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Abstract—Traditional anonymous networks (e.g., Tor) are vulnerable to traffic analysis attacks that monitor the whole network traffic to

determine which users are communicating. To preserve user anonymity against traffic analysis attacks, the emerging mix networks

mess up the order of packets through a set of centralized and explicit shuffling nodes. However, this centralized design of mix

networks is insecure against targeted DoS attacks that can completely block these shuffling nodes. In this article, we present

DAENet, an efficient mix network that resists both targeted DoS attacks and traffic analysis attacks with a new abstraction called

Stealthy Peer-to-Peer (P2P) Network. The stealthy P2P network effectively hides the shuffling nodes used in a routing path into the

whole network, such that adversaries cannot distinguish specific shuffling nodes and conduct targeted DoS attacks to block these

nodes. In addition, to handle traffic analysis attacks, we leverage the confidentiality and integrity protection of Intel SGX to ensure

trustworthy packet shuffles at each distributed host and use multiple routing paths to prevent adversaries from tracking and revealing

user identities. We show that our system is scalable with moderate latency (2.2s) when running in a cluster of 10,000 participants and is

robust in the case of machine failures, making it an attractive new design for decentralized anonymous communication. DAENet ’s code

is released on https://github.com/hku-systems/DAENet.

Index Terms—Scalable anonymous communication, P2P network, mix network, SGX, traffic analysis attack, DoS attack
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1 INTRODUCTION

THE Internet allows convenient communications between
users, but it also leads to great concerns about anonym-

ity since communications can be surveilled by powerful
malicious attackers such as network service providers (e.g.,
chatting services), Internet Service Providers and National
Security Agency (NSA). These adversaries usually deter-
mine if two users are talking to each other by analyzing net-
work communication traffics [1], [2], [3]. For example, NSA
is reported to collect Internet communication (e.g., emails
and voice-over-IP chats) for crime investigations [4], and
such information can be misused or leaked. Worse, some
governments block targeted services (e.g., Telegram) that
refuse to provide user communication data [5], so that users
can only use services that are under surveillance and expose
their identities.

To hide user identities during network communications,
more and more users turn to anonymous communication

systems (e.g., Tor [6], Loopix [7]). In practice, it is desirable
for an anonymous system to meet three requirements: low-
latency, resisting traffic analysis attacks and resisting targeted
Denial-of-Service (DoS) attacks. First, services that call for
anonymity, such as instant messaging and online payments,
usually tolerate only seconds of communication latency for
interactive user experience [8], [9]. Second, powerful adver-
saries can conduct traffic analysis by tampering, recording,
and analyzing sequences of network packets. Depending on
whether the adversaries actively manipulate network states
(e.g., dropping packets), traffic analysis attacks can be clas-
sified as passive attacks and active attacks. The most power-
ful attackers are global attackers that can monitor and
manipulate network packets in the whole network [10].
Third, users in an anonymous system may be blocked by
targeted Denial-of-Service (DoS) attacks from powerful
attackers (e.g., governments), it is important for an anony-
mous system to keep serving when a portion of mission-
critical components are blocked.

Traditional relay-based systems (e.g., Tor [6], AP3 [11])
are popular for anonymous communication. For instance,
the Bitcoin community has long been seeking anonymity
communication tools such as Tor to provision stronger cli-
ent anonymity guarantees in financial transactions [12]. Spe-
cifically, these systems forward encrypted messages
through several relay nodes (i.e., circuit) to hide message
senders and satisfy the low-latency requirement as users
can communicate through a small number of relays (e.g.,
three relays are usually used in Tor). However, the relay-
based approach is vulnerable to global traffic analysis
attacks that can manipulate and record network packets of
the relay circuits [13]. Worse, relay-based anonymous sys-
tems (e.g., Tor) usually make use of centralized directory
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servers and are susceptible to targeted DoS attacks. The
emerging shuffle-based systems (e.g., Loopix [7], Dis-
sent [14], Karaoke [15], Riposte [16], Miranda [17]) are
established to resist traffic analysis attacks. First, shuffle-
based systems defend against passive traffic analysis
attacks by messing up the order of user messages to hide
corresponding message senders. In practice, either statisti-
cal shuffles [18] or cryptographic shuffles [19], [20] is used.
To guarantee that messages are shuffled sufficiently (i.e.,
integrity), statistical shuffle assumes that the majority of
machines for message shuffles are trustworthy [7], [21],
and cryptographic shuffle requires users to verify the
integrity cryptographically [16], [22]. Second, some shuffle-
based systems defend against malicious packet drops by
asking all users to send messages in synchronized rounds,
such that any misbehaved users that drop packets will be
detected quickly.

Unfortunately, existing shuffle-based systems cannot
defend against targeted DoS attacks and achieve low
latency at the same time. To defend against targeted DoS
attacks, an anonymous system has to adopt a distributed
design where each user has the same role. Without central-
ized servers, attackers can conduct DoS attacks against only
some users, while other users can still communicate. How-
ever, it is not efficient to conduct message shuffles distribu-
tively (i.e., defending targeted DoS) with integrity. Both
statistical and cryptographic shuffle usually make use of
only a fixed, small number of centralized servers to conduct
shuffles efficiently.

However, these fixed, centralized servers are exposed to
targeted DoS attacks. Specifically, statistical shuffle makes
messages go through a sequence of fixed servers (e.g.,
owned by mutually untrusted parties), and each server con-
ducts shuffle separately. As these servers are fixed, it is pos-
sible to assume that the majority of them are trustworthy,
and the latency is low when the number of servers used is
small. However, when a statistical shuffle is applied distrib-
utively using users’ machines, it has to select a group of
users as shuffle nodes, and it is not possible to guarantee
that the majority of the selected nodes are trustworthy. On
the other hand, although the integrity of shuffles in crypto-
graphic shuffle can be verified, the verification cost incr-
eases exponentially on the number of shuffle nodes. For
example, DC-Net [23] conducts shuffles in a fully distrib-
uted manner using verifiable shuffles and all-to-all broad-
casts, which incurs severe computation costs and high
communication latency.

Recently, Trusted Execution Environment (TEE) such
as Intel SGX has been applied in various security
domains to efficiently preserve code integrity and data
confidentiality [24], [25]. For example, SGX-Tor [26] is
the first anonymous system that leverages SGX to hide
metadata such as identifiers of routing circuits, and effi-
ciently improves Tor’s abilities for defending against var-
ious attacks (e.g., bandwidth inflation). However, SGX-
Tor is still vulnerable to traffic analysis attacks and tar-
geted DoS attacks inherited from Tor. With the integrity
protection of SGX, it is possible for a shuffle-based sys-
tem to shuffle messages distributively by selecting a
group of trustworthy shuffle nodes, and to achieve anti-
DoS and low-latency at the same time.

We present DAENet 1, the first anonymous communica-
tion system based on SGX that can meet the three desirable
requirements. Specifically, all users in DAENet form a struc-
tured peer-to-peer (P2P) network with metadata (e.g., user
identifier) shielded by SGX, and DAENet makes use of SGX
for trustworthy message shuffles. With the help of a struc-
tured P2P network [27], [28], DAENet can achieve low-
latency as messages need to go through only logðNÞ users to
reach the destination. Moreover, DAENet can defend
against targeted DoS attacks that block a portion of users.
This is because there are no centralized servers in DAENet,
and a user can communicate through unblocked neighbors
in the network. However, SGX is not the silver bullet, and
DAENet still needs to handle traffic analysis attacks.

First, a structured P2P network has a static network
structure, and attacks can manipulate the structure to hurt
anonymity. Specifically, attackers can join as neighbors of a
victim to conduct eclipse attacks. To tackle this problem,
DAENet proposes a Stealthy P2P Network with two features.
First, users in DAENet are assigned with random identities
and are connected with random peers structurally. Thus,
attackers cannot determine the location of a user by the
user’s identity and cannot manipulate the user identities to
conduct eclipse attacks [29]. Second, to hide message pat-
terns, our stealthy P2P network enforces trustworthy mes-
sage shuffles that mess up the orders of input network
packets at each distributed SGX-enabled host, and oblivi-
ously disseminates output packets to the neighbors of each
user. With the above-mentioned designs, we prove that our
stealthy P2P network produces oblivious packet transmis-
sion under passive traffic analysis attacks for all participants
(Section 5.1)

Second, the static traffic patterns of a structured P2P net-
work can leak the anonymity of users. Specifically, two
users within a structured P2P network communicate
through the same circuit of relays. Therefore, attackers can
conduct a tagging attack [30] on the static circuit to identify
the sender or receiver. We propose a distributed dead drop
abstraction to adaptively change circuits in the network for
each communication round. Specifically, two communicat-
ing participants send their messages to a randomly selected
user (i.e., dead drop) using a shared secret. Then, the user
exchanges the two messages’ payload and sends them back.
Using this approach, the attackers cannot determine one
simple communicating circuit and further reveal who is
communicating with whom.

We implemented DAENet with 5.2k LoC in C++ on
Linux. We use Chord [27] as the implementation of our
structured P2P network, as it is an efficient and popular P2P
network. DAENet proposes a membership protocol that
attests the SGX code integrity and assists in user join. Mean-
while, DAENet proposes a dialing protocol to securely ini-
tialize conversations and exchange the shared secret used
for constructing a sequence of dead drops, without leaking
sensitive information to adversaries. DAENet also tolerates
network churn and machine failures to guarantee the liven-
ess. We compared DAENet with Loopix [7] and Dissent [32],
two state-of-art, open-sourced shuffle-based anonymous

1. DAENet is for a Decentralized, Anonymous and Efficient
network.
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systems. Loopix and Dissent make use of centralized serv-
ers for layer-based shuffles and cryptographically verifiable
shuffles, respectively. Our evaluations show that:

� DAENet is secure. DAENet can defend against vari-
ous attacks, including passive and active traffic anal-
ysis attacks and targeted DoS attacks.

