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Abstract—The scale of Android applications in the market
is growing rapidly. To efficiently detect the malicious behavior
in these applications, an array of static analysis tools are
proposed. However, static analysis tools suffer from code hiding
techniques like packing, dynamic loading, self modifying, and
reflection. In this paper, we thus present DEXLEGO, a novel
system that performs a reassembleable bytecode extraction for
aiding static analysis tools to reveal the malicious behavior of
Android applications. DEXLEGO leverages just-in-time collection
to extract data and bytecode from an application at runtime, and
reassembles them to a new Dalvik Executable (DEX) file offline.
The experiments on DroidBench and real-world applications
show that DEXLEGO correctly reconstructs the behavior of
an application in the reassembled DEX file, and significantly
improves analysis result of the existing static analysis systems.

I. INTRODUCTION

With the rapid proliferation of malware attacks on mobile

devices, understanding their malicious behavior plays a critical

role in crafting effective defense. Static analysis tools are

used to analyze malware and investigate their malicious activi-

ties [1]–[5]. However, malware writers can hide the malicious

behavior by using an array of obfuscation techniques. The

annual report from AVL team [6] shows that the number of

Android packed applications has increased more than nine

times, while about one third of them are packed malware. Typ-

ically, static analysis tools identify the malicious behavior of

an application by investigating bytecode in Dalvik Executable

(DEX) files. The packing technology replaces the original

DEX file with a shell DEX file and dynamically releases

the original DEX file at runtime. Additionally, the original

DEX file is encrypted until its execution. While the free use

of public packing platforms [7]–[12] provides a convenient

and reliable protection for applications, the challenge of facing

packed malware is rising. Static analysis tools are completely

unarmed to the packed malware as they can only fetch the

shell DEX file but not the encrypted original DEX file.

To address this problem, several unpacking systems are

introduced recently [13], [14]. However, these systems are

far from solving the problem completely. For instance, they

assume that there is a point when all original code is unpacked

in memory (i.e., a clear boundary or transition between the

packer’s code and the original code). However, the malware

writers can pack code with advanced techniques that interleave

the packing and unpacking processes. Moreover, recent studies

show that sophisticated adversaries, known as self-modifying

malware [15], [16], can modify the bytecode and other con-

tents in a DEX file at runtime.

To further understand the self-modifying malware, consider

Code 1 as an example. In Line 14, the native method,

bytecodeTamper, modifies the bytecode of Lines 11 and

13. Note that the method bytecodeTamper is executed

twice and performs different modifications to the two Lines

during each iteration. There is a taint flow in Code 1, but

the state-of-the-art static analysis tools [1]–[5] cannot detect

it. Moreover, existing method-level unpacking systems [13],

[14] are unable to reveal this taint flow because they cannot

differentiate the actual executed code from the fake code (i.e.,

modified code like Lines 11 and 13 to hide taint flows), and

we will discuss the details in Section IV-A.

Unlike the static analysis tools, the dynamic analysis

tools [17]–[21] do not suffer from packing techniques. How-

ever, they have their own drawbacks. The automatic dynamic

taint flow analysis tools [17], [18], [21] cannot handle implicit

taint flows while static analysis tools [4], [5] can solve them.

Moreover, the huge performance overhead makes it difficult

to implement a complicated analysis mechanism, so there is

a trade-off between the accuracy and performance. Meantime,

the code coverage problem also threatens the accuracy of the

dynamic analysis tools [19]–[21].

In this paper, we present DEXLEGO, a novel program

transformation system that reveals the hidden code in An-

droid applications to analyzable pattern via instruction-level

extracting and reassembling. DEXLEGO collects bytecode and

data when they are executed and accessed, and reassembles

the collected result into a valid DEX file for static analysis

tools. Since we extract all executed instructions, our system

is able to uncover the malicious behavior of the packed

applications or malware with self-modifying code. One of the

key challenges in DEXLEGO is to reassemble the instructions

into a valid and accurate DEX file. Hence, we design a

novel reassembling approach to construct the entire executed

control flows including self-modifying code. Additionally, we

implement the first prototype of force execution on Android

and use it as our code coverage improvement module.

Moreover, our system helps static analysis tools improve

the analysis accuracy on reflection-involved samples. The Java

reflection obscures the control flows of the application by

replacing the direct function call or field access with a call

to the reflection library functions which take the name string
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1 package com.test;
2

3 public class Main extends Activity {
4 private static final String PHONE = "800-123-456";
5 protected void onCreate(Bundle savedInstanceState) {
6 // ...
7 advancedLeak();
8 }
9

10 public void advancedLeak() {
11 String a = getSensitiveData(); // source
12 for (int i = 0; i < 2; ++i) {
13 normal(a);
14 bytecodeTamper(i);
15 }
16 }
17

18 public void normal(String param) {
19 // do something normal
20 }
21

22 public void sink(String param) {
23 // send param through text message.
24 SmsManager.getDefault().sendTextMessage(PHONE, null,

param, null, null); // sink
25 }
26

27 /* While i = 0:
28 * modify Line 11 to String a = "non-sensitive data"
29 * modify Line 13 to sink(a)
30 * While i = 1:
31 * modify Line 11 to String a = getSensitiveData()
32 * modify Line 13 to normal(a) */
33 public void native bytecodeTamper(int i);
34 }

Code 1: An Example of Self-Modifying Code.

of the function or field as parameter. Previous reflection solu-

tions [22] and static analysis tools [1]–[3] on Android assume

that the name strings of the reflectively invoked method and its

declaring class are reachable. However, the name string can be

encrypted in some cases [23] and the advanced malware could

even use reflective method calls without involving any string

parameter [24]. A solution on traditional Java platform [25]

requires load-time instrumentation which is not supported in

Android [1]. Thus, DEXLEGO implements a similar idea in

Android and replaces the reflective call with direct call.

