
ccAI: A Compatible and Confidential System for AI Computing
Chenxu Wang∗†‡

Research Institute of Trustworthy
Autonomous Systems, Southern

University of Science and Technology
Shenzhen, Guangdong, China

Department of Computer Science and
Engineering, Southern University of

Science and Technology
Shenzhen, Guangdong, China

Department of Computing, The Hong
Kong Polytechnic University
Kowloon, Hong Kong, China
12150073@mail.sustech.edu.cn

Danqing Tang∗
Ant Group

Hangzhou, Zhejiang, China
tangdanqing.tdq@antgroup.com

Changxu Ci∗
Ant Group

Hangzhou, Zhejiang, China
cichangxu.ccx@antgroup.com

Junjie Huang
Department of Computer Science and
Engineering, Southern University of

Science and Technology
Shenzhen, Guangdong, China
12431254@mail.sustech.edu.cn

Yankai Xu
Department of Computer Science and
Engineering, Southern University of

Science and Technology
Shenzhen, Guangdong, China
12432712@mail.sustech.edu.cn

Fengwei Zhang§¶
Department of Computer Science and
Engineering, Southern University of

Science and Technology
Shenzhen, Guangdong, China
zhangfw@sustech.edu.cn

Jiannong Cao
Department of Computing, The Hong

Kong Polytechnic University
Kowloon, Hong Kong, China
csjcao@comp.polyu.edu.hk

Jie Song
Ant Group

Hangzhou, Zhejiang, China
charlie.sj@antgroup.com

Shoumeng Yan§
Ant Group

Hangzhou, Zhejiang, China
shoumeng.ysm@antgroup.com

Tao Wei
Ant Group

Hangzhou, Zhejiang, China
lenx.wei@antgroup.com

Zhengyu He
Ant Group

Hangzhou, Zhejiang, China
zhengyu.he@antgroup.com

Abstract

Confidential xPU computing has emerged as a prominent tech-
nique for effectively securing users’ AI computing workloads on
heterogeneous systems equipped with xPUs. Although the industry
adopts this technology in cutting-edge hardware (e.g. NVIDIA H100
GPU) to safeguard high-performance AI computing, most clouds
still rely on legacy xPUs and suffer from data leakage problems.
∗Chenxu Wang, Danqing Tang and Changxu Ci are co-first authors.
†Also with Department of Computer Science and Engineering, Southern University of
Science and Technology, China.
‡Also with Department of Computing, The Hong Kong Polytechnic University, China.
§Fengwei Zhang and Shoumeng Yan are corresponding authors.
¶Also with Research Institute of Trustworthy Autonomous Systems, Southern Univer-
sity of Science and Technology, China.

This work is licensed under a Creative Commons Attribution 4.0 International License.
MICRO ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1573-0/25/10
https://doi.org/10.1145/3725843.3756104

Moreover, although the academy proposes several confidential xPU
designs, these solutions have yet to be widely deployed in hetero-
geneous clouds. A key limitation is the compatibility challenge,
which requires non-trivial engineering effort to address. Therefore,
there is an urgent need to design a compatible and confidential
xPU protection system that is tailored for today’s AI computing
platforms.

To address these issues, we present ccAI, a heterogeneous sys-
tem that ensures both high compatibility and strong security for
AI computing based on xPU. By leveraging the PCIe interconnect
as a common abstraction layer, ccAI provides a unified solution
for securing diverse xPU types while preserving user transparency,
effectively overcoming key compatibility limitations of existing
approaches. Specifically, ccAI achieves this through two core com-
ponents: (1) a dedicated hardware module, the PCIe Security Con-
troller (PCIe-SC), which enforces computing security of diverse
types of xPU and (2) a collaborative software component, the Adap-
tor, deployed within the Trusted VM (TVM), which orchestrates
secure workload processing without modifying applications or

340

https://orcid.org/0000-0001-7039-033X
https://orcid.org/0009-0001-6281-9121
https://orcid.org/0009-0000-6148-3104
https://orcid.org/0009-0000-9249-0550
https://orcid.org/0009-0008-9886-2368
https://orcid.org/0000-0003-3365-2526
https://orcid.org/0000-0002-2725-2529
https://orcid.org/0009-0005-4802-9587
https://orcid.org/0009-0007-9580-5395
https://orcid.org/0009-0000-4027-0310
https://orcid.org/0009-0002-7682-1019
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725843.3756104
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3725843.3756104&domain=pdf&date_stamp=2025-10-17

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Chenxu Wang et al.

drivers. To handle the complexity of PCIe packet transmissions,
ccAI incorporates a flexible and fine-grained processing framework,
within which ccAI additionally optimizes frequent I/O interactions
and security-critical operations to minimize performance overhead.
We implement a prototype of ccAI and evaluate it across multiple
real-world xPU platforms using a range of Large Language Models
(LLMs). Results show that ccAI effectively protects xPU computing
with low (0.05% – 5.67%) performance overhead

Keywords

AI computing, confidential xPU computing, PCIe

ACM Reference Format:

Chenxu Wang, Danqing Tang, Changxu Ci, Junjie Huang, Yankai Xu, Feng-
wei Zhang, Jiannong Cao, Jie Song, Shoumeng Yan, Tao Wei, and Zhengyu
He. 2025. ccAI: A Compatible and Confidential System for AI Computing.
In 58th IEEE/ACM International Symposium on Microarchitecture (MICRO
’25), October 18–22, 2025, Seoul, Republic of Korea. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3725843.3756104

1 Introduction

Artificial Intelligence (AI) computing has become increasingly
prevalent, profoundly transforming a wide range of data-driven
applications. These include personalized video processing [62],
healthcare diagnostics [74], and Large Language Model (LLM) infer-
ence [21, 60, 61]. As AI workloads grow in scale and complexity, de-
velopers are increasingly turning to heterogeneous cloud platforms
such as Google Cloud [27], Microsoft Azure [46], and Alibaba Cloud
(Aliyun) [4]) tomeet performance demands. Unlike traditional cloud
infrastructures, heterogeneous clouds leverage high-performance
accelerators, known as xPUs, to accelerate AI tasks. These acceler-
ators include Graphics Processing Units (GPUs) [5, 8, 52], Neural
Processing Units (NPUs) [10], and Field Programmable Gate Arrays
(FPGAs) [7] accelerators. With their computational power, xPUs
have become indispensable for modern AI systems.

Despite their performance advantages, xPUs introduce signifi-
cant security problems. Vulnerabilities in xPU software stacks [16–
20] and insecure hardware designs [48] allow adversaries to extract
sensitive data, such as input datasets and intermediate results, or
even leak proprietary AI models during execution [73]. To address
this threat, confidential xPU computing has emerged as a promising
defense mechanism, supported by extensive research over the past
decade [39, 40, 44, 75, 84, 85]. Recently, NVIDIA commercialized
this concept with the release of the H100 GPU [50], the first GPU
to offer built-in confidentiality support. The H100 delivers strong
data protection for high-performance AI workloads while maintain-
ing performance comparable to legacy xPUs. This has prompted
adoption by major cloud providers such as Google [28] and Mi-
crosoft [47]. As a result, confidential xPU computing will become a
standard feature in future heterogeneous clouds.

However, the H100 GPU alone cannot fully address the data
leakage problem in today’s heterogeneous clouds. Due to cost and
deployment constraints, most cloud providers continue to rely on
general xPUs, which lack native confidentiality support. Although
studies has proposed confidential computing solutions for these de-
vices (summarized in Figure 1), they have not achieved widespread
deployment in real-world AI platforms due to two compatibility

limitations: First, many studies lack support for multiple xPU types.
Hardware-based approaches [50, 83] (Figure 1c) and privileged
software or Trusted Execution Environment (TEE)-based meth-
ods [39, 44, 85] (Figures 1a–b) are often tightly coupled to specific
xPU architectures, workflows, or hardware features. TDISP-based
solutions [6, 9, 37] (Figure 1e) require advanced PCIe capabilities,
such as IDE support [66], and compliance from both the platform
and the xPU. As a result, they are incompatible with older or non-
compliant hardware. Second, many designs fail to ensure user trans-
parency. Isolated platform architectures [93] (Figure 1d), for exam-
ple, require non-trivial modifications to user applications, such as
invoking custom APIs for secure data transfer or task submission.
In addition, most studies (Figures 1a/b/c/e) require changes to the
xPU software stack, including drivers and runtime libraries, within
the Trusted VM (TVM). These modifications increase migration
effort and reduce usability.

These limitations highlight the urgent need for a solution that
provides strong security while maintaining compatibility and trans-
parency in heterogeneous clouds. In this paper, we present ccAI
(Figure 1f), a novel system designed to deliver robust security with-
out compromising compatibility or ease of use. ccAI aims to achieve
three goals.

• (G1) High compatibility: ccAI must support a wide range of
xPU types and integrates with existing xPU software.

• (G2) Strong data security: ccAI must end-to-end confiden-
tiality, integrity, and isolation throughout the computation
process.

• (G3) Low performance overhead: ccAI must introduce low
latency to AI workload execution.

The primary design challenge (C1) is overcoming the compati-
bility problems of existing studies. To address this, ccAI adopts a
PCIe-based architecture that operates at the PCIe packet level of
DMA and MMIO transactions, a common interface across all xPU
types. Instead of relying on device-specific protection, ccAI offloads
security enforcement to a dedicated hardware module called PCIe
Security Controller (PCIe-SC), which sits between the xPU and
the PCIe bus. The PCIe-SC monitors and secures all PCIe packet
exchanges between the TVM and the xPU, providing consistent pro-
tection independent of the xPU type. To preserve user transparency,
ccAI avoids any modifications to xPU applications or xPU software
stacks (e.g., drivers or user-layer libraries). Instead, it introduces a
lightweight software component, the Adaptor, deployed within the
TVM. The Adaptor collaborates with the PCIe-SC to transparently
manage security-critical operations, including data encryption and
metadata handling, for xPU workloads. We detail ccAI’s system
design in §3.

Implementing ccAI introduces additional challenges. One chal-
lenge (C2) is secure and flexible management of PCIe packets. Un-
like prior works that rely on coarse-grained access control, such as
securing MMIO or DMA channels, ccAI operates at the PCIe packet
level, where each packet has complex and heterogeneous attributes
including format, type, and address space. Moreover, many stud-
ies [39, 40, 85] either ignore PCIe bus attacks or employ inflexible
defenses such as full-link encryption. To address this, ccAI intro-
duces a Packet Filter that systematically classifies PCIe packets
based on their attributes and blocks unauthorized requests. For

341

https://doi.org/10.1145/3725843.3756104

ccAI: A Compatible and Confidential System for AI Computing MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

1On-board CC Ext.1On-board CC Ext.

xPUxPU

 TVM TCB2 for confidential computing System TCB for confidential computing Added/Modified Components Untrusted Components Optional Components
1On-board CC Extension: Security hardware implemented on xPU board. (e.g., CCU in ITX, FPGA controller in AccShield/ShEF, command processor in Graviton)

2TCB: Trusted Computing Base

PCIe Bus

xPU

(a) TEE-based Design

(e.g., Cronus, CURE)

(b) PL-SW-based Design

(e.g., CAGE)

Host OS

Hypervisor

Privileged SW

TVM

(c) HW-based Design

(e.g., ITX, NVIDIA H100)

(d) Isolated Platform Design

(e.g., HETEE)

(e) TDISP-based Design

(e.g., TDX Connect, RMEDA)

xPU Driver

xPU Driver
Enclave node
xPU Driver

Enclave node

xPUxPU

PCIe Bus

xPU

Host OS

Hypervisor

Privileged SW

TVM

xPU Driver
TEE Node

Internal DMA/MMIO Ctrl.

Trusted

PCIe
Bus

Iso. Platform

xPUxPU

PCIe Bus

xPU

Host OS

Hypervisor

Privileged SW

TVM

xPU Driver

Host OS

Hypervisor

Privileged SW

TVM

xPU Driver

PCIe IDE-supported Bus

Host OS

Hypervisor

Privileged SW

TVM

xPU Driver

TDISP-Compliant Ext.TDISP-Compliant Ext.TDISP-Compliant Ext.

