
ESem: To Harden Process Synchronization for Servers
Zhanbo Wang1,2, Jiaxin Zhan1,3, Xuhua Ding4, Fengwei Zhang3,1,†, Ning Hu2

1
Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, China

2
Peng Cheng Laboratory, China

3
Department of Computer Science and Engineering, Southern University of Science and Technology, China

4
Singapore Management University

{12131105,zhanjx}@mail.sustech.edu.cn,xhding@smu.edu.sg
zhangfw@sustech.edu.cn,hun@pcl.ac.cn

ABSTRACT

Process synchronization primitives lubricate server computing in-
volving a group of processes as they ensure those processes to
properly coordinate their executions for a common purpose such as
provisioning a web service. A malfunctioned synchronization due
to attacks causes friction among processes and leads to unexpected,
and often hard-to-detect, application transaction errors. Unfortu-
nately, synchronization primitives are not naturally protected by
existing hardware-assisted isolation techniques e.g., SGX, because
their process-oriented isolation conflicts with the primitive’s de-
mand for cross-process operations.

This paper introduces the Enclave-Semaphore service (ESem)
which shelters application semaphores and their operations against
kernel-privileged attacks. ESem encapsulates all semaphores in the
platform with a dedicated SGX enclave and polices accesses from
users processes, thus ensuring a consistent view of the data and
resources shared among collaborative processes. Although ESem
provides secure semaphores only, it supports all kinds of synchro-
nization needs, owning to the expressiveness of semaphores.

We have built a prototype of ESem and conducted rigorous eval-
uation with micro-benchmarks, macro benchmark and real-world
applications including Redis and Apache HTTP Server. ESem in-
curs only a modest performance overhead (around 2%) to the legacy
systems. We also run a case study to demonstrate attacks against
the synchronization in an SGX-hardened file server and how ESem
neutralizes the attacks successfully with only one function call
change to the applications. All these experiments show that ESem
is lightweight yet effective solution to the security hole left open
by existing isolation schemes.

CCS CONCEPTS

• Security and privacy→ Systems security.

KEYWORDS

Secure synchronization, Kernel semaphore, SGX enclave

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0482-6/24/07
https://doi.org/10.1145/3634737.3657025

ACM Reference Format:

Zhanbo Wang1,2, Jiaxin Zhan1,3, Xuhua Ding4, Fengwei Zhang3,1,†, Ning
Hu2. 2024. ESem: To Harden Process Synchronization for Servers. In ACM

Asia Conference on Computer and Communications Security (ASIA CCS ’24),

July 1–5, 2024, Singapore, Singapore. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3634737.3657025

1 INTRODUCTION

Many servers, such as web, database, and multimedia, are composed
of a collection of collaborative processes or threadswhich undertake
different computation tasks with intensive data and resource shar-
ing [8, 29, 32]. As these component processes run concurrently for
the sake of high performance, it is imperative for them to keep syn-
chronized when accessing shared data and resources. A disrupted
synchronization lead to processes to have inconsistent views and
thus fail to coordinate their accesses in an orderly fashion. Hence,
an attack upon process synchronization could result in not only un-
desired resource utilization, but also application logic errors which
are hard to detect in real-time. For instance, consider a typical pro-
ducer and consumer scenario where a lock is used to synchronize
their accesses to a shared memory buffer. When the adversary (pre-
sumably with the kernel privilege) presents inconsistent lock states
to the producer and the consumer, the data in the buffer will not be
processed with atomicity. Moreover, if the applications rely on syn-
chronization to fend off race condition attacks, a kernel adversary
can easily scheme and the attack regardless whether an individual
process is hardened or not.

Despite its critical role for server computing, the security of
process synchronization has not been systematically investigated,
in contrast to various user-space isolation techniques [2, 13, 19, 35,
42, 47]. Although Patel et. al. proposed adversarial synchroniza-
tion [28], they used synchronization only as the vehicle to deliver
their attacks, rather than safeguarding it. To the best of our knowl-
edge, our work is the first that identifies the threat against process
synchronization and proposes a countermeasure.

We observe that, under the threat of a malicious kernel, secure
synchronization plugs the hole which is left open between isolated
user-space executions. With intro-process and inter-process pro-
tection, sensitive server computing receives a fully-covered shield
against attacks from a compromised kernel. Clearly, to protect syn-
chronization without intro-process isolation does not attain much
security assurance. Thus, the main challenge of securing process

†Fengwei Zhang is the corresponding author.

https://doi.org/10.1145/3634737.3657025
https://doi.org/10.1145/3634737.3657025

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wang et al.

synchronization stems from the conflict between intro-process iso-
lation and inter-process sharing. No existing hardware-assisted
isolation technique has the built-in support for both needs.

In this paper, we propose to harden process synchronization
using Intel SGX [20], a hardware feature available on Intel proces-
sors for server and cloud computing though being withdrawn from
client platforms [23]. Out of various synchronization methods, we
choose semaphore as our focus since it is the most expressive primi-
tive supporting all types of synchronization paradigms. Specifically,
we propose ESem, an enclave-assisted semaphore service provided
by the kernel for collaborative processes to use. A system-wide
enclave is dedicated to host semaphores used by all processes in the
platform. To overcome the aforementioned challenge, we introduce
the notion of “enclave roaming” in the sense that the semaphore
enclave is not confined to a single process’s address space but
made accessible to all processes upon the kernel’s approval. As
the semaphore enclave is shared across multiple processes, ESem
enforces access controls within the enclave to prevent unwanted
or illegal accesses to semaphore variables inside.

ESem ensures that collaborative processes perceive the same
state and order of synchronization even at the presence of a kernel-
privileged adversary. Note that, it neither deals with a rogue process
which abuses the semaphore, nor protects intro-process computa-
tion. A security-savvy developer needs to apply both intro-process
isolation (e.g., using an enclave), secure communication channel
and ESem to get a full coverage protection.

Caveat. Our hardened semaphore service still relies on the ker-
nel to manage and enforce its access control policies against pro-
cesses. This is in the same vein as SGX design in that the kernel is
tasked to create and managed enclaves, though it is not in SGX’s
trusted computing base.

As ESem targets server applications, we design it with perfor-
mance in mind in order to minimize the impact to user processes
especially to their concurrency. For instance, ESem provides two
ways to bind semaphores with enclave threads to meet the concur-
rency demands due to different synchronization profiles. Although
entering and exiting from enclaves cost a few more microseconds
than regular memory accesses, the incurred overhead is not big
enough to downgrade the server’s overall performance. Applica-
tions with intensive use of semaphores can opt for Intel’s “switch-
less” enclave invocation to streamline their semaphore accesses. As
we navigate through the security and performance challenges, we
also aim to minimize kernel changes and maintain compatibility
with the POSIX standard.

We have built a prototype of ESem on an Intel i7 9700k machine
with Linux Ubuntu 22.04 installed and rigorously evaluated its
performance and security. In our case study with File Vault [1],
we first demonstrate two attacks against its synchronization: file
tree race and service thread blocking and then harden it with ESem.
The outcomes show that ESem effectively safeguards against kernel-
level attacks with slight change of the application. We conduct thor-
ough performance assessments with micro- and macro-benchmarks
as well as real-world application. The experiments report modest
performance overhead incurred by ESem.

The key contributions of this paper are summarized as follows:

• We design ESem that preserves synchronization semantics
against kernel-privileged attacks, so that a group of collabo-
rative processes always maintain a consistent view of their
shared data and resources.

• ESem maintains the same degree of parallelism as Linux’s
semaphore service and is compatible with existing POSIX
APIs.

• We implement a prototype of ESem and measure its perfor-
mance. We also conduct a case study to show ESem’s benefits
and usage.

Organization. The next section briefly explains the background
of POSIX semaphore, Multi-thread in SGX enclaves, and SGX switch-

less function call. Section 3 overviews the design of ESem. The two
different design methods for semaphores in enclaves are presented
in Section 4. We describe our prototype implementation in Section
5. We conduct a comprehensive case study in Section 6, followed
by the evaluation of ESem performance in Section 7. We present
related work in Section 8. Section 9 further discusses ESem. Finally,
Section 10 concludes the paper.

