EGES: Efficient and DoS-Resistant Consensus for Permissioned Blockchains

Xusheng Chen, Shixiong Zhao, Ji Qi, Cheng Wang, Haoze Song,Jianyu Jiang, Tsz On Li, T.-H. Hubert, Fengwei Zhang,Xiapu Luo, Sen Wang, Gong Zhang, Heming Cui

The University of Hong Kong

The Hong Kong Polytechnic University

Huawei

Background: blockchain systems

- A distributed ledger of totally ordered transactions, forming a hash chain.
- Nodes run a **distributed consensus protocol** to agree on transactions.
- Two types of blockchains:
 - Permissionless (open membership): any node can join and leave at any time.
 - E.g., BitCoin, Ethereum, Algorand [SOSP '17]
 - Requires cryptocurrency to incentivize nodes to follow the protocol.
 - Permissioned: nodes should register before joining the system.
 - E.g., HyperLedger projects, Libra, Quorum.
 - Decoupled from cryptocurrency, can deploy diverse data-sharing applications.
 - Can explore existing consensus protocols for high performance.
- We focus on **permissioned blockchains** for their generality and high performance.

Problems of existing permissioned blockchains

• Susceptible for targeted DoS and network partitioning attacks if deployed on

the Internet or among edge computing IoT devices.

- We discuss these two attacks together and call them altogether targeted DoS attacks.
- Existing permissioned blockchians rely on a static and explicit committee to achieve consensus.
 - E.g., BFT-SMaRT [DSN '18], Tendermint [OPODIS '18], HotStuff [PODC '19], MinBFT [TOC '11], SBFT [DSN '19], Honey Badger BFT [CCS '16].
 - This committee is usually very small (e.g., 10 in BFT-SMaRt) for efficiency.
 - Attacking only a portion of these committee nodes turn down the whole system.
 - Scalable BFT protocols (e.g., SBFT) cannot ensure performance with a few nodes attacked.
- Algorand [SOSP '17] uses dynamic committee and is resistant to targeted DoS attacks, but it is designed for permissionless blockchains, not suitable for permissioned blockchains.

The high-level idea of EGES

- Existing permissioned blockchains are susceptible to targeted DoS attacks because they rely on a **static and explicit committee** to achieve consensus.
- We propose a new abstraction called **dynamic and stealth committee** for permissioned blockchain.
- Dynamic: Select a random group of committees for each block.
 - Move the attack target constantly to avoid being aimed at.
 - Concept borrowed from permissionless blockchains, but they use it for fairness.

- Committee nodes for blk_{n+1}
- Committee nodes for blk_n
- \bigcirc Normal member nodes

The high-level idea of EGES

- Existing permissioned blockchains are susceptible to targeted DoS attacks because they rely on a **static and explicit committee** to achieve consensus.
- We propose a new abstraction called **dynamic and stealth committee** for permissioned blockchain.
- **Dynamic**: Select a random group of committees for each block.
- Stealth: Hide the committee's membership before and during consensus.
 - Use fake committee nodes to cover the new ones.

- Fake committee nodes for blk_n
- Committee nodes for blk_n
- Normal member nodes

EGES leverages TEEs to realize the new abstraction

- Trusted Executing Environments (TEE) is a hardware feature of modern CPUs.
- TEEs are widely used in blockchain systems
 - REM [Usenix Security '17], PoET [Intel], Ekiden [Euro S&P '18], Hybster [Euro Sys '17].
 - But none of them tackles the DoS-resistant problem.
- TEE provides an isolated trusted space called the enclave.
- Integrity: code running in an enclave cannot be tampered with (can be killed) from outside (even by the kernel/administrator)
 - EGES leverages this feature to govern the behavior of randomly selected nodes.
 - Otherwise, it's almost impossible to ensure any committees meet BFT's honesty requirement.
- **Confidentially**: data within enclave is not visible to outside world.
 - EGES leverages this feature to make the committee's members identities stealth.

EGES's detailed protocol – committee formation

- EGES has one stealth committee for each block number.
 - <u>Randomly and uniformly</u> selected from all member nodes in the system.
 - One **proposer**: generates the unique block proposal and tries to confirm the block.
 - A group of acceptors: send ACKs on receiving the proposal.
 - Fake acceptors and arbiters: help to cover the real committee nodes.
- Committee nodes' identities are encrypted on the blockchain k (e.g., 1000) blocks ago.
 - Only a committee member node's enclave knows whether it is a committee member for block_n.

