
1

Efficient and DoS-resistant Consensus for
Permissioned Blockchains

Xusheng Chen, Shixiong Zhao, Ji Qi, Jianyu Jiang, Haoze Song, Cheng Wang, Tsz On Li,
T.-H. Hubert Chan, Fengwei Zhang, Xiapu Luo, Sen Wang, Gong Zhang, and Heming Cui.

Abstract—Existing permissioned blockchain systems designate a fixed and explicit group of committee nodes to run a consensus
protocol that confirms the same sequence of blocks among all nodes. Unfortunately, when such a permissioned blockchain runs in a large
scale on the Internet, these explicit committee nodes can be easily turned down by denial-of-service (DoS) or network partition attacks.
Although work proposes scalable BFT protocols that run on a larger number of committee nodes, their efficiency drops dramatically when
only a small number of nodes are attacked.
In this paper, our EGES protocol leverages Intel SGX to develop a new abstraction called “stealth committee”, which effectively hides the
committee nodes into a large pool of fake committee nodes. EGES selects a distinct group of stealth committee for each block and
confirms the same sequence of blocks among all nodes with overwhelming probability. Evaluation on typical geo-distributed settings
shows that: (1) EGES is the first permissioned blockchain’s consensus protocol that can tolerate tough DoS and network partition attacks;
and (2) EGES achieves comparable throughput and latency as existing permissioned blockchains’ protocols.

F

1 INTRODUCTION

A blockchain is a distributed ledger recording transactions
maintained by nodes running on a peer-to-peer (P2P)
network. These nodes run a consensus protocol to ensure
consistency: nodes confirm the same sequence of blocks (no
forks). Each block contains the hash of its previous block,
forming an immutable hash chain. A blockchain can be
permissioned or permissionless. A typical permissionless
blockchain does not manage membership for nodes and is
usually attached with a cryptocurrency mechanism (e.g.,
Bitcoin [1]) to incite nodes to follow the blockchain’s protocol.

In contrast, a permissioned blockchain runs on a set of
identified member nodes and can leverage the mature Byzan-
tine Fault-Tolerant (BFT) protocols [2], [3], [4], [5] to achieve
better efficiency (i.e., throughput and latency on confirming
blocks). This paper focuses on permissioned blockchains be-
cause their decoupling from cryptocurrencies has facilitated
the deployment of many real-world general data-sharing ap-
plications, including a medical chain among UK hospitals [6],
IBM supply chains [7], and the Libra payment system [8].

For performance and regulation reasons (e.g., meeting
the honesty threshold of BFT protocols [9]), a permissioned
blockchain (e.g., Hyperledger Fabric [10]) typically runs its
consensus protocol on a static and explicit committee. This
static committee approach is already robust for a permis-
sioned blockchain among a small scale of enterprises [7].

Unfortunately, as permissioned blockchains become
popular and are deployed in large scales on the Internet,
this static committee approach is vulnerable to targeted
Denial-of-Service (DoS) and network partition [11], [12],
[13] attacks. For instance, Libra [8] aims to build a global
payment system (there are more than 5,000 banks in the
US [14]) and identifies DoS attacks as a significant threat,
but it only provides partial mitigation (§2.2).

Indeed, great progress has been made in designing
scalable BFT protocols (e.g., SBFT [4]) running on a larger

group of committee nodes and tolerating more nodes being
attacked. However, these protocols designate a small number
of committee nodes to finish critical tasks (e.g., combing
ACKs), making these protocols’ efficiency drop dramatically
if these nodes are under DoS attacks (§2.2).

With recent DoS attacks lasting for days [15], [16],
tolerating such attacks is crucial, yet challenging, for
applications deployed on permissioned blockchains.

To address such vulnerabilities of static committees, a
promising direction is to adopt the dynamic committee merit
from permissionless blockchain systems [11], [17]. These
systems select a distinct committee for each block to handle
the frequent leaving of nodes and to provide fairness and can
ensure liveness even if a committee fails to confirm a block.

Simply applying the dynamic committee approach,
however, cannot ensure DoS-resistance. Another crucial
requirement is unpredictability: the identifies of nodes in
a committee must be unpredictable to the attacker before the
committee tries to achieve consensus on a block. Otherwise,
the attacker can adaptively attack the ready-to-be committee
and cause the system stuck. For instance, ByzCoin [18] lets
the proof-of-work winners of recent blocks be the committee,
but these explicit nodes are easily targeted by a DoS attacker,
causing ByzCoin to lose liveness permanently [19].

To the best of our knowledge, Algorand is the only work
that can tolerate targeted DoS attacks. However, as Algorand
is designed for permissionless blockchains, it confirms a
block with up to 15 rounds and minute-level latency (dis-
cussed in §2.2), making it unsuitable for general data-sharing
applications on permissioned blockchains (e.g., Libra).

This paper aims to explore the new design point of
building a permissioned blockchain’s consensus protocol
that adopts the unpredictable dynamic committee merit to
defend against targeted DoS or partition attacks, and at the
same time, achieves comparable efficiency as existing BFT
protocols (e.g., SBFT [4] has second-level latency).

A main obstacle is to ensure that any selected committee

ar
X

iv
:1

80
8.

02
25

2v
4

 [
cs

.D
C

]
 1

5
D

ec
 2

02
0

meets the honesty requirement for byzantine problems: for
consistency, each committee must have at most one-third
of nodes being malicious [9]. Permissionless blockchains
meet this requirement by selecting committees based on
nodes’ wealth in the built-in cryptocurrency mechanism (i.e.,
proof-of-stake), but cryptocurrencies are usually unavailable
in permissioned blockchains. Consequently, to meet such a
requirement, one has to unrealistically assume that almost
all member nodes (>90%) are honest (calculated in §2).

Fortunately, recent work (e.g., Microsoft CCF [20],
REM[21]) shows that the code integrity feature of SGX [22]
can regulate the misbehavior of blockchain nodes. For
instance, a recent implementation [23] of MinBFT leverages
SGX to ensure that a node cannot send conflicting messages
to different nodes and is incorporated into Hyperledger [10].

We present EGES1, the first efficient consensus protocol
that can tackle targeted DoS or partition attacks for a per-
missioned blockchain. EGES adopts the dynamic committee
merit to select a distinct committee for confirming each block.
To defend against DoS or partition attacks targeting the com-
mittees, we leverage the integrity and confidentiality features
of SGX to present a new abstraction called stealth committee.

EGES’s stealth committee has two new features. First,
EGES selects a stealth committee in SGX: the selection
progress has no communication among committee nodes,
and the selection result cannot be predicted from outside
SGX. This ensures that a committee node stays stealth (cannot
be targeted by the attacker) before sending out its protocol
messages. Second, when nodes in a committee are trying to
confirm a block, EGES hides these committee nodes into a
large pool of fake committee nodes that behave identically as
the real ones observed from outside SGX, so that an attacker
cannot identify the real committees.

However, even equipped with SGX and stealth committee,
it is still challenging to efficiently ensure both consistency
(i.e., no two member nodes confirm conflicting blocks) and
reasonable liveness (i.e., allow non-empty blocks to get
confirmed) in the asynchronous Internet due to the FLP
impossibility [24]. Specifically, suppose a committee node
x for the nth block fails to receive the (n − 1)th block after
a timeout, x cannot distinguish whether it is because the
committee for the (n − 1)th block failed to confirm the
(n − 1)th block, or because x itself does not receive the
confirmed (n− 1)th block due to network problems. As the
committee nodes for the (n− 1)th block may be under DoS
attacks and be unreachable, x must have a mechanism to
distinguish these two scenarios in order to maintain both
consistency and reasonable liveness in EGES.

EGES tackles this challenge using simple probability
theory. EGES’s committee for each block contains one pro-
poser and nA (e.g., 300) acceptors, randomly and uniformly
selected from all nodes. The proposer broadcasts its block
proposal to all nodes by P2P broadcasts and seeks quorum
ACKs from the acceptors. EGES models the randomly selected
acceptors as a sampling of the delivery rate of the proposal
in the P2P overlay network [11]. In the previous example,
EGES confirms the proposal for the (n − 1)th block only if
the proposal is delivered to a large portion of member nodes;
if multiple rounds of the sampling show that very few nodes

1. EGES stands for Efficient, GEneral, and Scalable consensus.

protocol
name

DoS
resistanc

with
SGX?

consensus
model

number
of nodes

tput
(txn/s)

confirm
latency (s)

EGES high Yes hybrid 300 3226 0.91
10k 2654 1.13

Algorand high No BFT 10K ∼727 ∼22s
PoET high Yes Hybrid 100 149 45.2
Ethereum high No BFT 100 178 82.3
SBFT medium No BFT 62 1523 1.13
MinBFT low Yes Hybrid 64 2478 0.80
BFT-SMaRt low No BFT 10 4512 0.67
Tendermint low No BFT 64 2462 1.31
HotStuff low No BFT 64 2686 2.63
HoneyBadger low No BFT 32 1078 9.39

TABLE 1: Comparison of EGES to baseline protocols. Analysis
of DoS resistance is in §2; evaluation setup is covered in §8.

have received that proposal for the (n− 1)th block, nodes in
EGES consistently confirm the (n− 1)th block as an empty
block (with an overwhelming probability).

In sum, EGES efficiently enforces consistency and can
defend against targeted DoS or partition attacks. Specifically,
EGES defends against such attacks by (1) letting committee
nodes stay stealth before they start achieving consensus for
a block, (2) using fake committee nodes to conceal real
committee nodes while they are achieving consensus for
a block, and (3) switching to a different committee and
consistently confirming a block even if the attacker luckily
guesses most real committee nodes for this block.

In essence, EGES’s stealth committee is a moving target
defense approach [25], [26]. EGES unpredictably replaces the
critical components (i.e., the committee) in a large system so
that a DoS attacker cannot launch effective attacks targeting
these components. EGES’s consensus protocol also achieves
good efficiency because confirming a block in a gracious run
(e.g., the proposer can reach most acceptors) only involves
two P2P broadcasts and a half UDP round trip (§5). We
provide a rigorous analysis of EGES’s DoS-resistance and
proof of EGES’s consistency guarantee in §6.

We implemented EGES using the codebase from
Ethereum [27] and compared EGES with nine consensus
protocols for blockchain systems, including five state-of-
the-art efficient BFT protocols for permissioned blockchains
(BFT-SMaRt [28], SBFT [4], HoneyBadger [29], and
HotStuff [5]), two SGX-powered consensus protocols for
permissioned blockchains (Intel-PoET [30] and MinBFT [31]),
the default consensus protocol in our codebase (Ethereum-
PoW [27]), and two permissionless blockchains’ protocols
that run on dynamic committees (Algorand [11] and
Tendermint [17]). We ran EGES on both our cluster and AWS.
Evaluation shows that:

• EGES is robust. Among all consensus protocols for per-
missioned blockchains, EGES is the only protocol that can
defend against targeted DoS and network partition attacks,
by both a theoretical analysis (§6) and evaluation (§8.2).

• EGES is efficient. EGES confirms a block with 3000 trans-
actions in less than two seconds in typical geo-distributed
settings, comparable to evaluated consensus protocols that
cannot tolerate targeted DoS attacks.

• EGES’s throughput and latency are scalable to the number
of nodes. When running 10k nodes, EGES showed 2.3X
higher throughput and 16.8X lower latency than Algorand
with 10k nodes.

2

Compared to existing BFT protocols [28], [4], [29],
[5] and SGX-powered consensus protocols [30], [31] for
permissioned blockchains, EGES is the only protocol that
can tolerate targeted DoS attacks, and EGES’s efficiency is
comparable to the fastest of these protocols. Compared to
Algorand, the only known DoS-resistant consensus protocol
for permissionless blockchains, EGES has much higher
throughput and lower latency.

Our contribution is two-fold. First, EGES leverages SGX
to explore the new design point of tackling DoS attacks
while enforcing both consistency and reasonable liveness
(including efficiency) for a permissioned blockchain in
the asynchronous Internet. Second, we designed the new
stealth committee abstraction and implemented EGES’s
consensus protocol. EGES’s source code is available on
github.com/hku-systems/eges. EGES can facilitate the de-
ployments of various mission-critical, DoS-resistant per-
missioned blockchain applications on the Internet (e.g., e-
voting [32] and payment [8]).

In the rest of the paper, §2 introduces EGES’s background
and motivation; §3 defines the model of EGES; §4 gives a
high-level overview of EGES; §5 introduces EGES’s consensus
protocol; §6 analyzes the safety and liveness of EGES; §8
shows our evaluation, and §9 concludes.

2 BACKGROUND AND RELATED WORK

We discuss targeted DoS and network partition attacks
together in this paper because these two attacks cannot
be effectively distinguished in an asynchronous network.
Particularly, when a node cannot reach a remote node, the
node cannot determine whether it is because the remote
node is under DoS attacks or because these two nodes
are partitioned in the network. Therefore, EGES maintains
consistency by handling both cases together.

When discussing targeted DoS or partition attacks in
this subsection, we assume that the attacker has an attack
budget B (e.g., B = 300): the attacker can adaptively target
B nodes at a time. This model is the same as Algorand’s,
which we will formally define in §3.

2.1 Intel SGX

Intel Software Guard eXtension (SGX) [22] is a hardware fea-
ture on commodity CPUs. SGX provides a secure execution
environment called enclave, where data and code execution
cannot be seen or tampered with from outside. Code outside
enclaves can enter an enclave by ECalls, and SGX uses remote
attestations [22] to prove that a particular piece of code is
running in an enclave on a genuine SGX-enabled CPU. SGX
provides a trustworthy random source (sgx_read_rand),
which calls the hardware pseudo-random generator through
the RDRAND CPU instruction seeded by on-chip entropy
sources [22]. Previous studies show that this random source
complies with security and cryptographic standards and can-
not be seen or tampered with from outside enclaves [33], [34].

