* (164)** %2, align 8
09 char *callee_C(long i) {...} 09%* %8 = call i8* %7(i64 1)
10 char *callee D(long i) {...} 10 .
11 saGa={0,{0,0,callee A}}; 11 %9 = load %struct.sb*, %struct.sb** %1, align 8
12 sb* Pb=&Ga.b; int flag; 12 %10 = getelementptr inbounds %struct.sb, %struct.sb* %9, 132 0, 132 2
13 void caller(sb* BB, char* (*func)(long)) { 13 %11 =load i8* (i32)*, i8* (132)** %10, align 8
14 if(flag) 14* %12 = call i8* %11(i32 2)
15 func=callee_C; 15 }
16 func(1); 16 define void @main() #0 {
17 BB->f(2); 17 %4 = load %struct.sb*, %struct.sb** @Pb, align 8
18 } 18 %S5 = getelementptr inbounds %struct.sb, Y%struct.sb* %4, 132 0, 132 2
19 void main() { 19#  store i8* (i32)* @callee_B, i8* (i32)** %5, align 8
20 if(flag) 20
21 Pb->f=callee_B; 21 %7 = load Ystruct.sb*, %struct.sb** @Pb, align 8
22 caller(Pb,callee_D); 22#  call void @caller(%struct.sb* %7, i8* (164)* @callee_D)
23} 23}

(@) (b)

Fig. 1. An example: storing and consuming function pointers. (a) example.c; (b) LLVM IR.

Table vector_callees.map

lookup

location vector(key) || function name(value)

(%struct.sb,0,2)

1 1!
1 1
1 [ 1
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1 1! !
1 1! 1
1 1
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| | Operations : 1 : location :
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. . . 1 M Jmp 1
! Instructions : Table signature callees.map i entry address | in func f i
- I 1
! store,select function signature(key ) function name(value) i !
. i 3.non-struct l
!'| phi,call,etc. e \ . 1
: i8* (i32) callee_A,callee B : | vector location X
' i8* (i callee Cocallee D |1 I
| i8* (i64) e D | i (i64) |
! lookup
I Ll !
_______________________________________ e |
Fig. 2. The process to determine the point-to sets of indirect function calls.

it passes a struct pointer (Pb) and a function pointer (callee_D)
as function arguments to caller. In Figure 1(b), we show the
corresponding LLVM IR code of example.c (we omit some
irrelevant content due to space limitation, such as the tempo-
rary variables %1 and %2 which are from stack allocation).
The lines marked with # indicate the places where function
pointer storing happens, while the lines marked with * indicate
the places where function pointer consuming happens.

1) The Process of Function Pointer Storing: The process
of function pointer storing needs to deal with two cases,
i.e., initialization and assignment.

(1) Initialization: In Figure 1(b), line 01 defines a global
variable Ga in which a function pointer is initialized with
the entry address of function callee_A in a nested struct.
The function pointer’s location vector is (%struct.sa,0,1,2),
which denotes the 2nd member (f) inside a %struct.sb-typed

variable (b) that is the 1st member inside a %struct.sa-typed
variable (Ga) that is the Otk element in a struct array. As a
result, we put location vector (%struct.sa,0,1,2) and function
name callee_A into table vector_callees.map, as shown in
Figure 2. In addition to the nested struct, a lot of aggre-
gate data structures also need to be handled in initialization,
e.g., array and vector.

(2) Assignment: In Figure 1(b), it shows three different cases
where function pointers are assigned in lines 06, 19, and 22,
respectively. In lines 06 and 22, the entry addresses of function
callee_C and callee_D are directly assigned to a function
pointer variable separately, while the entry address of function
callee_B is assigned to a function pointer inside a struct
pointer variable (lines 17-19). For the last case, we backtrack
from the assignment point (line 19) until the beginning of
the main function to get the function pointer storing location
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vector (%struct.sb,0,2). To get the location vector, we traverse
a lot of fetch-related instructions including getelementptr,
load, select, phi, etc. Note that gerelementptr instruction is
used to get the address of a subelement of an aggregate data
structure [31]. Finally, we put location vector (%struct.sb,0,2)
and function name callee_B into table vector_callees.map, as
shown in Figure 2.

For all functions whose entry addresses are initialized or
assigned to function pointers, we record the function signa-
tures of them and add the pair of function signature/function
names to table signature_callees.map, as shown in Figure 2.
It is important to point out that only the functions in table
signature_callees.map could possibly be indirectly invoked by
indirect call/jmp instructions, but not all the functions in kernel
space. After that, we have built table vector_callees.map and
signature_callees.map. For table vector_callees.map, we add
the limitation of struct type and its storing location for function
pointer, thus greatly reduce the scope of possible callee set. For
table signature_callees.map, our approach is more accurate
than others which blindly match with function signature of all
functions in the program, since we only allow the functions
in table signature_callees.map to be included. Note that our
approach makes a further step than FECFI [15], since we
use the complete function signature (including the function’s
return type and the arguments list with their types) rather than
only the number of function arguments to classify functions.

2) The Process of Function Pointer Consuming: In the
process of function pointer consuming, we backtrack from
each indirect call/jmp instruction until the beginning of caller
function, and determine the source of its function pointer.
In Figure 1(b), it shows two indirect call instructions in caller
(lines 09 and 14) where function pointers are consumed.
According to the source of function pointer, there are three
cases as follows.

(1) Backtracking from the indirect call instruction in line 09,
the function pointer %7 could be directly assigned with the
entry address of function callee_C in line 06. So, we put
callee_C into the point-to set of the indirect call instruction
in line 09.

(2) Backtracking from the indirect call instruction in line 14,
the function pointer %11 comes from a struct variable %BB
which is an externally imported argument of caller.
We traverse all fetch-related instructions (e.g., getelemetptr,
load) encountered along the path (lines 14->13->12->
11->03->02) to obtain the function pointer’s location vector
(Yostruct.sb,0,2). Then we use this vector as input to look up
table vector_callees.map and get the result as shown in
Figure 2. In fact, the vector (%struct.sb,0,2) and
(%struct.sa,0,1,2) are equivalent since they point to the
same location. As a result, we put callee_A and callee_B into
the point-to set of the indirect call instruction in line 14.