TDISP-compliant xPU

(f) ccAI

(Our Design)

PCIe Bus

xPU

Host OS

Hypervisor

Privileged SW

TVM

PCIe-SC

(PCIe Pkt. Ctrl.)

xPU Driver

Adaptor

xPUxPUxPU

DMA/MMIO
Ctrl.

DMA/MMIO
Ctrl.

PCIe Bus

xPU
1On-board CC Ext.

(PCIe MMIO Ctrl.)

DMA/MMIO
Ctrl.

DMA/MMIO
Ctrl.

1On-board CC Ext.1On-board CC Ext.

xPU
1On-board CC Ext.

(PCIe MMIO Ctrl.)

1On-board CC Ext.1On-board CC Ext.

xPU
1On-board CC Ext.

(DMA/MMIO Ctrl.)

Figure 1: Architecture overview of state-of-the-art designs and ccAI.

authorized packets, the filter enforces fine-grained security policies,
from strict confidentiality and integrity guarantees to transparent
pass-through, based on packet attributes. ccAI also employs a set
of Packet Handlers to perform cryptographic operations such as
encryption and integrity verification. We elaborate on this packet-
level protection in §4. Another challenge (C3) is the performance
overhead introduced by security operations. Frequent I/O interac-
tions between the TVM and PCIe-SC, especially during encryption
and policy synchronization, can lead to significant latency. To miti-
gate this, we reduce redundant I/O read and write operations during
computing and propose several optimizations to security operation.
We describe these techniques in §5.

We implement a prototype of ccAI using an Intel server [34]
to host TVM-side components such as the Adaptor, and an Intel
Agilex 7 SoC FPGA [33] to realize the PCIe-SC as a proof of con-
cept. The system runs on a general-purpose TVM and supports five
distinct xPUs: NVIDIA A100 GPU [56], RTX4090Ti GPU [55], T4
GPU [59], Tenstorrent N150d NPU [78], and Enflame S60 GPU [24].
This demonstrates high compatibility across different vendors and
architectures. We compare ccAI’s compatibility guarantees with
those of state-of-the-art approaches and conduct a comprehensive
security analysis, including an evaluation of the Trusted Comput-
ing Base (TCB). Furthermore, we evaluate the prototype using a
suite of LLMs, including OPT [90], Llama-2 [79], Babel [92], and
Deepseek [87], across multiple xPUs. Experimental results show
that ccAI achieves strong security and high compatibility with low
(0.05% – 5.67%) performance overhead.

We highlight the following key contributions:

• We propose ccAI, a compatible and confidential system for
xPU-based AI computing in heterogeneous clouds. By secur-
ing the PCIe communication channels between TVMs and
multi-type xPUs, ccAI ensures confidentiality, integrity, and
isolation throughout xPU computation.

• We implement a proof-of-concept prototype of ccAI and in-
tegrate it with real-world xPU devices. The prototype seam-
lessly supports diverse xPUs types and transparently runs
existing software stacks.

• We evaluate ccAI using a range of LLM models across mul-
tiple xPUs. Results show that ccAI introduces low perfor-
mance overhead and is practical for real-world deployment.

2 Background and Motivation

2.1 xPU, PCIe and Packets

xPUs, including Graphic Processing Units (GPUs) [52], Neural Pro-
cessing Units (NPUs) [10], and Field Programmable Gate Array
(FPGA) accelerators [7], are critical to today’s AI computing. In
heterogeneous clouds, xPUs interact with host CPUs through two
top-layer interfaces: (1) Direct Memory Access (DMA) for data/code
exchange and (2) Memory-Mapped I/O (MMIO) for transferring
commands or accessing register status. However, the implementa-
tion of DMA and MMIO varies across xPU types due to the hard-
ware heterogeneity. For instance, commercial GPUs [5, 52] usu-
ally equip an on-board Memory Management Unit (MMU), while
TPUs [26] lack this component. Besides hardware variance, the soft-
ware stacks for different xPUs (e.g., NVIDIA GPU driver [58] and
Xilinx FPGA driver [88]) are largely varied. This makes the control
of DMA/MMIO vary in different xPU-equipped system. Together,
these hardware and software differences make it difficult to design
a one-size-fits-all protection mechanism that works with multiple
xPU types and their software stacks.

GPU FPGA-Acc. Other xPU

PCIe Root Complex

PCIe Link

CPU/DRAM Workload/Command

...

Pkt
Header Pkt Payload

Format Type

Data Length

Requester ID

Completer ID

Address / Routing Info.

...
...

Figure 2: Overview of PCIe Fabric and PCIe packet.

Nevertheless, xPUs in heterogeneous clouds rely on a common
and low-level channel for DMA and MMIO operations: The PCIe.
As illustrated in Figure 2, the PCIe root complex routes workloads
and commands between the host side (e.g., CPU and main memory)
and PCIe-attached devices such as xPUs. Since the PCIe interface
is universally adopted in xPU computing, it provides a consistent

342

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Chenxu Wang et al.

foundation for ccAI to design a compatible protection mechanism
that supports diverse xPU types (G1).

To implement DMA and MMIO operations, the PCIe interface
transmits data, code, and commands using PCIe packets, the funda-
mental units of PCIe communication. As shown in Figure 2, each
DMA or MMIO transaction consists of multiple PCIe packets, all
routed through the same PCIe Root Complex to reach the target xPU.
To control data flow, each PCIe packet includes a header containing
critical attributes such as packet format, packet type, requester and
completer IDs, accessed address space, and routing information. By
inspecting these header attributes, ccAI can differentiate between
authorized and malicious requests (G2). However, the complexity
of PCIe header attributes, including numerous valid field combi-
nations, and the diversity of packet sources, such as the TVM and
untrusted guest software, pose a significant challenge in designing
an efficient and secure packet filtering mechanism.

2.2 Threat Model

We assume a powerful adversary who aims to leak or tamper with
sensitive data (i.e., inputs, intermediate data, and execution results)
and code of confidential xPU tasks. On the CPU side, the adversary
controls the privileged software stack, including the privileged
OS, hypervisor, and peripheral drivers. In this case, the adversary
attempts to access or tamper with the xPU applications, software
stacks, and the Adaptor in ccAI. On the xPU side, we follow the
state-of-the-art [50, 68, 93] and assume that the adversary can attack
the PCIe bus (e.g., via the snooping attack [72]) to access or tamper
with PCIe transmission. In addition, the adversary may attempt to
tamper with xPUs, ccAI’s PCIe-SC, and the connection between
these components.

We trust the TVM (e.g., Intel TDX [36]) to protect the xPU appli-
cations and software stacks from the privileged software. The CPU-
side TVM is protected by privileged software (e.g., TDX module)
and CPU-side security primitives. Same as most state-of-the-arts,
we do not consider the side-channel and denial-of-service attacks,
which orthogonal works [2, 41, 86] can address. Finally, we assume
that the firmware of the xPU is free of malicious code and its in-
tegrity is protected. This indicates that ccAI trusts the authenticity
of the hardware vendor.

3 ccAI Design

The principle of ccAI is to achieve a compatible and secure system
for xPU-based AI computing in heterogeneous clouds. Guided by
this principle, we aim to achieve three critical goals:

• Compatibility: ccAI must operate in heterogeneous clouds
that support general-purpose TVMs and general xPU devices.
This requires ccAI to be independent of specific CPU-side
security features, particular xPU architecture, and hardware
modifications to either the CPU or xPU devices.

• Security: ccAI must ensure confidentiality, integrity, and
isolation in the xPU computing environment.Moreover, ccAI
must protect sensitive xPU workloads, including data and
model, throughout their entire lifecycle: When stored in the
TVM, transmitted over the PCIe bus, and processed on the
xPU.

• Performance: ccAI must introduce low performance over-
head during computing. To meet the stringent efficiency re-
quirements of heterogeneous clouds, ccAI’s execution work-
flow must be carefully optimized.

Remote User

PCIe-SC

Enc. Workload & ResultsRemote Attest Report & Keys

TVM

Trust

Channel

Packet-related
Channel

ccAI Added

Components

Native SW/HW

Components

xPU

TVM Trust Modules

RA

Packet Filter

PCIe Packet
Control Rules

Packet Handler

(sensitive pkt.)

...

Packet Handler

(general pkt.)

In
te

rn
al

 P
C

IeHRoT-Blade

KM Seal. ...

Boot

Adaptor

xPU Task

Process.

xPU App

xPU Software Stacks

(e.g., Driver, Libs)

PCIe-SC

Interact.RA Key

Manage ...

PCIe Bus

Figure 3: Architecture overview of ccAI.

Figure 3 illustrates the architecture of ccAI. Designed for clouds
equipped with general-purpose TVM, ccAI requires no modifica-
tions to xPU software or hardware, nor does it depend on specialized
CPU security primitives, thereby achieving high compatibility (G1).
To ensure strong data security (G2), ccAI integrates a standard
TVM with a dedicated PCIe-SC, which collectively protect xPU
workloads against powerful adversaries. The TVM is responsible
for safeguarding xPU applications and xPU software stacks, includ-
ing xPU drivers and user-layer libraries, with isolation mechanisms.
Meanwhile, the PCIe-SC mediates all access to the xPU and per-
forms critical security operations, such as data de/encryption and
integrity verification. Additionally, ccAI includes trust establish-
ment components — such as an HRoT-Blade (a hardware root-of-
trust module) and TVM-side trust modules — to securely initialize
the system and support remote attestation. These components are
detailed in §6. By optimizing the workflow and security operations,
ccAI enables LLMs to run on high-performance xPUs with min-
imal performance overhead, meeting the efficiency demands of
heterogeneous clouds (G3).

C1. However, the primary challenge of ccAI is to address the
compatibility problems in previous studies, especially in supporting
multi-type xPUs and ensuring user transparency. On the one hand,
different xPUs are usually implemented with different hardware
architectures and support their own software stacks. On the other
hand, most xPU software stacks do not provide security support to
workloads.

Solution to C1. We propose two major solutions to address
the aforementioned problems. First, to support multi-type xPUs,
we anchor our protection mechanism on the PCIe channel, which
is the common connection between TVMs and multi-type xPUs.
Specifically, our protection focuses on managing the basic PCIe
transmission unit — PCIe packet. This is because the PCIe packet
is commonly used in various types of xPUs, carrying the data/code
and command payloads for DMA/MMIO interaction with the TVM

343

ccAI: A Compatible and Confidential System for AI Computing MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

(mentioned in §2.1). Second, to ensure user transparency, we do
not directly modify the xPU applications or drivers. Instead, we
design a TVM-side Adaptor to process the xPU workloads (e.g.,
encrypting the data) and submit them to PCIe-SC. Note that the
Adaptor supports software-based updates (e.g., kernel patch) to
mitigate the effort to support new xPUs. Overall, ccAI effectively
addresses compatibility issues while ensuring data security.
PCIe-SC. By managing packets in PCIe transmission, the PCIe-SC
controls and processes the DMA/MMIO interaction with xPU. As
shown in Figure 3, the PCIe-SC consists of three major components:
First, the Packet Filter. To support multi-type xPUs, the Packet
Filter intercepts all PCIe packets coming from or sent to the xPU to
analyze their metadata (e.g., the xPU’s Bus/Device/Function, packet
type and address space) for filtering and processing. Specifically,
the Packet Filter stores a set of access control rules designed for the
DMA/MMIO security requirements (e.g., the authorized sender and
sensitive address space) of the target xPU. Second, a set of Packet
Handlers. These handlers are designed to securely process (e.g.,
perform de/encryption and check PCIe packet integrity) authorized
packets. They include sensitive PCIe packets (e.g., data and code
for AI model) and general packets like interrupts. Third, ccAI also
designs an HRoT-Blade for trust establishment processes, such
as remote attestation and exchange keys. Overall, the PCIe-SC
supports and protects multi-type xPUs by managing PCIe packet
interactions. We further detail this process in §4.
TVM-side Adaptor. As shown in Figure 3, the TVM-side Adaptor
is delegated to achieve two major functions: (1) Interacting with
PCIe-SC and (2) processing xPU tasks. For the interaction with
PCIe-SC, the Adaptor sends request packet via MMIO-based opera-
tions. For processing the xPU tasks, this process must ensure user
privacy — introducing no changes to xPU application and driver.
To achieve this, the Adaptor first sends packets to query the essen-
tial metadata (e.g., address position and size) of the processed task.
Next, based on the metadata from PCIe-SC, the Adaptor locates
the sensitive data/code, performs encryption, and transmits the
encrypted task via a bounce buffer. Moreover, the TVM-side Adap-
tor supports compatible system updates for supporting new xPU
devices. Specifically, ccAI updates the Adaptor with software-based
kernel patches. With secure boot guarantees, the updated patch
is directly activated on the TVM, providing interaction support
(e.g., memory allocation for confidential workloads) of the new
xPU software.
ccAI deployment. Lastly, we detail the deployment process of
ccAI. We deploy ccAI on a TVM-supported cloud where the user
requests a TVM, provides an xPU computing workload, and re-
ceives the execution results. To deploy ccAI, each TVM installs the
Adaptor, trust modules, and the native xPU software stacks (e.g.,
xPU driver and user-layer libraries). Meanwhile, the PCIe-SC is
equipped on the server’s PCIe port and connects xPU devices with
an internal PCIe bus. In the secure boot process, ccAI verifies the
TVM and its PCIe-SC to ensure the integrity of the confidential
xPU computing environment. Next, ccAI provides a set of trust
modules to attest the local TVM, xPU devices, and PCIe-SC and
generates a remote attestation report for the user’s attestation. To
ensure workload confidentiality, the user follows ccAI’s trust estab-
lishment process to exchange keys with PCIe-SC and its TVM. This
trust establishment process helps to encrypt the xPU workloads

Table 1: Categorization of PCIe packet access control. The

A1 – A4 denote four security actions for processing a packet.