Recent work shows that SGX can be leveraged to improve
diverse aspects of blockchain systems. Intel’s PoET [30] re-
places the PoW puzzles with a trusted timer in SGX; EGES is
more efficient than PoET (§8.1). REM [21] uses SGX to replace
the useless PoW puzzles with useful computation (e.g., big

data), orthogonal to EGES. Microsoft CCF [20] (originally
named CoCo) is a permissioned blockchain platform using
SGX to achieve transaction privacy, but it does not include a
DoS-resistance approach. Scifer [35] uses SGX’s attestation
to establish reliable identities of nodes and maintains their
identities on the blockchain, which is adopted in EGES (§7.1).

Ekiden [36] and ShadowEth [37] offload the execution of
smart contracts to SGX-powered nodes to avoid redundant
execution and to preserve privacy; TEEChain [38] uses SGX
to build an efficient and secure off-chain payment channel;
Town Crier [39] uses SGX to build a trustworthy data source
for smart contracts; Tesseract [40] uses SGX to build a cross-
chain coin exchange framework; Obscuro [41] uses SGX to
improve bitcoin’s privacy; these systems do not focus on
consensus protocols and are orthogonal to EGES.

2.2 Consensus for Permissioned Blockchains

We briefly introduce recent notable consensus protocols for
permissioned blockchains, which are also EGES’s evaluation
baselines. Overall, all these protocols run on a static commit-
tee. To ensure liveness under a DoS attacker with an attack
budget of B, these protocols must scale to 3×B + 1 nodes
(for BFT protocols) or 2 × B + 1 nodes (for SGX-powered
protocols). However, to our best knowledge, no existing
protocol can achieve such scalability.

BFT-SMaRt [2] is an optimized implementation of
PBFT [3]. As each node broadcasts consensus messages to all
other nodes, BFT-SMaRt has O(n2) message complexity to
the number of committee nodes, resulting in poor scalability.
Its paper [2] only evaluated up to 10 nodes. SBFT [4] is a
scalable BFT protocol that uses a new type of committee
nodes called collectors. A node sends its consensus messages
to only c (usually c < 8) explicit collectors who will then
broadcast a combined message using the threshold signature.
SBFT’s fast path can commit a block if fewer than c nodes
have failed; however, SBFT’s performance drops dramatically
if an attacker targets the c collectors (§8.4).

HotStuff [5] is a BFT protocol optimized for frequent
leader changes, and Libra [8] leverages Hotstuff to tolerate
targeted DoS attacks on leaders. However, since Hotstuff
reports a near-linear increment of latency with an increasing
number of nodes, it only evaluated up to 128 nodes, where
an attacker can DoS attack or partition one-third of all
nodes rather than finding the leader. HoneyBadger [29] uses
randomization to remove the partial synchrony assumption
of PBFT. However, both its paper and our evaluation shows
that HoneyBadger achieves high latency due to multiple
rounds of its asynchronous byzantine agreements.

MinBFT [31] is an SGX-powered BFT protocol that has
the same fault model as EGES. MinBFT reduces the number
of rounds in PBFT and can tolerate more node failures
(one-half instead of one-third), but MinBFT still has O(n2)
message complexities, so its performance is not scalable to
the number of nodes.

2.3 Consensus for Permissionless Blockchains

Existing permissionless blockchains can be divided into
two categories based on how they confirm blocks. The

3

github.com/hku-systems/eges

first category confirms block with variants of the longest-
chain rule (i.e., Nakamoto consensus [1]), including Bit-
Coin [1], Ethereum [27], BitCoin-NG [42], Snow-White [43],
Ouroboros [44], Paros [45], Genesis [46], and GHOST [47].
Specifically, each node asynchronously selects the longest
chain it received and confirms a block when there are k
blocks succeeding it. However, waiting for k more blocks
leads to a long confirm latency, and previous work [48]
shows that this k must be large enough to ensure consistency.
Moreover, the longest-chain rule cannot ensure consistency
under partition attacks [49], [13], [11]. Intuitively, during a
network partition, each partition will independently grow a
chain; if these chains diverge for more than k blocks, nodes
in different partitions will confirm conflicting blocks.

The second category of permissionless blockchains con-
firms blocks using the committee-based BFT approach,
which can confirm a block as soon as the BFT consensus is
achieved. This category includes Algorand [11], ByzCoin [18],
Tendermint [17], and PeerCensus [50]. These systems select
distinct (dynamic) committees for different blocks based
on the content (e.g., nodes’ wealth) on the blockchain for
fairness and for handling nodes joining or leaving. Similar
to EGES, these systems run a tailored consensus protocol
(BA* in Algorand [11], Tendermint [17], Tenderbake [51], and
Tenderand [52]) on dynamic committees to confirm blocks.

However, these protocols cannot be ported to a
permissioned blockchain because of the tight coupling with
cryptocurrency. For instance, although Tendermint [53] and
Tenderbake [51] are described as stand-alone BFT protocols,
they assume that in any committee, fewer than one-third
of nodes are malicious. In a permissioned blockchain
without cryptocurrency, if we want to ensure that any
randomly selected committee (say 100 nodes) from a large
number of (say 10k) nodes meets this requirement with
overwhelming probability (> 1− 10−10), we need to assume
over 91% of all nodes being honest (by the hypergeometric
distribution), which is an overly-strong assumption for
a practical large-scale blockchain system (e.g., a global
payment system [8]) on the Internet.

Moreover, these systems (except Algorand) cannot ensure
liveness under targeted DoS attacks because they select
committees in a predictable way so that all nodes can verify
the identities of committees. For instance, ByzCoin [18] lets
the proof-of-work winners of recent blocks be the committee.
However, these nodes with explicit identities are easily
targeted by a DoS attacker, and ByzCoin may lose liveness
permanently [19] if more than one-third of these nodes are at-
tacked. Algorand defends against targeted DoS attacks by let-
ting each node use verifiable random functions to determine
its committee membership. We provide a detailed compari-
son showing why EGES is more efficient than Algorand in §4.

3 SYSTEM MODEL

EGES is a consensus protocol for a permissioned blockchain
running on M member nodes (nodes for short) connected
with an asynchronous network. Each node is equipped with
an attested SGX enclave running the EGES protocol (§5).

EGES adopts the hybrid fault model used in existing SGX-
powered consensus protocols [54], [31], [55], where each node

has a trusted module (i.e., the SGX enclave) that will only fail
by crashing, and all other components can behave arbitrarily.

EGES has the following design goals:
• Safety (consistency). EGES ensures safety in an asyn-

chronous network. Formally, if a node confirms a block
b as the nth block on the blockchain, the probability
that another node confirms b′ 6= b as the nth block is
overwhelmingly low (< 10−10).

• DoS-resistance (liveness). In addition to safety, EGES
can make progress (i.e., allow non-empty blocks to be
confirmed) with two additional assumptions about the
DoS attacker’s capability as described below.

SGX’s threat model. EGES has the same threat model for
SGX as typical SGX-based systems [56], [57], [58], [23], [59].
We trust the hardware and firmware of Intel SGX, which
ensures that code and data in an enclave cannot be seen
or tampered with from outside. We trust that the remote
attestation service can identify genuine SGX devices from
fake ones (e.g., emulated with QEMU). Side-channel and
access pattern attacks on SGX are out of the scope of this
paper. Moreover, the adversary cannot break standard cryp-
tographic primitives, including public-key based signatures
and collision-resistant hash functions.
Communication model. EGES maintains safety in an asyn-
chronous network, where network packets can be dropped,
delayed, or reordered arbitrarily. Nodes may be nonrespon-
sive, either due to going offline or due to targeted DoS attacks
(e.g., botnet DDoS attacks [15]) by a DoS attacker. When a
node cannot reach a remote node, the node cannot determine
whether the remote node is under DoS attack (or is offline)
or the network packets are delayed.

To achieve liveness, EGES has the ”strong synchrony” as-
sumption, same as Algorand [11]. Specifically, EGES assumes
that messages between two nodes not under DoS attacks can
be delivered within a known time bound, and the assump-
tions about the attacker’s capability are described below.

Nodes are connected with a P2P overlay network,
same as existing large-scale blockchain systems [1], [11].
Specifically, each node has a P2P module connecting to a
random set of other nodes and relays messages using the
gossip protocol [60].

A node’s P2P module is outside SGX and can be con-
trolled by the attackers: the attacker can partition some nodes
from other nodes [12], [13]) or selectively pass consensus
messages to nodes’ SGX enclaves. However, such manipula-
tions are already included in EGES’s asynchronous network
assumption. For safety, EGES leverages the sampling merit
to estimate the delivery rate of a specific block proposal and
derives overwhelming probability, regardless of how nodes
are connected. For liveness, the adversary can control the
P2P modules of a number of nodes with the restriction of the
adversary’s attack budget described below.
Capability of DoS attackers. EGES has three assumptions
on the capability of a DoS attacker, same as Algorand [11]
and existing move target defense (MTD) systems [25], [26].
First, the adversary has a targeted attack budget B (e.g., B
= 300 or 10% of the total number of nodes): the adversary
cannot constantly cause more than B targeted nodes in EGES
to be nonresponsive. This budget is adaptive: the adversary
can attack different nodes at different times, but the number

4

of attacked nodes at a time cannot be constantly larger than
B.

Second, the attacker can conduct ubiquitous DoS attacks
(without targeting specific nodes) or partition a number
of nodes from other nodes (e.g., by manipulating nodes’
P2P modules [13], [12]). However, the P2P overlay network
should have a large enough portion (e.g., 65%) of nodes
connected. We provide a quantitative analysis of how EGES
can preserve liveness under such attacks in §6.3.

Third, the adversary cannot constantly succeed in mount-
ing an attack targeting a node within the time window for
the node to send out an EGES protocol message. Specifi-
cally, EGES protocol messages are larger than the network
maximum packet size and are fragmented into multiple
packets; an EGES committee node’s identity is unknown
to the adversary before sending out the first packet, and
we assume that the adversary cannot mount targeted DoS
attacks until the node sends out all packets belonging to this
message (at most hundreds of kB and can be sent within one
second).

EGES already assumes a strong enough attacker for
practical distributed systems on the Internet. As pointed
out by Algorand [11], a more powerful adversary than our
model usually controls the internet service provider and
can prevent all EGES nodes from communicating at all: no
practical system can ensure liveness under such a strong
adversary, and such attacks can be easily detected. We will
provide a rigorous analysis of EGES’s DoS resistance in §6.2.

4 EGES’S HIGH-LEVEL IDEA

EGES has three important features to achieve DoS resistance.
First, EGES randomly selects a distinct group of committee for
each block. The selection is done inside the SGX enclaves of a
previous committee, and the selection result is encrypted on
the confirmed blockchain. By doing so, a committee node can
determine its committee membership without interactions
with other nodes, making it stay stealth before trying to
achieve consensus on its block.

Second, when a committee is achieving consensus for
a given block, EGES uses fake committee nodes to conceal
the real ones by sending dummy messages. Since whether
a node is a real committee node is only known within the
node’s SGX enclave, and the dummy messages are of the
same format as real ones, a DoS attacker cannot distinguish
the real committee nodes from the fake ones. Therefore, the
attacker must have an unrealistic large attack budget to
attack all the real and fake committees; otherwise, he has to
randomly guess who are the real ones.

Third, even if the attacker luckily guesses the real ones
(and he may eventually succeed if tried persistently), EGES
can ensure safety with overwhelming probability leveraging
the delivery rate on all nodes of the unique proposal for each
block. Specifically, even if a committee cannot confirm its
own block, committees for subsequent blocks can help to
consistently confirm this block by repetitive querying. This
feature is in contrast to most existing consensus protocols
(i.e., all except Algorand [11]), where the system must wait
statically until a quorum of nodes become reachable.

EGES’s consensus protocol has three parameters, nA
(default 300), τ (default 59%), and D (default 4), where nA

Finalized Confirmed

Timeout for finalize msg receive finalize msg

has no preceding canFinalize()
See Algorithm 2Undecided undecided blocks

Fig. 1: EGES’s block status diagram.

is the number of acceptors, τ is the quorum ratio, and D is
the finalize depth for an empty block. We will show how to
select these parameters in §6.3 and how these parameters
affect EGES’s performance in §8.3.

For each block index n, EGES selects (§5.2) only one
committee from all nodes. The committee contains two types
of nodes: one proposer (Pn) and a group of stealth acceptors
(An) with the count of nA. EGES ensures the following
invariant (see §6.1 for proof).

Invariant 1. For any block index n, at most one unique block
proposal (proposaln) is generated; a node can only confirm
proposaln or a default empty block (emptyn) as its nth block.

EGES uses different steps to confirm proposaln or
emptyn. We make the steps of confirming proposaln as
lightweight as possible for high efficiency in gracious runs.

Confirming proposaln. In a gracious run, EGES confirms
proposaln in three steps: Pn broadcasts proposaln with
a propose request through the P2P network; acceptors
send ACKs to Pn after receiving proposaln; Pn broadcasts
a finalize message confirming proposaln once receiving
ACKs from a quorum (τ × nA) of acceptors.

Confirming emptyn. For consistency, when confirming
emptyn, EGES must ensure that no node has confirmed
proposaln. Existing consensus protocols on static nodes
use view-change protocols [61], [3], [17], [5] that count how
many nodes have sent out ACKs and leverage the quorum
intersection property [62] to determine whether a proposal
may have been confirmed. However, in EGES, this method is
not viable because EGES must ensure liveness even if most
nodes in An are DoS attacked after sending out their ACKs.