(3) Similar to case (1), backtracking from the indirect call
instruction in line 09, the function pointer %7 could also
come from an externally imported function argument %func
(along the path of lines 09->08->04->02) rather than a struct
variable. Different with the case that a function pointer is
passed as an argument in a direct function call as line 22
shows, in an indirect function call, it is very difficult to
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LLVMIR : machine code in assembly :
Function i : Function i :
Basicblock i :

movq $0x2, %rdi
callg *0x10(%15)

call void %94(i64 1) cally debug mark 2

call debug mark_1

Basicblock j: movq $0x3, %rdi

callg *0x8(%15)

call i32 %98(i64 2) callq debuy mark 3

call debug mark_2

Basicblock k : movq $0x1, %rdi

callg *0x8(%15)

call 164 %100(i64 3) callq debug_mark_1

call debug_mark_3

Fig. 3. Marking the indirect call instructions in a function.

figure out the function pointer which is passed as an argument.
We solve this problem by inferring the targets of indirect call
instruction in line 09 with the type (i.e., function signature)
of function pointer %7, which is a function signature-based
policy. The type of function pointer %7 is “i8* (i64)*”
(as shown in line 08), so the callee’s function signature should
be “i8* (i64)”. We use the function signature “i8* (i64)” as
input to look up table signature_callees.map and get the result
{callee_C, callee_D} (as shown in Figure 2). Then we put
them into the corresponding indirect call’s point-to set. It’s
important to point out that in some cases, a function pointer’s
type might be casted to another, we have to deal with such
cases carefully (the details can be found in Section III-A).

After the processes of function pointer storing and func-
tion pointer consuming, we obtain the point-to sets for the
indirect call instructions in Figure 1(b). The point-to set
for the indirect call instruction in line 09 is {callee_C,
callee_D}, and the point-to set for the indirect call instruction
in line 14 is {callee_A, callee_B}. Note that our proposed
point-to analysis is context-sensitive and field-sensitive, as we
distinguish between different invocations of a function at
different call sites, as well as different fields of a struct in
C program.

3) Marking Indirect Call Instructions in a Function: So far
we have obtained the point-to set for every indirect call/jmp
instruction, however, these sets are from the IR code, but not
the final machine code. We observe that there may exist more
than one indirect call instruction in a function. From IR code
to final machine code, it goes through a few optimizations
which could change the order of the indirect call instructions
in a function, or even remove one or more of them. This
might alter the final CFG. Fortunately, we observe that most
optimizations are based on the basic block in the function.
To solve this problem, we mark each indirect call instruction
with a tag right after it in the basicblock, as shown in Figure 3.
First, we define some marking functions in kernel source
code, like debug_mark_1, debug_mark_2, etc (the number
is accumulative). Then we traverse the instructions in each
basicblock in the function. When an indirect call instruction
is found, we insert a tag right after it. For instance, in Figure 3,
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there are three indirect call instructions in basicblock i, j, k of
function i, but the order of the three indirect call instructions
has been changed in the final machine code. To establish the
mapping of indirect call instruction in IR code and in machine
code, we insert a call instruction to an ordered marking
function as a tag right after each indirect call instruction in
the basicblock, e.g., call debug_mark_1I right after call void
%94(i64 1) in basicblock i. By doing so, we establish the
mapping of indirect call instruction in IR code and in machine
code, as shown by arrows in Figure 3.

C. CFI Protection

After obtaining the fine-grained CFG, it is an intuitive
thing to enforce fine-grained CFI since there have been some
fairly mature solutions. We employ indexed hooks, which
has been implemented in our previous work [28] to enforce
CFI. Specifically, we create one jump table (i.e., function
table) for every indirect call/jmp instruction and one jump table
(i.e., return table) for each function. Every function table
contains the entry addresses of the functions that may be
indirectly invoked by a certain indirect call/jmp instruction,
and each return table contains the legal return addresses of
a certain function according to the CFG. Note that we do
not need more than one return table for one function as all
the return instructions in a function have the same targets.
Then we instrument all the related instructions in kernel to
limit every indirect control-flow shift (i.e., indirect function
call or function return) into its corresponding jump table.
In fact, there is an alternative approach to enforce CFI, i.e., the
label-based approach proposed in the original CFI [12], and
lots of CFI systems adopt label-based approach, e.g., CPI [20],
KCoFI [27], Bin-CFI [13], CCFIR [14], etc. We choose
indexed hooks rather than the lable-based approach as indexed
hooks solved the destination equivalence problem [12], which
could possibly lead to coarse-grained CFI. For technical
details, refer to our previous work [28].

D. Protection of Control Data in the Interrupt Context

When an interrupt occurs, the operating system saves the
interrupted program’s context information on the kernel stack.
Later, when the program is resumed, the context information
will be restored. In the context information, it contains the
CS/IP pair, which is essentially the return address, so that the
program can return to the right place where it is interrupted.
Note that the CS/IP pair is vulnerable to attackers since it is
saved in memory. Attackers could tamper the CS/IP pair to
deviate kernel’s control flow, so we must provide protection
to it.

However, the static analysis approach is not applicable
for the protection of control data (i.e., return address) in
the interrupt context, as we cannot predetermine when and
where an interrupt may occur. Interrupts could occur at any
time or any valid instruction boundary in both user and kernel
space. To address this problem, we propose a hypervisor-based
approach. We run the kernel as a guest Virtual Machine (VM)
on the hypervisor, and backup the return address in the
hypervisor when an interrupt arrives. Later, when the inter-
rupt returns, we verify the return address by comparing the
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Guest VM Interrupt Handler :
—» e — _ _ Hypercall | -~ _
VM-entry Ymcall !
iret 1
Hypervisor Push Interrupt Stack VM-exit |
- == |
Verify &P !
erify&Pop,
CS/IP_2 4 _____
Vector CS/IP_1
X|Y|Z
CS/IP_0
Hardware
CPU Excepti0n| | Device A | | Device B

Fig. 4. The procedure of interrupt handling with our protection.

CS/IP pair in current kernel stack with the one saved in the
hypervisor.

Our method is based on such an observation: all inter-
rupts to the guest VM will be taken over by the underlying
hypervisor, and the hypervisor will construct the necessary
virtual interrupts and forward them to the VM. The hypervisor
needs to simulate the complete process as CPU does when an
interrupt arrives. For example, the hypervisor needs to push
the state of the interrupted program into the current VM’s
kernel stack, then load the entry address of the corresponding
interrupt handler into the IP register in the VM kernel, and
finally the execution is transferred to the interrupt handler.
Note that the hypervisor completes the above simulation with
a Virtual Machine Control Structure (VMCS) which contains
the interrupted program’s state to be loaded into the VM.

Figure 4 shows the complete procedure of interrupt han-
dling. The original procedure is marked with solid lines while
the dotted lines are added by our method for protecting the
CS/IP pair (i.e., the return address) in the interrupt context.
When an interrupt arrives from an external hardware device
(e.g., PIC) or internal CPU (e.g., exception), the hypervisor
will take over the interrupt (if the CPU is running in VM’s
context at that time, it will perform VM-exit to return to the
hypervisor), and perform interrupt virtualization and inject
interrupt into the VM according to the interrupt vector. At last,
before the interrupt handler returns, the CPU executes iret
instruction to resume the program’s execution. To provide
protection for control data in the interrupt context, we build
an interrupt stack in the hypervisor to save the CS/IP pair,
and push it (which can be obtained from VMCS) into the
stack when an interrupt injection happens. On the other hand,
in VM OS’s kernel, we instrument the iret instruction to verify
the return address for the interrupt return. Specifically, before
iret, we dump the return address in current kernel stack and
execute a vmcall instruction which leads to VM-exit and the
execution of hypercall handler in the hypervisor. Therefore,
we can verify the return address by comparing the dumped
value with the one on the top of the interrupt stack in the
hypervisor. If it is legal, we simply pop the value in the
interrupt stack. Otherwise, we transfer the control flow to a
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pre-defined error handler to prompt the user and block the
attack. Due to the case of nested interrupt, there could be
multiple CS/IP pairs in the interrupt stack simultaneously,
e.g., CS/IP_0, CS/IP_1, CS/IP_2, etc, as shown in Figure 4.
The instrumentation details of iret instruction can be found in
Section III-C.