2 BACKGROUND

2.1 POSIX semaphore

The POSIX semaphore implementation in glibc is an interface for
inter-process synchronization that adheres to the POSIX standard.
Under the hood, when a process invokes POSIX semaphore op-
erations through GlibC, the library translates these requests into
appropriate system calls to the Linux kernel.
Storage. POSIX semaphores are usually defined using the sem_t
data structure in a shared memory region mapped to user space.
This structure contains the current value of the semaphore, which
indicates the number of resources available or the number of threads
that can pass without blocking.
System Call Invocation. Contrary to some beliefs, operations on
POSIX semaphores don’t always result in direct system calls. The
glibc implementation attempts to handle some operations quickly
in user space without invoking a system call. For instance, if a
sem_post() operation (which increments the semaphore value)
is called and no threads are waiting on the semaphore, glibc can
optimize this by simply updating the semaphore’s value in user
space.
FUTEX. The "fast userspace mutex", or FUTEX, is a tool in kernel
for efficient thread synchronization. The main idea is that they
allow many locking operations to be handled in user space, with-
out system calls. Only when contention occurs (i.e., a resource is
not available, and a thread needs to be put to sleep or woken up)
does a system call become necessary. When the glibc’s semaphore
implementation detects contention, it resorts to futex system calls
to manage the blocking and waking up of threads.

2.2 Multi-thread in SGX Enclaves

SGX introduces a novel approach to secure computation, providing
hardware-enforced trusted execution environments called enclaves.
At the heart of SGX’s security model is the enclave, a protected
memory region (EPC) within an application’s address space that’s
shielded against external access, including privileged software like

ESem: To Harden Process Synchronization for Servers ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Normal ECALL Switchless ECALL

uRTS tRTS

EENTER

....

ECALL
Procedure

EEXIT

....

uRTS tRTS

ECALL

Worker Run

EENTER
Wait for ECALL

(async)

ECALL
ECALL

Procedure

AEX
Return

Return
From

ECALL

Worker Stop EEXIT

....

....

non-EPC
buffer

Empty

ECALL 0

Figure 1: Enclave for One User App

the operating system or the hypervisor. When it comes to thread-
ing, SGX supports multi-threaded enclaves. Threads inside an en-
clave are analogous to regular application threads, but with the
added assurance of running within the enclave’s secure boundaries.
It’s crucial to understand that while the enclave protects against
external snooping and tampering, it does not inherently provide
inter-thread synchronization.

Each enclave thread is associated with a Thread Control Struc-
ture (TCS). The TCS is a data structure used to manage and control
threads entering and exiting the enclave. Each TCS is stored in an
EPC page whose content is not directly accessible, with an EPCM
entry type of PT_TCS [16]. When an application wants to enter
an enclave, it does so using a specific TCS. Each TCS is tied to a
single enclave thread, meaning it can only be used by one logical
processor at a time.

As traditional applications can utilize Thread Local Storage (TLS)
to store thread-specific data, SGX enclaves can also maintain their
TLS. The enclave’s TLS is protected within the enclave’s memory
boundary, When a thread enters an enclave via the ecall interface,
it does so with a reference to a specific TCS. The TCS, in turn,
contains an offset pointing to the start of the TLS for that thread.
As a result, each enclave thread can have its own secure, private
storage space.

The state of each enclave thread, including its registers and call
stack, is saved outside of the enclave in a special unprotected area
when the thread exits the enclave, either due to an ocall (calling
out of the enclave) or other reasons like context switches. This state
is encrypted by SGX to ensure its confidentiality. When the thread
re-enters the enclave, the saved state is restored.

2.3 SGX Switchless Function Call

Switchless calls in SGX are designed to handle short-duration tasks
more efficiently by avoiding the overhead associated with context
switches (Figure 1). Moreover, the performance of Switchless can be
greatly improved after optimization of algorithm and configuration
[39, 46]. The basic premise involves utilizing dedicated worker
threads that busy-wait, or spin, on specific memory locations to
detect and process tasks.

Shared Buffers. For switchless calls, both the enclave and the
untrusted application pre-allocate shared buffers in memory. These
buffers are used to pass information and tasks between the enclave
and the untrusted application.
Worker Threads. Both the enclave and the untrusted application
create dedicated worker threads. These threads are responsible for
handling the tasks in the switchless model.
Busy-Waiting. The busy-waiting threads spin on the shared
buffers, continually checking (or polling) for new tasks. Specifi-
cally, they’re looking for flags or indicators in these buffers that
signal the presence of a new task. When a task is detected, the
appropriate worker thread processes the task immediately. For ex-
ample, when the untrusted part of the application has a small task
for the enclave, it places the task in the shared buffer and sets an
indicator. The enclave’s busy-waiting worker thread detects this
and processes the task without the typical overhead of an ecall.
The reverse is true for ocall, where an enclave task for the outside
application is placed in the buffer, and an untrusted worker thread
picks it up.
Trade-offs. While the busy-waiting approach in switchless calls
minimizes the latency associated with enclave entry and exit, it is
at the expense of increased CPU utilization. Continuously spinning
threads can consume significant CPU cycles, potentially leading to
higher power consumption and reduced availability of CPU cycles
for other tasks.

3 DESIGN

3.1 Synopsis

Attack Model. We consider a software adversary which resides
in a server platform and attempts to manipulate data objects (e.g.,
spin-locks, mutexes and semaphores) for process synchronization
in the same platform in order to induce erroneous data processing
and undesired resource usage to victim applications’ executions.
The adversary can either be a user-space malware who breaks the
kernel’s process isolation to access other processes’ semaphores or
one which has gained the kernel privilege by exploiting the kernel’s
vulnerabilities.

The adversary hasmanyways to disrupt process synchronization.
For instance, it can alter a lock to an open state while one process
has acquired it. It can present two different semaphore values to a
produce and a consumer. Nonetheless, we do not consider denial-
of-service attacks that aims at resource availability only, such as
denying a process from accessing its semaphore or a critical section,
because a kernel-privileged adversary can always achieve it as long
as the kernel manages resources in the platform and the attack does
not lead to incorrect process state. It is also outside of our design
scope to protect an application’s internal code and data as it can be
addressed by using existing techniques. The adversary also cannot
intercept the secure communication channel between applications
and ESem.
Goals. Our goal is to design a hardened synchronization mecha-
nism that resists attacks from the aforementioned adversary, namely
to preserve the synchronization semantics so that participating
processes always maintain a consistent view of shared data and
resources. Besides security assurance, we also aim to keep the
degree of parallelism provided by the original synchronization

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wang et al.

mechanisms, and remain compatible with the existing POSIX APIs
exposed to application developers, so that legacy applications can
benefit from the new scheme without code modification.
Straw-man Solutions. To protect process synchronization against
kernel-privileged attacks is not as straightforward as it appears.
One may suggest to follow the approach of Occlum [35] which
imports multiple distrusted applications into one enclave. However,
it is unrealistic to place multiple heave-engineered server processes
into one enclave due to address space conflicts, not to mention
significant performance drop due to intensive I/O and system calls.
Another tentative solution is to leverage encrypted virtual machine
techniques such as Intel TDX [21], Arm CCA [10] or AMD SEV [7]
so that all collaborative processes run in one “trusted" domain. We
argue that this approach does not truly solve the problem because
it only counters attacks from outside of the domain, not against
any from the kernel servicing the processes in concern. Moreover,
for servers hosted by local machines instead of the cloud, adding a
layer of virtualization and memory encryption incur a significant
performance overhead without the reward.
Our Approach. We design a novel synchronization mechanism
named as the Enclave-Semaphore (or ESem) which provides a hard-
ened semaphore service for applications to use. We create an en-
clave named as the semaphore enclave (or s-enclave for short) to host
all secure semaphores as well as their operations. The s-enclave is
dynamically mapped by the kernel to all processes requesting ESem
service. As shown in Figure 2, it holds three semaphores 𝑥,𝑦 and 𝑧
for five processes. Among them process 𝑃1, 𝑃2 and 𝑃3 have their
own enclaves protecting sensitive data and code related to shared
resources in the critical section, while 𝑃4 and 𝑃5 do not have. A
process uses ecall to enter the enclave and operate its semaphores
through predefined P and V functions inside the enclave.

SMU Classification: Restricted

P1 P2 P3 P4 P5

Kernel

enclave
enclave enclave

s-enclave

P1: x
P2: x,y
P3: y
P4: z
P5: z

s-enclave

Figure 2: Illustration of the design approach of ESem

The s-enclave has an internal access control mechanism to au-
thenticate the process that intends to enter the enclave and ac-
cess a semaphore. For processes with their own enclaves, their
semaphores can only be accessed after a key based authentica-
tion, while for other processes, the s-enclave relies on the kernel’s
process management.

Caveat.We reiterate that ESem is proposed as a hardened semaphore
service for secure process synchronization and it is beyond the
scope of ESem to protect sensitive code and data within an applica-
tion. As such, ESem is geared for both types of processes as shown
in Figure 2.

3.2 Design Overview

The architecture of ESem consists of the s-enclave, the ESem man-

ager in the kernel and the ESem glue code in Glibc, as depicted in
Figure 3. The ESem manager initiates the s-enclave after kernel

launch and handles ESem related requests from userspace appli-
cations at runtime such as creating a semaphore and opening a
semaphore. Note that the kernel still undertakes the duty of pro-
cess management for semaphores accesses based on uid, pid and
others.