EGES’s protocol for confirming emptyn leverages the
idea of repeated sampling to predicate that the probability of
proposaln having been confirmed is overwhelmingly low. If
proposaln is confirmed on some nodes, proposaln should
have been delivered to a large-enough portion of nodes in
the P2P network; this is because confirming if proposaln
needs quorum ACKs from nodes in An, and An is uniformly
selected from all nodes. Therefore, if one repetitively (¿D)
samples many nodes (¿τ × nA) from all nodes, and no node
has received proposaln, she can predicate only a small
portion of (or no) nodes have received proposaln, and
thus the probability of proposaln having been confirmed
is overwhelmingly low.

To be DoS-resistant, these multiple rounds of checking
must be initiated by different nodes, so EGES lets the pro-
posers for subsequent blocks (i.e., Pn+1, Pn+2, etc.) do such
samplings at the same time of seeking ACKs for their own
proposals. Suppose Pn failed before sending out proposaln,
the next 4 proposers will all report that no node has received
proposaln, so emptyn can be confirmed as empty together
with proposaln+1∼proposaln+4.

5

Comparison with Algorand. EGES and Algorand both select
a distinct committee for each block in an unpredictable way,
and both use the delivery rate of a block proposal to confirm
a block. Algorand leverages its built-in cryptocurrency to
incite committee nodes to follow its protocol (i.e., proof of
stake). However, even if one runs Algorand within SGX in
a permissioned blockchain, there are still two major design
differences making EGES more efficient than Algorand.

First, Algorand uses verifiable random functions (VRF)
to determine committees, so it can only control the ex-
pected count of proposers for each block without an exact
number (1 ∼ 70 in their experiment [11]). This design
makes Algorand’s consensus protocol not responsive [5],
[8]: informally, a responsive protocol lets nodes wait for a
number of messages rather than a large amount of time in
each protocol step, which ensures a good performance when
the network is in good condition. For each block, Algorand
selects 1 ∼ 70 proposers, and each proposer broadcasts a
block proposal with a distinct priority level. Then, Algorand
selects one of these proposals by letting nodes vote for the
received proposal with the highest priority. Since the total
number of proposers is unknown, each node must wait
for a conservatively long time (e.g., 10s) before voting to
ensure it received most proposals. In contrast, EGES selects
one proposer for each block, without the necessity for the
selection progress, and EGES’s protocol is responsive (§5).

Second, EGES adopts an optimistic design while Algorand
adopts a pessimistic design. Specifically, Algorand uses a
heavy step for both confirming a non-empty block and
confirming an empty block. In contrast, EGES optimistically
makes its gracious runs (i.e., confirming proposaln) fast
and shifts the burden of maintaining consistency to the rare
failure cases (i.e., confirming emptyn).
Why does EGES use SGX? EGES chooses to use SGX
for three main reasons. First, EGES uses SGX to regulate
the behaviors of randomly selected committee nodes. As
discussed in §2.3, using randomly selected committees in
a permissioned blockchain may result in an unsolvable
byzantine problem where more than one-third of committee
nodes are malicious [9].

In EGES, each node have a private key that is only visible
within the node’s SGX enclave, and the corresponding public
key works as the node account saved in all other nodes’
SGX enclaves (§7.1). A valid protocol message must carry a
valid signature using the sender node’s private key, proving
that the message is generated in the sender node’s enclave
with code integrity. By doing so, a node cannot equivocate
(i.e., sending conflicting messages to different other nodes)
or forge protocol messages (e.g., a proposer sending out a
finalize message without receiving quorum ACKs).

Second, EGES leverages SGX to make its committee’s
identities stealth: only a node’s enclave knows whether itself
is a committee member for the current block. This not only
enables EGES to maintain practical liveness under DoS at-
tacks but, more importantly, makes EGES’s consistency model
resistant to targeted attacks. Specifically, EGES leverages
probability theory to model randomly selected acceptors as
a uniform sampling of the delivery rate of a block proposal
in the P2P network (same as Algorand [11]). If acceptors’
identities are public, an attacker can selectively transfer or
drop packets towards them, breaking EGES’s safety.

Third, the usage of SGX enables EGES to select a stealth
committee with a known count. As discussed above, this
makes EGES more efficient than Algorand’s.

5 EGES CONSENSUS PROTOCOL

5.1 Protocol Preliminaries

Block structure. EGES adds one data field to the block
structure of common blockchain systems [27], [1]: the en-
crypted committee identities for a future block (§5.2). EGES
is oblivious to how transactions are stored or executed.

Each node’s local states. Each EGES node maintains three
major local states: a local blockchain (the chain), a proposal
cache (the cache), and a set of learntProposals, The
cache is maintained in the node’s EGES enclave. When
the node receives proposaln, it puts the proposal into the
cache, in case the committees of future blocks query the
delivery rate of proposaln.

Block status. Each block in a node’s chain has three states:
undecided, finalized, and confirmed. An undecided nth block
can only be emptyn. A node appends emptyn to its chain
when the node triggers a timeout waiting for the finalize
message for the nth block; the block is in the undecided state
because the node cannot determine (for now) whether it
should confirm proposaln or emptyn.

A finalized nth block can be either proposaln or emptyn.
EGES ensures that, if a node’s nth is finalized as one choice,
no other nodes will finalize the nth block as the other
choice. A node appends finalized proposaln if it receives
the finalize message for proposaln; a node changes the
emptyn from the undecided state to finalized if the node can
predicate that no node has finalized proposaln (§5.3).

A node confirms its finalized nth block if all blocks with
indices smaller than n in its chain are finalized. Note that al-
though EGES may finalize blocks out of order, EGES confirms
blocks sequentially, same as typical blockchains [27], [10].

The chain on each node is divided into two parts: the con-
firmed part and the unconfirmed part. We use MC to represent
the maximum confirmed index and U to represent the indices
of undecided blocks in chain. The confirmed part of chain
(i.e., indices≤MC) are cryptographically-chained by hash
values and can be saved out of the enclave and get executed,
while unconfirmed parts are saved in the EGES enclave.

The learntProposals is the set of known proposals for
undecided blocks on this node and is saved in EGES enclave.

Membership and key managements. In EGES, each node
i has a key pair 〈pki, ski〉, with the public key pki as its
account, and its secret key ski is only visible within its enclave:
even this node’s administrator cannot see the plain-text of
its secret key. We use the notations from PBFT [3]: we denote
a message m1 sent to node i encrypted by i’s public key pki
as {m1}pki ; we denote a message m2 generated by node i’s
enclave and signed by ski as 〈m2〉σi

. For efficiency, EGES
only signs on message digests.

To ease understanding, in this section, we assume that
EGES runs on a fixed membership, where all nodes’ accounts
(public keys) are loaded to nodes’ EGES enclaves a priori,
and all nodes’ EGES enclaves are attested. We will show how
EGES supports dynamic membership and attestations in §7.1.

6

Propose
n The index of the proposal
blk the content of the block to be proposed
MCp the MC value of the proposer
Up The U list of the proposer
proposalum

um = max(Up). The proposer tries to finalize this
proposal together with its proposed nth block

ACK
n The index of corresponding proposal
sender sender’s public key (account) to identify it
notifications proposals that the sender received and want to

notify the proposer
isReal for identifying real ACK from cover messages
nonce random padding to make cipher text unpre-

dictable
Finalize

n The index of the block finalized
um The index of the block that is finalized together
learnt Proposals learnt from acceptors notifications

TABLE 2: EGES’s consensus messages’ fields. Blue fields
are only used in the checking mode and are left as nil in
the normal mode.

Algorithm 1: the proposer for the nth block
1 nA ← the number of acceptors
2 blk← the content of the nth block to propose

3 function normalPropose():
4 bcast 〈Propose, blk, MC, nil, nil〉σme

5 upon receiving 〈ACK, n, pki, nil〉σi
6 ACKs.insert(pki)
7 if ACKs.count >= τ × nA : bcast 〈Finalize, n, nil,

nil〉σme
8 function checkPropose():
9 um ← max(U)

10 if cache[um] != nil || learntProposals[um] != nil :
11 proposalum

← the proposal for index um
12 else: proposalum

← nil
13 bcast 〈Propose, blk, MC, U, proposalum

〉σme

14 learnt = []
15 upon receiving 〈ACK, n, pki, notifications〉σi
16 ACKs.insert(pki)
17 learnt.insert(notifications)
18 if ACKs.count >= τ × nA :
19 bcast(Finalize, n, proposalum

, learnt)

Algorithm 2: all nodes’ action
/* All message senders’ memberships and signatures are

verified, ommited in all algorithms for brevity */
1 upon receiving msg = 〈Propose, n, blk, MCp ...〉σi
2 cache[n] = msg
3 if MC < MCp : ask peers for missing blocks
4 if hash(ski, n) > threshold : Reply fake (cover) ACKs

message /* same format as true ACKs, with isReal =
false. */

5 upon receiving 〈Finalize, n, um, learnt〉σi
6 if um 6= nil :
7 chain[um].status← finalized
8 U = U \ um
9 if |U| == 0 : Confirm chain up to index n (MC← n)

10 else:
11 learntProposals.insert(learnt)
12 for u in U in descending order :
13 if canFinalize(u) :
14 chain[u].status = finalized
15 else: break // Empty blocks must be finalized in

descending order.
16 upon timeout waiting for next block
17 chain.append (empty, status = undecided)
18 function canFinalize(u):
19 count = 0
20 for i = u + 1; i ≤ chain.len; ++i :
21 if chain[i] != empty :
22 count++
23 if count ≥ D : return true
24 else: return false

Algorithm 3: an acceptor for the nth block
1 upon receiving 〈Propose, blk, MCp, Up, proposalum

〉σi
2 r = rand()
3 if MCp < MC : notify proposer to catch up (omitted)
4 if |Up| == 0 :
5 reply 〈{ACK, n, pkme, nil, true, r}pki 〉σme

// Only the leader(i) can decrypt this message
6 else:
7 notifications = []
8 for u in Up :
9 if cache[u] != nil : notifications.append(cache[u])

10 reply 〈{ACK, n, notifications, true, r}pki 〉σme

Fig. 2: EGES’s consensus protocol.

5.2 Selecting a Stealth Committee

For each block, EGES selects a committee, including one pro-
poser and nA acceptors, in an unpredictable way without
communication among nodes.

The committee members for the nth block is selected
in the EGES enclave of Pn−lb, and these committee nodes’
identities are encrypted in the (n − lb)th block. lb (look-
back) is a system parameter and needs to be large enough
(e.g., the number of blocks confirmed in days) to ensure
that even when the network condition is poor, and new
blocks cannot be confirmed in time, EGES can still derive
committees for future blocks. We assume that the first lb
committees’ identities are encrypted in the genesis (0th) block
by a trusted party, or that the blockchain is bootstrapped in a
controlled domain for at least lb blocks. Note that the value
of lb does not affect EGES’s safety.

Occasionally, a node may be selected as the committee
for a future block and then leave the system, which EGES
already tolerates as a failed node. If the (n − lb)th block

happens to be an empty block, EGES uses the committee
identities encrypted in the (n− 2lb)th block (and identities
in the (n− 3lb)th block if the (n− 2lb)th block is also empty,
recursively). Although this proposer’s identity is already
explicit when confirming the (n − lb)th block and may be
targeted, EGES can tolerate it as a failed proposer and uses
subsequent committees to confirm emptyn.

P(n−lb) selects the committee for the nth block with
two steps, which are done in P(n−lb)’s EGES enclave to
ensure both integrity (i.e., an attacker cannot control the
selection) and confidentiality (i.e., an attacker cannot know
the selection result). In the first step, P(n−lb) randomly selects
the committee members from all member nodes following
the uniform distribution. Recall that the member list is loaded
in the EGES enclave on each node (§5.1), so P(n−lb) simply
selects nA+1 nodes from the list using the SGX’s trustworthy
pseudo-random number generator as the random source,
which has been shown to be cryptographically-secure and
cannot be seen or tampered with from outside enclave (§2.1).

7

In the second step, for each selected committee node,
P(n−lb) generates one certificate, which is the cipher-text of
the concatenation of a predefined byte string and a random
nonce (for making the cipher-text unpredictable), encrypted
with that committee node’s public key. Then, P(n−lb) includes
these (nA + 1) certificates in the (n− lb)th block’s proposal.
The first certificate is for the proposer, and the other nA
certificates are for acceptors. When a node confirms this block,
it tries to decrypt one of these certificates using its own secret
key in its enclave; if the node can get the predefined string,
it predicates that it is a committee node for the nth block.

Despite using asymmetric cryptography, this mechanism
is efficient in EGES because both encryption and decryption
are done asynchronously off the consensus’s critical path. For
encryption, since P(n−lb)’s enclave knows it is the proposer
for the (n − lb)th block after confirming the (n − 2lb)th

block, P(n−lb) starts selecting the committees and encrypting
the certificates as soon as confirming the (n − 2lb)th block.
Similarly, the decryption is also off the critical path as the
decryption result is used lb blocks later.

EGES’s committee selection mechanism is unpredictable
and non-interactive because: (1) the random source cannot be
seen or tampered with from outside the enclave of Pn−lb, and
the certificates can only be verified within a selected commit-
tee node’s enclave; and (2) the selection process is solely done
within the EGES enclave of Pn−lb. These two features ensure
the committee nodes’ identities are not exposed during the
selection, so the committee nodes cannot be targeted before
sending out protocol messages for the nth block.
Discussions. EGES selects only one proposer for each block
to achieve good efficiency: EGES only needs to achieve
a binary consensus on whether to confirm the unique
proposal by this proposer or a default empty block. For
acceptors, however, an alternative design is to let each node
independently determine whether it is an acceptor for the
current block with a probability, and EGES only knows an
expected total count. However, this alternative design will
lead to a much larger quorum ratio (i.e., τ) to ensure safety
and thus worse liveness (quantitative analysis in §8.3).