Packet Access Permission Actions

Prohibited (A1) Disallow
Write-Read Protected (A2) Integrity Check (Crypt.) + En/Decryption

Write Protected (A3) Integrity Check (Plain) + Security Verify
Full Accessible (A4) Transparent Transmission

with signatures and securely transmit the xPU workloads in the
network. Once the TVM receives xPU workloads, it decrypts the
workload and leverages ccAI’s workflow to perform confidential
xPU computing. After computing, the TVM receives the encrypted
execution results from PCIe-SC, decrypts them and wait the remote
user to access.

4 Security Design

Packet Handler

Enc.
data

Enc.
data

High-level
Security

Packet Queue

(e.g., data)

PCIe Packet
Payload Queue

PCIe Packet
Header Queue

PCIe Packet
Header Queue

Plain
data

PCIe Packet
Payload Queue

Authentication Tag Manager
Auth Tag

Packet Queue

Auth
Tag

Sign.
data

Low-level Security

Packet Queue

(e.g., Interrupts)

A4: Transmitting packets to target directly

Integrity Engine

xPU Env. Guard

A3: Transmitting packets with integrity protection only

Sign-based Integrity Check MMIO/Runtime Check

A2: Transmitting packets with high confidentiality/integrity

AES-SHA Engine
De/Encryption

Integrity Check
A1:

Filtering

malicious
packets

L1 Table

Packet Filter

CPU-side
Packets

Plaintext
Packets

TVM / Unauthorized Software / Peripherals / ...

xPU

L2 Table

PCIe-SC

De/Encryption
Parameters Manager

Figure 4: Overview of ccAI security design.

As aforementioned in §3, ccAI must ensure the security of xPU
computing (G2). Since TVM builds isolated security regions for xPU
workloads on the CPU side, we focus on protecting the PCIe channel
between xPU and TVM. Figure 4 shows the workflow of our PCIe
protection. During xPU computing, ccAI receives PCIe packets
from varied software/hardware components. To filter and process
these packets, we design two major components: (1) A Packet Filter,
which blocks malicious packets and classifies authorized packets
for further security actions, and (2) a set of Packet Handlers, which
execute security operations (e.g., de/encryption, security checks,
and integrity verification) on packets. After processing, the PCIe-SC
transmits packets with plaintext data to the xPU and finally handles
the execution results using the same process.

C2. However, filtering and handling PCIe packets in confidential
xPU computing can be challenging: Packets carry diverse attributes
and expected values (e.g., the address and ID of the requester and
destination). Even packets of the same type may require different
security actions due to their attribute values. Thus, a one-size-fits-
all mechanism is insufficient to filter and manage PCIe packets for
xPUs.

Solution to C2. To address this challenge, we systematically
analyze PCIe packets in confidential xPU computing and design a

344

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Chenxu Wang et al.

Rule
ID

Match Fields Security

ActionMask Pkt. Type Requester ...

1 16'b110... MWr TVM ... To L2 Table

2 16'b110... MRd TVM ... To L2 Table
...

n 16'b000... - - - Execute A1

L1 Table
Rule

ID
Match Fields Security

ActionPkt. Type Requester Completer Addr. Space
1 MWr (cmd) TVM ccAI HW 0x6000 -- 0x7000 Execute A2

2 MWr (cmd) TVM xPU 0x8000 -- 0x9000 Execute A3

3 MWr (data) TVM xPU 0x1000 -- 0x5000 Execute A2

4 MRd (cmd) TVM xPU 0x1000 -- 0x5000 Execute A4
...

L2 Table

CPU

① PCIe Packet-based Access Control in L1 Table ② PCIe Packet Security Action Guide in L2 Table

Pkt. Queue

Figure 5: Workflow of Packet Filter.

new packet security categorization — we classify four categories
of packet access permissions and corresponding security actions
(see Table 1). The Packet Filter is required to recognize prohibited
packets from unauthorized software/hardware and filter malicious
packets (A1). For the authorized packets, we further categorize
them into three additional packet access permissions: (1) Write-
Read Protection, (2) Write Protection, and (3) Full Accessible, as a
guide to the corresponding security actions. Specifically, the Write-
Read Protection access control serves the packets with sensitive data
(e.g., user data, model parameters, and execution results). These
packets require careful confidentiality and integrity protection over
the PCIe bus (A2). For packets related to xPU computing but with
non-sensitive payloads (e.g., generic model code and MMIO-based
control/register values), we set Write Protection control for these
packets. Specifically, we provide integrity protection and additional
security verification (e.g., checking the correctness of the xPU page
table register) on the computing environment (A3). Lastly, for pack-
ets with general functions (e.g., interrupt requests), we set them as
Full Accessible and directly transmit these packets to their destina-
tion (A4). Our design securely and efficiently guides PCIe packet
filtering and management in confidential xPU computing.

4.1 Packet Filter

L1/L2 Table. The L1 and L2 tables work in sequence to filter Pro-
hibited packets and classify authorized packets, with a fine-grained
detection. To avoid over-engineering (e.g., preparing all rules for
each xPU/TVM) and defend against malicious changes to every
packet attribute, we add the Mask attribute. This allows users to
flexibly control the attribute values for packet checking. As shown
in Figure 5 1○, we only permit the memory read/write requests
from authorized TVMs to proceed to the xPU. Moreover, the L2
table determines the permissions of the authorized packets to guide
security actions. The key reason for distinguishing different per-
missions is the combination of three packet attribute values: Packet
type, interacting parties, and address space sensitivity. For exam-
ple, in Figure 5 2○, when handling the memory read/write request
packet, the Packet Filter considers whether the PCIe packet hits the
address space of the workload (e.g., data and code bounce buffer).
If it hits, we classify the packet as aWrite-Read Protection packet.
However, if packets only perform write operations to non-sensitive
address space, we consider these packets asWrite Protection. Lastly,
in the L2 table, we treat read requests for non-sensitive information
(e.g., interrupt status), and memory read requests without sensitive
payload, as Full Accessible packets. For these packets, we directly
transmit them without additional security checks.

Dynamic and secure configuration. ccAI supports dynamic
policy updates to Packet Filter via a dedicated configuration space.
Authorized users modify policies through the Adaptor. However,
the adversarymay also attack the configuration space (e.g., injecting
a malicious configuration and leaking sensitive data). To mitigate
this attack, ccAI encrypts the security policies before storing them
in the configuration space. When applying these policies, ccAI
extracts the policies and decrypts them with corresponding keys,
ensuring secure configuration of Packet Filter.

4.2 Packet Handler

Once the Packet Filter blocks the unauthorized PCIe packets, the
Packet Handler processes packets using the provided security ac-
tions. As shown in Figure 4, the Packet Handler processes the high-
level security packets (e.g., packets with sensitive data and model
parameters) with complex de/encryption and integrity check (A2),
while it processes the low-level security packets (e.g., packets with
generic AI models or insensitive xPU MMIO values) with integrity
protection only (A3) or no additional processing (A4).
Key observation of xPU workloads. To support complex xPU
confidentiality tasks, we first analyze workloads from varied xPU
devices and applications. A critical observation emerged: Although
the memory access patterns for xPUs workloads are largely varied,
the workflows of PCIe packet processing are standardized. This
allows us to design a general security workflow for all xPU packets,
consisting of three major steps: (1) Analyzing confidential packet
headers and their authentication tag packets, (2) extracting the
packet payloads and performing security operations, and (3) merg-
ing the header and processed payloads for transmission. We detail
key components to achieve the workflow as follows.
Control panels. Based on the aforementioned workflow, we de-
couple the control functions from the hardware engine and delegate
them to two control panels: First, a De/Encryption Parameters
Manager for the de/encryption confidentiality guarantee. This panel
aims to manage cryptographic requirements for different tasks. To
achieve this, it analyzes the packet headers and records the essen-
tial de/encryption parameters, helping to process packet payloads.
Second, an Authentication Tag Manager for integrity checks. It
handles a unique authentication tag packet queue, matching au-
thentication tag packets and the corresponding xPU task’s packets
based on the tag attribute. Additionally, it extracts the authentica-
tion codes and verifies the integrity of the sensitive payload. Overall,
these control panels flexibly schedule the security operations on
packets and satisfy different packet processing requirements.
xPU environment guard. Besides protecting the xPU workloads,
the Packet Handler additionally includes an xPU environment

345

ccAI: A Compatible and Confidential System for AI Computing MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

guard, which supports cleaning the xPU computing environment.
The xPU environment guard checks and cleans the xPU computing
environment when terminating an xPU task, preventing the adver-
sary from accessing unused data after computing. To achieve this,
the xPU environment guard triggers a cold boot reset on the xPU,
cleaning its memory, caches, registers, and TLB status. For xPUs
that support software-based reset, the xPU environment guard can
notify the Adaptor to send an environment reset packet, such as a
packets with cache and TLB reset MMIO commands.

5 ccAI Optimization

As discussed in §3 and §4, ccAI ensures compatibility and secu-
rity by designing a novel interaction workflow between TVM and
multi-type xPUs. In this design, the PCIe-SC addresses the security
gap between TVMs and xPUs by filtering and securely processing
PCIe packets. Meanwhile, the TVM-side Adaptor enables native
xPU software to manage xPU workloads without sacrificing user
transparency.

C3. However, ccAI’s new workflow risks degrading the per-
formance of heterogeneous clouds, such as reducing I/O through-
put and increasing AI computing latency. This is because ccAI
introduces additional interaction between PCIe-SC and TVM/xPU.
Moreover, the essential security operations (e.g., de/encryption)
also introduce performance overhead in xPU computing.