� DAENet has low latency when scaling up to a large
number of users. DAENet incurs only 2.2s end-to-end
latency with 10,000 participants. Compared with
Loopix [7], DAENet incurs 3X� 7X lower communica-
tion latency, yet DAENet defends against DoS attacks.

In sum, the major contribution of this paper is DAENet,
the first anonymous system that meets three crucial require-
ments of anonymous systems: low-latency, defending
against traffic analysis attacks, and defending against tar-
geted DoS attacks. Other contributions include analysis of
attacks in an SGX-based anonymous system, and extensive
evaluations on DAENet’s security and efficiency.

The remaining of this paper is structured as follows.
Section 2 describes the background. Section 3 introduces the
security goals. Section 4 describes detailed anonymous pro-
tocols. Section 5 gives a security analysis. Section 6 is the
performance evaluation. Section 7 discusses limitations and
future directions. Section 8 is the related work and Section 9
concludes our work.

2 BACKGROUND

2.1 Anonymous Communication Systems

Existing anonymous communication systems can be classi-
fied into two categories: relay-based systems and shuffle-
based systems. As shown in Table 1, we compare DAENet
to prior systems from the perspective of three requirements.

Among the relay-based systems, Tor [6] is the most popu-
lar anonymous network ever deployed, with an estimated
eight million daily active users [34]. Tor admits volunteer
nodes to form a static routing circuit between two users,
resulting in only seconds of communication latency. How-
ever, Tor is susceptible to traffic analysis attacks that monitor
the whole network and de-anonymize sender identities by
correlating every input and output packets [35], [36], [37].
Meanwhile, recent work also shows Tor’s susceptibility to tar-
geted DoS by conducting bandwidth amplification [38]. As an

improved work of Tor, SGX-Tor [26] uses trusted computing
to preserve the integrity of code and hide sensitive informa-
tion of Tor components (e.g., circuit ID) in enclaves. SGX-Tor
incurs slightly higher latency than Tor due to the extra over-
head of entering and exiting enclaves. However, SGX-Tor
inherits Tor’s susceptibility to traffic analysis attacks.

Other relay-based anonymous communication systems,
such as ShadowWalker [31] and AP3 [11] are built upon a
structured P2P network where every node acts as both a cli-
ent when sending own requests and as a proxy by forward-
ing requests on behalf of other nodes, eliminating the
concern of targeted DoS attacks. Nevertheless, both systems
cannot defend against traffic analysis attacks because the
ordering of packets is still observable by traffic analyzers.

In contrast to relay-based systems, shuffle-based systems
resist traffic analysis attacks, more precisely, passive traffic
analysis attacks by messing up the order of input packets
and output packets (i.e., shuffling). To handle active traffic
analysis attacks, Riposte [16] uses Private Information
Retrieval (PIR) technique to detect and stop malicious
packet drops [39], [40]. However, Riposte assumes that
users can tolerate its hours of latency to achieve strong ano-
nymity, violating the low-latency requirement. Atom uses
cryptographic shuffle to resist packet drops, but it also
incurs high communication latency because generating and
verifying Atom’s zero-knowledge proofs imposes high
computational and time cost [33]. Loopix [7], Dissent [32]
and Karaoke [15] are three shuffle-based systems that incur
reasonable communication latency. However, these systems
are vulnerable to active traffic analysis attacks: by arbitrarily
dropping or delaying packets in the network, adversaries
can infer a specific message sender by dropping packets
and observing which user receives fewer packets as
expected [17]. Besides, all these systems do not provide
fault-tolerance, since they use a fixed set of centralized mix
servers to shuffle messages and require all servers to be
online. Thus, these mix servers are easily targeted by DoS
attacks, and all these systems will lose their liveness even
only one of the mix servers is blocked by DoS attacks.

2.2 Structured Peer-to-Peer Network

A structured P2P network (e.g., Chord [41], Pastry [28]) is
known for its efficient membership management, practical

TABLE 1
Comparison of DAENet to Existing Anonymous Communication Systems

Category Latency / Scale (#users) Anti: Passive
Traffic Analysis

Anti: Active
Traffic Analysis

Anti: Targeted DoS

Relay-based Tor [6] 0.25s � 2.5s / 8M � � �
SGX-Tor [26] 0.525s � 3.15s / 819 � � �

ShadowWalker [31] > 4s / 1000 � � @
AP3 [11] N=A /N=A � � @

Shuffle-based Loopix [7] 6.8s / 500 @ � �
Riposte [16] > 3600s / N=A @ @ �
Dissent [32] 1.3s / 500 @ � �
Atom [33] 30.0s / 1024 @ @ �

Karaoke [15] 6.0s / 16M @ � �
DAENet 2.2s / 10,000 @ @ @

00p00 indicates that the system can handle such vulnerability, while 00�00 is on the opposite.
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fault-tolerance and fast peer lookup, making it an attractive
cornerstone for building anonymous communication sys-
tems. In a structured P2P network, each participant only
needs to maintain a local view of the network to extend the
circuit [31]. Also, a structured P2P network has the potential
to hide the roles of participants by sending dummy mes-
sages along with the links between every participant.

Specifically, a structured P2P network uses Distributed
Hash Table (DHT) for peer lookup. In a DHT, nodes are
assigned identifiers and a range of values they are responsi-
ble for. Nodes only have knowledge about a fraction of the
network called neighbors which are stored in routing tables.
When a node tries to lookup a value, it first checks its rout-
ing table and asks a neighbor who is numerically closest to
the value. The neighbor, in turn, repeats this process. The
lookup ends until the receiver that owns the value is found.

DAENet uses Chord [42], an efficient DHT scheme as the
underlying communication protocol. In Chord, each partici-
pant joins the network by sending a join request to a known
Chord node. The Chord node will assign an identifier to the
participant and help the participant set up its routing table.
The identifier space is pictured as a ring which wraps mod-
ulo 2b, and b is chosen according to the scale of the network.
Each participant knows only a fraction of other participants
in the network. Specifically, for a participant with identifier
idx, it is connected to b neighbor nodes who have the
numerically closest identifier to idxþ 2ið0 � i < bÞ. Note
that not all slots in the identifier space (i.e., ½0; 2bÞ) have to
be used: each slot in the identifier space, named as S, is
mapped to a participant node who has numerically closest
identifier to S (i.e., Map(S) = ClosestNodeidx) by using con-
sistent hashing [43]. In DAENet, we call the neighbor nodes
of a participant successors and the participant itself is called
the predecessor of all its neighbor nodes. To maintain a con-
sistent view of membership, participants periodically send
control messages to check the liveness of their successors
and will remove inactive successors from their routing
tables. Unless specifically pointed out, we denote N as the
total number of participants in the network.

Although Chord facilitates efficient lookup, Chord itself
does not provide anonymity guarantees because the net-
work topology is explicit to traffic analyzers. By analyzing
the entering and leaving time of network packets, traffic
analyzers can link the successors and predecessors of each
node and further reveal the entire topology of the network
by gathering all linking information. With an explicit net-
work topology, traffic analyzers can easily drop targeted
users’ packets to block its anonymous service.

2.3 Intel SGX

Intel Software Guard eXtension (SGX) [24], [25] is a popular
security hardware available on commodity CPUs. It pro-
vides secure execution by putting data and code inside a
container called enclave. The enclave is isolated from privi-
leged software such as the operating system (OS), firmware
and hypervisor so that the protected code and data cannot
be easily tampered with or revealed from outside. The
trusted (enclave) and untrusted (application) components
run as isolated processes, communicating through a narrow
and well-defined interface. A process running outside the

enclave can invoke an SGX ECall to switch its execution into
the enclave; a process running in an enclave can invoke an
OCall to switch its execution outside the enclave. Besides,
SGX also provides remote attestation [44] to verify that a
particular piece of code is running in a genuine SGX-
enabled host.

3 OVERVIEW

3.1 Threat Model

We consider sophisticated and well-resourced adversaries
in the network, who attempt to determine if two partici-
pants are communicating, given that the message sender or
receiver may collude with the adversaries. Therefore, we
consider adversaries with two capabilities: global observa-
tion and traffic control. Confronted with such adversaries,
DAENet requires at least k � logN honest participants to
ensure complete message deliveries, where the coefficient k
depends on the communication rounds of a conversation,
and N is the total number of participants in the network.
Similar to other SGX-enabled systems [26], [45], SGX firm-
ware and the code running in SGX are trusted, SGX-related
side-channel attacks (e.g., cache and timing attacks) are out
of the scope of this paper.

3.2 Participants As Protocol Parties

Specifically, there are three roles in DAENet: Relay, Session
Node (i.e., sender/receiver) and Dead Drop Node.

Relays & Session Nodes. Relays are idle participants. They
do not hold any conversations with other participants and
are only responsible for forwarding messages in the net-
work, including both application messages (i.e., instant
messages) and underlying P2P control messages (i.e., mes-
sages for maintaining DAENet’s structural topology). In
contrast to relays, session nodes are participants that hold
conversations with others and keep sending application
messages in multiple communication rounds. Note that a
participant acts as either a relay or a session node in the
network.

