
Transparent Malware Debugging on x86 and
ARM

Zhenyu Ning and Fengwei Zhang

COMPASS Lab
Wayne State University

April 27, 2018

1

Outline

I Introduction

I Background
I Towards Transparent Malware Analysis

I MalT on x86 Architecture
I Ninja on ARM Architecture

I Conclusions

2

Outline

I Introduction

I Background
I Towards Transparent Malware Analysis

I MalT on x86 Architecture
I Ninja on ARM Architecture

I Conclusions

3

Transparency

What is transparent malware analysis?

4

Transparency

What is transparent malware analysis?

I Analyzing the malware without being aware.

I “Transparent” means that the malware cannot
detect it.

5

Transparency

Why transparency is important?

6

Evasive Malware

Computer System

Application Malware

7

Evasive Malware

Computer System

Application Malware

Analyzer

8

Evasive Malware

Computer System

Application Application

Analyzer

9

Malware Analysis

What is the current state of malware
analysis systems?

10

Malware Analysis

Application

Operating System

Hypervisor/Emulator

App App Malware

11

Malware Analysis

Application

Operating System

Hypervisor/Emulator

App App Malware

Malware Analyzer

12

Malware Analysis

Application

Operating System

Hypervisor/Emulator

App App Malware

Malware Analyzer

I Unarmed to anti-virtualization or anti-emulation techniques.

I Large performance overhead.

13

Malware Analysis

Application

Operating System

Hypervisor/Emulator

App App Malware

Malware Analyzer

14

Malware Analysis

Application

Operating System

Hypervisor/Emulator

App App Malware

Malware Analyzer

I Unable to handle malware with high privilege (e.g. rootkits).

15

Transparency Requirements

What makes a transparent malware
analysis system?

16

Transparency Requirements

I An Environment that provides the access to the states of the
target malware.

I An Analyzer which is responsible for the further analysis of
the states.

17

Transparency Requirements

I An Environment that provides the access to the states of the
target malware.

I It is isolated from the target malware.

I It exists on an off-the-shelf (OTS) bare-metal platform.

I An Analyzer which is responsible for the further analysis of
the states.

18

Transparency Requirements

I An Environment that provides the access to the states of the
target malware.

I It is isolated from the target malware.

I It exists on an off-the-shelf (OTS) bare-metal platform.

I An Analyzer which is responsible for the further analysis of
the states.

I It should not leave any detectable footprints to the outside of
the environment.

19

Outline

I Introduction

I Background
I Towards Transparent Malware Analysis

I MalT on x86 Architecture
I Ninja on ARM Architecture

I Conclusions

20

System Management Mode

System Management Mode (SMM) [1] is special CPU mode
existing in x86 architecture, and it can be used as a hardware
isolated execution environment.

I Originally designed for implementing system functions (e.g.,
power management)

I Isolated System Management RAM (SMRAM) that is
inaccessible from OS

I Only way to enter SMM is to trigger a System Management
Interrupt (SMI)

I Executing RSM instruction to resume OS (Protected Mode)

21

TrustZone Technology

ARM TrustZone technology [2] divides the execution environment
into a secure domain and a non-secure domain.

I The RAM is partitioned to secure and non-secure regions.

I The interrupts are assigned into the secure or non-secure
group.

I Secure-sensitive registers can only be accessed in secure
domain.

I Hardware peripherals can be configured as secure access only.

22

PMU and ETM

I The Performance Monitor Unit (PMU) [3, 4] leverages a set
of performance counter registers to count the occurrence of
different CPU events.

I The Embedded Trace Macrocell (ETM) [5] traces the
instructions and data of the system, and output the trace
stream into pre-allocated buffers on the chip.

I The PMU exists in both x86 and ARM architecture while the
ETM is ARM special hardware.

23

Outline

I Introduction

I Background
I Towards Transparent Malware Analysis

I MalT on x86 Architecture [S&P’15]
I Ninja on ARM Architecture [USENIX Security’17]

I Conclusions

24

Towards Transparent Malware Analysis

Application

Operating System

Hypervisor/Emulator

Hardware

App App Malware

MalT on x86 Ninja on ARM

25

MalT on x86 Architecture

Debugging Client

GDB-like
Debugger

Debugging Server

SMI
handler

Debugged
application

1) Trigger SMI

2) Debug command

3) Response message

Inspect
applicationBreakpoint

26

MalT — Performance

I Testbed Specification
I Motherboard: ASUS M2V-MX SE

I CPU: 2.2GHz AMD LE-1250

I Chipset: AMD k8 Northbridge + VIA VT 8237r Southbridge

I BIOS: Coreboot + SeaBIOS

27

MalT — Performance

Table: SMM Switching and Resume (Time: µs)

Operations Mean STD 95% CI

SMM switching 3.29 0.08 [3.27, 3.32]

Command and BP checking 2.19 0.09 [2.15, 2.22]

Next SMI configuration 1.66 0.06 [1.64, 1.69]

SMM resume 4.58 0.10 [4.55, 4.61]

Total 11.72

28

MalT — Limitation

I High performance overhead on mode switch.

I Unprotected modified registers.

I Vulnerable to external timing attack.