5.3 Confirming a Block
A proposer Pn has two operation modes: normal mode and
checking mode. Pn is in the normal mode if all blocks in its
chain before n are confirmed (i.e., U = ∅), and Pn tries to
confirm proposaln quickly. Otherwise, Pn is in the checking
mode: while proposing proposaln, it also checks the status
of the undecided blocks in its chain.
Normal mode. Algorithm 1 Line 3∼7 shows how a normal
mode Pn tries to confirm proposaln in a gracious run. First,
Pn broadcasts a propose request through the P2P network
carrying proposaln and its MC. The MC value helps nodes
align confirmed parts of their chain: if a node’s MC is smaller
than the proposer’s, the node asks for the missing confirmed
blocks from its peers (Algorithm 2 Line 3). Upon receiving
this propose request, an acceptor replies an ACK using UDP
directly to Pn (Algorithm 3 Line 5). Second, Pn waits for quo-
rum (τ × nA) ACKs from An. Pn does not know which nodes
are acceptors, but EGES’s ensures that a non-acceptor cannot
send valid ACKs (§3). Third, Pn broadcasts a finalize mes-
sage; on receiving this message, a node finalizes proposaln.

Checking mode. Pn is in the checking mode if it has
undecided blocks (i.e., U is non-empty), and its workflow is
shown in Algorithm 1 Line 8∼19. Pn checks the status of its
undecided blocks and tries to finalize them (if possible) by
adding additional fields to the propose message.

Each u ∈ U in Pn’s chain is categorized into one of the
two types: (1) if Pn has learnt the unique proposalu, either
from the propose messages from Pu from the notifications
of other nodes, we call u a “known undecided” block;
(2) otherwise we call u “unknown undecided”. For each
unknown undecided block u, Pn tries to learn proposalu
from An. If Pn learns the proposal, Pn carries it in the
finalize message in order to let subsequent proposers
finalize it; otherwise, Pn carries a message stating that most
acceptors in An never received proposaln, and a node
receiving this message finalize emptyn if the node received
such messages form more than D consecutive proposers
(Algorithm 2 Line 18).

For known undecided blocks, Pn helps to finalize only
proposalum

where um = max(U) and leaves other blocks
for subsequent proposers. We will explain later that only
finalizing um is essential for EGES’s safety (Figure 5).

Figure 3 shows how a proposer P102 helps to finalize
an undecided proposal100. Suppose P100 failed just before
broadcasting its finalize message. Therefore, the 100th

block’s state is undecided among all nodes. Then, P101 learns
proposal100 and carries it in its finalize message, and
P102 learns it. Then P102 finalizes proposal100 together
with proposal102. Moreover, since all blocks before 102 are
finalized, the chain is confirmed up to 102.

Figure 4 shows how an undecided block is finalized as
empty. Suppose P200 failed before broadcasting its proposal,
and D = 4. When P201 ∼ P204 asks whether their acceptors
(A201 ∼ A204) receive proposal200, they get no positive an-
swers. Therefore, these four blocks are all finalized, carrying
a message stating that four samplings have been conducted
on the delivery rate of proposal200, but no replied node has
received proposal200. This indicates that the probability that
proposal200 is finalized at some nodes is overwhelmingly
low. Therefore, a node can independently finalize empty200,
after which the chain is confirmed to 204.

Figure 5 shows why it is essential that a checking
mode proposer can only finalize proposalum

where um =
max(U). Suppose we remove this restriction, and we con-
sider the following scenario. (1) P200 fails after broadcasting
proposal200, and only very few nodes received it: none of
P201 ∼ P204 learns proposal200. (2) The network is divided
into two partitions A&B just before P204 broadcasting its
finalize message; P204 is in partition A, so nodes in
partition A confirm proposal204 and confirm empty200 (3)
P205 and P206 are in partition B, so they timeout waiting for
the finalize message for proposal204 and mark the 204th

block as undecided. (4) P205 learns proposal200 from one
node from A205 (who happens to be in the very few nodes)
and carries proposal200 with its finalize message, which
is learnt by P206. (5) P206 finalizes proposal200 and causes
inconsistency: nodes in partition A confirm empty200, while
nodes in partition B confirm proposal200.

The inconsistency happens because, without this restric-
tion, when a node finalizes emptyn, it only ensures proposers
for blocks with index ≤ n+D has not finalized proposaln;

8

99
100

undecided
content: empty

101
content: proposal101
U: [100]
learnt: [propsal100]

99 100
content:proposal100

101
content: proposal101

Max Confirmed

102
content:proposal102

Max Confirmed

...

...

Local chain status of the proposer for the 102th block (P102)

Nodes receiving the finalize message from P102

Fig. 3: An example where p102 helps finalizing
proposal100 while proposing its (102th) block.

199
200

undecided
content: empty

201
content: proposal201
U: [200]
learnt: []

199 200
content:empty

201
content: proposal201

Max Confirmed

202
content:proposal202

Max Confirmed

...

...

Nodes receiving finalize message for the 204th block
202

content: proposal202
U: [200]
learnt: []

203
content: proposal203
U: [200]
learnt: []

204
content: proposal204
U: [200]
learnt: []

203
content:proposal203

204
content:proposal204

canFinalize(200) = true

confimred as empty block after D rounds of checking

Fig. 4: An example for confirming an empty block (200th) after D = 4
succeeding blocks containing 200 in U are finalized.

199 200
content: empty 199

200
undecided

content:empty

Max Confirmed

... ...

Nodes receiving finalize message for the 204th block： confirmed the 200th block as empty

204201 202 203

Max Confirmed

201
U: [200]
learnt: []

202
U: [200]
learnt: []

203
U: [200]
learnt: []

205
U: [200, 204]
learnt: [proposal200]

204
undecided

content:empty

Local chain status of P206: Cannot try to finalize proposal200 although knowing it

Network wasd partitioned right before P204 sending out its finalize message
Partition A (10%) Partition B (90%)

Fig. 5: An example showing why a checking mode proposer can finalize only the block proposal with index = max(U).
D = 4 in this example.

adding this restriction helps to ensure that proposers for
blocks with index > n + D cannot finalize proposaln.
Specifically, if this restriction presents in the previous ex-
ample, nodes in partition B need to first finalize the empty204
finalizing proposal200. However, since proposal204 has
already been delivered to a large portion of nodes, this
inconsistency cannot happen. We show the proof in §6.1.

5.4 Handling DoS Attacks Targeting Proposers

In EGES, a proposer stays stealth before proposing its
block, but its identity becomes explicit after broadcasting
its proposal. If the proposer is DoS attacked at this time, this
block cannot be finalized in time, impairing EGES’s liveness.

To mitigate this problem, we propose a new role of nodes
called arbiter. An arbiter for a block index n does not
generate new block proposals but only helps the proposer to
finalize its proposal. For each block index n, EGES has many
arbiters (larger than the attack budget B) doing the same
tasks to tolerate DoS attacks on them.

Since we do not need to know the exact number of
arbiters count and their identities, EGES simply let each
node’s EGES enclave independently determine whether it
is an arbiter for the nth block with a probability of pa after
receiving proposaln. An arbiter for the nth block broadcasts
an arbit request following the same protocol as the proposer
(Algorithm 1), and an acceptor responds to an arbit message
with the same logic responding to a propose message.

Discussions. With the help of arbiters, a proposer’s critical
task is only to send out its propose request, and the arbiters
can help to finalize it. However, responding to both proposer
and multiple arbiters makes acceptors targets of DoS attacks.
Therefore, EGES lets normal nodes also randomly send out
fake (dummy) ACKs to cover the real acceptors. (Algorithm 2
Line 4). Since real or fake ACKs are all encrypted with Pn’s
public key, only Pn’s EGES enclave can decrypt them within
its enclave and distinguish the real ones, so an attacker
cannot know who are the real acceptors.

6 SECURITY ANALYSIS

6.1 Safety with Overwhelming Probability

EGES ensures safety with overwhelming probability (i.e.,
> 1−10−10). Formally, if a node confirms a block b as the ith

block on the blockchain, the probability that another member
node confirms b′ 6= b as the ith block is < 10−10.

We prove the safety guarantee of EGES by induction:
suppose EGES guarantees safety from the 0th block to the
(n − 1)th block (hypothesis 1), and we prove that there is
only one unique block that can be confirmed as the nth

block among nodes in the blockchain. The base case is trivial
because all nodes start from the same 0th block.

Lemma 1. if two nodes have the same maximum confirmed block
in their chain (i.e., MC = n− 1 due to hypothesis 1), then during
consensus for the (n + i)th block where i ≥ 0, as long as MC is
not changed, these two nodes see the same member list.

Proof. Proving this lemma is trivial if EGES works on a fixed
member list, and we will show in §7.1 that EGES’s protocol
for dynamic memberships also ensures this lemma.

Lemma 2. (Invariant 1 in §4): at most one proposal can be
generated for the nth block.

Proof. This lemma is proved by two steps. First, as the
proposer for the nth block is encrypted in the (n−lb)th block,
and the (n− lb)th block is the same among nodes because of
hypothesis 1. Therefore, there is only one proposer (may have
failed) for the nth block. Second, this proposer generates at
most one proposal, and non-proposer nodes cannot generate
valid proposals for the nth block because EGES’s consensus
module runs in SGX.

Proof of the induction step. In EGES, each block has
only two choices (Lemma 2), and a confirmed block must
be first finalized (§5.1). Therefore, it is sufficient to prove
the following proposition 1: the probability that one node
finalizes emptyn (event A), and another node finalizes
proposaln (event B) is overwhelmingly small.

For event A, suppose node X finalizes emptyn. We use
fmx to denote the maximum finalized block index on node

9

X . Consider blocks with indices in [n+ 1, fmx
]. Since EGES

finalizes empty blocks in descending order (Algorithm 2
Line 12∼15), there are no undecided blocks in [n+ 1, fmx

],
and we can have another level of induction by supposing
blocks finalized as empty in (n + 1, fmx

] are finalized con-
sistently (name it hypothesis 2). For event B, proposaln can
be finalized either by Pn (call it event B1) or by subsequent
proposers that have learnt this proposal (event B2).

First, we prove that the probability that event A and
event B1 happen together is overwhelmingly low. Suppose
that a portion p of all M EGES nodes received and cached
the proposaln, and we calculate the probability for event
B1. We use Re to denote the number of acceptors for the
nth block that REceived proposaln. Since proposaln
is broadcasted in EGES’s P2P network and the stealth
acceptors are selected uniformly, Re follows hypergeometric
distribution Re ∼ H(M,nA, p ×M). Thus, the probability
that Pn finalizes proposaln is

Prob(B1) = Prob(Re > τ × nA)
We then calculate the probability of event A. Event A infers
that after the nth block, there are at least D non-empty
blocks that are finalized and carrying n in the undecided
list. This means each proposer of these D blocks received
(τ × nA) ACKs from their acceptor group, and none of these
acceptors sending those ACKs has received proposaln.
For each of the D blocks, the number of acceptors NR not
receiving proposaln follows hypergeometric distribution
NR ∼ H(M,nA, (1− p)×M)).

Therefore, the probability of event A is
Prob(A) = (Prob(NR > τ × nA))D

The calculation shows that the probability of event A
and event B1 happening together Prob(A) × Prob(B1) is
overwhelmingly low for any delivery rate p by setting τ and
nA (§8.3). For instance, our evaluation chose τ as 59%, D as 4,
nA as 300, M as 10K, and the probability of EGES enforcing
safety is 1−10−9. In real deployments,M may change due to
membership changes; however, when M is much bigger (e.g.,
20X) than nA, this probability is not sensitive to M because
hypergeometric distribution is approximate to binomial.

For the second step, we prove that event A and event
B2 cannot happen together. For event B2, we suppose
that proposer Pi, where i > n, learns and finalizes
proposaln. We discuss by comparing i and fmx

and derive
contradictions. If i ≤ fmx

, hypothesis 2 infers that X did
not finalize emptyi, so proposaln is finalized together
with proposali at node X, contradicting to event A. Else if
i > fmx

, since a proposer can only finalize the maximum
index in its local U list (Algorithm 1 Line 9), for node Pi
we can predicate that blocks with index in [n + 1, i) are
finalized. Due to hypothesis 2, blocks within [n + 1, fmx

]
are finalized the same as node X, and therefore Pi should
also finalize the nth block as empty, causing contradiction.

Putting the two steps together, we proved proposition 1
and thus proved the induction step that the nth block must
be confirmed consistently among nodes with overwhelm-
ingly high probability. Therefore, EGES ensures safety with
overwhelmingly high probability.

6.2 Liveness under Targeted DoS Attacks
EGES can defend against DoS attacks and partition attacks
targeting committee nodes under the threat model in §3.
Since from a single node’s point of view, when it cannot
reach a remote node, it cannot distinguish whether a remote
node is under DoS attack or is partitioned, EGES handles
these two attacks altogether.

EGES has two types of committee nodes for each block,
a proposer and nA acceptors, randomly selected from all
nodes in the system. Because of EGES’s stealth committee
abstraction (§5.2), the identity of each committee node is
unknown to attackers outside SGX enclaves before the node
sending out its first protocol message.

We first discuss acceptors. An acceptor sends ACK mes-
sages to both the proposer and arbiters, but its identity be-
comes explicit after sending out its first ACK message, so EGES
uses fake acceptors to conceal the real ones. If observed from
outside enclaves, the fake acceptors behave identically as real
ones so that an attacker cannot differentiate the real acceptors
and attack them. EGES achieves this with three design points.