Dead Drop Nodes. Dead drop nodes help exchange mes-
sage payload between pairs of session nodes. To initialize
a set of dead drop nodes, two DAENet participants first
negotiate a randomly generated shared secret through the
dialing protocol (Section 4.2). The shared secret is used for
generating a sequence of DeadDrop keys. Since DAENet
enables deterministic KEY-ID mapping by building on top
of Chord (Sestion 2.2), DeadDrop keys are deterministically
mapped to a series of nodes. Hence two session nodes can
agree on the same sequence of dead drop nodes in the net-
work. Note that all participants can be chosen as dead
drop nodes, and the duty of a dead drop node is ephem-
eral and will become invalid as soon as the dead drop
node completes payload exchanging in a particular com-
munication round.

Fig. 1 shows the flow of communicating through a dead
drop node in DAENet’s structured P2P network. By refer-
ring to a DeadDrop key, two session nodes named Alice
and Bob route their messages through several relays to a
designated participant (i.e., the dead drop node). The dead
drop node waits for two application messages coming and
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then exchanges the message payload and sends them back
to corresponding senders.

3.3 Security Goals and Defending Approaches

We demonstrate the attacks thwarted by DAENet to show
the benefits of our design. Specifically, we analyze the tar-
geted DoS attack and traffic analysis attack on DAENet and
provide corresponding security analysis.

3.3.1 Defending Against Targeted DoS Attacks

Attack Assumptions. We consider an adversary who is deter-
mined to deny services to DAENet network, and we make
two assumptions about the capabilities and makeup of the
adversary. In particular, the adversary needs not to control
a large fraction of the nodes or be able to observe the global
traffic to conduct the targeted DoS attack.

First, for the capability of such attack, we assume the
adversary has an attack budget B: the adversary can deny
the service of at most B nodes at a time. In DAENet, B
equals N1���1

d - the maximum number of concurrent node
failures that Chord can tolerate, in which d and � are two
coefficients that indicates the intensity of Chord’s routing
table replication scheme [46]. Second, the adversary might
avoid conduct attacks from its network. Instead, the adver-
sary can acquire (or rent) machines in public clusters to
instantiate instances of DAENet participants and send
dummy traffic into DAENet network, making it hard to
locate the adversary.

Defending Approach. To defend against targeted DoS
attacks, DAENet participants have two distinct features:
equal position and ephemeral duty. First, different from
prior work that uses designated authorities such as admin-
istrative servers for admitting new joining nodes, or central-
ized message boxes for collecting and disseminating
messages from users, DAENet’s participants have equal
position in the network and equally act as protocol parties.

Second, the duties of roles are ephemeral. For example,
DAENet uses a dead drop node to exchange message payload
between a sender and receiver in a communication round,
whereas such exchanging duty terminates as long as the
communication round ends. By running participants with
equal position and ephemeral duty, targeted DoS attackers
cannot identify specific mission-critical nodes in the net-
work and further block them.

3.3.2 Defending Against Passive Traffic Analysis

Attacks

Attack Assumptions. Passive traffic analysis attacks intercept
network packets to observe traffic patterns in order to de-
anonymize participants. We assume the most strong passive
attacker, Global Passive Attackers (GPAs) in the network
who keep eavesdropping on network traffic among all the
participants and trying to find circuits of particular commu-
nications and link corresponding session nodes.

Specifically, to determine if two participants are in com-
munication, GPAs may conduct prefix hijacking [47] to
intercept network traffic and then use off-path statistical
analysis [48] to sort messages. For example, in a typical pas-
sive traffic analysis attack, GPAs inspect every message of
the network and keep observing the load of each partici-
pant. Since network packets’ dissemination always follows
the First-In-First-Out (FIFO) principle, GPAs can correlate
every input and output message by recording the entering
and leaving time and further restore a routing circuit. Given
sufficient time, GPAs can restore all circuits for all commu-
nication sessions. Besides, GPAs can also learn the emitting
rate of messages at each host. A high emitting rate might
reveal a potential message sender when other parts of the
network are idle.

Defending Approach. To defend against passive traffic
analysis attacks from correlating any pairs of senders and
receivers in conversations, our design point is to enable
trustworthy message shuffling at each distributed SGX-
enabled host. The shuffling process works as follows: A par-
ticipant Alice maintains shuffle pools for each of its succes-
sor node. Upon receiving a message m, Alice searches for
m’s next-hop by conducting a Chord lookup. If the next-
hop of m is the ith successor of Alice, then the message is
pushed to the ith shuffle pool belonging to Alice’s ith
successor.

In each protocol run, Alice pulls messages from each
successor’s shuffle pool and sends them out with a probabil-
ity p. Given a threshold a, if p is smaller than a, Alice will
not pull a message from the ith successor’s shuffle pool.
Instead, Alice encapsulates a dummy message with the
same size as a real message and sends the dummy message
to its ith successor. Note that Alice may hold no messages in
its ith shuffle pool at a particular protocol run. If that corner
case happens, Alice needs not to pull messages from its ith
shuffle pool, and will directly send a dummy message to its
ith successor (Section 4.3).

3.3.3 Defending Against Active Traffic Analysis Attacks

Attack Assumptions.We assume active attackers that conduct
long-term traffic analysis attacks, involving dropping or
delaying packets. Such attacks have severe repercussions for
anonymity guarantees of anonymous networks and are dif-
ficult to detect. For example, a disclosure attack in which
active attackers strategically drop messages from a specific
message sender allows the attacker to infer with whom the
sender is communicating, by observing which participant
has received fewer messages than expected [49]. We illus-
trate our technique to resist the disclosure attack because
such an attack can be stealthy and hard to detect. Also, we
discuss the mitigation of other aggressive active attacks that

Fig. 1. An example of DAENet dead drop messaging. In a communica-
tion round, Alice and Bob separately sends two close-loop messages
while exchanging their message payload at a randomly selected dead
drop node.
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are detectable such as traffic watermarking attacks [50] and
packet hijacking attacks [51] with security analysis.

Specifically, the disclosure attack poses a threat to sender
anonymity in DAENet: the location of a targeted sender
could be revealed if active attackers collaborate with a com-
promised receiver and then drop messages between the tar-
geted sender and the compromised receiver. To conduct
such an attack, a compromised receiver holds a long-term
connection with a targeted participant in the network and
keeps sending messages to each other. During the commu-
nication, active attackers drop messages between the sender
and receiver to reveal the routing circuit, based on the
observation of whether the compromised receiver has
received the message from the sender in time or not. We for-
mally define such attack in Section 4.4.

Defending Approach. To defend against the disclosure
attack, DAENet’s core idea is to break the fixed circuit
between two session nodes in the network by using a set of
randomly generated dead drop nodes as the communication
endpoints. In each communication round, two session
nodes send their messages to a dead drop node and exchange
corresponding messages’ payload. With these dead drop
nodes, instead of directly sending messages to each other
through a fixed circuit, two session nodes send their mes-
sages to random locations in different communication
rounds, thus formulating multiple different circuits in a
conversation. With multiple different circuits between ses-
sion nodes, the adversaries cannot reveal the location of a
targeted sender by tracing back through a fixed circuit.

4 DESIGN

This section gives a detailed discussion of DAENet’s anony-
mous communication protocol. We start from the member-
ship protocol that handles node join and introduce the
dialing protocol to safely initialize conversations in DAE-
Net. Then we present the design of the stealthy P2P network
to defend against traffic analysis attacks.

4.1 Membership Protocol

DAENet handles node join by the design of the guarder node.
When a node wants to join DAENet and uses the anonymous
service, it first finds a member node through an out-of-band
peer discovery service (e.g., a public forum). We call that
member node the guarder node. A guarder node serves as an
attestation server to verify whether an unmodifiedDAENet’s
program is executed inside a real SGX host. If the node passes
the attestation, the guarder node replies with an automatically
generated identifier, which indicates the node’s location in
theDAENet network.

Node Join. Specifically, node i joins DAENet with three
steps. First, i creates its DAENet enclave, generates its sym-
metric key ski in the enclave and seals ski to local storage.
Second, i sends a join request to the guarder node. The guarder
node does a standard SGX remote attestation and succeeds
with a signed report from the Intel IAS. Third, the guarder
node verifies the report, generates an identifier of node i and
encrypts it with ski, and sends both the sealed identifier and
attestation report to node i. If node i passes the attestation, it
will send a lookup request with its symmetric key ski to the
guarder node to construct its routing table. The guarder node

helps node i constructs its routing table by running a stan-
dard Chord member join protocol, and notifies a fraction of
nodes that precede i that a new participant has joined the
network. Note that ski is distributed to all the predecessors
of node i, which is used for encrypting messages that are
sent to node i.

Risks and Mitigation. Utilizing the above approach to
admit regulated participants may have a potential risk: the
channel (i.e., public forum) to join the network is public to
adversaries, thus a node may discover a fake DAENet par-
ticipant and join a fake DAENet which is monitored by
adversaries. Also, if a malicious participant is chosen as a
guarder node and serves as an attestation server to admit
new nodes, it might refuse to admit benign nodes or try to
admit specific participants (most likely be malicious).