The ESem glue code shields the details of ESem operations from
applications so that they continue to follow POSIXAPIs. The changes
on the C library is necessary as invoking a function in the enclave
is more complicated than ordinary function calls.

The internals of the s-enclave are also shown in Figure 3, in-
cluding the memory section dedicated to store semaphore objects.
We call them e-semaphores to avoid ambiguity with the conven-
tional semaphore objects managed by the kernel if the context is
not clear enough to differentiate them. The s-enclave is configured
to be multi-threaded in order to support concurrent executions. Its
TCS allocator manages a pool of SGX Thread Control Structures
(TCS)es and determines how a user process uses one enclave thread
to access its semaphore. The authenticator module in the s-enclave
guards the entry to the enclave. It checks whether the process that
issues the ecall to operate a semaphore is legitimate or not. Af-
ter passing the authentication, the corresponding thread uses the
proper operator function to operate the semaphores.

SMU Classification: Restricted

ESem glue code

s-enclave

kernel
ESem Manager

glibc

app app app

semaphore
objects

TCS pool

Authenticator

TCS Allocator

operators

Figure 3: The architecture overview of ESem

Next, we describe how the kernel manages the s-enclave and
then present the enclave’s details in the next section.

3.3 Semaphore Enclave Management

After system bootstrap, the s-enclave is created and initialized by
the ESemmanager in the kernel using a dummy process (denoted by
𝑃0) which has no other application code pages. The ESem manager
loads the enclave at one 1-GB aligned virtual address such that the
ensuing one gigabytes region are not used by most applications.
The selection of the base address is to avoid VA collisions between
the enclave and applications.

The core task of semaphore enclavemanagement is to support en-
clave roaming, namely to make the s-enclave accessible to a process
which the kernel grants the permissions to operate a semaphore
in the s-enclave. Specifically, when process 𝑃 is granted by the
kernel to create or open a semaphore 𝑥 , the ESem manager copies
the entry in the Page-Directory-Page-Table (PDPT) page that maps
the s-enclave in the dummy process to the corresponding entry
in the PDPT page used for process 𝑃 . Figure 4 below illustrates
this step with the dashed arrow indicating the added mapping to
𝑃 ’s paging hierarchy. As a result, all processes accessing ESem’s
semaphore share the same enclavemappings.When a process closes
its semaphore, the ESem manager removes the mapping from its
PDPT page entry.

ESem: To Harden Process Synchronization for Servers ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

SMU Classification: Restricted

PML4 PDPT

mappings for
s-enclave

P0's paging
hierarchy

PML4 PDPTP's paging
hierarchy

Figure 4: Enclave Roaming: to dynamically merge mappings

of the s-enclave to process P’s virtual memory

Note that adding the enclave to different user processes do not
interfere with enclave execution since the hardware uses the same
mappings to access EPC pages in the enclave.

4 THE SEMAPHORE ENCLAVE INTERNALS

In our design, different enclave threads undertake different tasks
and interface with different untrusted address spaces. Confronting
this complexity, our design handles the allocation of different en-
clave threads and enforces allocation within the enclave, providing
additional security properties. This specificity in thread manage-
ment and allocation is leveraged to facilitate two semaphore access
paradigms.

4.1 Semaphore Access Control

Since the s-enclave is shared across multiple processes, a rogue
process may invoke the enclave to operate semaphores not allocated
to it. Note that under the current system, a prerequisite of such a
misuse is to breach process isolation enforced by the kernel since the
victim semaphore is not mapped to the rogue process. In contrast,
it is much easier to launch the attack as the s-enclave is accessible
to any process with an e-semaphore.

ESem relies on the Authenticator inside the s-enclave (as shown
in Figure 3) to check whether a process’s request to access an e-
semaphore should be allowed or denied. The checking is performed
differently according to whether the target semaphore is associated
with an application enclave. As shown in Table 1, the s-enclave
maintains a semaphore metadata table which keeps the data used
for authentication.

Table 1: Semaphore metadata table with an entry example

Semaphore PID Key TCS

𝑥 30000 0xFE...23 ...
𝑦 30001 - ...

During e-semaphore creation, the owner process may request for
a key binding if it has an application enclave. Through a local attes-
tation, the owner process’s enclave and the s-enclave share a 128-bit
secret key 𝑘 which is attached to the created e-semaphore. On sub-
sequent operations upon the e-semaphore, the process appends an
HMAC of its operation argument, including the e-semaphore name
and operation type. When receiving a request for an e-semaphore
with a binding key, the Authenticator uses the key to validate the

Process TCS Sem Process TCS Sem

TCS-Semaphore
binding

TCS-Process
binding

Figure 5: Two Mapping Schemes for Enclave Thread.

integrity of the ecall arguments and only allows it to proceed if
the HMAC is verified true.

When receiving a request for an e-semaphore without a key
binding, the Authenticator only relies on the pid within the ecall
arguments. Note that the security strength of the process id based
authentication is reduced to limited local context. As it is predictable
and reusable, thus vulnerable to pid spoofing.
Sem Access Manager. The Sem Access Manager along with Au-
thenticator deals with privilege and identity in ESem. It manages
access rights between processes and semaphores. The design of
this component revolves around a robust and secure access control
mechanism, ensuring that access privileges are regulated. Process
identification is established through a combination of pid, bolstered
by optional secret key authentication mechanism. These keys, resid-
ing within both the application enclave and the global enclave, form
a secure and authenticated channel. This secure channel serves as
the linchpin for all subsequent communications, safeguarding the
interactions between processes and semaphores.
Internal TCS and Semaphore Checks. This internal checks
against the metadata to ensures that each semaphore access attempt
aligns with the authorized TCS. Should there be an attempt to
access a semaphore using an unauthorized or mismatched TCS,
ESem identifies this discrepancy and leads to an invalidation of the
operation.

4.2 Thread Management

To accommodate semaphores within enclave, we propose two de-
sign alternatives leveraging SGX ability. Both proposed designs
fundamentally employ distinct mapping binding mechanisms of en-
clave threads. Prior to delving into the particulars of these designs,
we introduce an intermediary mapping solution that underpins
them in Figure 5. Within the context of this work, two mapping
levels are depicted, both of which are managed and enforced inside
the enclave.

Since applications are required to first access a specific enclave
thread and subsequently delegate the semaphore operation within
said enclave thread, a twofold mapping becomes viable and efficient.
The first mapping is from the applications to the enclave thread,
ensuring secure and authenticated access. The second mapping
is from the enclave thread to the semaphores, safeguarding the
interactions with semaphore operations. From the two mappings,
next we present two binding schemes.

4.2.1 Binding Enclave Thread with Semaphore. This mode exclu-
sively binds one enclave thread with a single semaphore. In essence,

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wang et al.

Normal Mode ECALL Switchless Mode ECALL

uRTS-0 tRTS

EENTER

....

ECALL Procedure

EEXIT

....

uRTS-0 tRTS

ECALL 0
worker run
EENTER

Wait for ECALL
(async)

ECALL 0

ECALL
procedure

AEX
Return from ECALL

Return ECALL

worker stop
EEXIT

....

....

non-EPC
buffer

Empty

ECALL 0

uRTS-1

EENTER

....

....

ECALL 1

Return from ECALL

ECALL Procedure

EEXIT

CR3 Value
Consistent

with uRTS 0

CR3CR3

A trusted thread must be binded for only one untrusted thread because of shared
address space (same CR3).

CR3 Value
Consistent

with uRTS 1

Figure 6: Enclave for Multiple User App

when an application initiates a new semaphore, the s-enclave se-
lects an available enclave thread and establishes a mapping between
the two entities. Thereafter, any processes that seek to access this
particular semaphore are compelled to use the designated enclave
thread, establishing a singular, secure pathway for interaction.

The design insights of this paradigm is to utilize the enclave
thread as a lock mechanism, facilitating exclusive access. Lever-
aging the properties of the multi-thread enclave, the semaphore
can only be accessed by a single application at any given moment,
therefore naturally enforces mutual exclusive access control.

4.2.2 Binding Enclave Thread with Process. Another design alterna-
tive uses a model where the user process is directly bounden with a
enclave thread, ensuring that one enclave thread serves exclusively
for a singular user process. In order to explicate this design, it is im-
perative to understand how an enclave runtime accesses untrusted
data.