Solution to C3. To address this challenge, we focus on optimiz-
ing the frequent interactions by reducing the redundant (1) I/O read
and write operations in DMA.Meanwhile, we reduce overhead from
security-critical processes. The effectiveness of our optimizations
is validated in §8.5 (G3). We detail our optimization solutions as
follows.
Optimization on I/O read. In ccAI’s xPU computing, the xPU
often initiates DMA request to access sensitive data/code in TVM
memory. We observe that such process can introduce redundant I/O
read operations — The Adaptor can repeatedly query PCIe-SC for
the metadata of the DMA process (e.g., transmission payload size
and address). To reduce the I/O read operations, we do not store the
DMA metadata in ccAI and wait for the Adaptor to fetch. Instead,
the PCIe-SC collects DMAmetadata in batches and provides them to
TVM. In this step, we allocate a temporary buffer in TVM memory
to store the metadata batches. This allows the Adaptor to directly
read the metadata and encrypt data for DMA, without frequent I/O
read interaction with PCIe-SC.
Optimization on I/O write. After the Adaptor completes data
encryption and prepares for data transfer, it typically sends a PCIe
packet request (via an I/O write operation) to notify the PCIe-SC to
initiate further transmission. In a non-optimized design, this process
can generate redundant requests. For instance, the Adaptor may
split a large-scale data decryption task into smaller subtasks, each
of which can generate a PCIe packet request when the encryption
is finished. To reduce this redundancy, we require the Adaptor
to process data (e.g., perform encryption) in batches. Once the
entire data region is processed, we use only one I/O write operation
to notify PCIe-SC for data transfer. Based on this, we reduce the
frequency of write operations.
Optimization on security operations. Besides optimizing the
frequent interactions, we also consider two solutions to optimize

the security operations in ccAI. First, on the TVM-side Adaptor, we
leverage hardware-based instructions (e.g., Intel AES-NI [32]) to
offload the de/encryption and memory copy process. Such instruc-
tions leverage well-designed hardware acceleration mechanism and
perform faster than software-based instructions. Second, permitted
by privileged software (e.g., TDX module), we can allocate addi-
tional CPU threads and cores to process the security operations in
parallel. This design prevents security operations from becoming a
bottleneck in high-throughput AI workloads.

6 Trust Establishment

ccAI enables users to securely provide workloads to the ccAI-
equipped platform and verify their computing environments. To
achieve this, ccAI deploys trust modules on both CPU-side TVMs
and the PCIe-SC, alongside a suite of trust establishment processes.
We detail ccAI’s trust establishment design as follows.
Secure boot. Leveraging the Hardware Root of Trust (HRoT) on
the CPU-side platform, ccAI adapts the native secure boot and
software (e.g., Adaptor) measurement for TVMs. For the PCIe-SC’
secure boot, we design a TPM-compatible [82] trust module, called
HRoT-Blade, to ensure component integrity during boot. In this
process, the HRoT-Blade decrypts the PCIe-SC’s bitstream file (e.g.,
Packet Filter) and firmware stored in an external flash memory, then
measures the integrity of each component via a pre-defined chain of
trust. ccAI updates the measurement results in a dedicated register
— the Platform Configuration Register (PCR) — which is used for
generating attestation reports. Once the results are successfully
attested, ccAI loads the binary file into the boot loader and boots
up the PCIe-SC.

Compute S(PCRs) = SignAttestKey(PCRs)

Compute S(r) = SignAttestKey(r)

Generate r = (n, PCRs, S(PCRs))

Verifier ccAI

① SessionKey = DHKE(AttestKey)

③ KeyID, PCRsel, n

④ r, S(r)
Verify PCR, n

② S(AttestKey), S(EndorseKey)

Figure 6: Remote Attestation Protocol of ccAI.

Remote attestation. ccAI designs a standard remote attestation
protocol based on trusted attestation frameworks [80, 81], similar
to those used in building TEEs [14, 15, 75, 84, 91, 93]. This protocol
establishes a secure channel with a user verifier, enabling verifica-
tion of the user’s own ccAI-xPU set components. Figure 6 shows
its four major steps: First, the verifier and ccAI perform a key ex-
change using the Diffie-Hellman protocol [22], generating a shared
SessionKey to de/encrypt subsequent messages. Second, the veri-
fier requests the Attestation Key (AK) and Endorsement Key (EK)
certificates from the ccAI-equipped platform. It further validates
them with the corporate Root Certificate Authority (CA). Both EK
and AK are stored in the HRoT-Blade: The EK is pre-installed by the
vendor during manufacturing, while the AK is randomly generated
at system boot. Third, the verifier sends a challenge (e.g., KeyID
for xPU selection, PCR selection, with a random nonce) to its TVM.
The PCR selection is tied with two components: (1) The CPU-side

346

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Chenxu Wang et al.

HRoT (recording CPU firmware) and (2) the HRoT-blade (recording
PCIe-SC firmware). The TVM forwards the challenge to both HRoT
components for attestation. Once HRoT receives the challenge, it
signs the required PCR with AK to compute certificates (S(PCRs) in
Figure 6), and combines with nonce and PCR to generate the report.
Lastly, the TVM returns the report r and its certificate to the veri-
fier. Using the CA, the verifier validates the nonce and signature,
confirms the authenticity of the PCR, and uses the PCR to verify the
overall integrity of ccAI system.

For measuring xPU devices, if xPU devices equip HRoT, the PCIe-
SC can collaborate with this HRoT to verify the device authenticity
and firmware integrity (shown in Figure 6). If xPU devices delegate
attestation to ccAI, it can achieve this by employing software-based
attestation [38]. Moreover, xPU vendors can provide external inter-
faces (e.g., serial peripheral interfaces) to connect directly to the
HRoT-Blade, helping ccAI to attest the xPU computing environ-
ment.
Workload keymanagement. To support workload en/decryption,
ccAI manages shared symmetric keys for data transmission over
the untrusted PCIe fabric. The TVM and PCIe-SC negotiate the
symmetric keys and store keys in their own trust modules. ccAI also
dynamically updates the Initialization Vector (IV) for the symmetric
keys to ensure encryption randomness. As mentioned in [51], IV
exhaustion can lead to several attacks due to IV reuse [23, 29, 42].
Thus, ccAI follows the solution used in NVIDIA H100 [51] (e.g.,
generating and exchanging a new key) to mitigate this risk. Lastly,
when xPU computing terminates, both the TVM and the PCIe-SC
securely destroy shared symmetric keys to prevent data leakage.
Sealing. The sealing mechanism defends against physical attacks
on the PCIe-SC, the xPU device, and their internal PCIe connection
during computing. To achieve this, ccAI seals the aforementioned
hardware in a chassis, in which it runs physical sensors (e.g., pres-
sure and temperature sensors) to monitor the physical integrity
status. The HRoT-Blade periodically retrieves the physical status
via an integrated circuit (𝐼2𝐶) bus and updates in PCR registers,
enabling the remote user to attest the physical integrity of the
chassis.

7 Implementation

Figure 7: ccAI prototype system on real-world clouds.

We implemented a prototype of ccAI on an Intel server equipped
with 256 GB of memory and a 96-core CPU (see Figure 7a). On CPU
side, we run a Ubuntu 22.04 OS as its kernel, within which we
integrate our Adaptor, trust modules, and a set of xPU software

stacks. To validate ccAI’s confidential xPU computing supports, we
select five distinct xPUs: An NVIDIA A100 GPU [56], an NVIDIA
RTX4090Ti GPU [55], an NVIDIA T4 GPU [59], a Tenstorrent N150d
NPU [78], and an Enflame S60 GPU [24]. For the software stacks, we
support CUDA 12.1 and NVIDIA 550.90.07 GPU driver for NVIDIA
GPUs, tt-buda and ttkmd-1.29 software stacks for Tenstorrent NPU,
and EFSMI library v1.4.0.606 and Enflame driver v1.4.0.3 for Enflame
S60 GPU.

To verify the security supports of PCIe-SC, we prototype it on an
Intel Agilex 7 SoC FPGA (see Figure 7c). This FPGA implementation
includes a set of configurable IP cores for cryptographic operations,
integrity verification, PCIe packet-based filter (for DMA/MMIO),
and other essential functionalities. The PCIe-SC connects to xPU
(e.g., NVIDIA A100 GPU) via a standard PCIe slot (see Figure 7b).
We elaborate on our prototype in the following sections.

7.1 Adaptor

As aforementioned in §3, the Adaptor fulfills two major functions:
(1) Providing additional confidential xPU computing support for the
generic xPU software stacks and (2) interacting with the PCIe-SC.
We detail how ccAI prototypes achieve these functions as follows.
Confidential xPU support. Rather than modifying the native xPU
drivers, we create a new kernel module (called ccAI_adaptor) to
provide confidential xPU support. Specifically, we design a pair of
de/encrypt_data functions to locate the address of packet payload
contents (e.g., data and code) and perform de/encryption with the
specified algorithm (e.g., AES-128 in our prototype). In this step,
we leverage a set of hardware-assisted de/encryption instructions,
called Intel AES-NI [32], to optimize AES de/encryption in TVM.
PCIe-SC interaction.We allocate a 64KB MMIO region and im-
plement additional kernel functions to achieve PCIe-SC interaction
with the TVM. This implementation comprises two components:

First, we implement the control of PCIe-SC security components.
For Packet Filter, we provide a pkt_filter_Manage function to han-
dle L1/L2 tables, including configuring the MMIO space for security
rules transmission, loading and transmitting rules, and activating
them. For Packet Handlers, we implement a set of control bits and
kernel functions for the security operations (i.e., de/encryption,
integrity check, and xPU environment protection). These functions
enable or disable the hardware engines of each operation, initialize
the De/Encryption Parameters Manager and Authentication
Tag Manager control panels, and configure the panels. Moreover,
we implement a hw_init function to initialize the PCIe-SC.

Second, we implement a set of H2D and D2H functions to achieve
the data transmission between the TVM Host and the PCIe-SC
Device. Our implementation includes three tasks: (1) Configuring
the address, size, and other attributes of the H2D/D2H buffers, (2)
starting/terminating the H2D/D2H execution, and (3) monitoring the
running status of each position on H2D/D2H queues.

7.2 PCIe-SC

As described in §4, the PCIe-SC consists of two major parts: The
Packet Filter and the Packet Handler. We detail our implementation
of these two components as follows.

347

ccAI: A Compatible and Confidential System for AI Computing MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

Packet Filter. For initializing the Packet Filter, we allocate a 4KB
Upstream Bar space on the PCIe-SC to build L1/L2 tables. Autho-
rized users can add specific security policies (32 bytes per policy)
by invoking the pkt_filter_manage function in the Adaptor. The
Packet Filter focuses on three key information in the PCIe packet
Header [63–65, 67]: (1) The packet type, which is a combination of
format and memory access attributes (e.g., memory read/write con-
figurations), (2) the route IDs, which contain the PCIe information
of the requested and completed devices, and (3) the payload meta-
data, which describes the (start_address) and (end_address) for
triggering packet-specific security operations. To extract the nec-
essary information, the PCIe-SC uses an integrated PCIe switch
to receive packets, then parses them according to the standard
PCIe packet format. Since all PCIe-based xPUs rely on this format
for DMA/MMIO interactions with the CPU host, the Packet Filter
supports different xPU devices.
Packet Handler. To implement the Packet Handler, we delegate
the control panels (i.e., De/Encryption Parameters Manager
and Authentication Tag Manager) to manage parameters for
de/encryption and integrity check, such as the key length, key,
initial vector (with 12-byte nonce and 4-byte counter), and authen-
tication tag (16-byte length). Additionally, we implement an AES-
GCM-SHA hardware engine for de/encryption and integrity checks.
We also implement an environment check module to validate the
MMIO values and clean the xPU environment.

8 Evaluation

In this section, we evaluate the compatibility, security, performance
overhead, and optimization of the ccAI prototype with respective
to six research questions:
RQ1: How does ccAI compare with the state-of-the-art in compati-
bility support?
RQ2: Can ccAI defend against the privileged adversary?
RQ3: How much performance overhead does ccAI introduce to
different evaluation metrics when running LLMs?
RQ4: How much performance overhead does ccAI introduce on
multi-type LLMs and xPUs?
RQ5: How effective is our optimization on ccAI?
RQ6: How much performance overhead does ccAI introduce on
stress-test scenarios?