29

Ninja on ARM Architecture

Non-secure Domain

Rich OS

App

App

Malware

Secure Domain

Secure Interrupt Handler

Trace
Subsystem

Debug
Subsystem

Remote
Debugging

Client

Secure Interrupt

Secure Port
ERET

30

Ninja on ARM Architecture

I Use TrustZone as the isolated execution environment.

I The debug subsystem is similar to MalT while the trace
subsystem is immune to timing attacks.

I Modified registers are protected via hardware traps.

31

Ninja — Performance

I Testbed Specification
I ARM Juno v1 development board

I A dual-core 800 MHZ Cortex-A57 cluster and a quad-core 700
MHZ Cortex-A53 cluster

I ARM Trusted Firmware (ATF) [6] v1.1 and Android 5.1.1

32

Ninja — Performance

Table: Performance Scores Evaluated by CF-Bench [7]

Native Scores Java Scores Overall Scores

Mean Slowdown Mean Slowdown Mean Slowdown

Tracing Disabled 25380 18758 21407

Instruction Tracing 25364 1x 18673 1x 21349 1x

System call Tracing 25360 1x 18664 1x 21342 1x

Instruction Tracing 6452 4x 122 154x 2654 8x

33

Ninja — Performance

Table: Time consumption of domain switching (Time: µs)

ATF Enabled Ninja Enabled Mean STD 95% CI

× × 0.007 0.000 [0.007, 0.007]

X × 0.202 0.013 [0.197, 0.207]

X X 0.342 0.021 [0.334, 0.349]

34

Ninja — Limitation

I OS-related tracing requires software-based approach to fill
semantic gaps, which involves performance overhead.

I Malware may intentionally enable the ETM or PMU to detect
the analysis system.

I Hardware traps can only protect the system instruction access
to the registers.

35

Outline

I Introduction

I Background
I Towards Transparent Malware Analysis

I MalT on x86 Architecture
I Ninja on ARM Architecture

I Conclusions

36

Conclusions

I We present MalT and Ninja, malware analysis systems in x86
and ARM architectures aiming for higher transparency.

I We consider the hardware-based approach provides better
transparency than software-based approaches.

I To build a fully transparent malware analysis system, we are
seeking for more hardware support.

37

Related Papers

USENIX Security’17 Zhenyu Ning and Fengwei Zhang. Ninja: Towards Transparent Tracing and Debugging on
ARM. In Proceedings of The 26th USENIX Security Symposium, Vancouver, BC, Canada,
August 2017.

S&P’15 Fengwei Zhang, Kevin Leach, Angelos Stavrou, and Haining Wang. Using Hardware Features
for Increased Debugging Transparency. In Proceedings of The 36th IEEE Symposium on
Security and Privacy, San Jose, CA, May 2015.

38

References I
[1] Intel, “64 and IA-32 architectures software developer’s manual: Volume 3C,”

https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf.

[2] ARM Ltd., “TrustZone Security Whitepaper,”
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html.

[3] ——, “ARMv8-A Reference Manual,”
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.k/index.html.

[4] Intel, “64 and IA-32 architectures software developer’s manual: Volume 3B,”
https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf.

[5] ARM Ltd., “Embedded Trace Macrocell Architecture Specification,”
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/index.html.

[6] ——, “ARM Trusted Firmware,” https://github.com/ARM-software/arm-trusted-firmware.

[7] Chainfire, “CF-Bench,” https://play.google.com/store/apps/details?id=eu.chainfire.cfbench.

39

https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.k/index.html
https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/index.html
https://github.com/ARM-software/arm-trusted-firmware
https://play.google.com/store/apps/details?id=eu.chainfire.cfbench

Thank you!

Questions?
zhenyu.ning@wayne.edu & fengwei@wayne.edu

http://compass.cs.wayne.edu

40

http://compass.cs.wayne.edu

Hardware Traps

.......

MRS X0, PMCR EL0

MOV X1, #1

AND X0, X0, X1
......

Non-secure Domain

41

Hardware Traps

.......

MRS X0, PMCR EL0

MOV X1, #1

AND X0, X0, X1
......

Non-secure Domain

Analyzing the instruction

Secure Domain

MDCR EL3.TPM=1

42

Hardware Traps

.......

MRS X0, PMCR EL0

MOV X1, #1

AND X0, X0, X1
......

Non-secure Domain

Analyzing the instruction

MOV X0, #0x41013000

Secure Domain

MDCR EL3.TPM=1

43

Hardware Traps

.......

MRS X0, PMCR EL0

MOV X1, #1

AND X0, X0, X1
......

Non-secure Domain

Analyzing the instruction

MOV X0, #0x41013000

Modifying saved ELR EL3

Secure Domain

MDCR EL3.TPM=1

44

Hardware Traps

.......

MRS X0, PMCR EL0

MOV X1, #1

AND X0, X0, X1
......

Non-secure Domain

Analyzing the instruction

MOV X0, #0x41013000

Modifying saved ELR EL3

ERET

Secure Domain

MDCR EL3.TPM=1

45

	Introduction
	Background
	Towards Transparent Malware Analysis
	MalT on x86 Architecture
	Ninja on ARM Architecture

	Conclusions
	Backup Slides