III. IMPLEMENTATION

To validate our approach, we have developed a proof-of-
concept prototype of FINE-CFI. In this section, we discuss
the implementation details as well as some additional notes
we observed when developing the prototype.

Our prototype is built on top of the open-source LLVM
compiler framework [30]. And we have used the prototype to
enforce fine-grained CFI as well as the protection of control
data in the interrupt context for the Linux 3.14/x86-amd64
kernel of LLVMLinux project [32]. In order to obtain the
kernel’s fine-grained CFG, we have added two passes in
LLVM compiler. One is used to obtain the targets of each
indirect call/jmp instruction in the kernel, and the other is
for marking the indirect call/jmp instructions in a function.
To protect control data in the interrupt context, we run the
Linux as a guest VM in KVM hypervisor [33] (version 3.13.0).
We have built an interrupt stack and redefined the hypercall’s
handler in KVM. Note that in our prototype, KVM is assumed
to be trusted to provide kernel code integrity, as well as the
protection for jump tables and the interrupt stack in itself.

A. Constructing Fine-Grained CFG

To construct fine-grained CFG, the most important thing is
to obtain the point-to set for each indirect call/jmp instruction.
To achieve that, we have implemented two new passes in the
LLVM compiler, i.e., point-to analysis pass and indirect call
marking pass.

1) Point-to Analysis Pass: Before the point-to analysis,
we need to compile Linux kernel’s source code to LLVM
IR code and link all files together to a vmlinux.bc file with
the linker [lvm-link. Our point-to analysis pass operates on
the LLVM IR which preserves most of the type information
that is required for analysis. The analysis pass starts at a
runOnModule() function which is launched by the LLVM
optimizer opt and consists of two processes. In the process of
function pointer storing, the pass traverses all the operations of
global variables’ initialization that refers to a function, as well
as all the instructions (including store, select, phi, call, etc)
which could assign the entry address of function to variables
and all the transfers among those variables inside each func-
tion. During the traversing, the pass establishes two tables,
i.e., table vector_callees.map and table signature_callees.map,
to record the mapping of location vector/function names and
function signature/function names separately. In the process
of function pointer consuming, the pass backtracks from the
function pointer variable of each indirect call/jmp instruction
until the beginning of the function, and determines the point-to
set of the indirect call/jmp instruction directly or by looking
up table vector_callees.map or table signature_callees.map.

There are a few corner cases in our point-to analysis. In one
case, LLVM does not preserve the original type of pointer that
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has been casted to i8* when passing the pointer as a function
argument. An example for such implicit cast of pointer type
is shown as the following. In function do_read_cache_page(),
an indirect call instruction invokes a function with function
pointer %filter and the type of its first argument %data is i8*.
But actually %data’s type was casted from an original type
Yostruct.file* to i8* in advance when being passed as a func-
tion argument to invoke do_read_cache_page(), so %filter’s
real type is i32 (%structfile®, %bstruct.page®)*. We have
augmented the compiler to preserve such type information as
LLVM metadata.

o %48 = call i32 %filler(i8* %data, %struct.page* %36)

On the other hand, LLVM also leverages bitcast instruc-
tion to convert a pointer’s type to another explicitly.
An example for explicit cast of pointer type in function
blk_delay_work() is shown as the following. In the example,
the type of function pointer %8 has been casted from void
(Yostruct.work_struct™)* to void (%struct.request_queue*)*
with a bitcast instruction. To address this problem, we have
traversed all the bitcast instructions for function pointers and
figured out the real type of them.

o %17 = bitcast void (Postruct.work_struct*)** %16 to void
(Yostruct.request_queue*)**

o %18 = load void (%struct.request_queue*)*,
(Yostruct.request_queue*)** %17

o call void %18(%struct.request_queue* %?2)

2) Indirect Call Marking Pass: To mark the indirect call
instructions in a function, we have defined 200 marking
functions in Linux kernel source file linux/init/version.c with
ordered names like debug_mark_i (i=1,2,3,...,200). Then we
add the indirect call marking pass right before CodeGenPre-
pare pass which is the first optimization for LLVM IR. For
each indirect call/jmp instruction in a function, the pass inserts
a call instruction to an ordered function defined by us as a tag
right after it in the corresponding basic block. Note that the
pass needs to reset counter i when it enters a new function.

In the result, we have identified that there are 2, 079 func-
tions which contain indirect call/jmp instructions. Among
them, 1, 364 functions contain only one such instruction and
715 functions contain at least two of them. Among the
715 functions, the order of the indirect call instructions in
369 ones (51.6%) has been changed in the procedure from IR
to the final machine code.

void

B. CFI Protection

After constructing the fine-grained CFG, we leverage
indexed hooks [28] to enforce fine-grained CFI with this CFG.
Specifically, based on the observation that existing control
data (e.g., function pointers or return addresses) have a set of
legitimate jump targets, indexed hooks precalculates them into
(protected) jump tables and then replaces these control data
with their indexes to these tables. Note that the jump tables
are read-only and thus can be protected with the hardware-
based page-level protection. To do that, we have developed
a new class in LLVM backend to identify and instrument all
the control data-related instructions (e.g., direct call, indirect
call/jmp, and ret instructions), as well as a tool to identify and



LI et al.: FINE-CFI FOR OPERATING SYSTEM KERNELS

fiffffff8141329a <irq return>:
fffffff8141329a: 48 cf

is instrumented as

fitffff8141329a <irq_return>:
fitffff8141329a: 41 54
fitfffr8141329¢c: 41 55

iretq

push %rl2
push %rl3

I8 141329¢: 4c 8b 64 24 10 mov  0x10(%rsp), %rl2 #RIP
fEfffffr814132a3: 4c 8b 64 24 18 mov  0x18(%rsp), %rl3  #CS
fiffffr814132a8: 0f 01 cl vmecall

fifffff814132ab: 41 5d pop %rl3

ffffffff814132ad: 41 5¢ pop %rl2

fifftfr814132af: 48 cf iretq

Fig. 5. An instrumentation example for interrupts.

replace the entry addresses of callees stored in both data and
code sections in the kernel image.