8.1 RQ1: Comparison to State-of-the-art

We discuss the compatibility issues on ccAI and the state-of-the-art
studies, with detailed report in Table 2. Our compatibility analy-
sis focus on three major aspects: (1) User transparency, (2) sup-
port of multi-type xPUs, and (3) support of heterogeneous clouds.
ccAI’s system design is friendly to xPU application developers.
Unlike several state-of-the-art that introduce customized user-layer
APIs [39, 83, 91, 93], ccAI directly adapts to native xPU application
without additional changes. Additionally, ccAI achieves high com-
patibility with commercial xPUs: ccAI neither alters the xPU soft-
ware stacks (modified in most studies) nor changes xPU hardware
logic (as seen in typical hardware-based designs [50, 83, 84, 91]).
Notably, rather than supporting specific xPUs or TDISP-compliant
xPUs, ccAI aims to support legacy xPUs for AI computing. For

heterogeneous cloud support, ccAI leverages general TVMs to pro-
tect xPU applications, software stacks, and the TVM-side Adaptor
— yet it does not rely on TVM-specific security primitives. Note
that ccAI follows existing IOMMU settings in TVM or privileged
software, without additional changes. Our PCIe-SC also functions
as a standard PCIe switch.
Comparison to H100. We compare ccAI with NVIDIA H100
GPU [50] in security and performance. For security, both H100
and ccAI ensure a confidential computing environment for xPUs,
including three core capabilities: (1) Isolating xPU from software
and physical adversary targeting the TVM and PCIe, (2) providing
de/encryption support for xPU workloads, (3) enabling secure boot,
attestation and key management for trust establishment. In perfor-
mance, studies [77, 94] show that H100’s confidential computing
introduces a moderate (more than 20%) performance overhead on
execution metrics like end-to-end (E2E) Latency. In ccAI, it achieves
a low (0.05% – 5.67%) latency overhead due to the fine-grained
de/encryption mechanisms. Note that H100 and ccAI exhibit com-
parable overhead on throughput.
Comparison to HETEE. Next, we discuss an AI computing pro-
tection design for a heterogeneous system, HETEE [93]. ccAI is
better suitable for general TVM-equipped servers for three reasons.
First, HETEE relies on the rack-scale PCIe resource-sharing features
(e.g., PCIe Express fabric chips) to deploy its security controller and
isolated computing nodes — features not supported by all servers.
Instead, ccAI is designed for general servers. Second, HETEE re-
quires specialized APIs to receive user data/models, along with a
corresponding manifest from remote users. This adds engineering
effort for adapting general xPU applications. However, ccAI does
not require such API changes. Third, HETEE adapts microserver
(i.e., proxy nodes) as a TEE for xPU software, which requires hard-
ware changes on the microserver’s PCB board. ccAI avoids such
changes and protects xPU software with existing TVMs.
Comparison to TDISP. TDISP is an emerging standard for confi-
dential xPU design, with functionality that partially overlaps with
ccAI. Nevertheless, the full hardware implementation of TDISP (e.g.,
cloud with PCIe IDE [66], TDISP-based CPU architecture [6, 9, 37],
and multiple TDISP-compliant xPU) will take years to mature. Cur-
rently, AI-supported clouds [4, 25] still lack TDISP support, and
adopting TDISP can incur non-negligible hardware costs. Compared
with TDISP, ccAI adapts general TVMs and xPUs for confidential
AI computing.
Comparison to secure PCIe. Furthermore, we explain why ccAI
aims at protecting PCIe packet instead of another choice — secure
PCIe channel that encrypting all transmission content. We summa-
rize two key reasons: First, most xPU devices (e.g., general NVIDIA
A100 GPUs [56]) lack built-in support for cryptographic operations.
Without such support, these xPUs cannot directly decrypt sensitive
payloads transmitted over a secure PCIe channel. Second, main-
stream xPU software stacks prefer a close-source implementation
for PCIe transmission interfaces (e.g., CudaMemCopy in CUDA [49]).
Modifying these stacks to support secure PCIe channel can be chal-
lenging and often impractical.
Comparison to Cronus and HyperTEE. Lastly, we discuss two
xPU protection designs, Cronus [40] and HyperTEE [13], which
introduce a new TEE system design for xPU computing. ccAI out-
performs both in software/hardware compatibility, for two reasons:

348

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Chenxu Wang et al.

Table 2: Comparison between ccAI and the state-of-the-art in compatibility issues. The green and red entry: High compatibility

and low compatibility design.

Design Type System Design

User Transparency Multi-type xPU Support Supported Heterogeneous Clouds

App Changes xPU SW Changes xPU HW Changes Supported xPU Supported TEE/TVM Host PL-SW Changes

CPU TEE-based Designs

ACAI [75] No Yes No TDISP-compliant xPU Arm CCA RMM, Monitor
Cronus [40] No Yes No General xPU Arm SEL2 S-Hyp, Monitor
CURE [12] No Yes No GPU Customized RISC-V TEE Monitor, CPU Firmware
HIX [39] Customized API Yes No GPU Intel SGX CPU Firmware
Portal [70] No Yes No GPU Arm CCA RMM, Monitor

HyperTEE [13] Customized API Yes No DNN Accelerator Customized RISC-V TEE Monitor

PL-SW-assisted Designs
CAGE [85] No Yes No GPU Arm CCA Monitor

Honeycomb [44] No Yes No GPU AMD SEV SVSM, Monitor
MyTEE [30] No Yes No GPU Customized Arm TEE Monitor

Hardware Designs

ITX [83] Customized API Yes Yes IPU General TVM No
NVIDIA H100 [50] No Yes Yes GPU Intel TDX, AMD SEV No

Graviton [84] No Yes Yes GPU Intel SGX No
ShEF [91] Customized API Yes Yes FPGA-Acc. General TVM No

Isolated Platform HETEE [93] Customized API No No General xPU Customized proxy TEE No

TDISP-based Designs
Intel TDX Connect [37] No Optional Optional TDISP-compliant xPU Intel TDX TDX Connect

ARM RMEDA [11] No Optional Optional TDISP-compliant xPU Arm CCA RMM
AMD SEV-TIO [6] No Optional Optional TDISP-compliant xPU AMD SEV SEV Firmware

ccAI (Ours) No No No General xPU General TVM No

First, ccAI does not modify the existing xPU software stacks or
APIs invoked by the xPU application. By contrast, Cronus and Hy-
perTEE mandate these changes to collaborate xPU software with
their security mechanisms. Second, ccAI is not tied to a specific
TVM architecture. Instead, Cronus is designed on the Arm SEL2
platform, and HyperTEE designs a hardware security IP on the
CPU chip. Nevertheless, several security supports (e.g., xPU page
table management and access control) in Cronus and HyperTEE
can further enhance the security design of our PCIe-SC.

8.2 RQ2: Security Analysis of ccAI

We follow the threat model in §2.2 and conduct a detailed security
analysis on ccAI. Same as most hardware-based designs, ccAI de-
fends against adversaries from the untrusted host, unauthorized
TVMs, malicious devices, and the untrusted PCIe fabric. We elabo-
rate our security analysis as follows.
Attacks from host/TVM. The adversary may attempt to access
or tamper with the sensitive data/models in the TVM. To achieve
this, the adversary can access the TVM from an untrusted host
OS, hypervisor, or a registered TVM. Nevertheless, ccAI defends
against these attacks by hardware-based TVM security primitives
(e.g., Intel TDX). Specifically, privileged software (e.g., TDXmodule)
configures these primitives to securely protect the TVM’s address
space. Besides accessing TVM, the adversary may attempt to access
the protected xPU from the host or unauthorized TVM — typically
by sending packet read/write requests to the protected xPU. How-
ever, our PCIe-SC verifies packet metadata in the L1/L2 table and
blocks unauthorized packet requests.
Attacks from malicious devices. Besides the access attempts
from the CPU side, the adversary may control a malicious device
to undermine ccAI’s security guarantees. One direct attack is to
access TVM via the malicious device. However, privileged software
restricts such access attempts (e.g., by configuring the IOMMU to
isolate TVM from malicious devices). Furthermore, the adversary
may use the malicious device to attack xPUs, but the Packet Filter
effectively blocks such access attempts. Another potential attack
entails faking a PCIe packet request and sending it to the xPU.
However, the packet contents still fail the integrity check, as the

adversary lacks de/encryption keys. Note that ccAI also addresses
packet replay attacks by leveraging initial vectors.
Attacks from PCIe. The adversary may compromise PCIe packet
transmission over the untrusted PCIe fabric [31, 43, 72, 76]. For
example, a sophisticated attacker can snoop on the PCIe bus to
directly access transmitted packets, extracting or tampering with
sensitive data, code, and MMIO-based commands. ccAI mitigates
this risk by encrypting packet payloads containing sensitive data
and implementing integrity checks for packets involved in confiden-
tial xPU computing. Additionally, the adversary may compromise
the integrity of PCIe packet transmission, such as by altering packet
order, replaying packets, or deleting them. To defend against this
attack, ccAI incorporates an additional check to verify the order of
packet transmission. The adversary may also route packets carrying
sensitive data or models to unexpected TVMs or other peripherals.
Even in such cases, the packet payload cannot be leaked as they
lacks the necessary decryption keys.
Attacks on xPU. Last, the adversary may attempt to compromise
the PCIe-SC, the xPU device, and the internal PCIe connection be-
tween these components —most commonly by tamperingwith their
firmware. ccAI defends against this attack through the implementa-
tion of a secure boot process, where integrity is carefully measured
and reported via remote attestation. Notably, today’s xPUs support
firmware signature checking [45], a feature ccAI leverages to enable
this secure boot workflow. Moreover, the adversary may attempt
to physically compromise the hardware during xPU computing.
However, the sealing mechanism in §6 can effectively detect such
physical tampering.
TCB addition size.Weuse cloc [3] andQuartus [35] to respectively
measure the software and hardware TCB addition in ccAI prototype,
whose breakdown is reported in Table 3. ccAI introduces 3.1K
Lines of Code (LoC) on each CPU-side TVM without additional
changes on privileged software. For hardware changes, the PCIe-
SC consumes 218.6K Adaptive Look-Up Tables (ALUTs), 195.7K
logic registers (Regs), and 630 Block RAMs (BRAMs). Overall, our
prototype does not expose a large attack surface to the adversary.

349

ccAI: A Compatible and Confidential System for AI Computing MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

Table 3: Breakdown of TCB addition in ccAI. The HRoT-

Blade part is implemented on an embedded Cortex-A53 hard

processor system (HPS) and does not introduce additional

hardware cost. The Others part includes PCIe switch, clocks

and connections.

Components LoC ALUTs Regs BRAMs

TVM

Adaptor 2.1K – – –
Trust Modules 1.0K – – –

PCIe-SC

Packet Filter – 11.3K 32.4K 310
Packet Handlers – 175.5K 56.8K 72

HRoT-Blade – 0 0 0
Others – 31.5K 106.5K 248

Total 3.1K 218.6K 195.7K 630

 64-tok 128-tok 256-tok 512-tok 1024-tok 2048-tok

10

20

30

40

50

60

E2
E

La
te

nc
y:

 (s
)

+0.05% +0.50%
+0.13%

+0.68%

+0.63%

+0.71%Vanilla ccAI

(a) Fix-batch E2E Latency test

 1-bat 3-bat 6-bat 12-bat 24-bat 48-bat 96-bat

2

4

6

8

10

12

E2
E

La
te

nc
y:

 (s
)

+0.50% +0.71% +0.58% +1.53%
+5.15%

+5.67%

+5.32%Vanilla ccAI

(b) Fix-token E2E Latency test

 64-tok 128-tok 256-tok 512-tok1024-tok2048-tok

10
20
30
40
50
60

TP
S:

 (t
ok

en
s/

s)

-0.05% -0.49% -0.13% -0.68% -0.63% -0.70%

Vanilla ccAI

(c) Fix-batch TPS test

 1-bat 3-bat 6-bat 12-bat 24-bat 48-bat 96-bat

250

500

750

1000

1250

1500

TP
S:

 (t
ok

en
s/

s)

-0.49% -0.70%
-0.58%

-1.51%

-4.90%

-5.37%

-5.06%Vanilla ccAI

(d) Fix-token TPS test

 64-tok 128-tok 256-tok 512-tok 1024-tok 2048-tok
0.0

0.2

0.4

0.6

0.8

1.0

TT
FT

: (
s)

+5.45% +3.45% +2.92% +6.13%
+1.17%

+1.13%
Vanilla ccAI

(e) Fix-batch TTFT test

 1-bat 3-bat 6-bat 12-bat 24-bat 48-bat 96-bat
0.0

0.5

1.0

1.5

2.0

TT
FT

: (
s)

+3.45% +5.34% +3.02% +0.60%
+3.93%

+1.48%
+0.79%

Vanilla ccAI

(f) Fix-token TTFT test

Figure 8: Performance overhead in Llama-2-7B-Chat model.

Note that the left-side figures (a/c/e) set the batch size as 1

and the right-side figures (b/d/f) set the size of token as 128.