DAENet uses mutual attestation to detect malicious
guarder nodes. A newly joined node will also serve as an attes-
tation server to verify the integrity of its guarder node. The
mutual attestation is triggered when a guarder node sends the
attestation report to node i, at the same time it provisions a
self-attestation request to node i. Now node i acts as an attes-
tation server, sends the report of the guarder node to Intel IAS,
and waits for a signed report. Note that the attestation to a
guarder node is hardcoded into the membership protocol and
the execution is enforced unless the guarder node withdraws
from the network. Since SGX remote attestation can help ver-
ify the integrity of the running SGX code, if amalicious guarder
node refuses to admit benign nodes or tries to admit specific
participants, the malicious guarder node’s code integrity is bro-
ken. Hence the malicious guarder node will fail to pass the
attestation. The failure of passing the SGX attestation helps
the newparticipant take actions quickly:

1) Alert users in the out-of-band peer discovery service
to reduce the confidence of that malicious guarder
node, or immediately end up contacting with that
guarder node.

2) Retry the admission process by switching to a new
guarder node (hopefully, one that is not malicious).

This policy limits the influence a malicious guarder node
can do during admission, allowing DAENet to admit trust-
worthy participants running correct protocol. Note that
DAENet can only admit SGX-enabled hosts as participants
and will reject hosts without SGX.

SGX Vulnerabilities. We notice that an SGX may be
compromised because of SGX vulnerabilities [52], further
compromising the anonymity provided by DAENet. DAE-
Net solves this problem by using two approaches. First,
such vulnerabilities can usually be fixed through CPU mic-
rocode updates [53], and such updates increase the Security
Version Number (SVN) used for attestations. DAENet’s
guarder node checks the latest SVN within the network
and rejects nodes with SVN that is smaller than this value
during attestations, such that nodes with out-of-date micro-
code (i.e., contain potentially compromised SGX) cannot
join the network. Second, for vulnerabilities that cannot be
fixed through CPU microcode updates, Intel returns a revo-
cation certificate list during attestations. DAENet rejects
attestation reports signed by these certificates and avoids
the admissions of nodes with SGX vulnerabilities that can-
not be fixed.
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4.2 Secure Dialing: Conversation Initialization

Now that participants have joined the network, DAENet uses
a secure dialing protocol to help participants initialize anony-
mous conversations with each other without leaking private
information (e.g., identities of participants) to adversaries.

Preventing private information leakage during the ini-
tialization process is important because a service provider
(namely sp) may want to keep anonymous in the network
and hide its identifier from the public. If sp’s identifier is
public, it may become the target of DoS attacks: sp’s compet-
itors can continuously send dummy messages to sp to block
its service from other benign participants.

Involving Parties. The dialing protocol involves three par-
ties. The first party is a client c who wants to start a conver-
sation with another participant in DAENet’s network. The
second party is a service provider sp who provides services
(e.g., secret file sharing) to participants. Since a service pro-
vider can provide many services, a service provider typi-
cally maintains a set of service_keys. A service key SKij

denotes the ith service provided by a service provider spj.
The last party is a broker node bj which is a designated vir-
tual location that is responsible for receiving conversation
requests to a service provider spj in the network.

Use Broker Node for Initialization. A typical application of
DAENet is anonymous file-sharing where c tries to fetch a
secret file from spj. Since spj has to hide its identifier and be
reachable to others, we use a special dead drop node - the
broker bj to anonymously initialize conversation details
without involving direct interactions between c and spj. The
initialization mainly negotiates for three items: a shared
secret sec, session ID sid and an expiry time exp. sec is the
seed of a pseudo-random number generator. With the same
sec, c and sp agree on the same set of dead drop nodes to
exchange message payload in each communication round.
sid is the unique identity of the conversation which is used
for dead drop nodes to identify awaiting messages from the
same conversation for exchanging, and exp is the longest
duration for waiting for a reply (i.e., time-out).

Fig. 2 shows the complete procedure for the dialing pro-
tocol. Next, we introduce the steps from the perspective of
the client and the service provider respectively.

For Client. To fetch the ith service from service provider
spj, the client c first finds the service key SKij from an exter-
nal source. The source could be a database where DAENet
’s service providers put their service keys on. The client c
negotiates conversation configurations with spj’ by sending
a Register message to spj’s broker node bj. The Register mes-
sage contains the service key SKij to indicate c’s requested
service. The broker node bj receives the message and veri-
fies the contained service key to ensure a valid connection
request from c. A service provider periodically asks its bro-
ker node whether there exist any Register messages. When
spj finds out c’s request for its ith service, it sends a configu-
ration file to its broker node bj. In next round, c sends a fetch
request to bj to fetch spj’s configuration file. When c receives
the configuration file, it sends an ACK to bj to confirm a suc-
cessful dialing process. By this step, the dialing process for a
client is completed successfully.

For Service Provider. As a service provider, spj has two
jobs: (1) securely assign a broker node to handle its initiali-
zation requests and (2) keep fetching initialization requests

from its broker node and negotiating configuration files
with clients. To complete the first job, spj sends an endorse-
ment request to a random participant in the network to reg-
ister for a broker service. If the participant replies with an
acceptance, spj encapsulates a message which contains all
the service keys it provides and sends that message to the
participant. The participant then serves as the broker node
bj to handle initialization requests. To complete the second
job, spj periodically asks bj if there exist any initialization
requests from clients. If spj finds any service requests, it will
send the corresponding configuration file to bj, and bj will
send the configuration file to the client. Further, spj tries to
fetch an ACK from its broker node, if spj receives an ACK,
then the dialing process is completed.

Note that the existence of broker nodes for handling regis-
tration requests is not contradictory to the P2P feature of
DAENet due to two reasons. First, a service provider can
assign different broker nodes to serve it’s registration
requests, and these broker nodes are randomly distributed
in the fully decentralized network. Second, the broker nodes
are stealthy to the adversaries. This is because the only infor-
mation the adversaries can get is the key of broker nodes. As
our stealthy P2P network hides nodes’ identities, the adver-
saries cannot locate the broker nodes in the network.

With the help of a broker node, a client registers itself to a
service provider without knowing the identity of the service
provider, and the service provider can securely broadcast
its services and receive conversation initialization requests
from the network. With a negotiated configuration file for
transmission, the client and service provider can further
carry out communications.

4.3 Shuffling for Sender-Receiver Unlinkability

To prevent passive traffic analysis attacks from linking two
session nodes, DAENet ’s shuffling strategy is designed so
that, for any message that traverses a participant, adversar-
ies cannot identify its preceding or succeeding messages
and further reconstruct the entire routing circuit of a

Fig. 2. Two participants of DAENet initiate their conversation through a
secure dialing protocol.
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conversation. We define Sender-Receiver Unlinkability as the
inability for passive traffic analysis attackers to distinguish
whether fSreal ! Rrealg or fSreal ! Rother; Sother ! Rrealg for
a real message sender Sreal, a real message receiver Rreal,
and other participants Sother, Rother.

Trustworthy Message Shuffling. DAENet preserves
sender-receiver unlinkability with a trustworthy shuffling
protocol. The core idea is to mess up the message orders
and hide communication patterns with dummy messages.
The shuffling protocol requires each participant to main-
tain shuffle pools for each of its successors. For each input
message, Alice first decrypts the message by using its sym-
metric key, recalling that a sender will encrypt its messages
with the symmetric key of the next hop (i.e., successor).
Then Alice searches for the next hop of the message with
reference to the identifier of the receiver node. If the next
hop for that message is the ith successor of Alice, then the
message is pushed to the ith shuffle pool belonging to
Alice’s ith successor.

In each protocol run, Alice totally pulls logN messages
from each of its shuffle pool by a, which is the expected shuf-
fle rate - a parameter that indicates the probability of choos-
ing a message from a shuffle pool. In other words, the
expected shuffle rate implies whether Alice will send a mes-
sage to its ith successor or not. If Alice does not pull a mes-
sage from the shuffle pool of the ith successor, then Alice
encapsulates a dummy message and sends the dummy
message to its ith successor. Note that it’s likely for Alice to
hold no messages in its ith shuffle pool. In that case, Alice
will directly send a dummy message to its ith successor.

More precisely, when Alice receives a message x, it

1) Decrypts x by using its own symmetric key key A,
2) Discards x if x is a dummy message. Otherwise, runs

the Chord lookup protocol to search for the next hop
of message x. Let x id be the identifier of the next
hop, Alice resets x’s message header to x id, and
pushes message x to x id’s shuffle pool.

3) Randomly pulls l messages from shuffle pools of
each successor with equal probability a.

4) Encapsulates dummy message dmyi if Alice does not
pick a message from shuffle pool pi.

5) Encrypts lmessages with the symmetric key of corre-
sponding successors and sends them out.

DenoteN as the total number of participants in the network
and k is the number of empty shuffle pools ofAlice’s all succes-
sors. Derived from previous statements, Alice pulls messages
from logN � k shuffle pools in each protocol run. The pulling
process takes the form of Binomial distribution X �
BðlogN ;aÞwhere the discrete probability a is the expected shuf-
fle rate. In each round, the expected total number of real appli-
cation messages and dummy messages for Alice to send is
aðlogN � kÞ and kþ ð1� aÞðlogN � kÞ, respectively.

Low Attack Ability. Consider the case where passive traffic
analysis attackers keep observing network traffic and are
capable to learn the exact number of messages in Alice’s
host. We define a scenario Ox;x1 as an adversary observing
Alice’s host in which message x arrives and mixes within
Alice’s shuffle pools. The adversary then observes logN
messages sending out and tries to correlate x with one of
the outgoing message x1, which is from the same

conversation. Supposing the adversaries have high confi-
dence of message x being a real message (rather than a
dummy message), the following claim gives a probability
on which the adversaries correctly link the previously
observed message xwith one of the outgoing messages x1.