Given that SGX is architected to operate aside the untrusted
program, possessing the capability to access data outside its Enclave
Page Cache (EPC), the enclave runtime utilizes the page table of the
untrusted program. Pertaining to the EENTER instruction, wherein
transition from untrusted to trusted space occurs, no privilege
alteration happens, implying that the Control Register 3 (CR3)
for the enclave remains unaltered from where the EENTER was
executed. This property ensures that the enclave invariably accesses
its ‘corresponding’ untrusted address space. Thus, in this design,
the intimate and exclusive binding between a user process and a
enclave thread ensures that the specific untrusted address space is
available for access.

In our design, where the s-enclave roams across various ad-
dress spaces, binding the process with an enclave thread essentially

translates to binding the Control Register 3 (CR3) with a Thread
Control Structure (TCS) as show in Figure 6. This design selec-
tion is particularly optimal for facilitating switchless mode. Using
this mode effectively mitigates the substantial overhead associated
with EENTER and EEXIT instructions, which are markedly more
resource-intensive than a standard system call [48].

4.3 Semaphore Access Pattern

ESem introduces a mixed approach to semaphore access by em-
ploying two distinct access patterns, each corresponding to a types
of thread binding model. These patterns reflect the underlying de-
sign principles and operational requirements associated with each
thread type. In this section, we’ll provide detail on associated with
these semaphore access patterns.
Lockless Access. The fundamental characteristic of the Thread-
Semaphore binding is its reliance on lockless access. When uti-
lizing this pattern, there are direct read or write operations on
the semaphore’s value, without the imposition of any traditional
locking mechanism. The inherent benefits of this approach are:

• Speed: By bypassing locking protocols, the system can achieve
faster read/write operations, reducing latency.

• Simplicity: The lockless accessmechanism is relatively straight-
forward, offering a clean and uncomplicated approach to
semaphore access.

Atomic Exchange with Spin Lock. For the Thread-Process bind-
ing mode, the process is more involved. Given the async nature
of different enclave threads, it’s exclusive to a process but might
collide with other enclave threads. the semaphore values operation
necessitates an atomic exchange operator, coupled with a spin lock.
The key aspects of this approach are:

ESem: To Harden Process Synchronization for Servers ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

• Atomicity: The atomic exchange ensures that the write oper-
ation to the semaphore value is completed entirely without
interruption, maintaining the integrity of the value.

• Spin Locking: If another enclave thread attempts accesswhile
a current thread is engaged, the accessing thread will enter
a spin-wait state. This spin lock mechanism ensures that
threads in contention are effectively managed without caus-
ing a deadlock. The spinning thread will continually check
for the lock’s availability and will proceed once the lock is
released.

ESem’s bifurcated semaphore access pattern design, correspond-
ing to the enclave thread binding mechanisms, reflects a deliberate
and strategic approach to managing different operational scenar-
ios. By offering lockless access for straightforward use cases and
introducing atomic exchanges with spin locking for more com-
plex interactions, ESem delivers a balanced combination of speed,
reliability, and security in semaphore operations.

5 IMPLEMENTATION

The ESem prototype is implemented on an Intel platform for the
purpose of functionality and performance evaluation and testing
under different conditions. The platform is equipped with an In-
tel i7-9700k processor and 16 Gigabytes RAM and installed with
Linux Ubuntu 22.04, revised Intel SGX SDK 2.18 [22] and GLibC
2.36 [18]. Our prototype consists of 2820 lines of C code whose
breakdown is shown in Table 2.

Table 2: ESem Component Codebase Sizes

Module Line of Code

Enclave 1350
Lib-C 452
Kernel Module 1020

The s-enclave image is about 290 KB, occupying 71 pages. The
base address for the s-enclave is set as 0x00007F4A10000000. As a
default, the TCSNum, TCSMaxNum and TCSMinPool are equally set
to 200. Apart from one TCS reserved for semaphore management,
100 TCSes are allocated for semaphore-binding and the rest are for
process-binding.

During runtime, we measure the total page count ranges from
880 to 912 pages, as the available thread is set from 10 to 50. The
overhead from ESem’s EPC usage does not significantly strain the
entire system. In a production environment, especially with SGX
EDMM support [44], the memory constraints are not particularly
restrictive.

In the next subsections, we present two implementation specifics
on enclave handling and POSIX compatibility.

5.1 Enclave Handling

In ESem, the handling of the enclave is a critical aspect. The life
cycle of the enclave begins with its creation during the kernel’s
bootstrapping of ESem. At this initial stage, the dummy process
is established to serve as the bootstrapper for the s-enclave. Once

the initialization is successful, the virtual address of the EPC is
recorded.

During the initialization phase, the dummy process also takes on
the responsibility of documenting all available TCS. The allocation
and registration of these TCS within the enclave mark them as
available. Significantly, the first TCS that entered is designated as
the manager thread, tasked with the semaphore management. With
the completion of the total initialization process, the kernel then
transitions to a readiness state.

For the first instance of s-enclave utilization, the ESem enclave is
conveyed as a shared memory object. This is materialized through
a function that yields a file descriptor, which can be subsequently
mapped and utilized by the processes. Diverging from typical shared
memory behavior, if the object is not found, the kernel opts not to
create a new file but instead returns an error. This approach is a
deliberate departure from the norm as we do not support creating
s-enclave on-the-fly.

The subsequent step maps the file descriptor into the process’s
address space. In this operation, the mapping is not left to random
system selection; it strictly adheres to the Virtual Address (VA)
that the kernel recorded, based on the decisions made during the
dummy process phase. The use of flags such as MAP_ANONYMOUS in
this context would result in an error, aligning with the stringent
mapping protocol.

To further fortify the system against potential issues, ESem’s
also eschews the use of lazy loading in roaming. This decision
is a safeguard, ensuring stability and reliability in the enclave’s
operation within the ESem framework.

5.2 POSIX Compatibility

The second implementation complexity roots from adherence to the
POSIX standard, a crucial aspect for ensuring seamless integration
and minimal disruption to users accustomed to POSIX semaphores.
ESem achieves this by incorporating an additional flag USE_ESEM
within semaphore calls. This flag is instrumental in distinguishing
whether the call is intended for a POSIX semaphore or an ESem
semaphore. This approach ensures that users do not perceive any
significant differences between traditional POSIX semaphore oper-
ations and those performed by ESem.

The complexity introduced by ESem is predominantly encapsu-
latedwithin the GNUC Library (GLibC) [18]. This added complexity
is categorized into two parts. Firstly, it surfaces during the execu-
tion of semaphore management operations. Secondly, it becomes
evident in the handling of routine semaphore operations.

For the initialization of semaphore-using applications, LibC plays
a pivotal role by triggering the enclave roaming process, which is
executed only once. During this phase, the kernel also returns the
address of the management TCS to user space. Subsequently, LibC
takes over to complete the rest of the ECALL process. Then, the TCS
allocated to access the semaphore is also recorded by LibC. This
approach differs from alternative designs that simply substitute
the semaphore shared memory region with an enclave-hosted file
system [14]. By leveraging LibC, ESem effectively obscures the
complexities associated with enclave-related checks from the end
user.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wang et al.

In standard semaphore operations, LibC continues to play a
critical role. It records the binding of each semaphore, ensuring
accurate forwarding to the appropriate ECALL. This process is a
building block for maintaining operational integrity, especially in
scenarios where an attacker in user space might attempt to bypass
LibC to initiate their own semaphore ECALL using an incorrect TCS.
Such potential threats are mitigated within the enclave, demon-
strating ESem’s robust defense mechanisms against unauthorized
access.

6 CASE STUDY

In this section, we provide a case study to demonstrate the effec-
tiveness of ESem and show how an app uses it. This case study
examines the robustness of File Vault, an application that lever-
ages SGX to secure a file system. The application’s primary function
is to seal and unseal files with its enclave, providing these services
over a secure socket. It supports up to five threads to concurrently
manage file transactions.

6.1 File Vault Background

File Vault is an open source project [38] and is enclosed in the
Open Enclave samples [1]. We have modified and deployed the
prototype in the same hardware environment as Section 5. The
application is designed for the secure encryption and decryption of
data through network socket interface, utilizing SGX for enhanced
security. The architecture of File Vault is shown in Figure 7.

File Vault

Attested
TLS

Channel

User

Seal

Un-seal

Encrypt

Decrypt

Service
Threads

Enclave

Auth

Conn

Send File to Seal

Request File Unseal

Figure 7: The architecture of File Vault.

File Vault is chosen for the study for two reasons. Firstly, its role
in safeguarding confidential file data with SGX makes it an ideal
case to exemplify the demand for the strongest-possible security
protection. Secondly its unprotected synchronization among con-
current operations epitomizes the motivation of ESem. Moreover,
File Vault is simple and easily to explain as compared with servers
like Apache.