8.3 RQ3: LLM benchmarks Evaluation with

Different Metrics

Evaluation on Llama-2.We evaluate ccAI’s performance using
Llama-2 chat model [79] — a widely adopted LLM. For the exper-
imental setup, we fix the model parameters size at 7 billion and
vary two input variables: (1) Tokens, which indicate the number of
words in a chat question, and (2) batch, which represents the num-
ber of asked questions at once. Prompts used in the experiments are
adapted from the ShareGPT [69] and Hellaswag [89] datasets with
changes. We compile the benchmarks with CUDA [49] libraries
and run them on NVIDIA A100 GPU. Following NVIDIA’s standard
evaluation guidelines [54], we selected three key metrics for anal-
ysis: First, the end-to-end latency (E2E Latency), which indicates
the total time to generate a response to chat questions. Second, the
tokens per second (TPS), which is defined as the number of output
tokens generated per second. Third, the time to first token (TTFT),
which shows the time elapsed until the first token is generated.

Figure 8 shows the execution results. ccAI introduces low (0.05%
– 5.67%) performance overhead across all metrics and benchmarks.
The evaluation results in E2E and TPS benchmarks are similar
in two aspects: First, significant increases in tokens/batches does
not lead to a sharp rise in performance overhead. For example,
expanding the input token size from 1024-tok to 2048-tok adds
merely 0.08% overhead to the E2E Latency. Similarly, the 96-bat
benchmark does not incur higher performance overhead than
48-bat benchmark (e.g., 5.37% TPS overhead in 96-bat but 5.06%
in 48-bat). Second, when we increase the input batch size from 12
to 24, the overhead shows a relatively large increase in both the E2E
Latency and TPS. For instance, TPS overhead increases by 3.39%
between 12-bat and 24-bat, but only 0.47% between 24-bat and
48-bat benchmarks. For the TTFT evaluations, we observe that
ccAI performs better on benchmarks with larger-size tokens (e.g.,
5.45% in 64-tok and 1.13% in 2048-tok). However, TTFT overhead
fluctuates as batch size increases. This fluctuation can be attributed
to the relatively short input sequences in the evaluation. Note that
the TTFT of each batch is relatively small and easily affected by the
changed PCIe transmission speed.

8.4 RQ4: Evaluation on Different LLMs/xPUs

OPT
-1.3b

BLOOM
-3b

Deepseek
-llm-7b

Llama2
-7b

Llama3
-8b

Deepseek
-r1-32b

Deepseek
-r1-70b

Llama3
-70b

Babel
-83b

20
40
60
80

100

E2
E

La
te

nc
y:

 (s
)

+0.72% +1.61% +0.02% +0.68% +0.29%

+4.76%

+2.14%
+4.66%

+2.84%

Vanilla ccAI

Figure 9: Performance overhead on different LLMs. The title

of each benchmark indicates the LLM type and parameter

size (counted as billions parameters). The Babel-83b is quan-

tized to INT2 (INT8 for Deepseek-r1-32b, INT4 for Deepseek-r1-
70b and Llama3-70b) and it has a relative small E2E Latency.

Evaluation on other LLMs. We measure ccAI across a diverse
set of LLMs with varying parameter scales. Specifically, our ex-
periments includes two light-weight LLMs (i.e., OPT-1.3b [90]
and BLOOM-3b [71]), three medium-weight LLMs (i.e., Deepseek-
llm-7b [87], Llama-2-7b [79], and Llama-3-8b [1]), and four
heavy-weight benchmarks (i.e., Deepseek-r1-32b [21], Deepseek-
r1-70b [21], Llama-3-70b [1] and Babel-83b [92]). For consistency
across all benchmarks, we fix the batch size as 1 and token size as
512. All benchmarks are compiled and run in the same environment
as the Llama-2 evaluation, with the E2E Latency as the primary
measurement metric. Figure 9 shows the evaluation results. Over-
all, ccAI introduces a low (0.72% – 4.76%) performance overhead
on the selected benchmarks. The heavy-weight LLMs introduce
a relatively high performance overhead than light-weight LLMs
(e.g., 1.61% on BLOOM-3b but 4.76% on Deepseek-r1-32b). This
trend can be partially attributed to limitation in our prototype’s
PCIe transmission bandwidth. However, crucially, this bandwidth-
related overhead does not scale linearly with model parameter size
(e.g., 2.14% on Deepseek-r1-70b and 2.84% on Babel-83b).

350

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Chenxu Wang et al.

A100 T4 RTX
4090Ti S60 N150d

20

40

E2
E

La
te

nc
y:

 (s
)

+0.58%
+2.40%

+0.86% +0.34%

+1.23%
Vanilla ccAI

Figure 10: Performance overhead of the selected xPUs.

Evaluation on multi-type xPU. Next, to assess ccAI’s compati-
bility and performance across diverse xPU architectures, we eval-
uate on five distinct xPU devices: An NVIDIA A100 GPU [56], an
NVIDIA RTX4090Ti GPU [55], an NVIDIA T4 GPU [59], a Tenstor-
rent N150d NPU [78], and an Enflame S60 GPU [24]. We measure
NVIDIA A100 GPU, NVIDIA RTX4090Ti GPU, and Enflame S60
GPU by running the Llama2-7b model. However, due to memory
limitations, we measured the NVIDIA T4 GPU and Tenstorrent
N150d NPU using a lightweight OPT-1.3b benchmark. Across all
tests, we fix the token size as 512 and batch size as 1. Figure 10
shows that ccAI introduces 0.58% – 2.40% performance overhead
across all five xPU devices. This result confirms two key attributes
of ccAI: First, ccAI achieves compatibility with multi-type xPUs, in-
cluding GPUs from NVIDIA/Enflame and an NPU from Tenstorrent.
Second, ccAI ensures low overhead with different xPUs.

8.5 RQ5: Evaluation of Optimization

 64-tok 128-tok 256-tok 512-tok 1024-tok

50

100

150

200

250

300

E2
E

La
te

nc
y:

 (s
)

-88.69% -88.98%
-89.19%

-89.57%

-89.44%ccAI No Opt

 1-bat 3-bat 6-bat 12-bat 24-bat

10

20

30

40

50

60

E2
E

La
te

nc
y:

 (s
)

-88.98%
-89.63% -89.66% -89.39% -87.03%

ccAI No Opt

Figure 11: Performance comparison between the non-

optimized mechanism and ccAI in Llama-2-7B-Chat. Note

that the left benchmark configures the batch size as 1 and

the right benchmark sets the size of token as 128.

Lastly, we measure the effectiveness of our performance op-
timization (described in §5). Specifically, we compare the ccAI
prototype with the non-optimized version on the Llama-2-7B-chat
benchmark, measuring them with different tokens and batch sizes
on NVIDIA A100 GPU. Figure 11 shows the comparison results.
ccAI reduces 88.7% – 89.8% E2E Latency overhead on the selected
benchmarks. Figure 11 further reveals that changes in token/batch
size have minimal impact on our optimization’s effectiveness. For
instance, when increasing the input token size from 64 to 1024,
the optimized prototype introduces more latency but still reduces
89.44% performance overhead. Moreover, increasing the input batch
size from 1 to 24 only leads to a marginal 1.95% decrease (from
88.98% to 87.03%) in optimization efficacy. Collectively, our evalua-
tion confirms both the effectiveness (via large overhead reduction)
and robustness (via steady optimization efficacy on varied work-
loads) of our optimization mechanism.

8.6 RQ6: Evaluation on Stress Test Scenarios

Limited PCIe bandwidth. To understand how ccAI performs
when PCIe bandwidth is shared/limited, we perform a stress test

16GT/s*16lanes 8GT/s*16lanes 8GT/s*8lanes

10

20

30

40

50

E2
E

La
te

nc
y:

 (s
)

+0.68%

+4.55% +4.45%

Vanilla ccAI

(a) Limited PCIe bandwidth

80%-util 70%-util 60%-util

20

40

60

80

100

Re
la

tiv
e

Pe
rfo

rm
an

ce
: (

%
)

-0.54% -1.88% -1.46%

Vanilla Vanilla w.t. KV-cache ccAI w.t. KV-cache

(b) Limited xPU memory

Figure 12: Performance results in stress test scenarios.

by adjusting both the speed and lane count of PCIe. Experiments
are run on NVIDIA A100 GPU with Llama-2-7b, using a fixed con-
figuration (token size as 512 and batch size as 1). Figure 12a shows
the results. The decreasing PCIe bandwidth increases latency for
both the native system and ccAI. Critically, however, ccAI does not
introduce higher performance overhead when PCIe speed/lanes are
limited (e.g., 4.45% on 8GT/s speed with eight lanes).
KV-cache. Next, we test ccAI in a scenario where xPU memory is
limited, forcing frequent swapping of the KV-cache to CPUmemory.
We set a 3 GB KV-cache and limit memory utilization percentage
(from 80% to 60%) on NVIDIA A100 GPU, triggering KV-cache swap-
ping. We run Llama-2-7b and select inputs from ShareGPT, with
input tokens ranging from 4 to 924 (batch size as 1). Considering
the input tokens of each test are largely varied, we report relative
performance slowdown (instead of E2E Latency) in Figure 12b. In
the KV-cache swapping scenario, both ccAI and the native system
reduce performance to ∼83%. Importantly, ccAI only introduces a
low addition (less than 2%) on overhead, confirming ccAI’s ability
to maintain low overhead even when xPU memory is limited.

9 Discussion

Customized packets. The xPU vendors may design customized
PCIe packets to support proprietary management functionalities
(e.g., customized message packets for power management). Never-
theless, such packets do not violate the standard PCIe format (e.g.,
PCIe header and payload format), so that they can be recognized
and transferred in general PCIe Root Complex. This ensures ccAI’s
PCIe-SC can still analyze the packet Header of the customized pack-
ets and perform basic security operations. Moreover, if xPU vendors
require to handle these packets with specific rules (e.g., encrypt-
ing sensitive message PCIe packets), they can add such rules into
Packet filter via PCIe-SC’s MMIO registers.
PCIe-SC for multiple xPUs and users. In our implementation,
each PCIe-SC serves a single xPU that is owned by a TVM. In the
future, ccAI can upgrade the PCIe-SC to support multiple xPUs or
xPU with multi-user support (e.g., NVIDIAMIG-enabled xPUs [53]).
To achieve this, the PCIe-SC can establish an isolated secure channel
with every connected xPU, or user content on a multi-user xPU.
Next, the PCIe-SC distinguishes each xPU, or virtual functions on
a xPU, by unique PCIe identifiers (e.g., Bus/Device/Function ID on
PCIe). Based on this, ccAI can handle packets with unique security
policies and route packets to correct xPU. Moreover, if the xPU
vendor allows, ccAI’s PCIe-SC design can integrate into the xPU
board to further reduce the hardware cost and complexity.
Supporting non-PCIe xPUs. While ccAI currently targets PCIe-
attached xPUs, its design can be adapted to several xPUs with
non-PCIe connectors (e.g., NVIDIA SXM on Hopper GPUs [57]).
We consider two requirements for such support: First, the connector

351

ccAI: A Compatible and Confidential System for AI Computing MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

must transmit DMA/MMIO requests with a basic unit (similar to
PCIe packets). Second, this unit must contain accessible metadata
(similar to PCIe packet Header) to guide ccAI for security opera-
tions, and the format must be open source. If these requirements
are satisfied, ccAI can mirror existing security design to filter these
units, perform de/encryption, and securely route to target xPUs.

10 Conclusion

In this paper, we present ccAI, a compatible and confidential sys-
tem designed for xPU-accelerated AI computing in heterogeneous
cloud environments. To address key limitations of existing studies,
such as lack of support for multiple xPU types and insufficient user
transparency, ccAI introduces two core components: A TVM-side
Adaptor and a PCIe Security Controller (PCIe-SC). These com-
ponents work collaboratively to protect xPU software, hardware
devices, and the PCIe communication between the TVM and xPU,
while ensuring high compatibility and preserving application trans-
parency. ccAI anchors its security enforcement at the PCIe packet
level, enabling uniform protection across diverse xPUs with varying
hardware architectures and software stacks. To handle the com-
plexity of PCIe traffic, ccAI employs a fine-grained and flexible
packet processing mechanism that classifies, filters, and securely
processes packets based on their attributes. Furthermore, ccAI op-
timize performance overhead caused by frequent I/O interactions
and cryptographic operations. We implement a prototype of ccAI
and evaluate it using multiple real-world xPUs and a suite of LLMs.
Results show that ccAI effectively secures xPU computing with
low (0.05% – 5.67%) performance overhead.