In the result, we have replaced 50, 677 direct call, 4,074
indirect call/jmp, and 14,488 ret instructions in the kernel.
Accordingly, we have created 4, 074 function tables and each
of them is for one indirect call/jmp instruction. Among these
function tables, 447 of them (11.0%) have only one target.
The indirect call with the most targets (315 targets) is in the
psmouse_attr_set_helper() function and it is responsible for
invoking different helpers through attr->set function pointer
to set different attributes. The average number of targets for
one indirect call/jmp instruction is only 13.14! Also, we have
created 11,906 return tables and each of them is for one
function. Among the return tables, 3,424 of them (28.8%)
have only one return target, and the average number of return
targets for one function is 8.76.

In order to apply hardware-based page-level protection, all
the jump tables constructed from the fine-grained CFG need to
be put together in page-aligned memory and marked as read-
only. All unoccupied entries in the jump tables are filled with
the entry address of error_handler() function, which is defined
by us to trap the illegal control transfers. To store the jump
tables, we need 65.5MB extra memory space.

C. Protection of Control Data in the Interrupt Context

In order to protect control data in the interrupt context,
we need to make changes both in the hypervisor and in
the VM. In the hypervisor, we have extended KVM to
backup and verify the CS/IP pair saved in the interrupt
context. While in the VM, we have modified the VM ker-
nel to dump the CS/IP pair in current kernel stack before
the kernel returns from an interrupt, then exit from the
VM and enter the hypervisor. Specifically, in the source file
arch/x86/kvm/vmx.c of KVM, we construct an interrupt stack
and define a vmx_push_CS_IP() function to push the CS/IP
pair for interrupt into the interrupt stack when we detect
an interrupt injection. Then we redefine KVM’s hypercall
handler to verify the CS/IP pair and return to the VM.
In KVM, kvm_emulate_hypercall() function is used to handle
the hypercall request which could be launched by a vmcall
instruction in the guest VM kernel.

In the source file arch/x86/kernel/entry_64.S of Linux VM,
we insert seven instructions before iret instruction in function
irg_return(), as shown in Figure 5. We use two mov instruc-
tions (mov Ox10(%rsp),%r12 and mov OxI8(%rsp),%rl3)
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to dump the CS/IP pair in current VM kernel stack
(in Ox10(%rsp) and Ox18(%rsp)) into %ri2 and %rl3 regis-
ters, which are pre-pushed into the stack (with push %ri2 and
push %rl3) for later restoring (with pop %r13 and pop %r12).
After that, a vmcall instruction is executed to exit from the
VM and enter the hypervisor, so that we can verify the dumped
data in %ri12 and %rl13 registers. Note that there could exist
a small window of race condition from the other processors if
the VM is running on an SMP machine. However, this window
is very small and largely unpredictable.

D. Additional Prototyping Notes

1) Loadable Kernel Module Support: In our prototype,
we only allow the trusted loadable kernel modules (LKMs)
to be loaded into base kernel. We could accomplish it
by simply integrating the existing module loading schemes,
e.g., NICKLE [34] or SecVisor [35]. The key challenge
is about unifying fine-grained jump tables in kernel and
loaded/unloaded LKMs. To achieve that, first we need to
perform point-to analysis for the loaded module to obtain its
fine-grained CFG and enforce fine-grained CFI with this CFG
in the module. When the module is loaded, a fix-up routine
runs to merge the module’s CFG into kernel’s, then computes
the new jump tables from the merged CFG. Note that we need
to fix up the base addresses of jump tables in kernel code base
since some jump tables’ size has been changed after merging.
On the other hand, when a module is unloaded, the fix-up
routine runs to replace its indexed entries in the new jump
tables temporarily with the address of error handler to trap
abandoned control transfers. Note that the fix-up routine is
protected by the hypervisor to make it secure.

2) Point-to Analysis for Indirect Calls in Assembly Code:
The Linux kernel source tree consists of most of C files and a
few assembly files (e.g., arch/x86/kernel/entry_64.S). We have
found that there are 7 indirect call instructions in assembly
source code in our prototype. Since the point-to analysis
operates on IR code, in which assembly code has not yet been
included, we have to determine the point-to sets for these 7
indirect call instructions with another approach. Fortunately,
the amount of such instructions is small and we can deal with
them manually. Interestingly, for the indirect call instruction in
system_call_fastpath() function in arch/x86/kernel/entry_64.S
file, we found that all the target functions begin with a prefix
SYS_ or stub_ (e.g., SYS_read() or stub_fork()), each of which
represents the target of a system call.

3) Context Switch: In Linux, the scheduler needs to con-
struct context information for the next scheduled process that
was interrupted before and restart it with an iret instruction,
which leads to a context switch. In such case, the order of
the CS/IP pairs saved in the interrupt stack constructed by us
in KVM may be altered. Note that our verification of return
address in the interrupt context always uses the CS/IP pair
on the top of the stack for comparison, which may lead to a
false. To solve this problem, we match every entry from top
to bottom in the interrupt stack. If the match succeeds, we
copy the top entry to the current location and then pop the top
entry.
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ffffffff811aee90 <this cpu cmpxchgl6b emu>:

T8 1 1aee90: 9¢ pushfq

T8 1 lace91: fa cli

fHfffftr81 1ace92: 48 3b 06 cmp (%rsi), Y%rax

81 laee95: 75 11 jne fftftfff811aeea8 <not same>
fEffffr811aee97: 48 3b 56 08 cmp 0x8(%rsi), Yordx
ffEfffff8 1 1aee9b: 75 Ob jne  ffffffff811aeca8 <not same>

ffffffff811acea8 <not same>: jump to other function

ffEfffff8 1 laeea8: 9d popfq
81 1aeea9: 30 cO xor %al, %al
fEfffff811aeeab: c3 retq <«—— return from other function

Fig. 6. An example of broken convention of function call.

4) Signal Handler Dispatch: The operating system often
needs to dispatch signal handlers for a process. To do
that, before returning from an interrupt, the kernel invokes
do_signal() function to construct context information for the
process including filling the CS/IP fields in current kernel stack
with the corresponding CS/signal handler’s entry address.
To protect the above control data in the signal handler dispatch,
we do the same instrumentation in do_signal() function as that
in Figure 5 to dump the control data from the current kernel
stack, and then backup it into the interrupt stack in KVM for
later verification.

5) Broken Convention of Function Call: In our prototype,
we encountered a special case which needs to be further han-
dled. Conventionally, if a function (e.g., A) is invoked some-
where, then it should return from the same function (i.e., A)
by executing a ret instruction. But the convention could be
broken in some special cases, namely it may return from a
different function rather than A. As shown in Figure 6, when
this_cpu_cmpxchg16b_emu() function is invoked in one place,
it could return from not_same() function rather than itself
by executing a retq instruction at Oxffffffff81laeeab.
To address this case, we instrument the refg instruction in
not_same() function instead of this_cpu_cmpxchg16b_emu()to
limit the control transfers. Fortunately, such cases only happen
four times and we fix them manually.