First, fake acceptors are randomly selected from all nodes
for each block so that an attacker cannot determine the fake
acceptors by monitoring network packets (§5.2). Second,
real and fake acceptors’ EGES enclaves respond to protocol
messages (propose and arbit) in the same way if observed
outside their enclaves (§5.3), so that an attacker cannot
distinguish real or fake acceptors by watching their behaviors.
Third, all messages from real or fake acceptors are of the same
format, encrypted with the receiver’s public key (5.3) and
can only be decrypted in the receiver’s enclave, so that an
attacker cannot differentiate real acceptors from fake ones by
watching the packet content.

Therefore, if an attacker targeting acceptors in EGES, it can
only randomly select B nodes from both real acceptors and
fake acceptors. For instance, if EGES has nA = 300, τ = 59%
and has (expected) 600 fake acceptors; if the attacker’s attack
budget is 300, the probability that the attacker can luckily
attack more than (1− τ)× nA real acceptors for one block
is 0.3%. Moreover, even if the attacker is so lucky that it
successfully guessed more than (1− τ)× nA acceptors for
some block (say nth), EGES can still consistently determine
whether to confirm proposaln or emptyn using the commit-
tees for subsequent blocks (§5.3); in other words, the attacker
must constantly be so lucky to make EGES lose liveness.

Then we discuss proposers. The identity of a proposer
(say Pn) becomes explicit after broadcasting its proposaln
and may be targeted attacked when it is waiting for quorum
ACKs. However, since EGES has many (larger than B) arbiters
that can help to finalize the proposaln, attacking Pn will not
affect EGES’s liveness. EGES lets each node independently
determine whether it is an acceptor for each block (§5.4) so
that an attacker cannot keep attacking them. Note that one
single proposer or arbiter is enough for EGES to stay alive
because any of them can finalize the current nth block.

Note that EGES’s targeted attack model (§3) handles only
DoS or partition attacks targeting specific EGES nodes. A
more powerful attacker may also target EGES’s major com-
munication links. From the protocol aspect, EGES avoids such
vulnerabilities in the Network layer (in the OSI model [63])
by using distinct committees for different blocks: EGES’s pro-
tocol traffic is spread among the whole P2P network rather

10

0 4 8 12 16 20
Finalize depth (D)

0.6

0.7

0.8
Qu

or
um

 si
ze

 (
 %

)
n =100
n =300
n =500

Fig. 6: Parameter selection for
τ and D on 10K nodes for
different nA values.

0 4 8 12 16 20
Finalize Depth (D)

0.3
0.4
0.5
0.6
0.7
0.8

M
ax

 c
on

ne
ct

ed

 c
om

po
ne

nt
 si

ze
 (%

)

n =100
n =300
n =500

Fig. 7: Connected component
size required to ensure liveness
with different D values.

than centralized among a few dedicated nodes. However,
when EGES is deployed, EGES’s communication messages
may be aggregated in the Link or Physical layer. For instance,
if a large number of EGES nodes are hosted in the same data
center (DC), the links connecting this DC and the Internet
may be susceptible to attacks. However, such attacks are
not adaptive, and as long as a great majority of nodes are
connected, EGES can achieve practical liveness. §8.3 shows
the relation between EGES’s liveness and the maximum
connected component size in the P2P network. Nevertheless,
EGES cannot ensure liveness under arbitrary partitions, and
previous work shows that it is impossible to ensure both
consistency and liveness under partitions [24], [64].

6.3 Parameter Selection
Figure 6 shows the relation between τ and D in order to
ensure safety. With a smaller τ , a proposer Pn can finalize
proposaln after collecting fewer ACKs from acceptors, so
subsequent proposers need more rounds of checking (larger
D) when trying to finalize the emptyn (§5.3).

The τ and D values also affect EGES’s ability to achieve
liveness (confirm non-empty blocks) on network partitions
(or ubiquitous DoS attacks). We quantify this ability to
the “minimum largest connected component size” (cc%)
required in the P2P graph, provided that nodes in a con-
nected component can reach each other before a timeout. A
smaller cc means that EGES is more robust to partition and
ubiquitous DoS attacks. From a mathematical aspect, as long
as the probability of finalizing a proposal is non-zero, the
probability pD that D consecutive proposals are successfully
finalized is always larger than zero, inferring that eventually
EGES can achieve liveness. However, we conservatively
calculate the required cc to make the pD larger than 5%
for practical liveness, as shown in Figure 7. In our evaluation,
we chose τ as 59%, D as 4, nA as 300, which ensures both
safety and achieves good liveness on partition attacks (§8.2).

Figure 8 shows the parameter selections if EGES does
not use its stealth committee mechanism, but lets each node
independently determine whether it is an acceptor with the
probability of M/nA, with nA being the expected number
of acceptors for each block. If EGES makes such a design
choice, the Re (§6.1) becomes a binomial distribution with
the probability of p×M/nA, and other distribution changes
similarly. As shown in Figure 8, EGES would need a larger
quorum size τ×nA, and worse liveness on network partition.

7 IMPLEMENTATION

We selected the Golang implementation of Ethereum (i.e.,
geth) as our codebase because geth is heavily tested on

0 4 8 12 16 20
Finalize depth (D)

0.6
0.7
0.8
0.9

Qu
or

um
 si

ze
 (

 %
)

n =100
n =300
n =500

0 4 8 12 16 20
Finalize Depth (D)

0.3
0.4
0.5
0.6
0.7
0.8

M
ax

 c
on

ne
ct

ed

 c
om

po
ne

nt
 si

ze
 (%

)

n =100
n =300
n =500

Fig. 8: Parameter selection and liveness requirements if EGES lets
each node to independently decide its committee membership.

the Internet. We leveraged the P2P libraries from geth and
rewrote the functions for generating, verifying, and handling
new blocks. Since SGX only provides SDKs in C/C++, we
used CGo to invoke ECalls. We modified 2073 lines of Golang
code and implemented the consensus protocol for 1943 lines
of C code. For asymmetric key based encryption, we used
ECC-256 from the API provided by the SGX SDK.

Each EGES node has three modules: a consensus module
running the EGES consensus protocol and storing nodes’
member list (§5), a P2P module connecting to a random
set of peers and relaying messages using the Gossip [60]
protocol, and a blockchain core module storing confirmed
parts of chain and transactions submitted by clients.

As stated in §3, only the consensus module runs in the
node’s SGX enclave. We put the P2P module outside SGX
because this module is only responsible for relaying messages
and putting it inside SGX cannot effectively bring more
benefits: a malicious node can still selectively drop packets at
the network layer. We put the blockchain core module outside
enclave because immutable properties of the hash-connected
blockchain make this module’s actions easily verifiable, and
putting this module in enclave will consume much memory.

In EGES, a node may finalize a block before knowing
its preceding blocks. Therefore, when an EGES proposer
proposes a block or a node finalizes a block, it lefts the
block’s field of “hash value for the previous block” empty,
and EGES’s enclave computes this field when confirming this
block. In other words, EGES actually achieves consensus
on a totally ordered sequence of transactions, same as
Hyperledger Fabric [10], and encapsulate these baches into a
hash-chain of blocks while confirming them.

7.1 Membership and attestation
To support dynamic memberships, EGES leverages the idea
from SCIFER [35] to record the joining of new nodes as
transactions on the blockchain. This mechanism ensures
Lemma 1 because all updates to the member list are only
determined by confirmed blocks.

When a node i wants to join the system, it needs to find
a member node j to do attention (§2) through an out-of-
band peer discovery service. We assume that node i knows
the genesis (0th) block, so node i can inductively verify the
blockchain, without relying on whether peer j is malicious.

A node i joins EGES with three steps. First, i launches
its EGES enclave, which generates its account (pki, ski) and
creates the hardware monotonic counter c for defending
forking attacks (§7.3). The node’s account is securely saved
to permanent storage using SGX’s seal mechanism [22] for
recoveries from machine failures (e.g., power off). Then, i
sends a join request to j. Second, j does a standard SGX

11

(a) On confirming a block. (b) On appending a block.

(c) On receiving a propose request

Fig. 9: EGES’s enclave interactions (ECalls and OCalls). The
enclave module is shaded in orange.

remote attestation [22], which succeeds with a signed quote
Qi from Intel’s attestation service, and i’s enclave transfers
its public key pki and counter value c to j’s enclave through
the secure communication channel between two enclaves
created during attestation. Third, node j’s enclave creates
a signed registration transaction including pki, c, addri, Qi
and i’s ip address. Node i joins EGES when the transaction
is included in a confirmed block.

7.2 Enclave Interactions

Figure 9 shows the implementation of EGES enclave. An
EGES enclave holds three data structures shared among
ECalls: cache, is_proposer, and is_acceptor, each
as a hash map. As explained in §5.1, the cache saves
received block proposals. In our implementation, the cache
only keeps the hash values of block headers instead of
whole blocks to save enclave memory. is_proposer and
is_acceptor are hash maps with block indices as keys and
boolean as values, saving whether this node will be in the
committee for a future block.

In Figure 9a, when a node’s blockchain core module
confirms the (n − lb)th block, it asynchronously invokes
an ECall letting the enclave check whether it will be the
proposer/acceptor for the nth block (§5.2). In Figure 9b,
when a node’s core module appends the (n − 1)th block,
it invokes an ECall with a batch of transactions, and the
enclave will follow the protocol in Algorithm 1 if it is the
proposer for the nth block. In Figure 9c, when a node’s P2P
module received a propose request, it invokes an ECall
passing this request to the enclave, and the enclave will
generate an ACK that will be sent through UDP using an
OCall if it is an acceptor (Algorithm 3) or fake acceptor

(Algorithm 2 Line 4). If it is an arbiter for the nth block, it
will also start working as an arbiter (§5.4).

7.3 Handling Attacks on Enclaves

Forking attacks. In the P2P scenario, one challenge is
enclave forking attacks [65]. EGES must permit a node to
reuse its sealed account (§7.1) in case the node restarts its
machine. However, a malicious node can create multiple
copies of EGES enclaves with the same account pk, directs
different messages to them, and lets them generate con-
flicting messages (e.g., block proposals). Existing defending
techniques [65], [66] work in the client-server manner, where
clients attest and communicate to only a single server. These
techniques are not suitable for P2P settings because they will
need every two EGES nodes to connect and attest each other.

EGES defends such attacks using SGX’s platform
counter [22], which is monotonic among all enclaves on the
same machine. When a node launches its EGES enclave, the
enclave increments and read this counter value c and enclose
this c to its registration transaction: the node’s membership is
bound to the enclave with counter value c but not the account
pk. When the enclave sees a registration with the same
account but a higher counter value, it quits automatically.
Premature timeout. EGES uses the timeout mechanism to
suspect node failures and to achieve liveness. A premature
timeout does not affect EGES’s safety because EGES’s safety
argument does not rely on timing constraints (§6.1).

However, a premature timeout may affect EGES’s per-
formance, and we implemented a simple mechanism to
mitigate this problem by leveraging the trusted timer API
sgx get trusted time provided by the SGX platform. This API
provides a verifiable timer with the granularity of seconds.
To avoid the heavy time cost (tens of milliseconds) caused by
frequently checking this timer, EGES maintains an untrusted
timer outside. When the untrusted timeout is triggered, the
untrusted code invokes the timeout logic in EGES’s consensus
module in the enclave, and the consensus module checks the
trusted timer before invoking EGES’s consensus logic.

8 EVALUATION

Evaluation setup. Our evaluation was done on both our
own cluster with 30 machines and the AWS cloud, with
parameters shown in Table 3. In our cluster, each machine
has 40Gbps NIC, 2.60GHz Intel E3-1280 V6 CPU with SGX,
64GB memory, and 1TB SSD. On AWS, we started up to 100
c5.18xlarge instances (VMs) running in the same city, each
of which has 72 cores, 128GB memory, and up to 25 Gbps
NIC. We ran up to 100 EGES nodes on each VM (10k nodes
in total), with each EGES node running in a docker container.

To evaluate EGES and baseline protocols in a typical geo-
replicated setting, while running EGES on both our cluster
and AWS, we emulated the world scale Internet by using
the Linux traffic control (TC) command to limit the RTT
between every two nodes to a random value between 150ms
and 300ms. These settings are comparable to Algorand’s
setting on AWS. As AWS does not provide SGX hardware,
we ran EGES in the SGX simulation mode on AWS and in the
SGX hardware mode on our cluster; we show that EGES’s
performance in simulation mode is roughly the same as

12

Config Cluster AWS Cloud
Nodes 300 up to 10K
Acceptor group size (nA) 100 300
D 4 4
τ 65% 58%
LB 5000 10000
timeout 2s 3s
SGX mode hardware mode simulation mode

TABLE 3: EGES’s evaluation parameters.

hardware mode because EGES’s performance is bound to
network latency in WAN (§8.1). The scalability (Figure 10)
and robustness (Figure 11) experiments were done on AWS,
and the rest were in our cluster.

We evaluated EGES with nine consensus protocols for
blockchain systems, including five state-of-the-art efficient
BFT protocols for permissioned blockchains (BFT-SMaRt [28],
SBFT [4], HoneyBadger [29], and HotStuff [5]), two SGX-
powered consensus protocols for permissioned blockchains
(Intel-PoET [30] and MinBFT [31]), the default consensus
protocol in our codebase (Ethereum-PoW [27]), and two
permissionless blockchains’ protocol that runs on dynamic
committees (Algorand [11] and Tendermint [17]). A detailed
description of these protocols is in §2.2.

Since Algorand’s open-source code is still under develop-
ment, and we were unable to deploy its latest release [67] to
the same scale as EGES and Algorand’s own paper (i.e., 10k
nodes), we took Algorand’s performance from Figure 5 in
its paper [11]. To make the comparison fair, we make EGES’s
network setting more rigorous than Algorand’s: Algorand
divided nodes into multiple cities where intra-city packets
have negligible latency, while EGES lets the RTT among any
two nodes be at least 150ms.