Acknowledgments

We would like to thank the anonymous reviewers and COMPASS
members for their insightful comments. This work is partly sup-
ported by the National Natural Science Foundation of China under
Grant No.62372218, No.U24A6009. This work is also supported in
part by HK RGC Collaborative Research Fund (No. C5032-23GF),
and Research Institute for Artificial Intelligence of Things, The
Hong Kong Polytechnic University. This work is also in part sup-
ported by Ant Group.

References

[1] Abhinav Jauhri Aaron Grattafiori, Abhimanyu Dubey et al. 2024. The Llama 3
Herd of Models. arXiv preprint arXiv:2407.21783 (2024).

[2] Shaizeen Aga and Satish Narayanasamy. 2017. InvisiMem: Smart Memory De-
fenses for Memory Bus Side Channel. In Proceedings of the 44th Annual Interna-
tional Symposium on Computer Architecture.

[3] AlDanial. 2021. cloc. https://github.com/AlDanial/cloc.
[4] Alibaba. 2025. Alibaba Cloud AI and Data Intelligence. https://alibabacloud.com/

en/solutions/ai/data-intelligence?_p_lc=1.
[5] AMD. 2023. AMD Radeon RX Graphics Cards. https://www.amd.com/en/

graphics/radeon-rx-graphics.
[6] AMD. 2023. AMD SEV-TIO: Trusted I/O for SecureEncrypted Virtualiza-

tion. https://www.amd.com/content/dam/amd/en/documents/developer/sev-tio-
whitepaper.pdf.

[7] AMD. 2024. FPGA Leadership Across Multiple Process Nodes. https://www.
xilinx.com/products/silicon-devices/fpga.html.

[8] ARM. 2023. Arm Mali Graphics Processing Units (GPUs). https://developer.arm.
com/ip-products/graphics-and-multimedia/mali-gpus.

[9] ARM. 2023. Arm System Memory Management Unit Architecture Specification.
https://developer.arm.com/documentation/ihi0070/latest/.

[10] ARM. 2023. Ethos-N78. https://www.arm.com/products/silicon-ip-cpu/ethos/
ethos-n78.

[11] ARM. 2023. Introducing Arm Confidential Compute Architecture Guide. https:
//developer.arm.com/documentation/den0125/latest/.

[12] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias
Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. 2021. CURE: A Security
Architecture with CUstomizable and Resilient Enclaves. In Proceedings of the 30th
USENIX Security Symposium.

[13] Yunkai Bai, Peinan Li, Yubiao Huang, Michael C Huang, Shijun Zhao, Lutan
Zhao, Fengwei Zhang, Dan Meng, and Rui Hou. 2024. HyperTEE: A Decoupled
TEE Architecture with Secure Enclave Management. In 2024 57th IEEE/ACM
International Symposium on Microarchitecture. IEEE.

[14] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol.
ePrint Arch. (2016).

[15] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. In USENIX Security Sympo-
sium.

[16] CVE. 2017. CVE-2017-17176. http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-17176.

[17] CVE. 2018. CVE-2018-12010. http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2018-12010.

[18] CVE. 2019. CVE-2019-2318. http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-2318.

[19] CVE. 2020. CVE-2020-5991. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-5991.

[20] CVE. 2022. CVE-2022-21821. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2022-21821.

[21] Haowei Zhang Daya Guo, Dejian Yang et al. 2025. DeepSeek-R1: Incentiviz-
ing Reasoning Capability in LLMs via Reinforcement Learning. arXiv preprint
arXiv:2501.12948 (2025).

[22] Whitfield Diffie and Martin Hellman. 1976. New Directions in Cryptography.
IEEE Transactions on Information Theory (1976).

[23] Morris J Dworkin. 2007. Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. Technical Report NIST SP 800-38D. Na-
tional Institute of Standards and Technology. https://nvlpubs.nist.gov/nistpubs/
legacy/sp/nistspecialpublication800-38d.pdf

[24] Enflame Tech. 2025. Enflame S60. https://www.enflame-tech.com/s60.
[25] Google. 2022. GPUs on Compute Engine. https://cloud.google.com/compute/

docs/gpus/.
[26] Google. 2024. Tensor Processing Units (TPUs) - Google Cloud. https://cloud.

google.com/tpu.
[27] Google. 2025. AI Infrastructure ML and DL Model Training. https://cloud.google.

com/ai-infrastructure/.
[28] Google. 2025. Announcing A3 supercomputers with NVIDIA H100

GPUs, purpose-built for AI. https://cloud.google.com/blog/products/compute/
introducing-a3-supercomputers-with-nvidia-h100-gpu.

[29] Shay Gueron and Vladislav Krasnov. 2014. The Fragility of AES-GCMAuthentica-
tion Algorithm. In Proceedings of the 11th International Conference on Information
Technology: New Generations.

[30] Seung-Kyun Han and Jinsoo Jang. 2023. MyTEE: Own the Trusted Execution
Environment on Embedded Devices. In Proceedings of the 30th Annual Network
and Distributed System Security Symposium.

[31] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji, Xinfeng Xie,
Yufei Ding, Chang Liu, Timothy Sherwood, and Yuan Xie. 2020. DeepSniffer:
A DNN Model Extraction Framework Based on Learning Architectural Hints.
In Proceedings of the 25th International Conference on Architectural Support for
Programming Languages and Operating Systems.

[32] Intel. 2025. Intel Advanced Encryption Standard Instructions (AES-
NI). https://www.intel.com/content/www/us/en/developer/articles/technical/
advanced-encryption-standard-instructions-aes-ni.html.

[33] Intel. 2025. Intel Agilex 7 FPGA F-Series 027. https://www.intel.com/
content/www/us/en/products/sku/208599/intel-agilex-7-fpga-fseries-027-
r25a/ordering.html.

[34] Intel. 2025. Intel® 64 and IA-32 Architectures Software Developer Manu-
als. https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-sdm.html.

[35] Intel. 2025. Quartus Prime Design Software. https://www.intel.com/content/
www/us/en/products/details/fpga/development-tools/quartus-prime.html.

[36] Intel Corporation. 2022. Intel Trust Domain Extensions. https://cdrdv2.intel.com/
v1/dl/getContent/690419.

[37] Intel Corporation. 2023. Intel TDX Connect TEE-IO Device Guide. https://cdrdv2-
public.intel.com/772642/whitepaper-tee-io-device-guide-v0-6-5.pdf.

[38] Andrei Ivanov, Benjamin Rothenberger, Arnaud Dethise, Marco Canini, Torsten
Hoefler, and Adrian Perrig. 2023. SAGE: Software-based Attestation for GPU
Execution. In Proceedings of the 2023 USENIX Annual Technical Conference.

[39] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethumadhavan, and Jaehyuk Huh.
2019. Heterogeneous Isolated Execution for Commodity GPUs. In Proceedings
of the 24th International Conference on Architectural Support for Programming
Languages and Operating Systems.

[40] Jianyu Jiang, Ji Qi, Tianxiang Shen, Xusheng Chen, Shixiong Zhao, Sen Wang, Li
Chen, Gong Zhang, Xiapu Luo, and Heming Cui. 2022. CRONUS: Fault-isolated,
Secure and High-performance Heterogeneous Computing for Trusted Execution

352

https://github.com/AlDanial/cloc
https://alibabacloud.com/en/solutions/ai/data-intelligence?_p_lc=1
https://alibabacloud.com/en/solutions/ai/data-intelligence?_p_lc=1
https://www.amd.com/en/graphics/radeon-rx-graphics
https://www.amd.com/en/graphics/radeon-rx-graphics
https://www.amd.com/content/dam/amd/en/documents/developer/sev-tio-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/developer/sev-tio-whitepaper.pdf
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus
https://developer.arm.com/documentation/ihi0070/latest/
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-n78
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-n78
https://developer.arm.com/documentation/den0125/latest/
https://developer.arm.com/documentation/den0125/latest/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17176
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17176
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-12010
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-12010
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2318
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2318
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5991
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5991
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21821
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21821
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38d.pdf
https://www.enflame-tech.com/s60
https://cloud.google.com/compute/docs/gpus/
https://cloud.google.com/compute/docs/gpus/
https://cloud.google.com/tpu
https://cloud.google.com/tpu
https://cloud.google.com/ai-infrastructure/
https://cloud.google.com/ai-infrastructure/
https://cloud.google.com/blog/products/compute/introducing-a3-supercomputers-with-nvidia-h100-gpu
https://cloud.google.com/blog/products/compute/introducing-a3-supercomputers-with-nvidia-h100-gpu
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/products/sku/208599/intel-agilex-7-fpga-fseries-027-r25a/ordering.html
https://www.intel.com/content/www/us/en/products/sku/208599/intel-agilex-7-fpga-fseries-027-r25a/ordering.html
https://www.intel.com/content/www/us/en/products/sku/208599/intel-agilex-7-fpga-fseries-027-r25a/ordering.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime.html
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://cdrdv2-public.intel.com/772642/whitepaper-tee-io-device-guide-v0-6-5.pdf
https://cdrdv2-public.intel.com/772642/whitepaper-tee-io-device-guide-v0-6-5.pdf

MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Chenxu Wang et al.

Environment. In Proceedings of the 55th IEEE/ACM International Symposium on
Microarchitecture.

[41] Zhipeng Jiao, Hua Chen, Jingyi Feng, Xiaoyun Kuang, Yiwei Yang, Haoyuan Li,
and Limin Fan. 2023. A Combined Countermeasure Against Side-Channel and
Fault Attack with Threshold Implementation Technique. In Chinese Journal of
Electronics.

[42] Antoine Joux. 2006. Authentication Failures in NIST version of GCM. Technical
Report. National Institute of Standards and Technology. https://csrc.nist.gov/csrc/
media/projects/block-cipher-techniques/documents/bcm/joux_comments.pdf

[43] Mohamed Amine Khelif, Jordane Lorandel, Olivier Romain, Matthieu Regnery,
Denis Baheux, and Guillaume Barbu. 2019. Toward a Hardware Man-in-the-
Middle Attack on PCIe Bus for Smart Data Replay. In Proceedings of the 22nd
Euromicro Conference on Digital System Design.

[44] Haohui Mai, Jiacheng Zhao, Christos Kozyrakis, Mingyu Gao, Hongren Zheng,
Quanxi Li, Zibin Liu, Cong Wang, Huimin Cui, and Xiaobing Feng. 2023. Hon-
eycomb: An Secure, Efficient GPU Execution Environment with Minimal TCB.
In Proceedings of the 17th USENIX Symposium on Operating Systems Design and
Implementation.

[45] Michael Larabel. 2017. NVIDIA Sends Out Signed Firmware Images For GP108
Pascal GPUs. https://www.phoronix.com/news/NVIDIA-GP108-Firmware.

[46] Microsoft. 2025. Azure OpenAI Service. https://cazure.microsoft.com/en-us/
products/ai-services/openai-service.

[47] Microsoft. 2025. ND-H100-v5 sizes series. https://learn.microsoft.com/en-us/
azure/virtual-machines/sizes/gpu-accelerated/ndh100v5-series?tabs=sizebasic.

[48] Rijoy Mukherjee, Sneha Swaroopa, and Rajat Subhra Chakraborty. 2024. Security
Vulnerabilities in AI Hardware: Threats and Countermeasures. In 2024 IEEE 33rd
Asian Test Symposium (ATS).

[49] NVIDIA. 2022. CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit.
[50] NVIDIA. 2022. NVIDIA CONFIDENTIAL COMPUTING. https://www.nvidia.

com/en-us/data-center/solutions/confidential-computing/.
[51] NVIDIA. 2023. Confidential Compute on NVIDIA Hopper H100. Technical Report.

NVIDIACorporation. https://images.nvidia.com/aem-dam/en-zz/Solutions/data-
center/HCC-Whitepaper-v1.0.pdf

[52] NVIDIA. 2023. Graphics Cards. https://www.nvidia.com/en-us/geforce/graphics-
cards/.