Claim 1. Let y be the number of messages in a host in scenario
Ox;x1 . Denote the number of non-empty shuffle pools in a node
as t, and let k be the number of empty shuffle pools. After shuf-
fling, the probability of correctly linking x to one of the outgo-
ing message x1 is

Prðx ¼ x1Þ ¼
a½Py�t�1

c¼1
1
c PrðCx ¼ cÞ�
tþ k

; (1)

in which

PrðCx ¼ cÞ ¼ y� t

c

� �
1

t

� �c t� 1

t

� �y�t�c

: (2)

Note that tþ k is the total number of outgoing messages
from Alice’s host. All of the outgoing messages have an
equal opportunity of being the previously arrived message
x, independent of the arrival time of x. This ensures that the
arrival and departure time of the messages cannot be linked
so that adversaries learn no sensitive information by con-
ducting traffic analysis. Note that the probability 1

y is the
upper bound for an adversary to correctly link the input
message x and the corresponding output message x1. We
give an upper bound probability 1

y because all outgoing mes-
sages are from the host’s shuffle pool, hence the linking
probability is limited to the total number of existing mes-
sages in the current host. As there are totally y messages as
we defined, the upper bound on the probability that adver-
saries can correctly do the traffic correlation is thus 1

y . This
inference applies to other shuffled-based systems that
defend against traffic correlation attacks as well [7].

Thus, continuous observation of Alice’s traffic leaks no
sensitive information other than the present number of mes-
sages in Alice’s host. We use the above claim and a security
metric likelihood to give an end-to-end anonymity evaluation
of defending passive traffic analysis attacks in security anal-
ysis (Section 5). To conclude, by randomly picking real mes-
sages from shuffle pools and disguising unpicked real
messages with dummy messages, we obfuscate the
adversary’s view and decrease the probability of success-
fully correlating the input and output messages.

4.4 Hiding Sender Location From Disclosure
Attacks

Attack Goal. The goal of disclosure attacks is to reveal the
location of a targeted sender in the network. Formally, in
such an attack, a malicious receiver R collaborates with
active attackers who have global observations of the net-
work to reveal the identifier of sender S. Denote a message
path jjCijj ( < S, P 1, P 2, ..., Pi�1, Pi, R > as the routing
circuit that links the malicious receiver R and the victim
sender S. Since the network topology is explicit to adversar-
ies with a global view, R can periodically, yet slowly drops
messages from its predecessors. If R drops an instant mes-
sage from one of its predecessors and receives no messages
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from S in next communication round, then R learns that this
predecessor is Pi - the participant that acts as the previous
hop of R in jjCijj. Now that the path < Pi, R > is revealed,
the adversaries try to find Pi�1 by dropping or delaying
messages from Pi’s predecessors. By repeating this process,
the malicious receiver R will ultimately reveal the sender S.
The disclosure attack succeeds when R can receive the mes-
sages even all messages from S’s predecessors are blocked.

Straw Man Approach. A straw man approach is to detect
malicious disclosure behaviors in the network. However,
detecting disclosure attacks in the network is difficult and
inefficient. First, naively setting a threshold � as time-out at
the sender to cut off a long-term communication is impracti-
cal because we cannot determine an average latency of com-
munication in the network as the scale of the network is
unknown to each participant, and network environment dif-
fers in places. If � is too large, the detection threshold is use-
less because attacks can still go smoothly; Otherwise, if � is
too small, communications become hard to carry on in the
network. Second, the loop message detection that is used by
prior work to detect malicious packet drops does not work
in this scenario. Loop message is used to prove to a partici-
pant that a potentially withdrawn neighbor is online. How-
ever, since the sender does not know the exact or even
relative position of the malicious receiver in the network,
loop messages cannot tell whether the message drop is due
to an offline receiver or a malicious disclosure attacker.
Thus, the straw man approaches can not trivially work here.

Round-Based Dead Drop Messaging. To solve this problem,
we utilize a round-based dead drop design to prevent mali-
cious receivers from revealing the identifier of senders. The
basic idea of this design is randomly selecting a sequence of
participants in DAENet as destinations for two session
nodes to exchange information in several rounds, and
enabling full asynchrony to hide messaging patterns. Next,
we discuss our round-based dead drop design and how we use
SGX to hide the access pattern of dead drop nodes.

DAENet enforces communications through a sequence
of dead drop nodes. Dead drop nodes are virtual locations
where two session nodes deposit their messages (original
messages), swap message payload from the same conversa-
tion and fetch messages (swapped messages) back. To ini-
tialize a conversation, two participants first negotiate a
randomly generated shared secret. The shared secret is used
for generating a sequence of DeadDrop_keys. The Dead-
Drop_keys are deterministically mapped to a set of nodes in
the network.

Two session nodes (namely Alice and Bob) communicate
with each other through these dead drop nodes. Communi-
cations happen in rounds. In round i, Alice and Bob inde-
pendently send a message to a dead drop node Ni which is
mapped from DeadDrop keyi. Each message is labeled with
a session-round pair to indicate its unique session identity
with another participant and the round of payload
exchange. When Ni receives a message m, it stores it and
waits for the coming of m1 which has the same session-round
pair as m. When m1 arrives, Ni swaps the payload of these
two messages and sends them back to corresponding mes-
sage senders. The round-based dead drop messaging is
effective to defend against disclosure attacks because com-
munication circuits between session nodes change with

different dead drop nodes as destinations. By splitting the
static routing circuit into multiple unpredictable circuits,
disclosure attackers who keep monitoring the traffic cannot
reveal the previous hop in a fixed circuit by dropping mes-
sages and observing the arrival of messages.

Conversation With Compromised Nodes. Even with some
fully-compromised dead drop nodes, DAENet can still pre-
serve anonymity due to the following reasons. First, adver-
saries cannot determine which nodes are selected as dead
drop nodes in the current conversation, and further com-
promise these nodes. This is because the DeadDrop keys are
generated inside SGX enclaves without involving an
untrusted third-party, the locations of dead drop nodes
used in the communication are kept confidential to other
participants except for the session nodes, making the com-
munication circuit unpredictable.

Second, even if the adversaries can control a fraction of
nodes in the network, and these compromised nodes are
happened to be selected as the dead drop nodes for a con-
versation, the anonymity guarantee still holds as long as
one node in the circuit is honest. This is because our distrib-
uted shuffling protocol guarantees oblivious traffic pattern,
and such oblivious traffic pattern offers strong anonymity
against traffic analysis: a single honest participant in a
circuit that correctly executes message shuffles is enough
to ensure anonymity. Thus, even if all dead drop nodes
are compromised, these dead drop nodes still cannot deter-
mine who is communicating with whom. Also, in section
Section 5.2.1, we prove that the adversaries have low attack
ability (i.e., small probability) to control all relays in a circuit
when DAENet scales up.

Liveness Under Node Failures. Note that compromised
dead drop nodes may not execute the payload exchange
and claim to be temporarily offline. Since we cannot distin-
guish whether a node is failed or compromised, DAENet
treats both cases as node failures. DAENet tolerates dead
drop node failures with a switch strategy. The core idea of
the strategy is that session nodes do not need to wait for a
successfully exchanged reply from dead drop nodes in each
communication round. If Alice’s message m was not sent
back by dead drop node Ni, Alice can resend m by switch-
ing to another unused dead drop node Nj with reference to
DeadDrop keyj.

DAENet provides such flexibility because DAENet sup-
ports reliable datagram transfer, rather than online stream-
ing that needs ordered messages. Thus, we assume
participants can tolerate a reasonable delay of some mes-
sages and transfer other messages first when a portion of
dead drop nodes fail. In the worst case when all dead drop
nodes mapped from DeadDrop keys are compromised, no
successful payload exchange will take place. Since the dead
drop nodes are randomly selected, the failure of all dead
drop nodes indicates potential monitoring of the network.
Such vulnerability will be quickly detected by the session
nodes, and the session nodes are suggested to carry on their
conversations later.

In addition to the switch strategy, to achieve privacy even
with malicious dead drop nodes, DAENet leverages two
policies listed as follows.

Trusted Swapping. All dead drop behaviors are executed
within SGX. Since SGX guarantees the confidentiality of
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decrypted messages in memory, a malicious dead drop
node cannot determine whether two messages belong to the
same conversation and which communication pairs are
being swapped.

Ephemeral Duty. Duties in DAENet are ephemeral which
means that the dead drop role does not need to persist over
time. As DAENet works in asynchronous rounds, a dead
drop node (agreed on by two participants) is only responsi-
ble for handling message swap in the current communica-
tion round, unless being chosen by the two participants
again. Hence, a malicious dead drop node will not always
hold the conversation and has no chance to reveal the link
between the two participants.

5 SECURITY ANALYSIS

5.1 Analysis of Passive Traffic Analysis Attacks

In this subsection, we first give a theoretical proof of
DAENet’s oblivious messaging pattern that makes two par-
ticipants in one conversation unlinkable, and then conduct
a experiment to test the unlinkability under passive traffic
analysis attacks with a metrics likelihood.

5.1.1 Theoretical Proof of Oblivious Messaging

DAENet requires a participant to send messages to all its
neighbors with the same probability because a biased mes-
saging pattern can reveal sensitive information to global
passive attackers. Next, we prove that a DAENet participant
sends messages to all its neighbors with the same probabil-
ity and thus achieves full randomness.