1V. EVALUATION

To obtain the fine-grained CFG for Linux kernel, our
prototype has added 3,027 lines of C++ code to LLVM.
There is also a need to modify Linux kernel source code
and KVM to protect control data in the interrupt context.
Our prototype has added 12 lines of assembly code to Linux
source code and 134 lines of C code to KVM separately. Com-
pared to the original kernel image, our prototype image file
size increased from 53,710, 617 bytes to 56,442, 438 bytes
(5.1%) and the number of instructions increased from 956, 008
to 1,121, 848 (17.3%).

Next, we perform security evaluation to our system and
present the performance measurement results.

A. Security Evaluation

We have conducted two empirical evaluations and two
attack vectors to measure the security of our system.

The first empirical evaluation shows how well that
FINE-CFI removes instructions from the set of instructions
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that could be leveraged in a return-oriented programming
attack (which can be performed with or without return instruc-
tions [4], [7], [8]). We compute a metric, i.e., average indirect
target reduction (AIR) [13], to show this reduction. The second
empirical evaluation shows the number of remaining gadgets
after our instrumentation and if they could be used in an attack.
We leverage an open source tool (i.e., ROPgadget [36]) for the
purpose.

Additionally, we perform two attack vectors against
FINE-CFI. In the first attack, we use RIPE benchmark [37]
to evaluate the defense of FINE-CFI against control flow
hijacking. In the second attack, we tamper the control data in
the interrupt context at certain time which could be corrupted
with a memory error in Linux VM kernel for evaluation.

1) Average Indirect Target Reduction: ROP attacks work
because they can misuse too many available instructions
which can be executed within a program. What is worse,
in certain hardware architecture such as x86, because of the
variable-length encoding and unaligned execution of machine
instructions, every byte in the code segments could be a
possible target of indirect control transfer. To better understand
how well FINE-CFI removes instructions from the set of
instructions that could be used in a ROP attack, we employ
Zhang and Sekar’s AIR metric [13].

Equation 1 from Zhang and Sekar [13] shows the general
form to compute the AIR metric for a program. In the equation,
n denotes the number of indirect control transfer instructions
(i.e., indirect call/jmp and ret) in the program, S denotes the
total number of possible targets to which an indirect control
transfer instruction can jump in an unprotected program, and
|T;| denotes the number of targets to which indirect control
transfer instruction j can jump after protection:

1 < |71
P o
j=1

Since every indirect control transfer instruction j instru-
mented by FINE-CFI can transfer control flow to its own set
of addresses (with number |7|), Equation 1 can be simplified
into Equation 2 (with |T| being the total number of legal targets
for all indirect control transfer instructions which is equal

to X5 IT;D):
7]
n*S

)

We have computed the AIR metric for the code within the
Linux kernel image that generated by FINE-CFI. In particular,
FINE-CFI has identified 1,057,863 legal targets (|T]) for
all indirect control transfers out of 3,590, 398 possible tar-
gets (|S]) in the kernel’s code segments before instrumentation.
The image generated by LLVM contains 18, 562 indirect
control transfer instructions (n) which include indirect call/jmp
and ret instructions. The average reduction of targets (AIR
metric) for these transfers is therefore 99.998%. We believe
that nearly all the possible targets of indirect control transfer
have been eliminated as feasible targets by FINE-CFI.

We have made a comparison of the reduction of the target
branch set to three previous works in this area. The results
show the AIR metric of FINE-CFI (99.998%) is better than
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bin-CFI [13] (98.86%), KCoFI [27] (98.18%) and Ge et al.’s
work [38] (99.6% for return targets and 99.1% for indirect
call/jmp targets).

2) ROP Gadgets: Note that it is possible for an attacker
to perform code-reuse attacks with only a handful of gadgets
within the remaining potential targets. What is important is to
figure out the number of the remaining gadgets and how useful
they are in an attack. To achieve that, we used the open-source
tool ROPgadget [36] (version 5.6) to automatically analyze the
ROP gadgets remaining in both the original and instrumented
Linux kernel. We ran the tool using the - -range command line
option to make sure that all the found gadgets are included in
code sections. In the result, ROPgadget found 44, 063 gadgets
in the original Linux kernel and 841 gadgets which start with
aligned instruction addresses in the instrumented Linux kernel.
We checked all the 841 gadgets and confirmed that none of
them can be reached through a control flow which is allowed
by our fine-grained CFG. Therefore, none of these gadgets can
be used to launch an effective ROP attack.

3) Control-Flow Hijack Attacks: To evaluate the effective-
ness of FINE-CFI for defending against control-flow hijacks,
we used RIPE test suite [37]. RIPE is a benchmark containing
a dumb program with vulnerabilities which can be exploited by
850 attack forms to hijack the program’s control flow. We have
performed attacks with RIPE benchmark on several systems.
Specifically, on a Ubuntu 6.06 system without any built-
in defense mechanisms, almost all 850 attacks can succeed
(a few ones succeed with a certain probability). On a Ubuntu
14.04 (Trusty Tahr) system, with all the built-in defense mech-
anisms disabled (including DEP, ASLR, and stack cookies),
288 attacks succeed. With all defense mechanisms enabled,
54 attacks succeed. While on the Ubuntu 14.04 (Trusty Tahr)
system with all the built-in defense mechanisms disabled but
our fine-grained CFI enabled, none of attacks succeed. As a
result, FINE-CFI prevents all the attacks that hijack the control
flow in the program of RIPE.

4) Attack on Control Data in the Interrupt Context:
We have simulated an attack on control data in the interrupt
context. Specifically, after having pushed return address of
interrupt into the interrupt stack in KVM 60, 000 times by
vmx_push_CS_IP(), we tampered the RIP in VMCS with
a self-defined value Oxffffffff12345678. After VM-entry,
the modified RIP would be pushed into the current kernel
stack of the VM. As a result, before returning from the
interrupt, our system has detected an attack when perform-
ing verification and transferred the VM’s control flow to
error_handler() function. As shown in Figure 7, in the VM,
error_handler() function printed the error information
(i.e., “error: check out tampered rip!!!”” which has been under-
lined) to prompt user, and blocked the attack. The detailed
log is available in Avar/log/kern.log file in the hypervisor
(lines 1-6). In particular, in kern.log, we found that an error
occurred in line 2 (marked with *). The original pushed return
address (i.e., RIP) is Oxffffffff8100d3b2 (line 4 marked
with *), but it has been modified by the attacker to another
value, i.e., Oxffffffff12345678 (line 6 marked with *).

It is worth mentioning that it has been shown that
SMEP/SMAP [39], [40] could be bypassed with kernel
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tem@ubuntu: ™% uname -a

Linux txm 3.14.0+ #1 Tue Feb 21 16:29:19 CST 2017 xB86._64 xB6_64 x86_64 GNU/Linux
tumBubuntu: ™% lsh_release -a

No L5B modules are available,

Distributor ID: Ubuntu

Description: Ubuntu 12.04.2 LTS

Release: 12.04

Codename: precise

tumeubuntu:~% [ 55.827178) error: check out tampered rip!!