For all evaluated protocols, we measured their per-
formance when each of them reached peak throughput.
For an apple-to-apple comparison of latency, we adopted
Algorand’s method to measure transactions’ server-side con-
firmation time: from the time a transaction is first proposed
by a committee node to the time the transaction is confirmed
at this node, excluding the time for clients’ transaction sub-
missions. We measured the server-side instead of the client-
side latency because this method precludes the disturbance of
client behaviors as these protocols run on different blockchain
frameworks. For instance, in Ethereum, PoET (running on
Hyperledger Sawtooth [30]), and EGES, a client submits a
transaction to a random node, and the transaction is dis-
seminated via P2P networks; in BFT-SMaRt, a client submits
transactions to a fixed node (i.e., the leader); in Algorand, a
consensus node directly packs a block with a fixed amount
of data (e.g., 1MB) instead of using separate transactions.

We set EGES’s transaction size to 250 bytes, a typical
transaction size for general data-sharing applications [68],
[53]. Since Algorand reported throughput on block size, we
convert it to txn/s by assuming the same size of transactions
as EGES’s. The transaction sizes for the other eight baseline
protocols are either equal to or smaller than that of EGES.
Our evaluation focuses on these questions:
§8.1: Is EGES efficient and scalable?
§8.2: What is EGES’s performance under targeted DoS
attacks?
§8.3: How sensitive is EGES to its parameters?

2000 4000 6000 8000 10000
Number of Nodes

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Ti
m

e
(s

)

broadcast finalize msg
seek for quorum ACKs

Fig. 10: Scalability to the number of nodes on Internet.

§8.4: How do EGES performance and fault tolerance com-
pare with notable BFT protocols?
§8.5: What are the limitations and potential future works of
EGES?

8.1 Efficiency and Scalability
Table 1 shows the performance comparison of EGES and eight
baseline protocols. As Alogrand’s paper [11] evaluated at
least 2K nodes, we postpone the comparison between EGES
and Algorand to when we evaluated EGES’s scalability.

Overall, in the geo-replicated setting, EGES achieved
comparable performance to MinBFT, Tendermint, HotStuff,
and SBFT. We ran BFT-SMaRt in its default setting (ten
nodes), and it showed higher throughput and lower latency
than EGES. BFT-SMaRt is more suitable for small scale
permissioned blockchains where a few companies run nodes
in a controlled environment, so it lets nodes send messages
to each other directly. In contrast, EGES is designed for
tolerating targeted DoS attacks on committee nodes, so it has
two P2P broadcasts to confirm a block. §8.4 shows that EGES’s
scalability and fault tolerance are better than BFT-SMaRt.

SBFT and HotStuff had a lower throughput and a
higher latency than EGES. They rely on designated nodes
to collect the consensus messages that were originally all-
to-all broadcasted and to distribute a combined message to
all nodes. Although this approach improves scalability, it
also incurs two more RTTs, limiting their performance in a
geo-distributed deployment. Moreover, an attacker targeting
these designated nodes will causes a dramatic performance
drop to the system, which is evaluated in §8.4.

HoneyBadger showed a lower throughput and a higher
latency than EGES because HoneyBadger uses multiple
rounds of broadcasts for a single block, which incurred a long
latency in a geo-distributed setting. EGES showed orders
of magnitude better performance than PoET and Ethereum,
two PoW protocols. Their performance is limited by the time
for solving PoW puzzles (or sleep time) and the number
of blocks to wait for before confirming a block (§2.3). Our
evaluation result for PoET is similar to a recent study [69].
Breakdown and micro-events. To understand EGES’s la-
tency, we recorded the time taken for the two steps of
EGES’s protocol (§5.3): seeking for quorum ACKs took 576ms;
broadcasting finalize messages took 329ms. The first step
took a longer time because EGES broadcasts the proposed
block in its P2P network in this step. This P2P broadcast time
is essential in any blockchain system because new blocks
need to be broadcasted to all nodes.
SGX’s overhead. Table 4 shows the micro-events of EGES.
The ECall column shows the number of times that EGES’s

13

proposer node entered its SGX enclaves on finalizing a block.
Since each ECall only takes around 3us [22], and EGES’s
proposer only did 97 ECalls on average for each block,
running in SGX hardware mode and simulation mode makes
little difference for EGES’s performance.

blk size txns/blk # ECalls CPU usage network usage
750 KB 3000 97 12.4% 15.53 Mbps

TABLE 4: Proposer’s micro-events for finalizing a block.

Scalability. To evaluate EGES’s scalability, we ran 100-10000
nodes on AWS and evaluated its confirm latency with the
same block size as in the cluster evaluation. Figure 10 shows
the result. The latency is divided into two parts. The figure
shows that the seeking for quorum ACKs phase of EGES (§5.3)
is the dominant factor because it broadcasts the proposed
750KB block on the P2P network. Fortunately, a P2P broad-
cast latency is proportional to approximately the log of the
number of nodes [70], indicating EGES’s reasonable scalabil-
ity. The increase rate was slightly greater than the log scale be-
cause 100 nodes were run in one VM with CPU and NIC con-
tentions. While running on AWS, EGES’s latency was slightly
faster than on our cluster, because AWS CPUs are faster.

Compared to Algorand’s performance in Table 1, EGES
showed 2.3X higher throughput and 16.8X faster latency
than Algorand. This is due to two reasons. First, Algorand’s
VRF-based method selects multiple proposers for each block,
and Algorand uses a reduction step to select one proposal
by these proposers. Moreover, as the VRF-based approach
cannot control the exact number of proposers, nodes must
wait for a conservatively long time in the reduction step
(§4). In contrast, EGES’s stealth committee abstraction selects
one proposer for each block, without the need for such a
reduction step. Second, EGES’s consensus protocol has only
two rounds in gracious runs to confirm a block (§5.3).

8.2 Performance on DoS Attacks
To evaluate EGES’s robustness under DoS attacks, we ran
EGES with 1000 nodes on AWS with nA = 100, and
conducted targeted DoS attacks that are compliant with
our attack model (§3): we assumed the attacker’s budget
B = 10% of total nodes, and we set the expected count for
fake acceptors and arbiters to be 200 and 50 correspondingly.
Each time we targeted the current proposer and 99 arbiters
or real/fake acceptors (because we cannot distinguish real
acceptors). For each attack, we blocked all communication
from the attacked nodes for 20 seconds.

We deem such attacks to be powerful enough, as no
existing protocols for permissioned blockchain can maintain
liveness under such powerful attacks. As shown in §8.3,
existing consensus protocols, which ran on static committee
nodes, lost liveness until the DoS attack ended. In contrast,
each time after we attacked 100 nodes, EGES’s throughput
had a temporary drop and recovered before the DoS attack
ended, which shows that EGES can ensure practical liveness
under such powerful attacks.

After the first attack, the line started to go up after 11.3s,
much slower than the other attacks (about 3.1s). We inspected
the execution log and found that the slow recovery was
because the proposer for the next block happened to be

0 100 200 300 400 500 600
Time (s)

0
2k
4k
6k

Th
ro

ug
hp

ut

(a) Targed DoS attacks

0 100 200 300 400 500 600
Time (s)

0
2k
4k
6k

Th
ro

ug
hp

ut

(b) 80%-20% partition

Fig. 11: EGES’s throughput on DoS and network partition
attacks. There were 1000 nodes on AWS at 0s.

attacked, and EGES waited until D more blocks to confirm
that block as empty. After the second attack, the line took
about 7.2s to go up. This is because most real acceptors
happened to be attacked together with the proposer, which
makes the arbiters failed to finalize the block for the proposer
(§5.4). For the other three attacks, the arbiters successfully
helped corresponding proposers to finalize their blocks
quickly.

To evaluate EGES performance on network partitions,
we manually divided the network into two partitions at
200s and reconnected them at 400s, with one partition
containing 80% nodes and the other containing 20% nodes.
Figure 11b shows the throughput measured in the large
partition. Overall, the large partition maintained liveness
during the partition. The small partition did not succeed
in confirming any block during the partition and caught
up after the network reconnected, preserving safety. There
are two obvious throughput drops in the figure, which are
caused by the pre-designated proposers being in the small
partition, and EGES confirmed empty blocks for them. Note
that EGES may temporarily lose liveness in catastrophic
partitions (e.g., 50-50 or 40-30-30 partitions) but can preserve
safety. §8.3 shows a quantitative analysis of how EGES can
preserve liveness under network partitions.

8.3 Sensitivity
EGES’s throughput and confirm latency depend on three
important protocol parameters, the number of acceptors, the
number of fake acceptors, and block size. Figure 13 shows
the sensitivity results. EGES’s performance turns out to be
insensitive to the first two parameters because the latency
is dominated by the time for broadcasting the new block on
the P2P network.

Figure 12 shows EGES’s performance sensitivity on block
size. When the block size was larger, EGES’s throughput did
increase, but its block confirm latency also increased. In our
evaluation, we set EGES’s block size to be 750KB, which is a
near-optimal setting for both throughput and latency.

8.4 Comparison to BFT-SMaRt and SBFT
Since BFT-SMaRt with 10 (committee) nodes was faster than
EGES with 100 acceptors, we evaluated both of them on a
different number of nodes because more such nodes can
tolerate more faults and DoS attacks. Figure 14a shows the
results using the same setting for both systems (e.g., in our
cluster, TC disabled, and the same number of transactions
in each batch). Overall, EGES throughput was stable because

14

62
KB

12
5K

B
25

0K
B
50

0K
B

75
0K

B
1M

B
2M

B

Block size

0k
1k
2k
3k

Th
ro

ug
hp

ut

(a) Throughput

62
KB

12
5K

B
25

0K
B
50

0K
B

75
0K

B
1M

B
2M

B

Block size

0
2
4

La
te

nc
y

(s
)

(b) Confirm Latency

Fig. 12: EGES’s sensitivity on block sizes (cluster setting).

0 50 100 150 200 250 300
Acceptor number

0.0
0.5
1.0
1.5

La
te

nc
y

(s
)

0 50 100 150 200 250
Fake acceptor number

0.0
0.5
1.0
1.5

La
te

nc
y

(s
)

Fig. 13: EGES’s sensitivity on acceptor size and expected fake
acceptor numbers (cluster setting).

the number of acceptors affects little on the latency in the
seeking for quorum ACKs phase. BFT-SMaRt’s throughput
drops dramatically because its protocol involves a quadratic
number of messages on the number of ordering nodes.

Figure 14a also shows SBFT’s performance. In the non-
geo-replicated mode, when the number of nodes increased
from 4 to 62, SBFT’s throughput dropped from 38.2K to 6.9K
transactions/s. This is because SBFT’s collectors (§2.2) need
to collect more messages and to verify their signatures, so
the time spent in collectors increased from 2.5ms to 13.1ms.

Figure 14b shows the performance comparison of EGES,
BFT-SMaRt, and SBFT in the geo-replicated setting. EGES’s
throughput was at least 3.4X larger than both systems on 62
nodes. BFT-SMaRt’s performance’s trend was similar to the
no-delay setting because of its PBFT all-to-all broadcasted
messages. SBFT’s throughput also dropped dramatically
because some nodes became stragglers for the collectors due
to the varied RTT. Since SBFT’s fast path can only tolerate
a small number of straggler nodes (usually two (§2.2)), we

0 10 20 30 40 50 60
Number of consensus nodes

103

104

105

Th
ro

ug
ht

pu
t EGES

BFT-SMaRt
SBFT

(a) No RTT delay (tc = 0)

0 10 20 30 40 50 60
Number of consensus nodes

0

2k

4k

6k

Th
ro

ug
ht

pu
t EGES

BFT-SMaRt
SBFT

(b) Geo-replicated mode.

0 100 200 300 400 500 600
Time

0

2k

4k

Th
ro

ug
ht

pu
t

(c) BFT-SMaRt with 10 nodes

0 100 200 300 400 500 600
Time

0
250
500
750

1000
1250
1500

Th
ro

ug
ht

pu
t

(d) SBFT with 62 nodes

Fig. 14: Comparing EGES, SBFT, and BFT-SMaRt.

observed that 87% of the consensus rounds in SBFT have
reverted to the slow path (PBFT).

More importantly, EGES can safely switch its acceptor
groups across blocks, and it tolerated various failure
scenarios, including DoS attacks (Figure 11a). For
comparison, we evaluated the performance of BFT-
SMaRt and SBFT on node failures (i.e., DoS attacks targeting
consensus nodes). Figure 14c shows the result of BFT-SMaRt
with its default 10-node setting. We randomly killed one
node on each vertical line. The third time we killed its leader
coincidentally, so there was a noticeable performance drop.
BFT-SMaRt’s throughput dropped to zero after we killed the
fourth node. For SBFT (Figure 14d), we started with 62 nodes
and killed 7 nodes every time. Since SBFT’s fast path can
only tolerate two crashed or straggler nodes, its throughput
dropped significantly (reverted to PBFT) after the first kill.

Overall, EGES is complementary to BFT-SMaRt and SBFT:
BFT-SMaRt is the fastest in a small scale; SBFT has better
scalability, but its high performance requires a synchronous
network (stated in their paper). EGES achieved reasonable
efficiency and DoS resiliency in a geo-replicated setting.

8.5 Discussions

EGES has two limitations. First, EGES requires a joining node
to have an SGX device. We deem this requirement reasonable
because SGX is available on commodity hardware, and both
academia and industry are actively improving the security
of SGX. Recent public blockchains [21] and permissioned
blockchains [30], [20], [31] also use SGX. Second, EGES targets
large-scale, geo-distributed permissioned blockchain systems
(e.g., a global payment system [8]), while for small-scale de-
ployments (e.g., supply chain among a few small companies)
in a single data center, existing consensus protocols (e.g.,
BFT-SMaRt) are more suitable.