Proof of Oblivious Messaging. Suppose that each node in
the underlying Chord identifier ring N <¼ 2n � 1 sends
message to a random node in the ring. Each node id has
log2N neighbors, namely idþ 2i for each i <¼ n. Then each
neighbor of an arbitrary node id has the same expectation
on access time.

Claim 3. Each neighbor of an arbitrary node id, denoted as idþ
2ið0 <¼ i < nÞ, has the same number of access.

Proof. Suppose that two node x and y are two identical
nodes in the ring, we evaluate one node id, where

x ! . . . ! id ! . . . ! y: (3)

and the identifier of node xmay be equal to id.
As the routing from x to y will pass id to y, then we

have x ¼ id� ðPn
i¼0 Xi2

iÞ, and y ¼ idþ ðPn
i¼0 Yi2

iÞ. Xi

and Yi is a selection variable. If a message is routing from
x to y, and passes id to its ith0 neighbor of node id, then
Xi ¼ 0; i <¼ i0 and Yi ¼ 0; i > i0. Therefore, for a neigh-
bour idþ 2i of node id, the total number of ðx; yÞ pair that
passes id and idþ 2i is

Xn�1�i

k¼0

Ck
n�1�i

 ! Xi
k¼0

Ck
i

 !
¼ 2n�1�i2i ¼ 2n�1; (4)

which is identical to all id’s neighbors. tu
Limited Observable Variables. With the full randomness

proved above, DAENet’s protocol reveals only a small, yet
insensitive set of variables to global passive attackers. First,

DAENet’s shuffling protocol, used for hiding communica-
tion circuits, makes all participants run in a stealthy P2P
network and exposes just two variables to adversaries: the
total number of sent-out messages in each round and the
output rate of participants. These two variables are insensi-
tive because they cannot reveal which participant is actually
talking, as adversaries cannot distinguish an application
message. Also, since we achieve full randomness of sending
messages, observing the output rate does not reveal any
sensitive information as well.

Second, by running code inside SGX, we prevent adver-
saries from directly intervening in the protocol execution
and seeing the decrypted plaintext of messages. Malicious
participants can monitor traffic links and deduce a set of
participants’ predecessors and successors under DAENet’s
Chord topology. However, adversaries cannot distinguish
whether a received message from a predecessor is a dummy
message or an application message.

5.1.2 Experimental Proof of Defending Traffic Analysis

This subsection gives an end-to-end anonymity evaluation
to analyze the impact of global passive attacks in DAENet.
As the strongest traffic analyzer, GPAs monitor global traf-
fic and observe messages entering and exiting a partici-
pant, in order to link the corresponding message sender
and receiver.

Thus, we analyze the unlinkability between senders and
receivers by using an empirical analysis tool, used by
Loopix, to study the correlation probability of two messages
in the network. The security metrics that we use is called
likelihood difference, which reveals the probability of linking
a leaving message to a sender S0 in comparison to another
sender S1. Denote the likelihood difference as �, the two proba-
bilities that a message is sent by S0 and S1 as p0 ¼ Pr½S0�
and p1 ¼ Pr½S1�. Our evaluated likelihood difference is

� ¼ jlogðp0=p1Þj; (5)

in which p0 and p1 can be calculated from Equations (1) and
(2). To study the probabilities, we run DAENet in a local
cluster, ranging from 1,024 participants to 8,192 participants
that generate and send messages simultaneously with a
unified messaging rate 50ms. Among the participants,
10 percent participants hold on communications while the
left 90 percent participants do not communicate. We chal-
lenge the two senders S0 and S1 to analyze the probability:
First, all participants wait for a membership warm-up time
until the network becomes steady to test. All the 10 percent
communication holders, except for S0 and S1, simulta-
neously send messages to the network. Then, let S0 and S1

encapsulate two messages, tag the two messages and send
them to the network as well.

Now that there are two messages sent by S0 and S1 in the
network which are manually labeled, while the remaining
messages sent by other participants are not labeled. At each
hop, we track the probability that an exiting message is
labeled S0 or S1, and calculate the probability of being one
of the senders through Theorem 2 (Section 4.3). As we pick
S0 and S1 in their final destination, we calculate � in
Equation (5).
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Varying the parameter of message emitting rate and
shuffle rate, we average the evaluation results over 1000
repetitions and illustrate them in Figs. 3 and 4. Our experi-
ment shows that the expected likelihood difference is small
(lower than 0.31).

More Participants, Stronger Anonymity. As we can see from
Fig. 3, � degrades almost linearly with more participants. This
indicates that, by increasing the number of users of DAENet,
the anonymity of participants can be further improved.When
DAENet scales out to a large number of users, participants in
the network process more messages. As all the messages are
fully mixed in shuffle pools, the likelihood difference of two
senders decreases, indicating that GPAs have less probability
to linkmessage senders and receivers.

Parameter Selection. Fig. 4 shows that the expected likelihood
difference decreases (0.30199 to 0.2409) with decreasing shuffle
rate. This figure illustrates that (1) decreasing the probability
of pulling a message from shuffle pools (by decreasing the
shuffle rate) with respect to the message emitting rate
increases anonymity and (2) the shuffle rate has a small
impact on the anonymity of participants. As the shuffler rate
decreases, DAENet requires participants to send more
dummy messages. To save the bandwidth cost, we consider
shuffle rate = 0.8 to be a good choice in terms of anonymity.

Comparison With Loopix. Loopix also uses likelihood to
evaluate its defending capability against global traffic
attacks. Even if Loopix’s likelihood can be smaller than
DAENet, it incurs additional delay in each mix node. Specif-
ically, in Loopix’s likelihood evaluation setup (i.e., a topol-
ogy of 3 layers with 3 mix nodes per layer), when Loopix
achieves comparable likelihood as DAENet (0.25), it incurs
an additional 1s delay in each mix node. Thus, Loopix sacri-
fices at least 3s latency throughout all three layers of shuffles
which is larger than DAENet’s end-to-end communication
latency (see Section 6).

5.2 Analysis of Active Traffic Analysis Attacks

In this subsection, we analyze the impact of active traffic
analysis attacks in DAENet. First, we analyze active attacks
that compromise a proportion of nodes to increase the
chance of choosing a fully malicious routing circuit. We con-
tinue by evaluating the security of anti-disclosure attack
and other relevant active attacks.

5.2.1 Resisting Fully Controlled Circuits

Anonymous communication systems defend against active
attacks with the assumption that messages will not be

relayed via a fully malicious routing circuit, which is
entirely controlled by the adversary. If a routing circuit is
fully controlled, the adversary can trivially track all traffic
and deduce that the sender and receiver are within a small
anonymity set. In other words, the sender will be one of the
predecessors of the entry node of the circuit, and the
receiver is considered to be one of the successors of the exit
node of the circuit.

Because routing circuits are chosen by the underlying
P2P lookup protocol, which is enforced to execute inside
SGX, the only way the adversary can succeed in conducting
targeted DoS attacks is by adding more compromised
nodes, in order to increase the probability of choosing com-
promised relays in a circuit.

Denote Madv as the set of compromised nodes controlled
by the adversary, N is the total number of nodes in the net-
work and pm as the proportion of compromised nodes. Dur-
ing the circuit generation process, the probability of
choosing a fully malicious routing circuit is

Prðcircuit 2 MadvÞ � ðpmÞLogN : (6)

Equation (6) indicates that adding more compromised
nodes only slightly increases the probability of choosing
a fully malicious routing circuit. When the network scales
to 10,000 participants, even with a large compromised rate
(pm = 0.8 or 0.5), the probability of successfully conducting
targeted DoS is less than 0.05 and 0.0001, respectively. In
DAENet, even with a fully controlled routing circuit, the
adversary still cannot distinguish whether a participant is
talking to someone else or not. To further de-anonymize a
message sender and receiver, the adversary has to make
sure that a conversation indeed traverses through this fully
compromised circuit, which is hard to realize in practice.

5.2.2 Resisting Aggresive Active Attacks

In this subsection, we discuss other relevant active attacks
that try to de-anonymize DAENet participants.

Defeating DAENet Anti-Disclosure Protocol. As we dis-
cussed in Section 3.3, a fixed circuit in a P2P network gives
chances to attackers to hierarchically reconstruct themessage
path. By using the dialing protocol (Section 4.2) to agree on a
set of dead drop nodes in the network, DAENet prohibits
adversaries from tracking an honest participant and reveal-
ing its identity. Also, since we can trust the PRNG used
inside SGX to generate a series of DeadDrop keys, adversar-
ies cannot predict every dead drop node used for exchanging
message payload.

Fig. 3. Likelihood difference � depending on the number of participants in
the network.

Fig. 4. Likelihood difference � depending on the shuffle rate for each par-
ticipant in the network.
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Therefore, defeating DAENet’s anti-disclosure protocol
requires active attackers to precisely delay all the on-path
application messages in each communication round. Denote
the normal averaged end-to-end communication latency as
l1, the delay time as Td and the expected path length
through dead drop as l2. As the expected communication
time through dead drop nodes is fixed, if the disclosure
attacker receives a delayed message whose latency is l1 þ
ðTd � l2Þ, then the attacker might have the confidence to
reveal the message sender.

However, precisely blocking all the on-path messages is
difficult and the usable attack time is short. As we will
show in Section 6.1, the expectation of averaged end-to-end
latency is less than 2:2s. To successfully defeat the protocol,
the adversary is supposed to precisely predict and delay all
the on-path application messages with probability 1=logN
for each link within 2:2s, whereN is the total number of par-
ticipants. making it impractical to conduct.