L] kern.log x

1 Jun 17 16:39:02 ubuntu kernel: [ 281.806960]
*2 #%%% error: tampered rip when iret

3 Jun 17 16:39:02 ubuntu kernel: [ 281.806965]
*4 *x%x epushed_rip: @xffffffffei100d3b2

5 Jun 17 16:39:02 ubuntu kernel: [ 281.806967]
*G *¥** epoped rip: Oxffffffff12345678

Fig. 7. An attack on control data in the interrupt context.

code-reuse attacks, although they are effective hardware coun-
termeasures to classic ret2usr attacks. Popov provides a
method to bypass SMEP by tampering the function pointer
with kernel function native_write_cr4() and passing a con-
trolled argument with the bit 20 of CR4 register cleared
to disable it [41]. Nikolenko shows another trick to disable
SMEP by chaining several useful kernel gadgets and pivoting
the stack for clearing the bit, or bypass SMAP by abusing
vDSO [42]. However, FINE-CFI prevents both the kernel
code-reuse attacks and the ret2usr attacks, by providing the
fine-grained CFI protection and control data protection in the
interrupt context. Thus, FINE-CFI is immune to the above
attacks.

B. Performance Evaluation

To evaluate the performance overhead introduced by
FINE-CFI, we have performed several benchmark-based mea-
surements including Phoronix Test Suite [43], LMbench [44],
UnixBench [45], and SPEC CPU2006 benchmark [46]. We ran
our tests on a Dell Z620 workstation with an Intel Xeon
CPU (12 cores @2.00GHZ) and 24GB memory. For each
benchmark, we load the Linux 3.14/x86-amd64 kernel in
KVM with three versions: the original version (Original),
the new kernel with fine-grained CFI for all the indirect
call/jmp and ret instructions (New-f), and the new kernel/KVM
with fine-grained CFI for all the indirect call/jmp and ret
instructions as well as the protection of control data in the
interrupt context (New-f4-i). Table I lists the configurations of
the software used in our evaluation. We ran each test 10 times
and calculated the average.

First, to better measure the impact on real-world applica-
tions by our system, we select five representative real-world
applications in the Phoronix Test Suite, i.e., compress-7zip,
postmark, nginx, cachebench, and network-loopback, which
stand for the performance behaviors in processor, disk, sys-
tem, memory, and network, respectively, to evaluate the
performance overhead incurred by FINE-CFI. Table II lists
the performance overhead results for the five real-world
applications in Phoronix Test Suite. New-f incurs 5.39%/
8.96% (average/maximum) overhead while New-f4i incurs
9.89%/15.36% (average/maximum) overhead. Compared to
KCoFI [27], for postmark benchmark which is used to measure
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TABLE I
SOFTWARE CONFIGURATIONS FOR EVALUATION

Item Version Configuration/Command

Phoronix Test Suite | 7.4.0 phoronix benchmark ***

LMbench 3-alpha4 | make results see

UnixBench 5.1.2 /Run

SPEC CPU2006 1.0.1 Runspec - -size=ref - -iterator=10 int/fp
TABLE 11

REAL-WORLD APPLICATION RESULTS WITH PHORONIX TEST SUITE

Benchmark Original New-f New-f+i
compress-7zip (MIPS) 2256 2174 (3.63%) 1910 (15.34%)
postmark (TPS) 338 321 (5.03%) 312 (7.69%)
nginx (Req/s) 8405.92 | 8194.53 (2.51%) | 8110.35 (3.52%)
cachebench (MB/s) 7950.12 | 7406.55 (6.84%) | 7349.50 (7.55%)
network-loopback (s) 34.70 37.82 (8.96%) 40.03 (15.36%)
average overhead: (5.39%) (9.89%)

12%

10%

8%

6%

4%

2%

Performance Overhead

0%

Micro-benchmark results with LMbench.

Fig. 8.

the file system performance, FINE-CFI only incurs 7.69%
overhead while it incurs 1.96x on average.

Second, Figure 8 shows the performance overhead of eight
kernel tasks in LMbench [44]. The tasks consist of system
calls, process creation, context switch, local communication,
memory operations, and file latency. Among the results,
the maximum performance overheads are 4.68% for New-f and
11.05% for New-f+i, which occur in the context switch and
fork-+exit operations, respectively. Compared to KCoFI [27],
FINE-CFI has a better performance as KCoFI incurs 3.50x
overhead in fork-exit operation.

Third, in UnixBench measurement, the final scores for
Original, New-f, and New-f+i are 1,813.8, 1,767.7 (2.54%),
and 1, 683.2 (7.20%), respectively. Compared to Ge et al.’s
work [38] which also evaluates with UnixBench, FINE-CFI
incurs 7.20% overhead for a Linux kernel while it incurs
11.91% overhead for a FreeBSD kernel.

Fourth, to evaluate compute-intensive performance on real
applications, we use SPEC CPU2006 benchmark [46] to
measure the performance overhead imposed by FINE-CFI.
Table IIT lists the performance overhead results for SPECint.
In the results, the maximum performance overheads are
12.56% for New-f and 18.88% for New-f+i, which occur in
the 458.sjeng and 401.bzip2 benchmarks respectively. Table IV
lists the performance overhead results for SPECfp, where the
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TABLE III
SPECINT 2006 BENCHMARK PERFORMANCE BY FINE-CFI FLAVOR

Benchmark Original New-f New-f+i
400.perlbench (s) 539 530 (-1.67%) 551 (2.23%)
401.bzip2 (s) 678 706 (4.13%) 806 (18.88%)
403.gcc (s) 450 464 (3.11%) 477 (6.00%)
429.mcf (s) 863 855 (-0.93%) 872 (1.04%)
445.gobmk (s) 730 708 (-3.01%) 767 (5.07%)
456.hmmer (s) 699 718 (2.72%) 732 (4.72%)
458.sjeng (s) 772 869 (12.56%) 889 (15.16%)
462.libquantum (s) 533 527 (-1.13%) 550 (3.19%)
464.h264ref (s) 822 860 (4.62%) 881 (7.18%)
471.omnetpp (s) 518 511 (-1.35%) 549 (5.98%)
473.astar (s) 704 655 (—5.54%) 762 (8.24%)
483.xalancbmk (s) 365 391 (7.12%) 408 (11.78%)
average overhead: (1.72%) (7.46%)
TABLE IV

SPECFP 2006 BENCHMARK PERFORMANCE BY FINE-CFI FLAVOR

Benchmark Original New-f New-f+i
433.milc (s) 660 636 (—3.64%) 688 (4.24%)
444 namd (s) 621 568 (=5.64%) 676 (8.86%)
447 dealll (s) 478 486 (1.67%) 551 (15.27%)
450.soplex (s) 350 369 (5.43%) 385 (10.00%)
453.povray (s) 268 269 (0.37%) 274 (2.24%)
470.1bm (s) 572 586 (2.45%) 594 (3.85%)
482.sphinx3 (s) 885 897 (1.36%) 981 (10.85%)
average overhead: (0.29%) (7.90%)
TABLE V