We evaluate DEXLEGO on real-world packed applications

and DroidBench [24]. The evaluation result shows DEXLEGO

successfully unpack and reconstruct the behavior of the ap-

plications. The F-measures (i.e., analysis accuracy) of Flow-

Droid [1], DroidSafe [3], and HornDroid [2] on DroidBench

increase 33.3%, 31.1%, and 23.6%, respectively. Moreover,

static analysis tools with the help of DEXLEGO provide

a better accuracy than existing dynamic analysis systems

TaindDroid [17] and TaindART [18]. The code coverage

experiments on open source samples from F-Droid [26] show

that our force execution module helps to improve the coverage

of dynamic analysis and increases the coverage of state-of-the-

art fuzzing tool, Sapienz [27], from 32% to 82%. The main

contributions of this work include:

• We present DEXLEGO, a novel system that automatically

transforms the hidden code in the Android applications

to analyzable pattern. Our novel approach leverages

tree structures to collect data/bytecode at runtime, and

reassemble collected information back to DEX files,

which makes the hidden code including packed or self-

modifying one analyzable for current static analysis tools.

To the best of our knowledge, this is the first system

to reassemble the instruction-level tracing result of Java

bytecode back to an executable file, and we consider this

is the key contribution of this work.

• DEXLEGO mitigates the inaccuracy of static analysis

tools on the reflection-involved samples by transforming

the reflective method call to direct call regardless how

the adversary uses it; it also improves the code coverage

of dynamic analysis via our force execution module

and. Moreover, DEXLEGO can be easily applied to Java

application on x86 platforms and advances the traditional

taint flow analysis.

• We implement a prototype of DEXLEGO in Android

Runtime and evaluate the system in a real Android device.

The experiment result shows that DEXLEGO successfully

unpacks and reconstructs the hidden behavior of the real-

world packed applications. By testing our system with

state-of-the-art static analysis tools on DroidBench, we

demonstrate that DEXLEGO improves the F-Measures

of static analysis tools by more than 23%. Moreover,

the comparison with existing dynamic analysis tools

shows that DEXLEGO-assisted approach provides a more

accurate result.

• The source code of DEXLEGO is publicly available at

goo.gl/jpRvqu.

II. BACKGROUND

A. Dalvik and Android Runtime

Dalvik is a special Java virtual machine running in the

Android system. It is used to interpret Android specified

bytecode format since the first release of Android. To improve

the performance, Google has introduced Just-In-Time (JIT)

compilation and Ahead-Of-Time (AOT) compilation since An-

droid 2.2 and Android 4.4, respectively. The JIT compilation

continually compiles frequently executed bytecode slices into

the machine code. As an upgrade, the AOT compilation com-

piles most bytecode in the application into the machine code

during the installation. Dalvik equipped with AOT compilation

is renamed to Android Runtime (ART). Since Android 5.0,

Dalvik has been completely replaced by ART.

In both Dalvik and ART, the bytecode is organized in

units of methods. The minimum code unit for JIT and AOT

compilation is a method, indicating that a single method

cannot contain both bytecode and machine code. Methods

such as constructors and abstract methods require the bytecode

interpreter even in ART. Moreover, a single method or the

entire ART can be configured to run in the interpreter mode.

B. Android Java Bytecode

The Java bytecode in Android is chained by instructions.

Each instruction contains an opcode and arguments related

to the opcode. The opcodes are different from the ones in

regular Java bytecode and the bit-length of an instruction

varies according to the opcode. In the interpreter, instructions

are listed in an array of 16-bit (2 bytes) units. An instruction
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Fig. 1: Overview of DEXLEGO.

occupies at least one unit with a maximum number of units

up to five.

III. SYSTEM OVERVIEW

As Figure 1 shows, instead of directly feed the target

application to static analysis tools, we firstly execute the target

application with DEXLEGO. In executing, we use Just-in-Time

(JIT) collection to extract data/instructions and output them

to files right before used by ART. In the meantime, we use

a code coverage improvement module to increase the code

coverage. Next, we reassemble the collected files to a DEX

file and use the reassembled DEX file to replace the one in

the original APK. Finally, the new APK file is fed to the static

analysis tools. The architecture of DEXLEGO contains three

main components: 1) the collecting component that collects

bytecode and data, 2) the offline reassembling component that

reassembles a new DEX file based on the collection result,

and 3) the code coverage improvement module that helps

DEXLEGO to achieve a high code coverage. Next, we will

discuss the three components respectively.

A. Bytecode and Data Collection

Figure 2 shows the JIT collection we used in DEXLEGO.

During the execution of an application, ART firstly extracts the

DEX file from the original APK file and passes it to the class

linker. The class linker then loads and initializes the classes

in the DEX file, and our JIT collection method collects the

metadata of the class (e.g., super class) at this point. Next,

when a method is invoked, ART extracts its bytecode from

the DEX file, and leverages the interpreter to execute them.

The interpreter fetches the entire bytecode (organizing in a 16-

bit array) of the method and executes the bytecode instructions

one by one. Thus, according to our JIT policy, we collect the

executed instructions of the method and their related objects

(e.g., string) via instruction-level extracting. Note that the

execution of the code in the dynamic loaded DEX file also

follows the same flow.

The state-of-the-art static analysis tools do not accept

machine code as their input. However, ART executes most

methods based on the machine code, and the translation from

the machine code to the bytecode is a challenging task. To

simplify the task, DEXLEGO configures all methods in the

application to be executed by the interpreter.

Initialization
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in

interpreter

DEX 
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Collecting

Modified Android Runtime
......
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Fig. 2: Just-in-Time Collection.

B. DEX File Reassembling

After the collecting, all the output files are reassembled to

a new DEX file offline following the format of a DEX file,

and we replace the DEX file in the original APK file with the

reassembled one. The modified APK file is finally fed to static

analysis tools to study the malicious behavior.

This reassembling is not trivial, and we consider this is

the key contribution of this work. In the DEX file format,

each method contains only one instruction array. However,

due to different control flows (e.g., execution is led to dif-

ferent branches of a branch statement) or self-modifying

code, one method may contain different instruction arrays

in the collection stage. To correctly combine the collected

instructions, we thus design a tree model and a novel collecting

and reassembling mechanism. More details are discussed in

Section IV-A and Section IV-B.

C. Code Coverage Improvement Module

To improve the code coverage of dynamic analysis systems,

there already exists a series of tools or theories like: 1)

Input generators or fuzzing tools [28]–[32], 2) Symbolic or

concolic execution [23], [33]–[37] based systems, 3) Force

execution [38]–[40] based systems. Our code coverage im-

provement module can be one of them or a combination of

them. Note that most of the systems mentioned in 1) and 2)

are implemented in Android, and we can directly use them

to conduct the execution of the target application with little

engineering effort. However, to the best of our knowledge,

the idea of force execution has not been applied on Android

platform. Thus, we implement a prototype of force execution

as a supplement of our code coverage improvement module.