Traffic Watermarking Attacks. Pointed out by Xinyuan [54],
many proposed low-latency anonymous communication
systems are vulnerable to traffic watermarking attacks. In
the attack, a compromised service provider tags water-
marks at messages from suspected clients, and determines
if the suspected client visited the service by checking if
that user has received the watermarked traffic. DAENet
can defend against traffic watermarking attacks because (1)
DAENet’s anonymous traffic flow and the application traf-
fic flow is mixed by trustworthy message shuffles. Thus, a
watermarking attacker cannot precisely tag an application
message and track that message. (2) Even if watermarking
attackers can tag application messages, they cannot reveal
clients because clients are not the destinations in each
round of communication, instead, attackers can only reveal
the set of randomly selected dead drop nodes for exchang-
ing messages.

Aggresive Hijacking Packets. To de-anonymize network
participants, a more aggressive approach is to drop a signifi-
cant number of messages. For example, active attackers can
launch ðn� 1Þ attack [55] to track a specific message from
Alice by blocking other messages to an honest participant.
Also, network adversaries can inject malformed messages
to replace ordinary messages. Note that in this scenario, an
honest participant can easily detect such misbehavior and
notice a compromised successor in the network. Honest par-
ticipants can simply rejoin the network to switch to a new
location and fetch a new list of neighbors for anonymous
messaging.

In addition, active attackers might occasionally drop
some underlying P2P control messages that are used for
maintaining the membership, causing eclipse attacks that
partition some nodes from the network. In that case, other
nodes will lose connection with these attacked nodes and
remove these attacked nodes from the routing table, which
is just the same consequence as nodes are under targeted
DoS attacks or failed. As a result, the partitioned nodes can
simply wait for a short time and then rejoin the network.

Under Attack or Network Congestion.One possible question
in DAENet is how to differentiate between message drop-
ping due to compromised participants or network conges-
tion. In theory, both of them can make DAENet lose its
liveness while malicious message drop may also lead to

privacy leakage (shown in Section 4.4). In DAENet, it is not
a critical issue to differentiate between these two circum-
stances because DAENet is not a penalty-based system (e.g.,
Miranda) that makes compromised participants lose their
connections in the network. On the contrary, DAENet
detects messages drops to maintain a consistent view of
membership in the network, caused by either misbehavior
or network congestion, thus honest participants will not be
wrongly punished.

6 EVALUATION

Our evaluation was conducted on 20 computers with SGX-
equipped Intel(R) Xeon(R) CPU E3-1280 v6 with 24 cores,
64 GB RAM and 2TB SSD. All computers form a cluster with
40 Gbps network. In our cluster, each machine runs multiple
(up to 400) instances of DAENet client. We used Linux Traf-
fic Control (TC) to set the network latency between clients as
40 ms to simulate the Internet environment.

We compared DAENet’s performance with two state-of-
art shuffle-based anonymous communication systems:
Loopix and Dissent. Loopix is a popular open-sourced anon-
ymous network that leverages Poisson-mixing shuffle strat-
egy to protect users in the same conversation from being
observed by global passive attackers, which is also guaran-
teed by DAENet and has been proved in Section 5.1.1. We
also compared DAENet’s performance with Dissent. Dissent
is another open-sourced anonymous network that leverages
verifiable shuffles to defend against global passive attacks.
Although Dissent suffers from long-term active intersection
attacks [56], it is well-known for its support of low-latency
communications compared to other shuffle-based systems
(e.g., Riposte, Atom). Other shuffle-based systems such as
Karaoke and Vuvuzela are not evaluated because they are
not open-sourced.

We built an anonymous chatting application to evaluate
the performance of DAENet and our baseline systems. In
our chatting application, two participants communicate
with each other by sending close-loop messages through a
set of dead drop nodes. To match the real-world workload
of online communications, we sampled X percent of all par-
ticipants as active message senders while other participants
still work as normal relays. The ratio X percent is set to
10 percent by default, with reference to the Daily Active
Users (DAU) of the popular WhatsApp application [57]. As
Loopix has a slightly different architecture, we modified
Loopix’s code and wrote interfaces to forward the chatting
traffic in Loopix’s private cluster. Except for the client scal-
ability evaluation, we run 50 clients on each machine
(totally 1,000 clients) to evaluate the performance.

Our evaluation answers the following questions:

Section 6.1 Can DAENet support a large number of partici-
pants and provide acceptable performance?

Section 6.2 How sensitive is DAENet to its parameters?
Section 6.3 How robust is DAENet to network churn and

machine failure?

6.1 Efficiency and Scalability

To analyze the efficiency and scalability of DAENet, we
answer the following three questions in this subsection:
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� Can DAENet support a large number of users and
scale horizontally?

� How does DAENet compare to prior systems?
� Will DAENet slow down the communication?
Horizontal Scalability. To demonstrate that DAENet scales

horizontally, we measured the end-to-end latency for partici-
pants to route million messages as the number of participants
varied. As shown in Fig. 5, the latency increases logarithmi-
cally with an increasing number of users. When 8000 partici-
pants send traffic simultaneously the latency is nearly 2000ms.

Note that the latency overhead increases logarithmically
with the total number of participants. This is because the
underlying topology of DAENet is a structured P2P net-
work, where the expected path length for one lookup request
grows logarithmically. In DAENet we utilize Chord, the
expected path length for a lookup is logN , where N is the
total number of participants in the network. When DAENet
scales to 1M participants, the expected path length for a
lookup only grows to 20.

Number of Messages. To evaluate how the number of
active nodes affects latency, we increased the proportion of
active nodes (i.e., nodes in communication sessions) from
10 to 95 percent, and measured the network latency, as
shown in Fig. 6. As the proportion of active node increases,
DAENet’s latency does not increase much, while Loopix’s
increases dramatically. This is because Loopix incurs larger
shuffle overhead with a growing number of messages
through its centralized mix servers. On the contrary, partici-
pants in DAENet still send dummy messages even if there
are no application messages to send, hence increasing the
portion of active nodes does not produce additional net-
work overhead because the previous idle participants just
change a kind of emitted messages.

Comparison to Prior Work. To compare DAENet’s scal-
ability we ran an experiment in our cluster with 20 serv-
ers. To evaluate the support for growing participants, we
simulated clients by running multiple (10 � 600) instan-
ces on each machine. For comparison, we also include
the latency of Loopix and Dissent as reported in previ-
ous subsection which are the only open-sourced anony-
mous messaging system that claims to be scalable to
users. We picked the system parameters m ¼ 50 ms as
the message emitting rate of participants in the network,
and d ¼ 0:8 as the shuffle rate to mix real messages and
dummy messages.

Fig. 7 shows that with 800 users DAENet achieves 1.5X
higher latency than Dissent, and 5X lower latency com-
pared to Loopix. The reason why DAENet incurs higher
latency than Dissent is that Dissent is a centralized system
and it statically assigns servers for clients to send their mes-
sages, thus clients in Dissent doesn’t need to forward mes-
sages through several hops and save time for lookups.
However, such design exposes attack surface to DoS all the
static servers. DAENet scales better than Loopix because all
Loopix traffic must go through a single chain of servers
while DAENet requires each participant to only process a
fraction of messages in the network.

Latency Breakdown. To investigate DAENet’s latency, we
break down DAENet’s latency incurred by shuffle, dead
drop messaging and P2P communications, as shown in
Fig. 8. Around 69.1 percent of the latency is from P2P com-
munication, as it requires logðNÞ steps to locate a node in the
network. Dead drop communication contributes 8.4 percent
of the latency. The last source of the latency, message shuf-
fling, incurs only 22.5 percent of the latency.

As we can see from the breakdown results, DAENet will
slow down the communication by adding 30.9 percent more
round-trip latency. However, we believe that DAENet is use-
ful for anonymous online communications, as participants

Fig. 5. Latency of DAENet when 50 to 8000 participants simultaneously
send traffic at rate m ¼ 50ms and shuffle messages with probability d ¼
0:8. We assume that there is no additional delay add by participants.

Fig. 6. Latency of DAENet for anonymous communicating for varying
number of sessions. The latency does not increases as the number of
session grows.

Fig. 7. Latency comparison. We measured Loopix and Dissent - two
state-of-art scalable anonymous messaging systems.

Fig. 8. Breakdown of DAENet latency.
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may value a stronger privacy guarantee and tolerate the
moderate latency.

Bandwidth Usage. We test the bandwidth usage in a cluster
of 14 machine where each machine holds several instances
running independent DAENet protocol. Table 2 shows the
bandwidth usage of participants running DAENet protocol.
In this experiment, each test has one conversation between
two randomly picked participants from all instances. To
understand the minor bandwidth cost (around 0.14 MB/s),
DAENet’s design crucially avoids heavy usage of network
resources for sending dummy messages. This is because we
also add P2P control messages to the shuffle pools, such that
when participants have to send out a dummy message to a
neighbor, it can just replace by sending a control message
rather than a dummy message. The sending of control mes-
sages in DAENet follows the rules of Chord, each participant
refreshes its viewofmembership by sending controlmessages
to all its neighbors every 1 second.