EGES's detailed protocol – confirming a block

- Normal case (the proposer can reach most acceptors)
 - We omit fake acceptors in this talk (please read our paper).
 - 1. The proposer broadcasts its unique block proposal via the P2P network.
 - 2. An acceptor replies an ACK after receiving the proposal.
 - 3. The proposer broadcasts a confirm message after receiving quorum ACKs.

Key challenge: ensuring consistency on failure cases

- (Failure case) what if a node cannot receive the next block (say block_n) in time?
- Any single node cannot distinguish two cases:
 - Case A: The consensus on block_n is never achieved.
 - Case B: The consensus block_n is achieved, but this node does not receive the notification.

Case A: the block_n is never proposed.

Case B: the block_n is confirmed

EGES's new protocol based on probability theory

- Each block can only have two choices: a unique proposal or a default empty block.
- Model the randomly selected acceptors as a random sampling of the dissemination of the block proposal in the P2P network.
- Assume P% of a total of M nodes received the unique proposal, quorum ration is q.
 - X: the number of a total of n_A acceptors that have received the proposal.
 - X follows hypergeometric distribution: X ~ H(M, n_A, P% * M).
- Confirming the unique proposal: Prob (X > q * n_A). Prob non-trivial requires P% to be large enough.
- Confirming empty block: ask another group of nodes whether received the proposal, repeat **D** times.
 - Y: the number of acceptors not received the proposal : Y ~ H(M, n_A, (1-P%) * M).
 - Probability (Prob (Y > q * n_A))ⁿ being non-trivial requires P% to be small enough.
- For instance, when q = 59%, $n_A = 100$, D = 4, M = 10k, EGES ensures the probability of inconsistency < 10^{-9} .

Summary of EGES

- Resistance to DoS or partition attacks targeting committee nodes.
 - **Before** a committee is on duty: use TEE to designate them in a random and unpredictable way.
 - **During** a committee is on duty: use fake committee nodes to cover their identities.
 - After a committee is on duty: rotate to a different group of committee to avoid the attacker target this committee.
- Efficiency:
 - The normal case is very lightweight.
 - The failure case's repetitive sampling runs in parallel with subsequent blocks' consensus.
- Please refer to our paper for detailed analysis and proof.

Implementation

- Based on the codebase of Ethereum.
 - Reuse its P2P layer;
 - Rewrite its membership and consensus layer.
- More details in the paper:
 - Supporting dynamic membership
 - Enclave interactions.
 - Handling forking attacks.
 - Handling timeout attacks.

Evaluation

- Evaluation settings:
 - Cluster: 30 machines, Intel E3-1280 V6 CPU with SGX support.
 - AWS: up to 100 c5.18xlarge VMs 72 cores with SGX simulation mode.
 - Each node runs in a docker container, up to 10,000 nodes.
 - Network RTT between each pair of nodes: 150 ~ 300ms.
- Evaluation questions:
 - Is EGES efficient?
 - What is EGES's performance under DoS attacks?
 - Is EGES scalable?
 - How sensitive is EGES to its parameters?
 - How do EGES performance and fault tolerance compare with notable BFT protocols?

Throughput and latency

Protocol	DoS and partition resistance	With SGX?	Number of nodes	Tput (txn/s)	Confirm latency (s)
Eges	high	Yes	300	3226	0.91
			10K	2654	1.13
Algorand	high	No	10K	~727	~22
PoET	medium*	Yes	100	149	45.2
Ethereum	medium*	No	100	178	82.3
SBFT	low	No	62	1523	1.13
MinBFT	low	Yes	64	2478	0.80
BFT-SMaRt	low	No	10	4512	0.67
Tendermint	low	No	64	2462	1.31
HotStuff	low	No	64	2686	2.63
HoneyBadger	low	No	32	1078	9.39

- More efficient than existing DoS-resistant protocols for permissionless blockchains.
- Comparable efficiency to existing blockchain protocols that are not DoS resistant.

EGES's performance under targeted DoS attacks

- Attacked 10% of all nodes every 100s.
- Targeting the real/fake committee nodes
- Created a partition at 200s
- Network reconnected at 400s.
- Throughput measured at the large partition.

Conclusion

- EGES is the first consensus protocol for permissioned blockchain that:
 - Resistant to DoS and network partition attacks targeting committee nodes.
 - Achieves comparable performance as protocols running on static committees.
- We propose:
 - A new dynamic stealth committee abstraction to protect committee nodes.
 - A new consensus protocol to ensure safety on dynamic committee.
- EGES is suitable to large scale permissioned blockchains running on the Internet and IoT devices (e.g., edge computing).
- EGES is open source on **github.com/hku-systems/eges.**