EGES can incite the deployment of more Internet-scale
applications that highly desire the DoS resistance feature
of EGES, including e-voting, decentralized auction, and
payment systems. Moreover, the attested SGX enclaves
on EGES nodes bring the potential to port existing
centralized SGX-powered applications on to EGES, including
SGX-protected distributed database [56], [57], [71] and
SGX-powered anonymous networks [72]. For instance, one
can deploy an EGES-ToR application by letting the EGES
enclave on each node do a local attestation for an SGX-ToR
enclave [72] and letting EGES nodes maintain the ToR
directory service on the blockchain. By doing so, EGES-ToR
removes SGX-ToR’s centralized directory service that is
vulnerable to DoS attacks or service censoring.

9 CONCLUSION

We have presented EGES, the first efficient permissioned
blockchain consensus protocol that can tolerate targeted DoS
and partition attack. EGES achieves comparable performance
to existing permissioned blockchain’s consensus protocols
while achieving much stronger robustness. EGES is carefully
implemented with two promising distributed applications,
greatly improving the reliability and security of their legacy,
centralized versions. EGES’s source code is available on
github.com/hku-systems/eges.

15

github.com/hku-systems/eges

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
https://bitcoin.org/bitcoin.pdf, Dec 2008, accessed: 2015-07-01.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] J. Sousa, A. Bessani, and M. Vukolić, “A byzantine fault-tolerant
ordering service for the hyperledger fabric blockchain platform,”
IEEE/IFIP International Conference on Dependable System
and Network (DSN 2018), 2017, accessed:2017-09-25. [Online].
Available: https://arxiv.org/pdf/1709.06921.pdf

[3] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proceedings of the Third Symposium on Operating Systems Design and
Implementation (OSDI ’99), Oct. 1999.

[4] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas,
M. K. Reiter, D.-A. Seredinschi, O. Tamir, and A. Tomescu,
“Sbft: a scalable decentralized trust infrastructure for blockchains,”
IEEE/IFIP International Conference on Dependable System
and Network (DSN 2019), 2019. [Online]. Available: https:
//arxiv.org/pdf/1804.01626.pdf

[5] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: Bft consensus with linearity and responsiveness,” in
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing. ACM, 2019, pp. 347–356.

[6] “Medical Chain,” http://www.medicalchain.org/, 2017.
[7] “Blockchain for Supply Chain,” https://www.ibm.com/

blockchain/industries/supply-chain, 2017.
[8] M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li,

D. Malkhi, O. Naor, D. Perelman, and A. Sonnino, “State machine
replication in the libra blockchain,” 2019.

[9] L. Lamport, R. Shostak, and M. Pease, “The byzantine
generals problem,” vol. 4, no. 3. ACM, 1982, pp. 382–
401. [Online]. Available: http://people.cs.uchicago.edu/∼shanlu/
teaching/33100 wi15/papers/byz.pdf

[10] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich
et al., “Hyperledger fabric: a distributed operating system for
permissioned blockchains,” in Proceedings of the Thirteenth EuroSys
Conference (EuroSys 2018). ACM, 2018, p. 30.

[11] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurrencies,”
Cryptology ePrint Archive, Report 2017/454, 2017, accessed: 2017-
06-29. [Online]. Available: http://eprint.iacr.org/2017/454.pdf

[12] C. Natoli and V. Gramoli, “The balance attack against
proof-of-work blockchains: The R3 testbed as an example,”
http://arxiv.org/abs/1612.09426, 2016, accessed: 2017-02-15.
[Online]. Available: https://arxiv.org/pdf/1612.09426.pdf

[13] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse
attacks on bitcoin’s peer-to-peer network,” in 24th USENIX
Security Symposium (USENIX Security 15), 2015, pp. 129–
144. [Online]. Available: https://www.usenix.org/system/files/
conference/usenixsecurity15/sec15-paper-heilman.pdf

[14] “Banking in the United States,” BankingintheUnitedStates.
[15] O. Kupreev, E. Badovskaya, and A. Gutnikov, “Ddos attacks in q2

2019,” 2019.
[16] A. Rayome, “Major ddos attack lasts 297 hours, as botnets bombard

businesses,” 2018.
[17] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of

blockchains,” http://atrium.lib.uoguelph.ca/xmlui/bitstream/
handle/10214/9769/Buchman Ethan 201606 MAsc.pdf, Jun
2016, accessed: 2017-02-06. [Online]. Avail-
able: http://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/
10214/9769/Buchman Ethan 201606 MAsc.pdf

[18] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser,
and B. Ford, “Enhancing bitcoin security and performance
with strong consistency via collective signing,” in 25th
USENIX Security Symposium (USENIX Security 16). Austin,
TX: USENIX Association, Aug. 2016. [Online]. Available:
http://arxiv.org/pdf/1602.06997.pdf

[19] P. Jovanovic, “Byzcoin: Securely scaling blockchains,” http:
//hackingdistributed.com/2016/08/04/byzcoin/, 2016, accessed:
2019-08-01. [Online]. Available: http://hackingdistributed.com/
2016/08/04/byzcoin/

[20] “Ccf: A framework for building confidential
verifiable replicated services,” Microsoft, Tech. Rep.
MSR-TR-2019-16, April 2019. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/
ccf-a-framework-for-building-confidential-verifiable-replicated-services/

[21] F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. van
Renesse, “Rem: Resource-efficient mining for blockchains,”
http://eprint.iacr.org/2017/179, 2017. [Online]. Available: http:
//eprint.iacr.org/2017/179.pdf

[22] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptology
ePrint Archive, vol. 2016, p. 86, 2016.

[23] “hyperledger-labs/minbft,” https://github.com/
hyperledger-labs/minbft.

[24] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” vol. 32, no. 2.
ACM, 1985, pp. 374–382. [Online]. Available: http://macs.citadel.
edu/rudolphg/csci604/ImpossibilityofConsensus.pdf

[25] J.-H. Cho, D. P. Sharma, H. Alavizadeh, S. Yoon, N. Ben-Asher, T. J.
Moore, D. S. Kim, H. Lim, and F. F. Nelson, “Toward proactive,
adaptive defense: A survey on moving target defense,” IEEE
Communications Surveys & Tutorials, vol. 22, no. 1, pp. 709–745,
2020.

[26] S. Venkatesan, M. Albanese, K. Amin, S. Jajodia, and M. Wright,
“A moving target defense approach to mitigate ddos attacks
against proxy-based architectures,” in 2016 IEEE conference on
communications and network security (CNS). IEEE, 2016, pp. 198–206.

[27] V. Buterin, “Ethereum: A next-generation smart contract
and decentralized application platform,” https://github.com/
ethereum/wiki/wiki/White-Paper, 2014, accessed: 2016-08-22.
[Online]. Available: https://github.com/ethereum/wiki/wiki/
White-Paper

[28] J. Sousa, A. Bessani, and M. Vukolić, “A byzantine fault-tolerant
ordering service for the hyperledger fabric blockchain platform,”
arXiv:1709.06921, 2017, accessed:2017-09-25. [Online]. Available:
https://arxiv.org/pdf/1709.06921.pdf

[29] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey
badger of bft protocols,” https://eprint.iacr.org/2016/199.pdf,
2016, accessed: 2017-01-10. [Online]. Available: https://eprint.iacr.
org/2016/199.pdf

[30] https://www.hyperledger.org/projects/sawtooth.
[31] G. S. Veronese, M. Correia, A. N. Bessani, L. C.

Lung, and P. Verissimo, “Efficient byzantine fault-
tolerance,” vol. 62, no. 1. IEEE, 2013, pp. 16–30.
[Online]. Available: https://www.researchgate.net/profile/
Miguel Correia3/publication/260585535 Efficient Byzantine
Fault-Tolerance/links/5419615d0cf25ebee9885215.pdf

[32] R. Riemann and S. Grumbach, “Distributed protocols at the rescue
for trustworthy online voting,” arXiv:1705.04480, 2017, accessed:
2017-06-29. [Online]. Available: https://arxiv.org/pdf/1705.04480.
pdf

[33] J. Aumasson and L. Merino, “Sgx secure enclaves in practice–
security and crypto review,” Black Hat, 2016.

[34] M. Hamburg, P. Kocher, and M. E. Marson, “Analysis of intel’s
ivy bridge digital random number generator,” Online: http://www.
cryptography. com/public/pdf/Intel TRN G Report 20120312. pdf, 2012.

[35] M. Ahmed and K. Kostiainen, “Identity aging: Efficient blockchain
consensus,” arXiv preprint arXiv:1804.07391, 2018.

[36] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contract execution,”
arXiv preprint arXiv:1804.05141, 2018.

[37] R. Yuan, Y.-B. Xia, H.-B. Chen, B.-Y. Zang, and J. Xie, “Shadoweth:
Private smart contract on public blockchain,” Journal of Computer
Science and Technology, vol. 33, no. 3, pp. 542–556, 2018.

[38] J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and
P. Pietzuch, “Teechain: A secure payment network with
asynchronous blockchain access,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, ser. SOSP ’19. New
York, NY, USA: ACM, 2019, pp. 63–79. [Online]. Available:
http://doi.acm.org/10.1145/3341301.3359627

[39] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town
crier: An authenticated data feed for smart contracts,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2016, pp. 270–282. [Online].
Available: https://eprint.iacr.org/2016/168.pdf

[40] I. Bentov, Y. Ji, F. Zhang, Y. Li, X. Zhao, L. Breidenbach,
P. Daian, and A. Juels, “Tesseract: Real-time cryptocurrency
exchange using trusted hardware,” Cryptology ePrint Archive,
Report 2017/1153, 2017, accessed:2017-12-04. [Online]. Available:
https://eprint.iacr.org/2017/1153.pdf

[41] M. Tran, L. Luu, M. S. Kang, I. Bentov, and P. Saxena, “Obscuro: A
bitcoin mixer using trusted execution environments,” Cryptology

16

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://arxiv.org/pdf/1709.06921.pdf
https://arxiv.org/pdf/1804.01626.pdf
https://arxiv.org/pdf/1804.01626.pdf
http://www.medicalchain.org/
https://www.ibm.com/blockchain/industries/supply-chain
https://www.ibm.com/blockchain/industries/supply-chain
http://people.cs.uchicago.edu/~shanlu/teaching/33100_wi15/papers/byz.pdf
http://people.cs.uchicago.edu/~shanlu/teaching/33100_wi15/papers/byz.pdf
http://eprint.iacr.org/2017/454.pdf
https://arxiv.org/pdf/1612.09426.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-heilman.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-heilman.pdf
Banking in the United States
http://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf
http://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf
http://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf
http://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf
http://arxiv.org/pdf/1602.06997.pdf
http://hackingdistributed.com/2016/08/04/byzcoin/
http://hackingdistributed.com/2016/08/04/byzcoin/
http://hackingdistributed.com/2016/08/04/byzcoin/
http://hackingdistributed.com/2016/08/04/byzcoin/
https://www.microsoft.com/en-us/research/publication/ccf-a-framework-for-building-confidential-verifiable-replicated-services/
https://www.microsoft.com/en-us/research/publication/ccf-a-framework-for-building-confidential-verifiable-replicated-services/
http://eprint.iacr.org/2017/179
http://eprint.iacr.org/2017/179.pdf
http://eprint.iacr.org/2017/179.pdf
https://github.com/hyperledger-labs/minbft
https://github.com/hyperledger-labs/minbft
http://macs.citadel.edu/rudolphg/csci604/ImpossibilityofConsensus.pdf
http://macs.citadel.edu/rudolphg/csci604/ImpossibilityofConsensus.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://arxiv.org/pdf/1709.06921.pdf
https://eprint.iacr.org/2016/199.pdf
https://eprint.iacr.org/2016/199.pdf
https://eprint.iacr.org/2016/199.pdf
https://www.hyperledger.org/projects/sawtooth
https://www.researchgate.net/profile/Miguel_Correia3/publication/260585535_Efficient_Byzantine_Fault-Tolerance/links/5419615d0cf25ebee9885215.pdf
https://www.researchgate.net/profile/Miguel_Correia3/publication/260585535_Efficient_Byzantine_Fault-Tolerance/links/5419615d0cf25ebee9885215.pdf
https://www.researchgate.net/profile/Miguel_Correia3/publication/260585535_Efficient_Byzantine_Fault-Tolerance/links/5419615d0cf25ebee9885215.pdf
https://arxiv.org/pdf/1705.04480.pdf
https://arxiv.org/pdf/1705.04480.pdf
http://doi.acm.org/10.1145/3341301.3359627
https://eprint.iacr.org/2016/168.pdf
https://eprint.iacr.org/2017/1153.pdf

ePrint Archive, Report 2017/974, 2017, accessed:2017-10-06.
[Online]. Available: http://eprint.iacr.org/2017/974.pdf

[42] I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse, “Bitcoin-ng: A
scalable blockchain protocol,” in 13th USENIX Security Symposium
on Networked Systems Design and Implementation (NSDI’16). USENIX
Association, Mar 2016. [Online]. Available: http://www.usenix.
org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf

[43] I. Bentov, R. Pass, and E. Shi, “Snow white: Provably secure proofs
of stake,” https://eprint.iacr.org/2016/919.pdf, 2016, accessed:
2016-11-08. [Online]. Available: https://eprint.iacr.org/2016/919.
pdf

[44] A. Kiayias, A. Russell, B. David, and
R. Oliynykov, “Ouroboros: A provably secure proof-of-
stake blockchain protocol,” https://pdfs.semanticscholar.org/
1c14/549f7ba7d6a000d79a7d12255eb11113e6fa.pdf, 2016, accessed:
2017-02-20. [Online]. Available: https://pdfs.semanticscholar.org/
1c14/549f7ba7d6a000d79a7d12255eb11113e6fa.pdf

[45] B. David, P. Gazi, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake protocol,”
Cryptology ePrint Archive, Report 2017/573, 2017, accessed: 2017-
06-29. [Online]. Available: http://eprint.iacr.org/2017/573.pdf

[46] C. Badertscher, P. Gazi, A. Kiayias, A. Russell, and V. Zikas,
“Ouroboros genesis: Composable proof-of-stake blockchains with
dynamic availability,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2018,
pp. 913–930.