[53] NVIDIA. 2024. NVIDIA Multi-Instance GPU. https://www.nvidia.com/en-us/
technologies/multi-instance-gpu/.

[54] NVIDIA. 2024. NVIDIA NIM LLMs Benchmarking . https://docs.nvidia.com/nim/
benchmarking/llm/latest/metrics.html.

[55] NVIDIA. 2025. GeForce RTX 4090 Graphics Cards for Gaming. https://www.
nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/.

[56] NVIDIA. 2025. NVIDIA A100 Tensor Core GPU. https://www.nvidia.com/en-
us/data-center/a100/.

[57] NVIDIA. 2025. NVIDIA H100 Tensor Core GPU. https://www.nvidia.com/en-
us/data-center/h100/.

[58] NVIDIA. 2025. NVIDIA Linux Open GPU Kernel Module Source. https://github.
com/NVIDIA/open-gpu-kernel-modules.

[59] NVIDIA. 2025. NVIDIA T4 Tensor Core GPU for AI Inference. https://www.
nvidia.com/en-us/data-center/tesla-t4/.

[60] OpenAI. 2025. ChatGPT-OpenAI. https://openai.com/chatgpt.
[61] OpenAI. 2025. DALL-E-2-OpenAI. https://openai.com/index/dall-e-2/.
[62] OpenAI. 2025. Sora - OpenAI. https://openai.com/index/sora.
[63] PCI-SIG. 2010. PCI Express Base Specification Revision 3.0. https://members.

pcisig.com/wg/PCI-SIG/document/download/8265.
[64] PCI-SIG. 2017. PCI Express Base Specification Revision 4.0, Version 1.0. https://

members.pcisig.com/wg/PCI-SIG/document/10912?downloadRevision=active5.
[65] PCI-SIG. 2019. PCI Express Base Specification Revision 5.0, Version 1.0. https:

//members.pcisig.com/wg/PCI-SIG/document/13005.
[66] PCI-SIG. 2020. IDE Security IP for PCIe 5.0. https://pcisig.com/sites/default/files/

files/PCIe%20Security%20Webinar_Aug%202020_PDF.pdf.
[67] PCI-SIG. 2022. PCI Express Base Specification Revision 6.0, Version 1.0. https:

//members.pcisig.com/wg/PCI-SIG/document/16609.
[68] Wei Ren, William Kozlowski, Sandhya Koteshwara, Mengmei Ye, Hubertus

Franke, and Deming Chen. 2023. AccShield: a New Trusted Execution Environ-
ment with Machine-Learning Accelerators. In Proceedings of the 60th ACM/IEEE
Design Automation Conference.

[69] RyokoAI. 2025. ShareGPT52K. https://huggingface.co/datasets/RyokoAI/
ShareGPT52K.

[70] Fan Sang, Jaehyuk Lee, Xiaokuan Zhang, and Taesoo Kim. 2025. PORTAL: Fast
and Secure Device Access with Arm CCA for Modern Arm Mobile System-on-
Chips (SoCs). In Proceedings of the 46th IEEE Symposium on Security and Privacy.

[71] Teven Le Scao, Angela Fan, Christopher Akiki, et al. 2022. BLOOM: A
176B-Parameter Open-Access Multilingual Language Model. arXiv preprint
arXiv:2211.05100 (2022).

[72] Mert Side, Fan Yao, and Zhenkai Zhang. 2022. LockedDown: Exploiting Con-
tention on Host-GPU PCIe Bus for Fun and Profit. In Proceedings of the 7th IEEE
European Symposium on Security and Privacy.

[73] Siladitya Ray. 2023. Samsung Bans ChatGPT Among Employees After Sensi-
tive Code Leak. https://www.forbes.com/sites/siladityaray/2023/05/02/samsung-
bans-chatgpt-and-other-chatbots-for-employees-after-sensitive-code-leak/.

[74] K. Singhal, Shekoofeh Azizi, Tao Tu, Said Mahdavi, and Jason Wei. 2022. Large
Language Models Encode Clinical Knowledge. Nature (2022).

[75] Supraja Sridhara, Andrin Bertschi, Benedict Schlüter, Mark Kuhne, Fabio Aliberti,
and Shweta Shinde. 2023. ACAI: Protecting Accelerator Execution with Arm
Confidential Computing Architecture. In Proceedings of the 33rd USENIX Security
Symposium.

[76] Mingtian Tan, Junpeng Wan, Zhe Zhou, and Zhou Li. 2021. Invisible Probe:
Timing Attacks with PCIe Congestion Side-channel. In Proceedings of the 42nd
IEEE Symposium on Security and Privacy.

[77] Yifan Tan, Cheng Tan, Zeyu Mi, and Haibo Chen. 2025. Pipellm: Fast and Confi-
dential Large Language Model Services with Speculative Pipelined Encryption.
In Proceedings of the 30th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 1.

[78] Tenstorrent. 2025. Wormhole n150d. https://tenstorrent.com/en/hardware/
wormhole.

[79] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open Foundation and Fine-tuned Chat Models. arXiv
preprint arXiv:2307.09288 (2023).

[80] tpm2-software community. 2019. Remote Attestation with TPM2. Trusted Com-
puting Group. https://tpm2-software.github.io/tpm2-tss/getting-started/2019/
12/18/Remote-Attestation.html#/

[81] Trusted Computing Group. 2019. TCG Trusted Attestation Protocol
(TAP) Information Model. Technical Report. Trusted Computing Group.
https://trustedcomputinggroup.org/wp-content/uploads/TNC_TAP_
Information_Model_v1.00_r0.29A_publicreview.pdf

[82] Trusted Computing Group. 2025. TPM 2.0 specification. Trusted Computing
Group. https://trustedcomputinggroup.org/resource/tpm-library-specification/

[83] Kapil Vaswani, Stavros Volos, Cedric Fournet, Antonio Nino Diaz, Ken Gordon,
Balaji Vembu, SamWebster, David Chisnall, Saurabh Kulkarni, Graham Cunning-
ham, et al. 2023. Confidential Computing within an AI Accelerator. In Proceedings
of the 2023 USENIX Annual Technical Conference.

[84] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton: Trusted
Execution Environments on GPUs. In Proceedings of the 13th USENIX Symposium
on Operating Systems Design and Implementation.

[85] ChenxuWang, Fengwei Zhang, Yunjie Deng, Kevin Leach, Jiannong Cao, Zhenyu
Ning, Shoumeng Yan, and Zhengyu He. 2024. CAGE: Complementing Arm CCA
with GPU Extensions. In Proceedings of the 31st Annual Network and Distributed
System Security Symposium.

[86] Jinwen Wang, Ao Li, Haoran Li, Chenyang Lu, and Ning Zhang. 2022. RT-TEE:
Real-time System Availability for Cyber-physical Systems using ARM TrustZone.
In Proceedings of the 43rd IEEE Symposium on Security and Privacy.

[87] Guanting Chen Xiao Bi, Deli Chen et al. 2024. DeepSeek LLM: Scaling Open-
Source Language Models with Longtermism. arXiv preprint arXiv:2401.02954
(2024).

[88] Xilinx. 2023. Xilinx DMA IP Reference drivers. https://github.com/Xilinx/dma_
ip_drivers.

[89] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019.
HellaSwag: Can a Machine Really Finish Your Sentence?. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics.

[90] Susan Zhang, Stephen Roller, Naman Goyal, et al. 2022. OPT: Open Pre-trained
Transformer Language Models. arXiv preprint arXiv:2205.01068 (2022).

[91] Mark Zhao, Mingyu Gao, and Christos Kozyrakis. 2021. ShEF: Shielded Enclaves
for Cloud FPGAs. In Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems.

[92] Yiran Zhao, Chaoqun Liu, Yue Deng, et al. 2025. Babel: Open Multilingual
Large Language Models Serving Over 90% of Global Speakers. arXiv preprint
arXiv:2503.00865 (2025).

[93] Jianping Zhu, Rui Hou, XiaoFeng Wang, Wenhao Wang, Jiangfeng Cao, Boyan
Zhao, Zhongpu Wang, Yuhui Zhang, Jiameng Ying, Lixin Zhang, et al. 2020.
Enabling Rack-scale Confidential Computing using Heterogeneous Trusted Exe-
cution Environment. In Proceedings of the 41st IEEE Symposium on Security and
Privacy.

[94] Jianwei Zhu, Hang Yin, et al. 2024. Confidential Computing on NVIDIA Hopper
GPUs: A Performance Benchmark Study. arXiv preprint arXiv:2409.03992 (2024).

353

https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/joux_comments.pdf
https://www.phoronix.com/news/NVIDIA-GP108-Firmware
https://cazure.microsoft.com/en-us/products/ai-services/openai-service
https://cazure.microsoft.com/en-us/products/ai-services/openai-service
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/ndh100v5-series?tabs=sizebasic
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/ndh100v5-series?tabs=sizebasic
https://developer.nvidia.com/cuda-toolkit
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing/
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing/
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/HCC-Whitepaper-v1.0.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/HCC-Whitepaper-v1.0.pdf
https://www.nvidia.com/en-us/geforce/graphics-cards/
https://www.nvidia.com/en-us/geforce/graphics-cards/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://docs.nvidia.com/nim/benchmarking/llm/latest/metrics.html
https://docs.nvidia.com/nim/benchmarking/llm/latest/metrics.html
https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://github.com/NVIDIA/open-gpu-kernel-modules
https://github.com/NVIDIA/open-gpu-kernel-modules
https://www.nvidia.com/en-us/data-center/tesla-t4/
https://www.nvidia.com/en-us/data-center/tesla-t4/
https://openai.com/chatgpt
https://openai.com/index/dall-e-2/
https://openai.com/index/sora
https://members.pcisig.com/wg/PCI-SIG/document/download/8265
https://members.pcisig.com/wg/PCI-SIG/document/download/8265
https://members.pcisig.com/wg/PCI-SIG/document/10912?downloadRevision=active5
https://members.pcisig.com/wg/PCI-SIG/document/10912?downloadRevision=active5
https://members.pcisig.com/wg/PCI-SIG/document/13005
https://members.pcisig.com/wg/PCI-SIG/document/13005
https://pcisig.com/sites/default/files/files/PCIe%20Security%20Webinar_Aug%202020_PDF.pdf
https://pcisig.com/sites/default/files/files/PCIe%20Security%20Webinar_Aug%202020_PDF.pdf
https://members.pcisig.com/wg/PCI-SIG/document/16609
https://members.pcisig.com/wg/PCI-SIG/document/16609
https://huggingface.co/datasets/RyokoAI/ShareGPT52K
https://huggingface.co/datasets/RyokoAI/ShareGPT52K
https://www.forbes.com/sites/siladityaray/2023/05/02/samsung-bans-chatgpt-and-other-chatbots-for-employees-after-sensitive-code-leak/
https://www.forbes.com/sites/siladityaray/2023/05/02/samsung-bans-chatgpt-and-other-chatbots-for-employees-after-sensitive-code-leak/
https://tenstorrent.com/en/hardware/wormhole
https://tenstorrent.com/en/hardware/wormhole
https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html#/
https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html#/
https://trustedcomputinggroup.org/wp-content/uploads/TNC_TAP_Information_Model_v1.00_r0.29A_publicreview.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TNC_TAP_Information_Model_v1.00_r0.29A_publicreview.pdf
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://github.com/Xilinx/dma_ip_drivers
https://github.com/Xilinx/dma_ip_drivers

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 xPU, PCIe and Packets
	2.2 Threat Model

	3 ccAI Design
	4 Security Design
	4.1 Packet Filter
	4.2 Packet Handler

	5 ccAI Optimization
	6 Trust Establishment
	7 Implementation
	7.1 Adaptor
	7.2 PCIe-SC

	8 Evaluation
	8.1 RQ1: Comparison to State-of-the-art
	8.2 RQ2: Security Analysis of ccAI
	8.3 RQ3: LLM benchmarks Evaluation with Different Metrics
	8.4 RQ4: Evaluation on Different LLMs/xPUs
	8.5 RQ5: Evaluation of Optimization
	8.6 RQ6: Evaluation on Stress Test Scenarios

	9 Discussion
	10 Conclusion
	Acknowledgments
	References