6.1.1 Service Threads. Prior to any encryption or decryption oper-
ations, the File Vault application requires user authentication in
service threads. This process ensures that only authorized users can
access the application’s functions. Upon initiation, the application
establishes a TLS connection to the user. The application, upon
receiving a response, grants or denies user access based on the
verification of the user’s credentials. Then one available service
thread begin to process a user request. A total of 5 service threads
are deployed in our prototype. A semaphore sem_service is used

Thread 0
File Vault

// Preparation

sem_wait(sem);

// Critical Region
// Tree Opertation
// Not Thread Safe
tree.insert(new);

sem_post(sem);

Kernel Level
Attacker

Ignore real sem
value & directly

returns.

Directly return
and DONOT
notify others.

Thread 1

File Vault

tree.insert(new);

Already INSIDE critical region

Race
Condition

Figure 8: Attack simulation on File Vault semaphore.

at the entrance of each service thread to enter enclave, whose initial
value is 5 and is decreased by 1 upon one thread activation.

6.1.2 File Vault Enclave. For encryption, the application takes
user input plaintext file and a sealed encryption key. The file, along
with the sealed key, is then passed to the SGX enclave, which
performs encryption and returns the ciphertext for storage in an
untrusted location identified by the file tree. The file tree is protected
by sem_filetreewith the initial value set as 1. Each enclave thread
successfully returning from sem_wait() can then maintain the
sealed file tree. Similarly, the decryption function accepts the sealed
key and a ciphertext file. The contents of the file, along with the
sealed key, are passed to the SGX enclave. Then the enclave obtain
the semaphore before accessing the sealed file tree. Next, the enclave
decrypts the data and returns the plaintext.

6.2 Attacks on Synchronization

We have designed and experimented two attacks both targeting the
aforementioned semaphore mechanisms but with different conse-
quences. Figure 8 shows the compromise process.

6.2.1 File tree race. The process unfolds as a race condition due
to the compromise of the semaphore mechanism that coordinates
access to the file tree. The attack specifically targets the process by
which two threads attempt to add nodes to the file tree, leading to
an unexpected and erroneous outcome.

Initially, the first thread calls sem_wait, the attacker bypasses
semaphore check and directly returns. Then it successfully enters
the critical section where accesses the file tree. It locates a next-to-
add pointer, identifying where in the tree structure its new node
should be added. At this point, the thread begins preparing the
content for the new tree node, but before it can complete the opera-
tion and properly link the node into the tree, the execution context
switches to the second thread.

The second thread, due to the compromised semaphore, erro-
neously gains access to the same critical section, finding the same
free pointer in the tree as identified by the first thread. It proceeds
to mount its node onto the tree, effectively doing so before the
first thread has the chance to complete its operation. This prema-
ture action by the second thread disrupts the intended sequence of
operations.

As both threads eventually exit their respective operations, they
return a status of success. However, the final state of the file tree is
compromised: only the first thread’s content is written to the tree,

ESem: To Harden Process Synchronization for Servers ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

while the node allocated by the second thread becomes inaccessible
and effectively lost. This mismanagement in the node addition
process leads to a corrupted file tree structure.

6.2.2 Service thread blocking. The second attacker behavior is the
same as the first one, but attacking on different critical region. A
service thread uses semaphore to keep too many process from
entering the enclave at the same time, since the enclave threads are
pre-determined and can not scale up in the runtime. A kernel level
attacker ignores the real semaphore value and allows the ‘wait’
thread to proceed without checking the semaphore status. Then
more than expected service thread enters enclave, the outflows fails
to enter since no TCS available.

6.3 Attack Outcome

The outcome of these attacks are severe. The first attack causes
corruption of the file tree structure. The ramifications of this attack
manifest later when an attempt is made to unseal a file. The file
content is found to be incorrect due to the second file node pointer
being overwritten in the earlier race condition. This scenario vividly
illustrates how a breach in semaphore synchronization can lead
to subtle yet significant data integrity issues in concurrent pro-
cessing environments, particularly within the secure confines of
an SGX enclave where such inconsistencies can have far-reaching
consequences.

The second attack causes the semaphore that manages service
threads to appear perpetually busy, effectively hogging the system,
leading to reduced performance. These types of attacks are par-
ticularly nefarious as they specifically target the synchronization
mechanism, causing subtle yet detrimental effects that only mani-
fest during concurrent operations, making them difficult to detect
and audit.

6.4 ESem Hardened Version

To harden File Vault with ESem, two semaphore function call is
changed in code: An extra marco USE_ESEM is added to function
sem_open(sem_service), sem_close(sem_service), along with
sem_open(sem_filetree) and sem_close(sem_filetree). The
enhanced sem_service is normal and its already discussed, while
sem_filetree uses a different paradigm.
Authenticate enclaves. Because sem_filetree is inside an en-
clave, we harden it with extra mutual-enclave authentication. First
a secure channel is build with mTLS. Both enclaves agree on a pre-
defined secret key 𝑃𝑠 . For simplicity, we consider the key dispatch
are done securely in bootstrap. When party File Vault enclave
sends a semaphore request 𝑅𝑒𝑞 to ESem, it computes an HMAC
𝑀𝑎𝑢𝑡ℎ = 𝐻𝑀𝐴𝐶 (𝑃𝑠 , 𝑅𝑒𝑞) and appends𝑀𝑎𝑢𝑡ℎ to the message. Upon
receiving request with𝑀𝑎𝑢𝑡ℎ , ESem independently computes the
HMAC using the same secret key and the received message. ESem
then compares the computed HMAC with the one received from
File Vault. If the two HMACs match, it confirms that the request
and perform the operation. To mutual authentication, ESem then
send a return message back to File Vault, also with an HMAC
appended. Next, File Vault performs the same verification process
upon receipt to ensure that the response is authentic and normal
operations protocol is executed.

The adoption of ESem within the File Vault application im-
proves its defense against these attacks. Each semaphore access
is authenticated and accounted since both party is enclave. This
case study underscores the importance of enclave-based semaphore
mechanisms for enclave applications dealing with sensitive data.
ESem not only enhances the security of the File Vault ’s operations
but also ensures the consistency and reliability of its service in the
face of synchronization attacks.

6.5 Summary

The case study of the File Vault application with ESem demon-
strates the enhanced security that SGX enclaves provide for semaphore-
based synchronization. By securely encapsulating semaphore oper-
ations within the enclave, ESem protects against even sophisticated
kernel-level attacks, ensuring that semaphore values cannot be
manipulated maliciously. This protection is vital for maintaining
service availability, making ESem an ideal hardening component in
the synchronization security of applications that handle sensitive
data.

7 EVALUATION

For the evaluation of the ESem prototype, the analysis includes
micro, macro, and real-world application. In this section, we aim to
provide a understanding of ESem’s performance in diverse work-
loads and real world scenarios.
Micro Evaluation. Assessing the performance in single opera-
tions, particularly on no-contention scenarios. These operations
are fundamental to ESem, as they are essential for semaphore state
management within the enclave.
Marco Evaluation. Evaluating the performance of ESem when in-
tegrated into benchmark routines, thereby assessing the semaphore
module’s collective performance. We integrated ESem into widely
used LMBench [26] and PTS [37]. This macro-level evaluation aims
to assess how ESem behaves when it is arranged as workflows.
Real-World Application Workloads. We substituted the tradi-
tional POSIX semaphores with ESem in several applications and
conducted performance benchmarks to evaluate its impact.

7.1 Micro Evaluation

In the micro evaluation, we examined the performance breakdown
of enclave operations integral to the ESem. This analysis was aimed
at understanding the time efficiency of operations. To provide a
detailed insight, the performance metrics of these operations are
presented in the accompanying Table 3, with most operations being
completed within 15 𝜇s.

Each operation within these categories are executed 50 times
to ensure reliability of results. The average time taken for each
metric reported. These findings are critical in validating the effi-
cacy of ESem in real-world applications where workload can vary
significantly. The largest relative difference is the Post and Wait in
Row 5 and 6. The result is expected since the fastest route of legacy
POSIX semaphore only contains a compact user-space operation.
This extreme performance can not be attained in many real-world
cases.

It’s important to highlight that in our prototype, we employed a
basic linear search algorithm from the standard library to establish

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wang et al.

a baseline for performance evaluation. This choice was made to
demonstrate the fundamental efficiency of ESem without the en-
hancements that could be provided by more sophisticated search
algorithms. While there is room for further fine-tuning and opti-
mization of these operations – which could potentially reduce the
time taken for multi-lookup tasks – we leave that to future work
to discuss. This approach ensures that our evaluation focuses on
the inherent capabilities of the ESem framework in its fundamental
form, providing a clear understanding of its baseline performance
breakdown.

Table 3: Semaphore Operation Time for Legacy and ESem.

Each test is taken 50 times and the average is presented. For

legacy post and wait operation, syscall is included in the

timing. For legacy post- and wait-switchless, the fastest no-

contention userspace route is taken.