To use force execution in DEXLEGO, we identify the

Uncovered Conditional Branches (UCB) and calculate the path

to each UCB. By monitoring and manipulating the branch

instructions in the interpreter, we force the control flow to

go along the calculated path to reach each UCB.

IV. DESIGN AND IMPLEMENTATION

We implement DEXLEGO in an LG Nexus 5X with Android

6.0. Based on the Android Open Source Project [41] (AOSP),

we build a customized system image and flash it into the

device by leveraging a third-party recovery system [42].
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A DEX file consists of data structures that represent dif-

ferent data types used by the interpreter [43]. DEXLEGO

collects these data structures directly from memory while

they are used by ART at the runtime. Moreover, we leverage

instruction-level tracing to collect executed instructions and

reassemble them back to a method structure. In this section,

we discuss 1) bytecode collection, 2) bytecode reassembling,

3) data collection, and 4) DEX file reassembling separately.

The approaches to handle reflection and force execution are

also discussed in this section.

A. Bytecode Collection

In ART, after the instruction array of a method is passed

to the interpreter, the interpreter executes the instructions

one by one following the control flow indicated by them.

To expose the behavior of the method, DEXLEGO aims to

collect all instructions executed in the method. However,

existing systems [13], [14] that use method-level collection

cannot defend against dynamic bytecode modification, and the

detailed limitation is described as below.

Inadequacy of Method-level Collection. Consider Code 1 as

an example. While entering the method advancedLeak, the

smali code 1 of the method is represented by Code 2. After the

first execution of the native method bytecodeTamper, the

code of the method advancedLeak is modified to Code 3.

In Code 3, the native method has modified the bytecode to hide

the source (Lines 2-4 are changed from Code 2 to Code 3), but

the sensitive data is already stored in the register v0. During

the second execution of the for loop, the sensitive data in the

register v0 is leaked through the method sink (Lines 9-10
in Code 3). Then, the native method resumes the code back to

Code 2. The instruction array of the method advancedLeak
in memory is either Code 2 or 3 at any time point (e.g.,

before and after JNI code), which means that the method-

level collection (e.g., DexHunter [14] and AppSpear [13]) can

only collect Code 2 or 3 even when multiple collections are

involved. However, in the static taint flow analysis, the red

lines in Code 2 (Lines 2-4) represent a source, but the data

fetched from the source are sent to the blue lines (Lines 9-

10) which are not a sink. In Code 3, the red lines (Lines

9-10) are a sink, but the received data are obtained from the

blue lines (Lines 2-4) which are not a source. Thus, the leak

of the sensitive data can be identified from neither Code 2

nor Code 3, and the key reason is that the code representing

the source and sink are modified on purpose to hide the taint

flow. AppSpear claims that it implements an instruction-level

tracing mechanism, however, as we will explain below, simply

tracing the instructions does not satisfy the requirement of

static analysis tools.

Instruction-level Collection and Tree Model. In light of the

shortcoming of method-level collection as described above,

the DEXLEGO leverages instruction-level collection to defend

against self-modifying code such as Code 1. One simple

approach for instruction-level collection is to list all the

1 The smali code is a more readable format of the bytecode.

1 .method public advancedLeak()V
2 invoke-virtual p0 , \
3 Lcom/test/Main;->getSensitiveData()Ljava/lang/String;
4 move-result-object v0
5 const/4 v1, 0
6 :L0
7 const/4 v2, 2
8 if-ge v1, v2, :L1
9 invoke-virtual p0, v0 , \

10 Lcom/test/Main;->normal(Ljava/lang/String;)V
11 invoke-virtual { p0, v1 }, \
12 Lcom/ecspride/Main;->bytecodeTamper(I)V
13 add-int/lit8 v1, v1, 1
14 goto :L0
15 :L1
16 return-void
17 .end method

Code 2: Smali representation of the method advanced-
Leak while entering and leaving it.

1 .method public advancedLeak()V
2 const-string v0, "non-sensitive data"
3 nop
4 nop
5 const/4 v1, 0
6 :L0
7 const/4 v2, 2
8 if-ge v1, v2, :L1
9 invoke-virtual p0, v0 , \

10 Lcom/test/Main;->sink(Ljava/lang/String;)V
11 invoke-virtual { p0, v1 }, \
12 Lcom/ecspride/Main;->bytecodeTamper(I)V
13 add-int/lit8 v1, v1, 1
14 goto :L0
15 :L1
16 return-void
17 .end method

Code 3: Smali representation of the method advance-
dLeak after the first execution of the method bytecode-
Tamper.

executed instructions one by one; however, this approach

leads to a code scale issue. Take the loop as an example,

since the instructions in a loop are executed for multiple

times, the simple approach would lead to a large number of

repeating instructions. Moreover, the branch statements and

self-modifying code make it possible that different executions

of a single method lead to different instruction sequences.

However, the format of the DEX file [43] allows only one

instruction sequence for a single method.

To address the code scale issue, DEXLEGO eliminates

repeating instructions by comparing the instructions with

same indices. As mentioned above, the bytecode of a

method is organized in a 16-bit unit array and passed

to the interpretation functions (ExecuteSwitchImpl and

ExecuteGotoImpl functions). In these functions, the in-

terpreter uses a variable dex_pc to represent the index of

the executing instruction in the array. In light of this, we

identify repeating instructions by comparing the executing

instructions with the same dex_pc values. Moreover, the

self-modifying code can also be identified by the comparison.

Different instructions with the same dex_pc value actually

indicate a runtime modification.

Algorithm 1 illustrates the comparison-based instruction

collection algorithm, and Figure 3 shows the related data

structures. We consider the first execution of an instruction
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Fig. 3: Data Structure Storing All Instructions in a Method

During a Single Execution. The right tree structure shows the

collection result for a method during a single execution. The

left rectangle describes the data structure of each tree node.