6.2 Parameter Sensitivity

To understand how the parameters (i.e., shuffle rate and
message emitting rate) affects latency, we varied the mini-
mum shuffle rate and message emitting rate, and measured
the latency, as shown in Fig. 9 and Table 3. With a unified
message emitting rate 50 ms, the latency increases dramati-
cally when shuffle rate is decreased. This is because, in each
shuffle pool of a neighbor, with a smaller shuffle rate, the
probability of popping out a real message to that neighbor
becomes smaller and the probability of sending a dummy
message to that neighbor becomes larger. That is, a real mes-
sage will have less chance to be sent out to its destination
and the latency increases. Note that with a smaller shuffle
rate, DAENet guarantees more obliviousness of output mes-
sages, since real messages are fully mixed with dummy
messages and a malicious observer is more difficult to dis-
tinguish a real message.

When the message emitting rate increases, the latency of
messages decreases because a message is popped out of the
shuffle pool more quickly with a larger emitting rate. How-
ever, the descending trend of latency is smoother with a
large emitting rate. This is because that the latency is also
bounded by dead drop swap and P2P communication.

6.3 Failure Recovery

Handling node churn is amajor issue in P2P systems. To eval-
uate the failure resilience of DAENet, we ran DAENet for a
period of time, with a typical message emitting rate 50 ms
and shuffle rate 0.8, and we arbitrarily killed 10 percent of all
participants three times (totally killed 30 percent active par-
ticipants). The killed nodes of DAENet are sampled uni-
formly from existing participants, including both active
participants (communicating) and idle participants. Fig. 10
shows the latency before and after killing nodes. When
nodes are killed, DAENet’s latency becomes extremely high
because the loss of transferring message triggers timeout.
After that, DAENet’s latency resumes to normal in a short
time, as DAENet detects the failure of messages, updates
routing table and resumes processing.

7 DISCUSSION

DAENet has two limitations. First, the current DAENet
implementation does not integrate side-channel attack
defenses. As SGX is susceptible to side-channel attacks
where malicious software on the same platform can infer
enclave data access patterns by monitoring shared resources
such as caches [58], [59], it is fixable by using well-known
Oblivious Ram (ORAM) algorithms, such as ZeroTrace [60].

Second, DAENet currently only supports point-to-point
anonymous communication rather than anonymous broad-
cast, in which a participant can broadcast items to a set of
receivers in an anonymous manner. This limitation forbids
DAENet from supporting some security-sensitive broadcast
applications such as the transaction dissemination in Bitcoin
P2P network. Supporting anonymous broadcast in a P2P
network could be an interesting future direction of DAENet.

8 RELATED WORK

Tor Anonymous Network. Tor [6] is the most popular onion
routing system. Due to its popularity and transparent devel-
opment processes [61], many researchers have explored
attacks that can de-anonymize Tor users and hidden-service
providers by monitoring the network traffic. Recent attack

TABLE 2
Bandwidth Cost of Running DAENet

instance/machine 20 40 60 80 100
bandwidth/instance (MB/s) 0.14 0.14 0.14 0.14 0.13

Fig. 9. The end-to-end latency of DAENet with unified message emitting
rate 50ms and varying shuffle rate.

TABLE 3
The End-to-End Latency of DAENet With Varying Message

Emitting Rate, Running in a Cluster of 1000 Nodes

Message emit rate (ms) 100 500 1000 2000 3000 5000
Latency (ms) 773 758 787 1055 1302 1594

Fig. 10. Arbitrarily killing DAENet nodes to simulate network churn with a
10 percent killing rate.
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vectors for Tor include BGP-based attacks [62], [63], website
fingerprinting [64], [65], [66], [67], traffic correlation [36],
[37], [68], [69], congestion attack [70], [71] and targeted
DoS [38], [72]. Meanwhile, researchers also propose meth-
ods to enhance Tor’s security by optimizing the bandwidth
report for selecting guard nodes [73] and monitoring circuit
construction [74]. Also, some recent Tor improvements con-
sider generating cover traffic within middle routers of cir-
cuits, such that the middle routers can hide any relationship
between compromised entry and exit nodes [75], [76].

TEE and SGX-Tor. TEE provides strong security guaran-
tees (i.e., confidentiality and integrity) for applications with
efficiency. Intel SGX [77] is one of the most popular TEE in
the market. With the convenience and security properties
introduced by SGX, it has been adopted for secure data
analysis [45], [78], network analysis [79] and secure key-
value stores [80]. SGX-Tor [81] is the first work that applies
SGX to an anonymous network. As the first SGX enabled
anonymous network, SGX-Tor proves the feasibility of run-
ning SGX-enabled hosts to improve an anonymous commu-
nication system’s security model. As Tor relays are under
the control of world-wide users, running the Tor protocol
inside SGX effectively prevents malicious Tor relays from
gaining private information of Tor components, such as cir-
cuit identifiers and hidden service identifiers. Although
SGX-Tor mitigates many attacks against malicious Tor com-
ponents, it cannot defend against network-level adversaries,
potentially preventing it from being a choice of users who
value strong privacy.

DAENet versus SGX-Tor. DAENet also leverages SGX
to prevent private information leakage and regulate par-
ticipants’ behaviors. Moreover, we improve SGX-Tor’s
security model by protecting participants from global
passive attacks and active attacks that maliciously drop
and delay messages. Although DAENet incurs slightly
higher end-to-end communication latency compared to
SGX-Tor (shown in Table 1), we believe that users may
tolerate DAENet’s moderate latency to achieve stronger
privacy guarantees.

Comparisons to Other Mix Networks. Vuvuzela [82] is
secure against passive traffic analysis attacks. Vuvuzela’s
insight is to minimize the sensitive observable variables to
adversaries with differential privacy techniques [83], [84].
By adding noise messages and mixing them with real mes-
sages, adversaries cannot distinguish which users are com-
municating. Vuvuzela requires all messages to pass
through a single chain of mix servers, making it susceptible
to targeted DoS attacks. In contrast, DAENet does not
require a set of centralized mix servers, all messages are
shuffled through each hop inside SGX.

Loopix [7] uses cover traffic and Poisson mixing mecha-
nism to defend against passive traffic analysis attacks, and
is more scalable than Vuvuzela by using parallel mix serv-
ers. Loopix observes that active attacks (e.g., (n-1) attack)
can break the anonymity guarantee, and uses loop messages
to detect such attacks. However, Loopix cannot detect a
stealthy active attack that drops single messages at a time.
Moreover, Loopix does not specify any after-step or how to
resist other active attacks (e.g., Disclosure attack, traffic
watermarking attack) whereas DAENet is secure against all
these attacks.

Miranda [17] is an anonymous system that focuses on
detecting active attacks in the network, including disclosure
attacks and (n-1) attacks. Miranda’s core idea is to build a
reputation system in the network in order to measure mali-
cious behaviors. Nevertheless, Miranda is not practical due
to several simplifying assumptions: (1) a stable and syn-
chronized network environment where operations are exe-
cuted in synchronized batches, and (2) a fixed set of mix
servers where a majority of them are benign. DAENet runs
in an asynchronous network so that it does not need a
secure clock synchronization protocol which is costly. DAE-
Net can preserve anonymity when a majority of nodes are
malicious, as long as there is one honest node in a circuit to
conduct message shuffles.

Dissent [14] is based on DC-networks [85]. It protects users
from being surveilled by passive traffic analysis attacks and
some active attacks. Compared to DAENet, Dissent has lim-
ited scalability as it supports only several thousand nodes.

Karaoke [15] has a similar idea of using dead drop nodes
to exchange messages in a mix network, and efficiently add-
ing noise messages to hide dead drop access patterns. In the
performance evaluation of Karaoke, the authors have tested
Karaoke to 16 million users which is the largest evaluation
scale to our best knowledge. However, Karaoke has several
drawbacks that prevent it from being deployed: (1) Karaoke
uses only a few mix servers to shuffle all messages in the
network and requires all servers to be online, making it an
attractive target of DoS attacks. DAENet shuffles messages
through a group of trustworthy shuffling nodes in a fully
decentralized network and provides fault-tolerance to DoS
attacks. (2) Karaoke requires users to initialize conversa-
tions through out-of-band channels, which may leak sensi-
tive information to other untrusted parties and impose
unexpected bandwidth and CPU costs for clients. In con-
trast, DAENet handles the initialization and hides metadata
during the dialing process.

Alternative Approaches. There are two approaches in the
literature that have the potential to be used to enable verifi-
able shuffling operations in mix networks. The first
approach is to use zero-knowledge proofs [86] to verify that
the mix servers have correctly shuffled messages. The sec-
ond approach is randomized partial checking (RPC)
pointed out in the Miranda paper [17]. RPC helps detect
packet drops in the network so that some active attacks can
be defended with probability.

9 CONCLUSION

To provide practical anonymity guarantees to everyone
on the Internet, anonymity networks have to develop effi-
cient protocols to (1) accommodate a large amount of users
and incur low end-to-end communication latency, and (2)
provide strong anonymity guarantees against network
adversaries.

As a step towards this goal, we present DAENet, the first
work that enables strong anonymity in a fully decentralized
network. DAENet incurs only seconds of latency when
scales to 10,000 users, and is secure against targeted DoS
attacks and traffic analysis attacks. We present the stealthy
P2P network abstraction consisting two design points to effi-
ciently preserve user anonymity. First, by using SGX to
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select a group of trustworthy shuffling nodes, passive traffic
analyzers cannot determine which users are communicat-
ing. Second, by safely negotiating a set of random locations
(i.e., dead drops) and using these locations for exchanging
message payload in each communication round, DAENet
forbids disclosure attacks that track and reveal sender iden-
tifiers. We evaluated the latency and bandwidth cost of
DAENet, and our evaluation results show that DAENet
scales well with moderate end-to-end latency while main-
taining constant-size bandwidth requirements for users.
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