Operation ESem (𝜇s) Legacy (𝜇s) Difference (𝜇s)

Open 17.02 9.87 7.15
Close 12.45 10.73 1.72
Post 7.02 5.3 1.72
Wait 7.39 6.2 1.19
Post-lockless 6.78 0.014 6.77
Wait-lockless 6.23 0.012 6.22
Unlink 10.05 9.03 1.02

7.2 Marco Evaluation

Table 4: PTS-NG Semaphore Benchmark [37] on ESem and

Legacy. This test reports the largest semaphore operation

available in a stress test, indicating best effort of the available

system resource to be filled with a tiny piece of operation.

‘Op/s’ indicates operations accomplished per second.

Metric Legacy ESem ESem-Switchless

PTS-NG [37] (Op/s) 11,488,876 9,533,037 9,125,001
Difference – -1,955,839 -2,363,875
(Op/s, %) – -17.02% -20.58%

In the macro evaluation phase of our study, we employed two
kernel benchmark suites, LMBench [26] and PTS [37], to assess the
overall performance of workflows utilizing the ESem. LMBench [26]
is particularly well-suited for this purpose as it offers a specialized
latency test suite for semaphores, allowing us to tailor the testing
environment. This adaptability includes the ability to predefine the
number of applications and semaphores used within the system,
which is crucial for accurately representing a workflow that relies
heavily on semaphore synchronization across multiple processes.

One of the key advantages of using LMBench [26] in our evalua-
tion is its capacity to simulate the contention among applications
in a controlled manner. Additionally, we introduced a modification
to the LMBench [26] tests to further examine ESem’s handling of
semaphore restarting mechanisms. This involved periodically clos-
ing and reopening a semaphore after a certain number of normal

25 50 75 100 125 150 175 200
Parallel

0

5

10

15

20

La
te

nc
y

(μ
s)

Semaphore Latency by Parallel and Restart Rate
Legacy (restart=0.1)
Esem (restart=0.1)
Legacy (restart=0.3)
Esem (restart=0.3)

Figure 9: LMBench [26] Semaphore Latency for Legacy and

ESem. This test is performed to measure semaphore in two

typical restart ratio 0.1 and 0.3.

operations, a process designed to mimic typical application behav-
ior in a dynamic computing environment. This adjustment to the
benchmark process evaluates how well ESem manages semaphore
lifecycle events, including creation, usage, and termination, which
are critical aspects of semaphore-based synchronization in practical
applications. Restart rate is shown in the table indicates the ratio
between close-then-reopen operation and normal PV-operation.

The evaluation results, as detailed in the accompanying Figure
9 and Table 4, demonstrate that the ESem framework exhibits a
marginally slower performance compared to legacy semaphore sys-
tems in most tested configurations. This performance discrepancy
is particularly noticeable in scenarios categorized under the middle
parallel group, where ESem’s operations take slightly longer than
traditional semaphore mechanisms. However, an interesting trend
emerges as we move towards configurations with higher levels of
parallelism. In these scenarios, the relative time difference between
ESem and legacy semaphores slightly diminishes. This phenome-
non can be attributed to the fact that in this settings, a considerable
portion of the processing time is consumed in jumping across differ-
ent processes, rather than in the semaphore operations themselves.
Consequently, in such contexts, the additional overhead introduced
by ESem becomes less impactful on the overall workflow. This ob-
servation suggests that while ESem introduces delay in semaphore
operations, it does not result in a substantial slowdown in the entire
workflow, particularly in environments where high parallelism is a
dominant factor.

In our evaluation of the ESem framework, we also explored a
variant "switchless mode ESem," which yielded some intriguing
results, as depicted in Figure 10. This mode is specifically designed
to optimize performance by minimizing the overhead associated
with switching to enclave threads.

In scenarios categorized under ‘High frequency’ - a special mode
within switchless ESem - the framework demonstrates reduction
in performance overhead. In such environments, the additional
burden introduced by extra enclave threads is minimized, allowing
the switchless mode to operate more efficiently.

ESem: To Harden Process Synchronization for Servers ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Restart Rate

18

19

20

21

22

23

24

25

La
te

nc
y

(μ
s)

Semaphore Latency under Different Restart Rate

Legacy
ESem
Switchless

Figure 10: LMBench [26] Semaphore Latency under High

Frequency Mode.

The data presented in Figure 10 illustrates that the switchless
mode ESem not only mitigates the performance impact typically
associatedwith standard ESem operations but can actually surpass it
in terms of efficiency. This enhanced performance in low parallelism
scenarios highlights the potential of switchless ESem in specific
operational contexts.

Switchless mode ESem’s ability to outperform the normal ESem
in certain conditions underscores the importance of tailoring the
enclave mechanism to the specific needs of the application envi-
ronment. It suggests that for applications characterized by high-
frequency semaphore operations, switchless mode ESem could offer
a more optimal solution, balancing the needs for security and per-
formance effectively.

7.3 Real World Application Workload

In the real-world application workload evaluation of the ESem
framework, we focused on benchmarking its performance in widely-
used applications: Redis [32], Apache HTTP Server (httpd) [8], and
PostgreSQL [29]. These applications were chosen due to their preva-
lence in industry and their reliance on semaphore mechanisms for
process synchronization and resource management. Redis [32],
an in-memory data structure store, often used as a No-SQL data-
base and cache, is known for its high-speed operations. Apache
HTTP Server [8], a widely-used web server software, requires ef-
ficient synchronization for handling multiple concurrent connec-
tions. PostgreSQL [29], a sophisticated object-relational database
system, demands robust semaphore mechanisms for transaction
and connection handling.

For each of these applications, ESem replaced the existing POSIX
semaphores to evaluate its impact on overall performance. The
benchmarks and reported metrics are provided by the project. Fo-
cused on key performance indicators relevant to each application,
such as transaction throughput for PostgreSQL [29], request han-
dling capacity for Apache HTTP Server [8], and read-write bench-
mark in Redis [32]. The results provided insight into how ESem
behaves under the load of real-world application scenarios, espe-
cially in environments where efficient synchronization matters. All
applications are designed to use different semaphores and provides

an extra layer of abstraction. We made use of this characteristic
and ported ESem before experiment.

Table 5: Real World Application Performance. The tested

benchmarks are all native to the application. PostgreSQL [29]

benchmark tests the largest transaction intake per second.

Redis [32] benchmarks the highest request per second. In

httpd [8], it tests time in microseconds per request. For the

first two benchmarks, the higher the better. For the third one,

the lower.

Application Legacy ESem Difference

PostgreSQL [29] (tps) 1,088.49 1,112.79 +24.30 (+2.23%)
Redis [32] (rps) 62,847.97 61,097.82 -1,750.15 (-2.79%)
Apache [8] (tpr) 9,208.09 9,427.83 +219.74 (+2.39%)

The results from our real-world application benchmarks, as de-
tailed in Table 5, indicate that ESem framework does not cause a sig-
nificant slowdown when compared to traditional legacy semaphore
mechanisms. All relative differences are below 3% compared to
legacy.

Despite the added security features and the complexities as-
sociated with managing semaphore operations within the secure
confines of an SGX enclave, ESem maintains a performance level
that is close to legacy semaphore systems.

The minimal performance impact observed with ESem can be
explained for two major reasons. The first is the critical region size.
These applications well follows the design guideline to use system
semaphores as a protection for system allocated resource. The
critical region code takes considerable amount of time compared to
previous tests. This effectively reduced the performance slowdown
brought in by a slower sync mechanism. The second reason is that
sync primitive usage is not heavily. These applications are well
designed and concurrency control is cautiously used. This lifts the
performance bottle neck from the sync mechanism.

In all, ESem balances the dual demands of security and per-
formance. The ability to provide this enhanced security without
compromising on overall performance makes it an attractive option
for systems where semaphore operations are critical like hosting a
service on cloud platforms.

8 RELATEDWORK

8.1 SGX Secured Systems

SGX plays a pivotal role in fortifying the security of various system
components. SGX-Shield introduces an innovative ASLR scheme
for SGX, enhancing security through finely-grained randomiza-
tion [34]. Glamdring presents a groundbreaking source-level par-
titioning framework with SGX, providing rich OS abstractions to
enclaved code [25]. PANOPLY prioritizes TCB reduction over per-
formance, employing a delegate-rather-than-emulate design philos-
ophy [36]. Graphene-SGX, a comprehensive library OS, facilitates
the deployment of unmodified applications in SGX enclaves [41].
SGX-LKL securely runs Linux binaries within SGX enclaves, offer-
ing a minimal, protected, and oblivious host interface [30]. SGXIO
introduces a versatile trusted path for secure execution in untrusted

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wang et al.