For each execution of a method, we generate a collection tree.

as a baseline and any different instructions with the same

dex_pc value as a divergence branch. Thus, each divergence

branch indicates a piece of self-modifying code. Note that self-

modifying code might also exist in the divergence branch (like

multiple layers of self-modifying). The divergence branches in

a method then form a tree structure. The right part of Figure 3

shows an example of the final collecting result. Nodes 1-

3 represent three pieces of self-modifying code on the root

node, and Nodes 4-5 represent two pieces of self-modifying

code on Node 2. The left rectangle in Figure 3 shows the

TreeNode structure which represents a node in the tree

structure. The Instruction List (IL) in the structure includes the

list of executed instruction and their metadata. The instructions

in IL are recorded by the order of their first execution and

the IL plays the role of baseline in the node. The dex_pc
value of an instruction may be different from its index in IL

due to branch statements, and we use an Instruction Index

Map (IIM) to maintain the mapping between the instruction’s

dex_pc value and its index in IL for further comparison.

sm_start and sm_end indicate the starting and ending

dex_pc value of the divergence branch, while parent and

children represent the parent and all children of the node,

respectively. With the tree structure, DEXLEGO records all

executed instructions in a single execution of a method and

maintains the code size similar to the original instruction array.
In Algorithm 1, we only update one node during the

execution of a single instruction, and this node is considered

as the current node. DEXLEGO creates an empty root node as

the current node while entering a method. Once an instruction

is executed, we check IIM of the current node to find whether

the dex_pc value of this instruction has been recorded. If it

does not exist in IIM, DEXLEGO pushes the instruction into IL

and updates IIM. If the dex_pc value already exists in IIM,

we add a check procedure to find whether the instruction is the

same as the one we recorded before. A positive result means

that the same instruction in the same position is executed

again, and DEXLEGO does not record it. In contrast, the

negative result indicates that modification has occurred to

Algorithm 1 Bytecode Collection Algorithm

1: procedure BYTECODECOLLECTION

2: create node root
3: current = root
4: for each executing instruction ins do
5: let index of ins be dex pc
6: if dex pc exists in current.IIM then
7: pos in IL = current.IIM.get(dex pc)
8: old ins = current.IL.get(pos in IL)
9: if !SameIns(ins, old ins) then

10: create a child node child
11: child.parent = current
12: child.start pos = dex pc
13: current = child
14: else
15: continue
16: end if
17: else if current has a parent then
18: parent = current.parent
19: if dex pc exists in parent.IIM then
20: pos in IL = parent.IIM.get(dex pc)
21: old ins = parent.IL.get(pos in IL)
22: if SameIns(ins, old ins) then
23: current.end pos = dex pc
24: current = parent
25: continue
26: end if
27: end if
28: end if
29: pos in IL = current.IL.size()
30: current.IL.add(ins)
31: current.IIM.push(pair(dex pc, pos in IL))
32: end for
33: end procedure

this instruction since its last execution. Then, we create a

child node of the current node to represent the divergence

branch, and the new node becomes the current node. After

that, DEXLEGO treats the instruction as a new instruction and

pushes it into IL of the current node. In a divergence branch,

another check procedure is added to each instruction, and this

check procedure aims to identify whether the current diver-

gence branch converges to its parent. If the same instruction

with the same dex_pc value has been found in the parent’s

IL, we consider that the divergence branch converges back to

its parent (e.g., current layer of self-modifying code ends) and

make the parent node to be the new current node.

Listing 1 shows a high-level semantic view of the collection

result of the method advancedLeak in Code 1. When Line

13 in Code 1 is executed for the first time, an invocation of

the method normal is recorded. Then, in the second run,

an invocation of the method sink is detected. However, by

comparing with the recorded instructions, DEXLEGO finds

that it is a divergence point. A child node is forked and

the instruction is pushed into the IL of the child node.

Furthermore, a convergence point is found when Line 14 is

executing. Thus, the collection tree contains a root node and a

child node, and the child node contains only one instruction.

With the tree, the executed instructions and the control flows

in the method are well maintained. Note that the modification

to the Line 11 is ignored since the modified instructions are

never executed.

For the issue of multiple instruction sequences for a single
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1 Root Node:
2 String a = getSensitiveData();
3 for (int i = 0; i < 2; ++i) {
4 normal(a);
5 bytecodeTamper(i);
6 }
7

8 Child Node: (Line 13 in Code 1)
9 sink(a);

Listing 1: High-level Semantic View of the Collection

Result of the Method advancedLeak in Code 1.

method, we generate multiple collection trees for multiple

executions of the method and keep only the unique trees. The

trees are further combined together with the approach detailed

in Section IV-B.

B. Bytecode Reassembling

The offline reassembling-phase merges the collected trees

into a DEX file while holding all the executed instructions and

control flows. There are two steps in this phase: 1) converting

each tree into an instruction array. 2) merging instruction

arrays into the DEX file.

Converting a Tree into an Instruction Array. Each node in

the collection tree generated from the collection phase contains

an independent Instruction List (IL), and the goal of this phase

is to combine the ILs in the nodes together without losing

any control flows or instructions. To simplify the combination

process, we traverse the nodes with the bottom-up fashion

since the leaf nodes contain no child node.

To merge a single leaf to its parent, DEXLEGO inserts an

additional branch instruction in the divergence point (indicated

by sm_start, self-modifying start, as defined in the above

subsection IV-A), with one branch of the instruction pointing

to the leaf. To make both conditional branches reachable,

the conditional expression of the added branch instruction

is calculated based on a static field of an instrument class

with random values. Note that the random value produces

indeterminacy problem on the additional branch instruction,

and we consider it acceptable since the static analysis tool

will take both branches of the instruction as reachable.

Once the leaf nodes are recursively merged into their

parents, the root node becomes a complete set of the collected

instructions including different control flows triggered during

the execution.

Code 4 demonstrates the reassembled result of Listing 1.

The static field com_test_Main_advancedLeak_0 in

our instrument class Modification indicates the diver-

gence point in Line 13 of Code 1. When this result is fed

to static analysis tools, they treat both normal and sink as

reachable and detect the taint flow from sensitive data to text

message in Code 1.

Merging Instructions Arrays. For each executed method,

the previous phase outputs unique instruction arrays which

indicate different executions of the method. Similar to the

approach discussed above, we create a method variant for

each instruction array and use additional branch instructions

to cover different method variants.

1 String a = getSensitiveData();
2 for (int i = 0; i < 2; ++i) {
3 if (Modification.com_test_Main_advancedLeak_0) {
4 normal(a);
5 } else {
6 sink(a)
7 }
8 bytecodeTamper(i);
9 }

Code 4: Reassembled Result of the Method

advancedLeak in Code 1.