[47] Y. Sompolinsky and A. Zohar, “Accelerating bitcoin’s transaction
processing. fast money grows on trees, not chains,” p. 881, 2013.
[Online]. Available: http://eprint.iacr.org/2013/881.pdf

[48] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and
S. Capkun, “On the security and performance of proof of work
blockchains,” https://eprint.iacr.org/2016/555.pdf, 2016, accessed:
2016-08-10. [Online]. Available: https://eprint.iacr.org/2016/555.
pdf

[49] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking bitcoin:
Routing attacks on cryptocurrencies,” in 2017 IEEE Symposium on
Security and Privacy (SP). IEEE, 2017, pp. 375–392.

[50] C. Decker, J. Seidel, and R. Wattenhofer, “Bitcoin meets strong
consistency,” in Proceedings of the 17th International Conference on
Distributed Computing and Networking. ACM, 2016, p. 13.

[51] L. Aştefanoaei, P. Chambart, A. Del Pozzo, E. Tate, S. Tucci, and
E. Zălinescu, “Tenderbake–classical bft style consensus for public
blockchains,” arXiv preprint arXiv:2001.11965, 2020.

[52] S. Pyo Kim, “Tenderand: Randomized leader election in tender-
mint,” 2020. [Online]. Available: https://medium.com/codechain/
tenderand-randomized-leader-election-in-tendermint-a3663d863479

[53] Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-Butucaru, and
S. Tucci-Piergiovanni, “Correctness of tendermint-core blockchains,”
in 22nd International Conference on Principles of Distributed Systems
(OPODIS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2018.

[54] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz,
“Attested append-only memory: Making adversaries stick to
their word,” in ACM SIGOPS Operating Systems Review,
vol. 41, no. 6. ACM, 2007, pp. 189–204. [Online]. Available:
http://news.cs.nyu.edu/∼jinyang/fa08/papers/a2m.pdf

[55] Q. Zhang, Z. Qi, X. Liu, T. Sun, and K. Lei, “Research and
application of bft algorithms based on the hybrid fault model,”
in 2018 1st IEEE International Conference on Hot Information-Centric
Networking (HotICN). IEEE, 2018, pp. 114–120.

[56] F. Shaon, M. Kantarcioglu, Z. Lin, and L. Khan, “Sgx-bigmatrix:
A practical encrypted data analytic framework with trusted pro-
cessors,” in Proceedings of the 17th ACM conference on Computer and
communications security (CCS ’10), 2017.

[57] C. Priebe, K. Vaswani, and M. Costa, “Enclavedb: A secure database
using sgx,” in Proceedings of the 2018 IEEE Symposium on Security
and Privacy. IEEE, 2018, p. 0.

[58] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-L. Aublin,
F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers, R. Kapitza et al.,
“Glamdring: Automatic application partitioning for intel sgx,” in
2017 USENIX Annual Technical Conference (USENIX ATC 17), Santa
Clara, CA, 2017.

[59] J. Jiang, X. Chen, T.-O. Li, C. Wang, T. Shen, S. Zhao, H. Cui, C.-L.
Wang, and F. Zhang, “Uranus: Simple, efficient sgx programming
and its applications,” in Proceedings of the 15th ACM on Asia
Conference on Computer and Communications Security 2020 (ASIACCS

’20, accepted). https://hemingcui.github.io/accepted/asiaccs20-uranus.pdf,
2020.

[60] A.-M. Kermarrec and M. Van Steen, “Gossiping in distributed
systems,” ACM SIGOPS Operating Systems Review, vol. 41, no. 5, pp.
2–7, 2007.

[61] D. Ongaro and J. Ousterhout, “In search of an understandable
consensus algorithm,” in Proceedings of the USENIX Annual Technical
Conference (USENIX ’14), Jun. 2014.

[62] H. Howard, D. Malkhi, and A. Spiegelman, “Flexible paxos:
Quorum intersection revisited,” arXiv preprint arXiv:1608.06696,
2016.

[63] “OSI model - Wikipedia,” https://en.wikipedia.org/wiki/OSI
model.

[64] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” vol. 33, no. 2.
ACM, 2002, pp. 51–59. [Online]. Available: http://www.comp.nus.
edu.sg/∼gilbert/pubs/BrewersConjecture-SigAct.pdf

[65] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Ger-
vais, A. Juels, and S. Capkun, “Rote: Rollback protection for trusted
execution.” IACR Cryptology ePrint Archive, vol. 2017, p. 48, 2017.

[66] J. Gu, Z. Hua, Y. Xia, H. Chen, B. Zang, H. Guan, and J. Li, “Secure
live migration of sgx enclaves on untrusted cloud,” in 2017 47th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2017, pp. 225–236.

[67] “Algorand/go-algorand,” https://github.com/algorand/
go-algorand/releases/tag/v2.0.14-beta.

[68] “Cryptocurrency statistics,” 2019. [Online]. Available: https:
//bitinfocharts.com/

[69] Deloitte, “Blockchain Performance Report,” https://en.bitcoin.it/
wiki/Satoshi Client Node Discovery#DNS Addresses, 2018.

[70] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-
nan, “Chord: A scalable peer-to-peer lookup service for internet
applications,” SIGCOMM Comput. Commun. Rev., vol. 31, no. 4, pp.
149–160, 2001.

[71] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh, “Shieldstore: Shielded in-
memory key-value storage with sgx,” in Proceedings of the Fourteenth
EuroSys Conference 2019. ACM, 2019, p. 14.

[72] S. M. Kim, J. Han, J. Ha, T. Kim, and D. Han, “Enhancing
security and privacy of tor’s ecosystem by using trusted execution
environments.” in NSDI, 2017, pp. 145–161.

Xusheng Chen received his Bachelor degree in
HKU. He is currently a PhD student in Computer
Science of HKU (2017-now). He is under the
supervision of Dr. Heming Cui. His research
interests include distributed consensus protocols,
distributed systems and system security.

Shixiong Zhao received his Bachelor degree in
HKU and his master degree in HKUST. He is
currently a PhD student in Computer Science of
HKU (2017-now). He is under the supervision of
Dr. Heming Cui. His research interests include
distributed systems for high performance comput-
ing, distributed systems and system security.

Ji Qi received his B.S (2015) degree from Beijing
Institude of Technology, Beijing, China, and his
M.S (2018) degree from Tsinghua University,
Beijin, China. He is currently pursuing the PhD
in computer science at the University of Hong
Kong under the supervision of Dr. Heming Cui.
His interests include domain-specific modeling,
distributed system and cloud computing.17

http://eprint.iacr.org/2017/974.pdf
http://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf
http://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf
https://eprint.iacr.org/2016/919.pdf
https://eprint.iacr.org/2016/919.pdf
https://pdfs.semanticscholar.org/1c14/549f7ba7d6a000d79a7d12255eb11113e6fa.pdf
https://pdfs.semanticscholar.org/1c14/549f7ba7d6a000d79a7d12255eb11113e6fa.pdf
https://pdfs.semanticscholar.org/1c14/549f7ba7d6a000d79a7d12255eb11113e6fa.pdf
https://pdfs.semanticscholar.org/1c14/549f7ba7d6a000d79a7d12255eb11113e6fa.pdf
http://eprint.iacr.org/2017/573.pdf
http://eprint.iacr.org/2013/881.pdf
https://eprint.iacr.org/2016/555.pdf
https://eprint.iacr.org/2016/555.pdf
https://eprint.iacr.org/2016/555.pdf
https://medium.com/codechain/tenderand-randomized-leader-election-in-tendermint-a3663d863479
https://medium.com/codechain/tenderand-randomized-leader-election-in-tendermint-a3663d863479
http://news.cs.nyu.edu/~jinyang/fa08/papers/a2m.pdf
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model
http://www.comp.nus.edu.sg/~gilbert/pubs/BrewersConjecture-SigAct.pdf
http://www.comp.nus.edu.sg/~gilbert/pubs/BrewersConjecture-SigAct.pdf
https://github.com/algorand/go-algorand/releases/tag/v2.0.14-beta
https://github.com/algorand/go-algorand/releases/tag/v2.0.14-beta
https://bitinfocharts.com/
https://bitinfocharts.com/
https://en.bitcoin.it/wiki/Satoshi_Client_Node_Discovery#DNS_Addresses
https://en.bitcoin.it/wiki/Satoshi_Client_Node_Discovery#DNS_Addresses

Jianyu Jiang is currently a third year PhD stu-
dent in Computer Science Department at The
University of Hong Kong. He is working on topics
in large scale computation platform under the
supervision of Dr. Heming Cui. Jianyu received
his Bachelor’s Degree in Computer Science De-
partment at Xi’an Jiaotong University, under the
supervision of Professor Qi Yong.

Haoze Song received the BS degree from De-
partment of Computer Science, University of
Science and Technology of China, in 2020. He
is currently working towards the MPhil degree
in Computer Science at HKU. His research in-
terests mainly focus on distributed system and
distributed computing.

Cheng Wang received his PhD from the Uni-
versity of Hong Kong and B.Eng degree from
Shanghai Tongji University. His research interests
lie in distributed systems, with a particular focus
on fault tolerance. He is currently working in
Huawei Ltd.

Tsz On Li received his Bachelor degree in HKU.
He is currently an MPhil student in Computer
Science of HKU (2019-now). He is under the
supervision of Dr. Heming Cui. His research
interests include differential privacy and big data
systems.

T-H. Hubert Chan T-H. Hubert Chan is an Asso-
ciate Professor at the Department of Computer
Science at the University of Hong Kong. He com-
pleted his PhD in Computer Science at Carnegie
Mellon University in 2007. His main research
interests are approximation algorithms, discrete
metric space, privacy and security inspired prob-
lems.

Fengwei Zhang is an Associate Professor at De-
partment of Computer Science and Engineering
at Southern University of Science and Technology
(SUSTech). His primary research interests are
in the areas of systems security, with a focus
on trustworthy execution, hardware-assisted se-
curity, debugging transparency, transportation
security, and plausible deniability encryption. Be-
fore joining SUSTech, he spent four wonderful
years as an Assistant Professor at Department

of Computer Science at Wayne State University.

Xiapu Luo received his B.S. in Communication
Engineering and M.S. in Communications and
Information Systems from Wuhan University. He
obtained his Ph.D. degree in Computer Science
from the Hong Kong Polytechnic University, under
the supervision of Prof. Rocky K.C. Chang. After
that, he spent two years at the Georgia Institute
of Technology as a post-doctoral research fellow
advised by Prof. Wenke Lee. His current research
interests include Network and System Security,

Information Privacy, Internet Measurement, Cloud Computing, and Mobile
Networks.

Sen Wang received the B.S. degree from the
University of Science and Technology of China
(USTC) in 2005, the M.S. degree from the Chi-
nese Academy of Sciences (CAS) in 2008, and
the Ph.D. degree from Tsinghua University in
2014, all in computer science. From 2014 to 2019,
he was a lecturer and then an associate professor
at Chongqing University, China. Currently, he
is a senior researcher at Huawei, Hongkong.
His research interests include information-centric

networking, Federated Learning and AI for System.

Gong Zhang is a chief architect researcher sci-
entist, director of the Huawei Future Network
Theory Lab. His major research directions are
network architecture and large-scale distributed
systems. He has abundant experience on system
architect in networks, distributed system and
communication system for more than 20 years.
He has more than 90 global patents.

Heming Cui is an associate professor in com-
puter science of HKU. His research interests
include operating systems, programming lan-
guages, distributed systems, and cloud comput-
ing, with a particular focus on building software
infrastructures and tools to improve reliability
and security of real-world software. Homepage:
https://i.cs.hku.hk/ heming/. He is a member of
IEEE.

18

	1 Introduction
	2 Background and Related Work
	2.1 Intel SGX
	2.2 Consensus for Permissioned Blockchains
	2.3 Consensus for Permissionless Blockchains

	3 System Model
	4 Eges's High-level Idea
	5 Eges Consensus Protocol
	5.1 Protocol Preliminaries
	5.2 Selecting a Stealth Committee
	5.3 Confirming a Block
	5.4 Handling DoS Attacks Targeting Proposers

	6 Security Analysis
	6.1 Safety with Overwhelming Probability
	6.2 Liveness under Targeted DoS Attacks
	6.3 Parameter Selection

	7 Implementation
	7.1 Membership and attestation
	7.2 Enclave Interactions
	7.3 Handling Attacks on Enclaves

	8 Evaluation
	8.1 Efficiency and Scalability
	8.2 Performance on DoS Attacks
	8.3 Sensitivity
	8.4 Comparison to BFT-SMaRt and SBFT
	8.5 Discussions

	9 Conclusion
	References
	Biographies
	Xusheng Chen
	Shixiong Zhao
	Ji Qi
	Jianyu Jiang
	Haoze Song
	Cheng Wang
	Tsz On Li
	T-H. Hubert Chan
	Fengwei Zhang
	Xiapu Luo
	Sen Wang
	Gong Zhang
	Heming Cui