OS environments [43]. SGXLog guarantees the integrity and confi-
dentiality of log data [24]. Custos provides a practical framework
for tamper detection in system logs, featuring a tamper-evident
logging layer and decentralized auditing protocol [27]. Obliviate
presents a data-oblivious file system [3]. SGXKernel overcomes
enclave transition limitations through a switchless design and in-
novative cross-enclave communication [40]. In distributed systems,
SGX protects through system components or algorithms. Haven
ports theWindows Library OS to SGX, enabling secure execution of
applications in an untrusted kernel environment [12]. SCONE forti-
fies container processes, providing a secure C standard library inter-
face with seamless I/O data encryption [11]. Opaque, optimized for
SGX-protected Spark layers, enhances data security in distributed
analytics [49]. VC3 emphasizes data privacy in cloud-based ana-
lytics, while SEED pioneers workflow scheduling algorithms for
public cloud environments using Intel SGX [4, 33]. EnclaveDB uti-
lizes SGX to establish a secure database engine with a trusted kernel
[31].

8.2 Process Synchronization

Patel et al. have shown that synchronization attacks are a threat to
kernel synchronization in Linux containers [28]. These attacks, ma-
nipulable by unauthorized users, extend to framing attacks, persis-
tently impacting performance by expanding data structures. Akkan
et al. conducted a study on the x86-specific instructions MONITOR
and MWAIT, aiming to develop a more efficient locking and syn-
chronization mechanism adaptable to high-concurrency scenarios
[5]. SyncProf addresses performance issues in concurrent programs
by employing a graph-based relationship representation and multi-
ple program executions [45]. It effectively identifies and optimizes
synchronization bottlenecks, offering optimization strategies for
developers [45]. SyncPerf, designed for multi-threaded programs,
tackles performance problems associated with synchronization
primitives like locks and semaphores [6]. The Malthusian lock pro-
vides a method to resolve performance degradation resulting from
over-threading in a multi-threaded environment [17].

9 DISCUSSION

9.1 Authorized Synchronization

By introducing authorization mechanisms, ESem will inherently ex-
poses itself less to vulnerabilities. A simple authorization layer,like
pid, could inadvertently grant undue access and privileges, poten-
tially leading to confused deputy attacks.

Several extensions can be easily proposed to bolster the security
posture of ESem. One enhancement is the establishment of a hand-
shake secure communication channel to the application side. By
doing so, not only can we restrict and monitor access based on
verified credentials, but we also reduce the risk of man-in-the-
middle attacks, eavesdropping, and data tampering.

Furthermore, the idea of integrating a remote trusted party in-
troduces an added layer of verification and trust. With a remote
entity overseeing or validating operations, we can provide an exter-
nal checkpoint against anomalous or malicious behavior. Similar a
system can further be strengthened by considering scenarios with
a group of enclaves [15].

9.2 Shared Resource Protection

Semaphore usually protects some critical shared resources, ensur-
ing that these resources are accessed in a controlled manner. One
promising direction of ESem is to port memory-based resources
directly inside the enclave. Doing so serves a dual purpose. Firstly,
it provides an additional layer of security by encapsulating these re-
sources within the enclave’s protective boundaries, shielding them
from external attacks. The encapsulation can deter direct tampering,
unauthorized access, and other malicious intents that target these
shared resources. Secondly, by housing these resources within the
enclave, the synchronization mechanisms themselves can operate
with increased efficiency and precision, given the reduced overhead
of inter-component communication.

However, transferring more components and resources into the
enclave invariably enlarges the Trusted Computing Base (TCB). A
larger TCB implies a broader surface area for potential vulnerabili-
ties, as there are more components that need to be verified, mon-
itored, and maintained. The more expansive the TCB, the higher
the complexity and, correspondingly, the risk. This added complex-
ity might inadvertently introduce new vulnerabilities or make it
challenging to ensure the integrity and security of all components
comprehensively.

9.3 Contrast with other TEE-based solutions

Two current TEE paradigms apart from ESem can also address
similar syncronization problem. The first type is trusted Library
OS, like [9, 41]. ESem exactly suits the need to port a credible sync
mechanism for LibOS. Slightly shift the ECALL entrance in libC can
fit into this paradigm. The second type is Confidential VMs (CVM),
like TDX[21] and SEV[7]. But there is still significant difference
from ESem. Since CVMs inherently preserves all guest kernel, the
synchronization scheme is automatically protected. The expensive
ESem operations can be reduced to normal cost. But the kernel
inside CVM is still vulnerable to attacks from other surfaces. In all,
the performance under large number of writers/reader should be
better than ESem, but only partial protection can be covered.

10 CONCLUSION

We study the security of process synchronization against kernel-
privileged attacks and propose ESem, an enclave-based semaphore
service as the countermeasure. ESem combines enclave roaming
and in-enclave access control to provide a balanced performance
and security guarantee. We have implemented and evaluated ESem
along with a demonstrative case study. The results show that ESem
fulfills its design goals with a modest overhead for real-world ap-
plications.

11 ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers and COMPASS
members for their insightful comments. This work is partly sup-
ported by the National Natural Science Foundation of China under
Grant No.62372218, Shenzhen Science and Technology Program
under Grant No.SGDX202011030 95408029, and Peng Cheng Labo-
ratory Grant PCL2022A03-01.

ESem: To Harden Process Synchronization for Servers ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

REFERENCES

[1] 2023. Open Enclave SDK. https://openenclave.io/sdk/. Build Trusted Execution
Environment based application.

[2] Adil Ahmad, Juhee Kim, Jaebaek Seo, Insik Shin, Pedro Fonseca, and Byoungy-
oung Lee. 2021. CHANCEL: Efficient Multi-client Isolation Under Adversarial
Programs. In Proceedings of the Network and Distributed System Security Sympo-

sium.
[3] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung

Lee. 2018. OBLIVIATE: A Data Oblivious Filesystem for Intel SGX. In Proceedings

of the Network and Distributed System Security Symposium.
[4] Ishtiaq Ahmed, Saeid Mofrad, Shiyong Lu, Changxin Bai, Fengwei Zhang, and

Dunren Che. 2020. SEED: Confidential big data workflow scheduling with Intel
SGX under deadline constraints. In Proceedings of the IEEE International Confer-

ence on Services Computing. IEEE, 108–115.
[5] Hakan Akkan, Michael Lang, and Latchesar Ionkov. 2013. HPC runtime support

for fast and power efficient locking and synchronization. In Proceedings of the

IEEE International Conference on Cluster Computing. IEEE, 1–7.
[6] Mohammad Mejbah Ul Alam, Tongping Liu, Guangming Zeng, and Abdullah

Muzahid. 2017. Syncperf: Categorizing, detecting, and diagnosing synchro-
nization performance bugs. In Proceedings of the 25th European Conference on

Computer Systems. 298–313.
[7] AMD. 2023. AMD Secure Encrypted Virtualization. https://www.amd.com/en/

developer/sev.html.
[8] Apache Software Foundation. 2023. Apache HTTP Server. https://httpd.apache.

org/
[9] Apache Software Foundation. 2023. Apache TEACLAVE. https://teaclave.apache.

org/
[10] ARM. 2021. Arm CCA Security Model 1.0. https://developer.arm.com/

documentation/DEN0096/latest.
[11] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,

Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’keeffe, Mark L
Stillwell, et al. 2016. SCONE: Secure Linux containers with Intel SGX. In Proceed-

ings of the USENIX Symposium on Operating Systems Design and Implementation.
689–703.

[12] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding applications
from an untrusted cloud with haven. ACM Transactions on Computer Systems 33,
3 (2015), 1–26.

[13] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and
Christos Kozyrakis. 2012. Dune: Safe user-level access to privileged CPU fea-
tures. In Proceedings of the USENIX Symposium on Operating Systems Design and

Implementation. 335–348.
[14] Dorian Burihabwa, Pascal Felber, Hugues Mercier, and Valerio Schiavoni. 2018.

SGX-FS: hardening a file system in user-space with Intel SGX. In Proceedings of

the IEEE International Conference on Cloud Computing Technology and Science.
IEEE, 67–72.

[15] Guoxing Chen and Yinqian Zhang. 2022. MAGE: Mutual Attestation for a Group
of Enclaves without Trusted Third Parties. In Proceedings of the USENIX Security

Symposium. 4095–4110.
[16] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology ePrint

Archive (2016).
[17] Dave Dice. 2017. Malthusian locks. In Proceedings of the Twelfth European Con-

ference on Computer Systems. 314–327.
[18] Free Software Foundation. 2023. GNU C Library. https://www.gnu.org/software/

libc/
[19] Jinyu Gu, Bojun Zhu, Mingyu Li, Wentai Li, Yubin Xia, and Haibo Chen. 2022. A

Hardware-Software Co-design for Efficient Intra-Enclave Isolation. In Proceedings
of the 31st USENIX Security Symposium. 3129–3145.