C. Data Collection and DEX Reassembling

As mentioned in Section III-A, besides bytecode instruc-

tions, DEXLEGO uses JIT collection to collect the metadata

of DEX file. The collected data is written into collection files

and further used to reassemble a new DEX file offline.

In Code 1, before any method or field in Main is

accessed, the class Lcom/example/Main; is loaded

and initialized. During the process, we firstly store string

Lcom/example/Main; into a string structure and

record the index of this string structure. Then with the

index, a type structure is constructed and stored. Finally,

a corresponding class structure related to the type is

extracted. The collection occurs again when the class is

initialized. The initialization procedure links the methods

and fields to the class, and initializes the static fields. In

Code 1, methods onCreate, advancedLeak, normal,

and sink are linked to the class. While the static field

PHONE is initialized, DEXLEGO stores its name PHONE, type

Ljava/lang/String; and initial value 800-123-456.

Lastly, a field structure is created and recorded. The

method structures and the bytecode inside them are collected

before and during the execution of the methods, respectively.

After the collection process, all collection files including

bytecode are combined offline according to the format of the

DEX file. Finally, we leverage the Android Asset Packaging

Tool integrated with Android SDK to replace the DEX file

in the original APK file with the reassembled one. To verify

the soundness of our extracting and reassembling algorithm,

we perform extensive tests against real-world applications,

and the evaluation results in Section V-A, Section V-B, and

Section V-D show that the reassembled DEX file retains the

semantics of the real-world application and can be correctly

processed by the state-of-the-art static analysis tools.

D. Handling Reflection

Currently, reflection is a serious obstacle for static analysis

tools, and even the state-of-the-art static analysis tools [1]–

[3], [23] cannot provide a precise result when reflection is

involved in an application. FlowDroid [1], DroidSafe [3],

and HornDroid [2] can solve the reflection only when the

parameters are constant strings. However, the name string can

be encrypted in some cases [23], and advanced malware can

use reflection without involving any string parameter [24].

The TamiFlex [25] system on traditional Java platform uses

load-time instrumentation to log reflective method calls and

transform them to direct calls at offline. However, the required
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Fig. 4: Iterative Force Execution.

load-time instrumentation class java.lang.instrument
is not supported in Android [1]. Meanwhile, since the target

of the reflective method calls is parsed in ART at runtime,

DEXLEGO actually knows the target of each reflection. Thus,

we apply the similar idea in ART by replacing the reflection

calls with direct calls in the collecting stage.

E. Force Execution

As a supplement of the code coverage improvement module,

we implement a prototype of force execution which executes

the target application in an iterative fashion. Note that our

force execution starts from the execution result of the previous

execution, and the previous execution could be any kind

of execution like fuzzing, symbolic execution, another force

execution, or simply open the application and close. Figure 4

shows the workflow of the iterative force execution. In each

iteration, we first use branch analysis to identify the Uncovered

Conditional Branch (UCB) from the result of the previous

execution. Next, we calculate the control flow path to each

UCB. A path to an UCB consists of branch instructions and

the offsets of the conditional branches leading to the UCB. We

save each path into a file and use these files as the input of the

next iteration together with the original application. Finally, in

the interpretation functions, the outcome of the corresponding

conditional expression is automatically manipulated at runtime

following the path files. With this approach, DEXLEGO en-

sures that the runtime control flow goes along the path to the

UCB. If no more new UCB are generated after the iteration,

we terminate the execution and continue the collecting stage.

Otherwise, the next iteration is scheduled.

Since the idea of force execution breaks the normal control

flow of the original application, the application may crash

due to the control flow falls to an infeasible path [39], [40].

To avoid crash triggered by force execution, we monitor

the unhandled exception in the interpreter and tolerate it by

directly clear the exception. This strategy helps us to avoid

terminations due to infeasible paths while does not affect our

runtime bytecode and data collection.

V. EVALUATION

In this section, we evaluate DEXLEGO with Droid-

Bench [24] and real-world applications downloaded from

Google Play and other application markets. In particular, we

aim to answer five research questions:

RQ1. Can we correctly reconstruct the behavior of apps?

RQ3. How is DEXLEGO compared with other tools?

RQ4. Can DEXLEGO work with real-world packed apps?

TABLE I: Test Result of Different Packers.

Applications HTMLViewer Calculator Calendar Contacts

# of Instructions 217 2,507 78,598 103,602

360 [11] � � � �
Alibaba [7] � � � �
Tencent [12] � � � �
Baidu [8] � � � �
Bangcle [45] � � � �
NetQin [46] The service is offline now

APKProtect [47] Unresponsive to packing requests

Ijiami [9] Samples are rejected by human agents

RQ5. What is the coverage of our force execution prototype?

RQ6. What is the runtime performance overhead?

A. RQ1: Test with Open-source Apps and Public Packers

To verify the correctness of the reassembled re-

sult, we pick up four open source applications (i.e.,

HTMLViewer, Calculator, Calendar, and Contacts)

from AOSP [41] and use DEXLEGO to reveal them. By

manually comparing the instructions and control flows in each

method, we ensure that the instructions and control flows in

the source code are completely included in the reassembled

result. In regard to Calendar and Contacts, we use

Soot framework [44] to build a complete call graph since

the numbers of instructions (78,598 and 103,602 instructions,

respectively) are too large for a manual analysis. By examining

the call graph, we confirm that the control flows in these two

applications are properly maintained in the reassembled DEX.

Next, to check the functionality against packers, we use

different public packing platforms to pack these applications

and then use DEXLEGO to reveal them again. Table I shows

the result of the experiments. For the packers including

360 [11], Alibaba [7], Tencent [12], Baidu [8], and Bang-

cle [45], DEXLEGO succeeds in both collection and reassem-

bling stages. By using the same approach described above,

we ensure that DEXLEGO correctly rebuilds the behavior of

each application. Note that NetQin packer [46] mentioned in

AppSpear [13] is no longer available. The APKProtect [47] is

unresponsive to the packing requests, and there are no logs of

the occurred errors. The packing service provided by Ijiami [9]

requires manual audits by their agents, and they reject our

applications for the reason that the applications are not actually

developed by us.