PERFORMANCE FOR ENFORCING CFI IN SPECCPU BENCHMARKS

Benchmark Original New-icall New-ret New-f
401.bzip2 (s) 585 588 (0.51%) 625 (6.84%) 627 (7.18%)
403.gcc (s) 363 366 (0.83%) 375 (3.31%) 378 (4.13%)
429.mcf (s) 798 809 (1.38%) | 880 (10.28%) | 894 (12.03%)
458.sjeng (s) 721 729 (1.11%) 785 (8.88%) 794 (10.12%)
average overhead: (0.96%) (7.33%) (8.37%)

450.spolex benchmark shows the maximum performance over-
head (5.43%) for New-f, and the 447.dealll benchmark shows
the maximum performance overhead (15.27%) for New-f+i.
Interestingly, compared to the original system, in some
cases the performance of New-f is slightly improved after
deploying the fine-grained CFI. For example, in 444.namd
benchmark, the performance is improved by 5.64% in New-f.
We believe the possible reason for that is that the jump tables
used in FINE-CFI are better localized and the cache utilization
is improved.

Fifth, to further demonstrate the performance overhead
introduced by FINE-CFI, we have implemented our approach
to four benchmarks in SPEC CPU2006 benchmarking suite,
i.e., 401.bzip2, 403.gcc, 429.mcf, and 458.sjeng for evaluation.
For convenience, we ran these tests on the Dell Z620 worksta-
tion directly. These benchmarks depend on the libc library as
well as some objects in C runtime library (e.g., crtl.o, crti.o,
and crtn.o). To achieve that, we need to instrument the bench-
mark programs as well as the dependencies. Table V lists the
performance overhead results incurred by our instrumentation.
On average, New-f incurs 8.37% overhead. Further, 429.mcf
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benchmark shows the maximum overhead which is 12.03%,
indicating that the vehicle scheduling for network transport
has traversed the most instructions we instrumented.

Sixth, for the above C benchmark programs (i.e., 401.bzip2,
403.gcc, 429.mcf, and 458.sjeng), we have also achieved the
goal to break the results down by only instrumenting indirect
call/jmp (New-icall) or call/ret (New-ret) instructions, to see
the impact on the forward/backward edge protection. The
results (listed in Table V) show that New-ret incurs most
of the overhead (7.33% on average) while New-icall incurs
very little (0.96% on average), and the sum overhead (8.29%)
incurred by New-icall and New-ret is roughly equal to the
overhead incurred by New-f (8.37%), which is reasonable.
We believe that the overheads introduced by New-icall and
New-ret depend on the executed times of our instrumented
indirect call/jmp and ret instructions.

In summary, FINE-CFI is a lightweight and fine-grained
CFI system that introduces less than 10% performance over-
head on average. Among them, two additional memory
accesses for jump tables and two VM operations (i.e., VM-exit
and VM-entry) are the main factors that cause the performance
overhead.

V. DISCUSSION

In this section, we examine possible limitations of
FINE-CFI and suggest potential future work.

First, to enforce fine-grained CFI for operating system
kernels, we have used a compiler-based approach that requires
to recompile the kernel source code to confine kernel’s indirect
control-flow shifts into its CFG, which needs access to the ker-
nel source code. Moreover, for the point-to analysis to obtain
fine-grained CFG, our approach also needs access to the kernel
IR code compiled from its source code. However, we believe
this is necessary to enable the identification of all indirect
control transfers and then apply protection on them, which is
not available in other dynamic profiling approaches [47], [48].
As pointed out in [28], the completeness is important since
attackers can hijack kernel’s control flow by deviating only
one indirect control transfer to launch their attacks.

Second, by converting control data into indexes, FINE-CFI
changes the semantics of function pointers and return
addresses. Specifically, the original call instruction pushes a
return address on the stack and then jumps to the destination,
while our scheme pushes a table index instead and then jumps.
On the other hand, in original convention every function
pointer stores a function address, while our scheme replaces
the address with a table index. This instrumentation has
changed the semantic of the data. In some special cases,
it might lead to a fault. For example, when a function pointer
is compared with another value by a cmp instruction, instead
of only being consumed by an indirect call/jmp instruction.
Although so far we have not encountered such cases in our
prototype, we can recover the original control data with its
index before such usage.

Third, FINE-CFI cannot provide protection for dynamically
generated code which is widely used in just-in-time (JIT)
compilation and dynamic binary translation (DBT). However,
as far as we know, nearly no CFI enforcement can work
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for dynamically generated code since it violates the base
assumption of CFI, i.e., code integrity. The code cache used
to store generated code is writable and executable either at
the same time or alternately, which possibly leads to an
exploitation that could be leveraged by attackers to break code
integrity. As a result, to protect dynamically generated code,
we have to combine other approaches (e.g., SDCG [49]) which
guarantee the generated code integrity as a complementary
solution to FINE-CFI.

Fourth, FINE-CFI aims to provide fine-grained CFI for
operating system kernels, and non-control data attacks [50]
are out of the scope in this work. In order to perform a
non-control data attack, an attacker usually needs to hijack
the program’s control flow to jump to her injected malicious
code or misuse the existing code snippets. FINE-CFI can pre-
vent both cases of them. Note that researchers have proposed
a few solutions to defeat non-control data attacks for kernel
extensions [51] or provide protection for a subset of non-
control data in kernels [52], [53]. Nevertheless, how to provide
comprehensive and efficient protection to non-control data for
operating system kernels is still an open question.

VI. RELATED WORK

Since the introduction of original CFI by Abadi et al. [12]
in 2005, a variety of CFI systems have been proposed to
address control-flow hijacking attacks. Among these systems,
most of them are implemented in user level (or for a tiny
hypervisor), e.g., Control Flow Locking [54], CCFIR [14],
Bin-CFI [13], Strato [55], MIP [56], FECFI [15], CPI [20],
O-CFI [21], PICFI [57], Context-sensitive CFI [58],
CCFI [22], HyperSafe [26], etc, thus cannot be readily
deployed in kernels due to additional unique challenges and
complexities in the OS kernel. Moreover, almost all the user-
level (and hypervisor-level) CFI invariants do not provide
protection for the control data in kernel space, thus are
vulnerable to ret2usr [25] attacks. In contrast, FINE-CFI aims
to enforce fine-grained CFI for operating system kernels, and
it also provides protection for control data in the interrupt
context, thus defeats the ret2usr and kernel code-reuse attacks.

On the other hand, researchers have also designed mecha-
nisms to protect control data or enforce CFI in kernel space.
For example, Lares [59] and HookSafe [47] protect a subset
of function pointers in kernel from being hijacked. Return-
less [60] instead protects the return addresses from being
misused to prevent kernel-level return-oriented rootkits. These
systems cannot enforce complete CFI as they only provide
protection for a subset of kernel control data.

To enforce CFI for the whole OS kernel, SBCFI [61]
leverages a hypervisor to dynamically detect the violation
of kernel control-flow integrity, e.g., by comparing with a
statically computed CFG. However, by design, SBCFI detects
the violation affer the system is compromised.