[20] Intel. 2023. 64 and IA-32 Architectures Software Developer’s Manual. https:
//software.intel.com/content/www/us/en/develop/articles/intel-sdm.html.

[21] Intel. 2023. Intel Trust Domain Extensions (Intel TDX). https:
//www.intel.com/content/www/us/en/developer/tools/trust-domain-
extensions/documentation.html.

[22] Intel Corporation. 2023. Intel Software Guard Extensions (SGX) for Linux. https:
//github.com/intel/linux-sgx.

[23] JamesAndersonJr et al. 2020. NEWS: Intel plans to drop SGX support from its 11th
Gen Desktop Processors in favor of TME/MKTME. Proceedings of the CyberLink
Community Forum. https://forum.cyberlink.com/forum/posts/list/83604.page

[24] Vishal Karande, Erick Bauman, Zhiqiang Lin, and Latifur Khan. 2017. SGX-Log:
Securing system logs with SGX. In Proceedings of the ACM on Asia Conference on

Computer and Communications Security. 19–30.
[25] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis

Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rüdiger
Kapitza, et al. 2017. Glamdring: Automatic application partitioning for Intel SGX.
In Proceedings of the USENIX Annual Technical Conference. 285–298.

[26] LMBench. 2023. LMBench. https://lmbench.sourceforge.net/. A System Perfor-
mance Measurement Tool.

[27] Riccardo Paccagnella, Pubali Datta, Wajih Ul Hassan, Adam Bates, Christopher
Fletcher, Andrew Miller, and Dave Tian. 2020. Custos: Practical tamper-evident
auditing of operating systems using trusted execution. In Proceedings of the

Network and Distributed System Security Symposium.
[28] Yuvraj Patel, Chenhao Ye, Akshat Sinha, Abigail Matthews, Andrea C Arpaci-

Dusseau, Remzi H Arpaci-Dusseau, and Michael M Swift. 2022. Using Tratr
to tame Adversarial Synchronization. In Proceedings of the USENIX Security

Symposium. 3897–3916.
[29] PostgreSQL. 2023. PostgreSQL. https://www.postgresql.org/. An open source

database.
[30] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu, Shujie Cui,

Vasily A Sartakov, and Peter Pietzuch. 2019. SGX-LKL: Securing the host OS
interface for trusted execution. arXiv preprint arXiv:1908.11143 (2019).

[31] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB: A secure
database using SGX. In Proceedings of the IEEE Symposium on Security and Privacy.
IEEE, 264–278.

[32] Redis. 2023. Redis. https://redis.io/. An in-memory database that persists on
disk.

[33] Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
data analytics in the cloud using SGX. In Proceeding of the IEEE Symposium on

Security and Privacy. IEEE, 38–54.
[34] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih, Insik Shin,

Dongsu Han, and Taesoo Kim. 2017. SGX-Shield: Enabling Address Space Layout
Randomization for SGX Programs.. In Proceedings of the Network and Distributed

System Security Symposium.
[35] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin

Xia, and Shoumeng Yan. 2020. Occlum: Secure and efficient multitasking inside
a single enclave of intel sgx. In Proceedings of the Twenty-Fifth International

Conference on Architectural Support for Programming Languages and Operating

Systems. 955–970.
[36] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. 2017. Panoply:

Low-TCB Linux Applications With SGX Enclaves.. In Proceedings of the Network

and Distributed System Security Symposium.
[37] Phoronix Test Suite. 2023. Phoronix Test Suite. https://github.com/phoronix-

test-suite/phoronix-test-suite. A benchmark software.
[38] Siddharth Syal. 2023. File Encryption Using Intel SGX. https://github.com/

siddharthsyal/File-Encryption-Using-Intel-SGX.git.
[39] Hongliang Tian, Qiong Zhang, Shoumeng Yan, Alex Rudnitsky, Liron Shacham,

Ron Yariv, and Noam Milshten. 2018. Switchless calls made practical in Intel
SGX. In Proceedings of the 3rd Workshop on System Software for Trusted Execution.
22–27.

[40] Hongliang Tian, Yong Zhang, Chunxiao Xing, and Shoumeng Yan. 2017. SGXK-
ernel: A library operating system optimized for Intel SGX. In Proceedings of the

Computing Frontiers Conference. 35–44.
[41] Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-SGX: A Practical

Library OS for Unmodified Applications on SGX. In Proceedings of the USENIX

Annual Technical Conference. 645–658.
[42] Zhe Wang, Chenggang Wu, Mengyao Xie, Yinqian Zhang, Kangjie Lu, Xiaofeng

Zhang, Yuanming Lai, Yan Kang, and Min Yang. 2020. Seimi: Efficient and secure
smap-enabled intra-process memory isolation. In Proceedings of the 41st IEEE

Symposium on Security and Privacy. IEEE, 592–607.
[43] Samuel Weiser and Mario Werner. 2017. Sgxio: Generic trusted i/o path for Intel

SGX. In Proceedings of the ACM Conference on Data and Application Security and

Privacy. 261–268.
[44] Bin Cedric Xing, Mark Shanahan, and Rebekah Leslie-Hurd. 2016. Intel software

guard extensions (Intel SGX) software support for dynamic memory allocation
inside an enclave. In Proceedings of the International Workshop on Hardware and

Architectural Support for Security and Privacy. 1–9.
[45] Tingting Yu and Michael Pradel. 2016. Syncprof: Detecting, localizing, and opti-

mizing synchronization bottlenecks. In Proceedings of the International Symposium

on Software Testing and Analysis. 389–400.
[46] Peterson Yuhala, Michael Paper, Timothée Zerbib, Pascal Felber, Valerio Schiavoni,

and Alain Tchana. 2023. SGX Switchless Calls Made Configless. arXiv preprint
arXiv:2305.00763 (2023).

[47] Yiming Zhang, Yuxin Hu, Zhenyu Ning, Fengwei Zhang, Xiapu Luo, Haoyang
Huang, Shoumeng Yan, and Zhengyu He. 2023. SHELTER: Extending Arm CCA
with Isolation in User Space. In Proceedings of the USENIX Security Symposium.

[48] ChongChong Zhao, Daniyaer Saifuding, Hongliang Tian, Yong Zhang, and
ChunXiao Xing. 2016. On the performance of Intel SGX. In Proceedings of the

Web Information Systems and Applications Conference. IEEE, 184–187.
[49] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E

Gonzalez, and Ion Stoica. 2017. Opaque: An oblivious and encrypted distributed
analytics platform. In Proceedings of the USENIX Symposium on Networked Systems

Design and Implementation. 283–298.

Ning Hu2„

https://openenclave.io/sdk/
https://www.amd.com/en/developer/sev.html
https://www.amd.com/en/developer/sev.html
https://httpd.apache.org/
https://httpd.apache.org/
https://teaclave.apache.org/
https://teaclave.apache.org/
https://developer.arm.com/documentation/DEN0096/latest
https://developer.arm.com/documentation/DEN0096/latest
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https: //software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https: //software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx
https://forum.cyberlink.com/forum/posts/list/83604.page
https://lmbench.sourceforge.net/
https://www.postgresql.org/
https://redis.io/
https://github.com/phoronix-test-suite/phoronix-test-suite
https://github.com/phoronix-test-suite/phoronix-test-suite
https://github.com/siddharthsyal/File-Encryption-Using-Intel-SGX.git
https://github.com/siddharthsyal/File-Encryption-Using-Intel-SGX.git

	Abstract
	1 Introduction
	2 Background
	2.1 POSIX semaphore
	2.2 Multi-thread in SGX Enclaves
	2.3 SGX Switchless Function Call

	3 Design
	3.1 Synopsis
	3.2 Design Overview
	3.3 Semaphore Enclave Management

	4 The Semaphore Enclave Internals
	4.1 Semaphore Access Control
	4.2 Thread Management
	4.3 Semaphore Access Pattern

	5 Implementation
	5.1 Enclave Handling
	5.2 POSIX Compatibility

	6 Case Study
	6.1 File Vault Background
	6.2 Attacks on Synchronization
	6.3 Attack Outcome
	6.4 ESem Hardened Version
	6.5 Summary

	7 Evaluation
	7.1 Micro Evaluation
	7.2 Marco Evaluation
	7.3 Real World Application Workload

	8 Related Work
	8.1 SGX Secured Systems
	8.2 Process Synchronization

	9 Discussion
	9.1 Authorized Synchronization
	9.2 Shared Resource Protection
	9.3 Contrast with other TEE-based solutions

	10 Conclusion
	11 Acknowledgments
	References