B. RQ2: Test with Existing Tools

1) Static Analysis Tools: DroidBench [24] is a set of open-

source samples that leak sensitive data in various ways. It is

considered as a benchmark for Android application analysis

and widely used among recent analysis tools [1]–[5]. The latest

release of DroidBench contains 119 applications, including

both leaky and benign samples. The leaky samples leak a

variety of sensitive data fetched from sources (API calls

that fetch sensitive information) to sinks (API calls that may

leak information), and the benign samples contain no such

information flows. As a supplement, we contribute another 15
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TABLE II: Analysis Result of Static Analysis Tools. The

columns in ”Original” represent the analysis result of the

original samples, and the columns in ”DEXLEGO” represent

that of the samples reassembled by DEXLEGO. The column

”TP” and ”FP” indicate the number of true positives and false

positives of the analysis result, respectively.

# of
Samples

# of
Malware

Original DEXLEGO

TP FP TP FP

FlowDroid [1] 134 111 81 10 95 4

DroidSafe [3] 134 111 95 12 105 7

HornDroid [2] 134 111 98 9 106 4

samples involving usage of advanced reflection (5 samples),

dynamic loading (3 samples), self-modifying (4 samples), and

unreachable taint flows (3 samples). Current static analysis

tools [1]–[3] cannot precisely analyze these newly added

samples. Besides this benchmark, we choose three represen-

tative static analysis tools (FlowDroid [1], DroidSafe [3], and

HornDroid [2]) to conduct the experiments.

Our experiment involves 134 samples (119 samples in the

newest release plus 15 samples we contributed) in Droid-

Bench. Since the lines of code in DroidBench samples are

small, we simply choose the state-of-the-art fuzzing tool

Sapienz [27] to generate the inputs for the execution. We first

use the static analysis tools to analysis the original samples

and the samples processed by DEXLEGO, and the result is

shown in Table II. The table shows that DEXLEGO increases

more than 8 true positives by resolving advanced reflections,

extracting self-modifying code and dynamic loading code.

Moreover, The JIT collection ensures that the extracted data

reflects the performed behavior of the target application. Thus,

at least 5 false positives introduced by dead code blocks are

removed. Next, without losing generality, we use one of the

most popular packers tested in Section V-A, 360 packer, to

pack the original samples and process the packed samples with

DEXLEGO, DexHunter [14], and AppSpear [13], respectively.

The analysis result of the processed samples is shown in

Table III. Note that DexHunter and AppSpear lead to the same

result since they can extract the original DEX files and the

result is same as analyzing the original DEX. Compared to

DEXLEGO, they fail to deal with self-modifying code and

reflection. As shown in the table, DEXLEGO provides more

than 5 true positives and reduces more than 5 false positives

than DexHunter and AppSpear. We note that DEXLEGO fails

to cover taint flow in only one application among all samples.

In this sample, sensitive data only leaks in the tablet, and it

cannot be detected as we execute it in a mobile phone.

Sensitivity =
tp

tp + fn
, Specificity =

tn

tn + fp
,

F-Measure = 2 × Sensitivity × Specificity

Sensitivity + Specificity

(1)

The F-Measure [2] is a standard measure of the performance

of a classification, and it is calculated by Formula (1). Fig-

ure 5 illustrates the changes of F-Measures after involving

DexHunter, AppSpear, and DEXLEGO. Once DEXLEGO is

TABLE III: Analysis Result of Packed Samples. The columns

in ”DH”, ”AS”, and ”DEXLEGO” represent the analysis result

of the samples processed by DexHunter [14], AppSpear [13],

and DEXLEGO, respectively. The column ”TP” and ”FP”

indicate the number of true positives and false positives of

the analysis result, respectively.

# of
Samples

# of
Malware

DH [14] / AS [13] DEXLEGO

TP FP TP FP

FlowDroid [1] 134 111 84 10 95 4

DroidSafe [3] 134 111 98 12 105 7

HornDroid [2] 134 111 101 9 106 4

FlowDroid DroidSafe HornDroid

40%

60%

80%

100%

F
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Fig. 5: F-measures of Static Analysis Tools.

involved, the F-Measure of FlowDroid increases from 63% to

84% on DroidBench, and that of DroidSafe increases from

61% to 80%. In regard to the most recent static analysis

tool, HornDroid, the F-Measure increases from 72% to 89%.

The percentages of incremental values are 33.3%, 31.1%,

and 23.6%, respectively. In the meantime, the improvement

introduced by DexHunter and AppSpear is less than 3%.

2) Dynamic Analysis Tools: As mentioned in Section I,

dynamic analysis tools can be circumvented through implicit

taint flows, and a recent work [23] shows that a representitive

dynamic analysis tool, TaintDroid [17], misses leakage on

some samples of DroidBench. We pick these samples and

analyze them with both TaintDroid and another recent dynamic

analysis tool TaintART [18]. Next, we use DEXLEGO to

analyze it again. The reassembled result is fed to HornDroid,

the most recent static analysis tool, for comparison.

Table IV shows the taint flow analysis results of TaintDorid,

TaintART, and combing DEXLEGO and HornDroid. As shown

in Table IV, the static analysis result of reassembled APK

file by DEXLEGO detects the taint flows and is more precise

than dynamic analysis tools. In Button1 and Button3,

the sensitive data are leaked via callback methods, and we

solve it properly while the dynamic analysis tools miss it.

As TaintDroid executes applications on emulator, the sample

EmulatorDetection1 evades the analysis. Both Taint-

Droid and TaintART cannot detect the implicit taint flows

in ImplicitFlow1, and using HornDroid with DEXLEGO

provides a precise analysis result. One of the taint flows

in PrivateDataLeak3 leaks the sensitive data through

writing/reading an external file, and all tested tools fail to

detect this flow since they do not take this case into account.

Note that these missed taint flows are not caused by code

coverage issue, but due to the weakness of dynamic analysis
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TABLE IV: Analysis Result of Dynamic Analysis Tools

and DEXLEGO. The columns ”TD” and ”TA” represent the

taint flows detected by TaintDroid [17] and TaintART [18],

respectively. The last column shows the detected taint flows

by feeding the revealed result of DEXLEGO to HornDroid [2].