SVA [62] proposes an efficient and robust approach to
provide a safe execution environment for both kernel and
application code. SVA provides stronger security guarantees
than FINE-CFT as it enforces strong memory safety properties.
However, as pointed out in [27], the performance over-
head introduced by SVA is relatively high even after being
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optimized by techniques using sophisticated whole-program
pointer analysis, which impedes its practical deployment.
In contrast, FINE-CFI enforces fine-grained CFI as well as
the protection of control data in the interrupt context with less
than 10% average performance overhead.

KCoFI [27] is a system building upon SVA [62], which
enforces complete CFI for commodity operating system ker-
nels without using heavyweight complete memory safety,
thus, it introduces far lower overhead than SVA. Specifically,
KCoFI uses the SVA compiler instrumentation capabilities
and the SVA-OS instruction set to identify and control both
OS kernel/hardware interactions and OS kernel/application
interactions. However, KCoFI only provides coarse-grained
CFI protection as it uses only one label for the targets
of all the indirect call/jmp and return sites. In contrast,
FINE-CFI leverages a retrofitted point-to analysis to obtain
the fine-grained CFG of the kernel and establishes one jump
table for each indirect control transfer instruction according
to this CFG. When an indirect control transfer occurs, its
targets will be confined to its corresponding jump table.
By doing so, FINE-CFI enforces a much stricter CFI policy
than KCoFI. In particular, FINE-CFI reduces the number of
indirect control-flow targets by 99.998%, which is much better
than KCoFI (98.18%).

Indexed hooks [28] provides comprehensive and efficient
protection for kernel control data, which essentially enforces
CFI for operating system kernels. In particular, to obtain the
fine-grained CFG, indexed hooks determines the point-to set
of each indirect call/jmp instruction using a dynamic profiling
approach. As mentioned earlier, as the dynamic analysis has
an incomplete coverage, indexed hooks conservatively assumes
a maximum set for those unreachable indirect function calls,
which could possibly lead to a coarse-grained CFI. In contrast,
the main contribution of FINE-CFI is that it leverages a
retrofitted context-sensitive and field-sensitive pointer analysis
(rather than the dynamic analysis in indexed hooks) which
greatly improves the precision of kernel CFG. Note that
to enforce fine-grained CFI for an operating system kernel,
the key is to get a precise and fine-grained CFG of it.

Recently, a closely related work [38] adopts a similar
scheme (restricted pointer indexing) to FINE-CFI for enforc-
ing kernel CFI protection. In particular, it leverages the con-
servative function pointer usage patterns found in the kernel
source code to develop a method to compute fine-grained
CFGs for kernels. In contrast, the biggest advantage of FINE-
CFI is that our pointer analysis is based on LLVM IR code
while that work is based on source code. As mentioned in
Section II-B, it is effective to determine the target set of
an indirect function call by traversing the function pointer’s
transfer process in IR code due to its rich type and context
information. As a result, we get a higher precision. For
instance, the AIR metric of FINE-CFI is 99.998%, which is
better than that work (99.6% for return targets and 99.1% for
indirect call/jmp targets).

RAP [63] is a commercial product to secure Linux kernel
by enforcing fine-grained CFI. Compared to RAP, FINE-CFI
makes improvement in three aspects. First, RAP generates
hashes for functions based on their prototype, regardless of
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the fact that a respective function pointer may not exist.
In contrast, FINE-CFI only allows the functions in table
signature_callees.map (whose addresses have been taken) to
be included, thus it improves the precision. Second, RAP
leverages a similar label-based (i.e., hash-based) approach
proposed in the original CFI [12] to enforce protection, thus
it suffers the issue of “destination equivalence” which could
possibly lead to coarse-grained CFI. In contrast, FINE-CFI
solves the problem using the indexed hooks approach. Third,
FINE-CFI proposes a hypervisor-based approach to protect
control data in the interrupt context, thus is immune to ret2usr
attacks while RAP does nothing at this point.

seL4 [64] is a formal proof of function correctness of a
microkernel. Thus, sel.4 provides stronger security guarantees
than FINE-CFI. But it only enforces them on a microkernel
comprising approximately 8, 700 lines of C code and 600 lines
of assembly code (note that sel.4 assumes the correctness of
assembly code), which is much smaller than a general-purpose
commodity operating system kernel protected by FINE-CFI,
i.e., the Linux kernel. Moreover, changing to sel4 code
is a challenge as it possibly needs manual updates to the
correctness proof while FINE-CFI can address this issue
automatically.

On the attack side, two attacks targeting fine-grained CFI
have been proposed, i.e., Control-Flow Bending (CFB) [65]
and Control Jujutsu [66]. Specifically, CFB and Control
Jujutsu misuse some dispatchers (e.g., printf() function or the
argument corruptible indirect call sites) that could change their
own return addresses or function pointers to deviate program’s
control flow, even with the protection of fine-grained CFI.
Note that both CFB and Control jujutsu are implemented in
user level, their deployment in kernel space still remains to be
demonstrated. Supposing CFB and Control Jujutsu could work
in kernel space theoretically, FINE-CFI is also able to mitigate
such attacks effectively. First, FINE-CFI limits both the targets
of every indirect call/jmp instruction (i.e., the forward edge of
CFQG) and the return targets of each function (i.e., the backward
edge of CFQG). In particular, FINE-CFI creates one function
table for every indirect call/jmp instruction which contains its
valid targets, and one return table for each function which
contains its legal return targets according to the fine-grained
CFG we obtained. In our prototype, the average number of
targets for one indirect call/jmp instruction is only 13.14 and
the average number of return targets for one function is only
8.76 (see Section III-B), thus it largely reduces the number
of targets of dispatchers misused by attackers. Additionally,
as pointed out by the authors of Control Jujutsu [66], the main
reason making their attack feasible is that the Data Structure
Analysis (DSA) pointer analysis algorithm [67] loses context
sensitivity and field sensitivity when constructing the forward-
edge of CFG, which is not the case for FINE-CFI. In summary,
FINE-CFI largely raises the bar for attackers to hijack the
control flow in operating system kernels.

VII. CONCLUSION

In this paper, we present FINE-CFI, a system to enforce
fine-grained control-flow integrity for operating system
kernels. Specifically, FINE-CFI leverages a retrofitted pointer
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analysis to obtain the point-to set of each indirect call/jmp
instruction and further constructs the fine-grained CFG of
the kernel, then it uses the CFG to enforce fine-grained CFI
for the kernel. As well, FINE-CFI proposes a hypervisor-
based approach to provide protection for control data in the
interrupt context. With both of them, FINE-CFI effectively
defeats the ret2usr and kernel code-reuse attacks. To validate
our approach, we have developed a proof-of-concept proto-
type with LLVM compiler and enforced protection for Linux
3.14/x86-amd64 kernel. The evaluation results demonstrate the
effectiveness and efficiency of FINE-CFI.
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