Samples Leak #
# of Leak Detected

TD [17] TA [18] DEXLEGO + HD [2]

Button1 1 0 0 1

Button3 2 0 0 2

EmulatorDetection1 1 0 1 1

ImplicitFlow1 2 0 0 2

PrivateDataLeak3 2 1 1 1

tools on implicit taint flows.

Note that DEXLEGO is not a dynamic analysis tool. We

believe we should not directly compare DEXLEGO with dy-

namic analysis tools, and the dynamic analysis tools have

their advantages. However, the experiment conducted in this

subsection is to show that DEXLEGO can help static analysis

tools make up some deficiencies of dynamic analysis tools.

C. RQ3: Test with Real-world Packed Applications

A previous work [48] has downloaded more than one mil-

lion applications from Google Play by a crawler in 2014, and

we select the packed applications from this set. Since the DEX

file in an application packed by the public packing platforms

contains only the classes needed to unpack the original DEX

file, the number of the classes in the DEX file is less compared

to normal applications. In light of this, we perform a coarse-

grain analysis to screen the applications which contains less

than 50 classes from the top rated 10, 000 applications. Next,

we select the first 9 applications from the screened result by

manually checking and reverse engineering. Without loss of

generality, we download the latest version of these applications

from three different popular application markets: 1) Google

Play [49] (denoted as set A), 2) 360 Application Market [50]

(denoted as set B), and 3) Wandoujia Application Market [51]

(denoted as set C).

For these real-world packed applications, we use FlowDroid

to provide a quick scan on the original applications, and

then execute them with DEXLEGO for 5 minutes. Next,

the reassembled APK file is analyzed again by FlowDroid.

Table V shows the result of our experiment. Although no taint

flow can be detected from the original samples, FlowDroid

detects several taint flows from these revealed applications.

From the analysis result, we find that all of these applications

send device ID (IMEI number) to remote servers. Moreover,

three of them leak location information and two of them

leak SSID. This result also shows that DEXLEGO successfully

reveals the latest packed real-world applications.

D. RQ4: Code Coverage

To evaluate the code coverage of our force execution engine,

we pick up five open source applications from the random

page [52] of F-Droid [26] project. For each application, we

first execute it with Sapienz [27] and use Java Code Coverage

TABLE V: Analysis Result of Packed Real-world Applica-

tions. The column ”Sample Set” is defined in Section V-C,

which indicates the source of the application. The column

”# of Installs” shows the installation number provided by

the application markets. The column ”Original” represents the

number of detected taint flows in the original application while

the column ”Revealed” is the number of detected taint flows

in the revealed APK file.

Package Name Version Sample Set # of Installs Original Revealed

com.lenovo.anyshare 3.6.68 A 100 million 0 4

com.moji.mjweather 6.0102.02 A 1 million 0 5

com.rongcai.show 3.4.9 A 100 thousand 0 3

com.wawoo.snipershootwar 2.6 B 10 million 0 4

com.wawoo.gunshootwar 2.6 B 10 million 0 5

com.alex.lookwifipassword 2.9.6 B 100 thousand 0 2

com.gome.eshopnew 4.3.5 C 15.63 million 0 3

com.szzc.ucar.pilot 3.4.0 C 3.59 million 0 5

com.pingan.pabank.activity 2.6.9 C 7.9 million 0 14

Library (JaCoCo) [53] for Android Studio to calculate the

coverage. Next, based on the result of Sapienz, we execute

it again using the force execution engine as the code coverage

improvement module.

Table VI shows the details of the samples including package

name, version number, the number of instructions, and the total

size of the dump files after fuzzing by Sapienz. Note that the

size of the dump files is not only related to the number of the

instructions in the application, but also related to the size of

other data structures in the DEX file (e.g., number of classes,

number of methods, size of strings, and so on.) and the code

coverage of the fuzzing. Table VII shows the average coverage

of these samples with different granularities. The results show

that the force execution significantly improves the coverage

and achieves an average instruction coverage of 82%. By

manually check the source code, we group the cause of missed

instructions into three main categories: 1) Dead code blocks.

As an example, the CmdTemplate class is never involved

in the application be.ppareit.swiftp, thus the entire

instructions in this class are not included while calculating

coverage. 2) Native crashes. Although DEXLEGO clears the

unhandled exceptions in the interpreter, the abnormal control

flows may lead the native code to crash. This may be mitigated

by the on demand runtime memory allocation mechanism

applied in [40]. 3) Instructions in exception handlers. During

force execution, the expected exceptions in the try-catch
blocks may not be thrown due to abnormal control flow, and it

may be solved by treating these blocks as branch instructions

in the branch analysis. We leave it as a future work.

E. RQ5: Performance

As DEXLEGO traces and extracts instructions at runtime,

it slows the ART during instruction execution. To learn the

performance overhead introduced by DEXLEGO, we use CF-

Bench [54] to compare the performance of the unmodified

ART and ART with DEXLEGO. For each environment, we

run CF-Bench for 30 times, and the results are presented in
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TABLE VI: Samples from F-Droid [26].

Package Name Version # of Instructions Dump File Size

be.ppareit.swiftp 2.14.2 8,812 47.26 KB

fr.gaulupeau.apps.InThePoche 2.0.0b1 29,231 771.81 KB

org.gnucash.android 2.1.7 56,565 2.40 MB

org.liberty.android.fantastischmemopro 10.9.993 57,575 1.55 MB

com.fastaccess.github 2.1.0 93,913 3.18 MB

TABLE VII: Code Coverage with F-Droid Applications.

Class Method Line Branch Instruction

Sapienz [27] 44% 37% 32% 20% 32%

Sapienz + DEXLEGO 87% 88% 82% 78% 82%

Figure 6. A higher score indicates a better performance. It

shows that DEXLEGO brings 7.5x, 1.4x, 2.3x overhead on

Java score, native score, and overall score, respectively.

Moreover, we evaluate the launch time of three popular

applications (i.e., Snapchat, Instagram, and WhatsApp) down-

loaded from Google Play. While an activity in an application

is launching, the ActivityManager reports the time usage

for initializing and displaying. We launch each application

for 30 times and the result is summarized in Table VIII.

The result shows that DEXLEGO introduces about two times

slowdown on the launch time, and this result matches the

overall overhead tested by CF-Bench.

Since our system is designed for security analyst instead

of traditional users, we do not take performance as a critical

factor. In summary, we consider the overhead is acceptable

and leave the further improvement as our future work.

VI. RELATED WORK

A. Static Analysis Tools

FlowDroid [1] is a static taint-analysis tool for Android

applications, and it achieves a high accuracy by mitigating the

gaps between lifecycle methods and callback methods. Aman-

droid [5] and IccTA [4] aim to resolve the implicit control

flows during inter-component communication. EdgeMiner [55]

links the callback methods with their registration methods

to facilitate the static analysis tools in gaining more precise

results. DroidSafe [3] implements a simplified model of the

Android system and solves native code in the Android frame-

work by manually analyzing the source code and writing stubs

for them in Java. HornDroid [2] generates Horn clauses from

the bytecode of application and performs both value-sensitive

and flow-sensitive analysis on the clauses. HSOMiner [56]

uses machine learning algorithms to discover the hidden

sensitive operations by analyzing the branch instructions and

their related conditional branches.

B. Dynamic Analysis Tools

DroidScope [20] provides an instrumentation tool to moni-

tor the executed bytecode and native instructions to help ana-

lysts learn the malware manually. VetDroid [21] executes the

Android applications by a custom application driver and per-

forms a permission usage behavior analysis. CopperDroid [19]

Java Native Overall

103

104

105

S
co

re

Unmodified ART DEXLEGO

Fig. 6: Performance Measured by CF-Bench [54].

TABLE VIII: Time Consumption of DEXLEGO. The column

”Original” represents the mean and standard deviation (STD)

of the launch time with unmodified ART, while the last column

represents launch time with DEXLEGO.

Application Version
Original With DEXLEGO

Mean STD Mean STD

Snapchat 9.43.0.0 826.9ms 52.11ms 1,664.7ms 16.08ms

Instagram 9.7.0 608.5ms 45.6ms 1,275.8ms 25.37ms

WhatsApp 2.16.310 236.4ms 12.24ms 480.2ms 84.3ms

traces the system calls and reconstructs the behavior of the

target application. TaintDroid [17] and TaintART [18] are

taint flow analysis system on different Android Java virtual

machines. They track the information flow of the target

application at runtime and report the data leakage from sink

methods. DexHunter [14] focuses on how to dump the whole

DEX file from memory at a “right timing”. AppSpear [13]

leverages the key data structures in Dalvik to reassemble the

DEX file and claims that these data structures are reliable.

Both DexHunter and AppSpear assume that there is a clear

boundary between the unpacking code and the original code.

However, the unpacking code and malicious code may in-

tersperse with each other. Moreover, advanced malware can

modify bytecode and data in the DEX file at runtime, and

thus the previous dump-based unpacking systems will miss

the content modified after the dump procedure.

C. Hybrid Analysis Tools

Harvester [23] collects runtime values and injects these

values into the DEX file for the accuracy improvement of

analysis tools. However, some limitations still exist. Firstly,

marking logging points and backward slicing are based on the

original DEX file. If packing is considered, Harvester loses its

target like other static analysis tools. In contrast, DEXLEGO

does not analyze the original DEX file. Additionally, Harvester

greatly facilitates static analysis tools on solving reflections

as they reduce the parameters back into constant strings.

However, malware can use advanced reflection code to evade

the analysis. Since DEXLEGO replaces the reflective call with

direct call, we do not care about how the adversaries use

reflection.

D. Unpacking and Reassembling in Traditional Platforms

Ugarte et al. [57] present a summary of recent unpacking

tools and develop an analysis framework for measuring the

complexity of a large variety of packers. CoDisasm [58] is a
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dissembler tool that takes memory snapshot during execution

and disassembles the captured memory. Uroboros [59] aims

to disassemble binaries with a reassembleable approach. Their

reassembling method is based on the disassembling output of

Uroboros. DEXLEGO is different from these systems as we do

not disassemble the binary or monitor memory. [60] collects

the instruction trace at runtime and performs taint analysis

on the trace. Unlike [60], DEXLEGO aims to facilitate the

other static analysis tools and outputs a standardized DEX file,

which could be used for state-of-the-art static analysis tools

to perform different kinds of analysis including taint analysis.

VII. LIMITATIONS AND FUTURE WORK

Although the bytecode collection in DEXLEGO is not based

on the machine code in ART, the experience of TaintART

shows that we can also implement our collecting algorithm in

the compliers of ART [18] to achieve the same goal. As we

implement DEXLEGO in a real mobile device, we consider that

it is transparent to applications with anti-emulation techniques.

However, advanced malware may be aware of its existence by

code footprints or checksum values of Android libraries. One

potential solution is to leverage hardware isolated execution

environment mentioned in [61] to reduce the artifacts of the

system and improve the transparency. The code coverage

improvement modules in DEXLEGO may introduce additional

false positives on the unreachable code paths caused by unre-

alistic input. It is a trade-off between the code coverage and

the analysis precision. As DEXLEGO collects instructions in

ART, our procedure may also be compromised by native code.

To prevent attackers tampering DEXLEGO, we can randomize

the memory address of DEXLEGO [62], [63] to make it

difficult to be located. Additionally, using sandbox [64], [65]

or hardware-assisted isolated execution environments such as

TrustZone technology [61], [66]–[68] can secure the execution

of DEXLEGO. Note that applying these techniques to the

entire ART may introduce a heavy performance overhead or

compatibility issues, and we need to restrictively use them on

DEXLEGO only. Currently, DEXLEGO only reveals the behav-

ior performed by Java code. However, JNI technique allows

sophisticated malware to perform malicious behavior through

native code. We consider tracing the native instructions and

reassemble them as our future work.

VIII. CONCLUSIONS

In this paper, we present DEXLEGO, a novel system that

performs bytecode extraction and reassembling for aiding

static analysis. It adopts instruction-level JIT collection to

record the data and control flows of applications, and reassem-

bles the extracted information back into a new DEX file. The

evaluation results on packed DroidBench samples and real-

world applications with state-of-the-art static analysis tools

show that DEXLEGO correctly reveals the behavior in packed

applications even with self-modifying code. The F-Measures

of FlowDroid, DroidSafe, and HornDroid increase by 33.3%,

31.1%, and 23.6%, respectively. We also show that DEXLEGO

provides a better accuracy than pure dynamic analysis, and our

force execution module efficiently increases the code coverage

of the dynamic analysis.
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