
CAGE: Complementing Arm CCA with GPU
Extensions

Chenxu Wang∗‡, Fengwei Zhang†∗B, Yunjie Deng†∗, Kevin Leach§,
Jiannong Cao‡, Zhenyu Ning¶, Shoumeng Yan∥ and Zhengyu He∥

∗Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, China
†Department of Computer Science and Engineering, Southern University of Science and Technology, China

‡Department of Computing, The Hong Kong Polytechnic University, China
§Institute for Software Integrated Systems, Vanderbilt University, USA

¶Hunan University, China, ∥Ant Group, China
{12150073, 12032869}@mail.sustech.edu.cn, zhangfw@sustech.edu.cn, kevin.leach@vanderbilt.edu

csjcao@comp.polyu.edu.hk, zning@hnu.edu.cn, {shoumeng.ysm, zhengyu.he}@antgroup.com

Abstract—Confidential computing is an emerging technique
that provides users and third-party developers with an isolated
and transparent execution environment. To support this tech-
nique, Arm introduced the Confidential Computing Architecture
(CCA), which creates multiple isolated address spaces, known as
realms, to ensure data confidentiality and integrity in security-
sensitive tasks. Arm recently proposed the concept of confidential
computing on GPU hardware, which is widely used in general-
purpose, high-performance, and artificial intelligence computing
scenarios. However, hardware and firmware supporting con-
fidential GPU workloads remain unavailable. Existing studies
leverage Trusted Execution Environments (TEEs) to secure GPU
computing on Arm- or Intel-based platforms, but they are
not suitable for CCA’s realm-style architecture, such as using
incompatible hardware or introducing a large trusted computing
base (TCB). Therefore, there is a need to complement existing
Arm CCA capabilities with GPU acceleration.

To address this challenge, we present CAGE to support
confidential GPU computing for Arm CCA. By leveraging the
existing security features in Arm CCA, CAGE ensures data
security during confidential computing on unified-memory GPUs,
the mainstream accelerators in Arm devices. To adapt the GPU
workflow to CCA’s realm-style architecture, CAGE proposes
a novel shadow task mechanism to manage confidential GPU
applications flexibly. Additionally, CAGE leverages the memory
isolation mechanism in Arm CCA to protect data confidentiality
and integrity from the strong adversary. Based on this, CAGE
also optimizes security operations in memory isolation to mitigate
performance overhead. Without hardware changes, our approach
uses the generic hardware security primitives in Arm CCA to
defend against a privileged adversary. We present two proto-
types to verify CAGE’s functionality and evaluate performance,
respectively. Results show that CAGE effectively provides GPU
support for Arm CCA with an average of 2.45% performance
overhead.

BFengwei Zhang is the corresponding author.

I. INTRODUCTION

Confidential computing is an emerging technique that
provides users and third-party developers with an isolated
and invisible execution environment. Both cloud platforms
and endpoints, which support confidential computing, secure
sensitive data from all unauthorized access, including illegal
applications, untrusted clients, and even cloud providers [5],
[14], [43], [65]. To support confidential computing, the major
processor companies proposed the corresponding concepts and
hardware primitives, such as Intel’s Trust Domain Exten-
sions (TDX) [51], AMD’s Secure Encrypted Virtualization
(SEV) [3], and IBM’s Protected Execution Facility (PEF) [49].

Arm also proposed the design of Arm Confidential Com-
pute Architecture (CCA) [20] and its hardware security
primitive—Realm Management Extensions (RME) [22] —to
support confidential computing in next-generation [12] Arm
devices. CCA introduces realms, the basic unit of the confi-
dential computing environment, and the Realm Management
Monitor (RMM), which behaves as a thin hypervisor for
realm isolation. To mitigate the latency in realm execution,
an untrusted hypervisor is delegated to schedule the realms
and manage memory resources, but cannot access realms.

While CCA provides strong data security and enables
confidential computing on next-generation Arm devices, the
support for GPUs [4], [21], [69], which are widely used to
accelerate the general-, high-performance, and artificial intel-
ligence computing scenarios [15], [18], [34], [45], [55], is only
recently proposed. However, such support, called RME Device
Assignment (RME-DA) [25], is currently a high-level concept
without completed hardware implementation. Currently, CCA
design characterizes the GPU as an untrusted peripheral on
which data security is not guaranteed. As a result, if realms use
the GPU for computation, their sensitive data can be accessed
by the adversary who controls the GPU via compromised
software (e.g., a compromised GPU driver or programming
model).

To address the problem of data security in confidential
GPU computing, recent study [73] proposes a similar design to
RME-DA, while its protection mechanism requires non-trivial
modification on hypervisor software. Moreover, it introduces
heavyweight GPU software to realm’s TCB. Previous works

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24763
www.ndss-symposium.org

have developed Trusted Execution Environments (TEEs) for
GPUs. However, most solutions [31], [39], [52], [54], [61],
[67], [70], [76], [81] rely on hardware security primitives that
are not suitable for next-generation Arm devices (e.g., cus-
tomized hardware, Intel-based security primitive, or traditional
Arm security hardware), incurring tremendous challenges in
mitigation. For example, HIX [52] leverages the Intel SGX,
which is not supported in Arm devices, and StrongBox [39]
trusts secure world software, which are not trusted in Arm
CCA. Overall, it leads to a critical question: How can we
extend the support of GPU acceleration to Arm CCA?

We present CAGE, which supports confidential GPU com-
puting on next-generation Arm devices. By leveraging the
hardware security primitives (i.e., the RME) in Arm CCA,
CAGE secures the confidential computing on the widely
deployed unified-memory GPUs [7], [21], [68], [71], which
are expected to become the mainstream accelerators in next-
generation Arm devices. We design CAGE based on two
critical observations (detailed in §II): (1) CCA provides novel
hardware-assisted security features, such as the Granule Pro-
tection Check (GPC), to flexibly isolate and protect computing
on both the CPU and peripherals, and a hardware-isolated root
world to configure these features. Therefore, CAGE deploys
its security modules in the root world Monitor, protecting GPU
computation from untrusted software (e.g., the OS, hypervisor,
and secure world components) and peripherals. (2) Most of the
components in the GPU software stack, which perform essen-
tial functions (e.g., memory allocation and task scheduling),
do not require access to sensitive data and code. Thus, CAGE
delegates the untrusted GPU software to schedule confidential
GPU applications without direct access to the sensitive data.
We use these key insights to design the workflow of CAGE,
supporting confidential GPU computing on Arm CCA.

The design of CAGE faces three key challenges. C1:
The GPU software in the host is not intended to manage
applications in realms. Since GPU software requires frequent
interaction with the GPU application, it unavoidably introduces
non-negligible performance overhead due to communication
with the hypervisor and world switching. To handle this
problem, CAGE employs a novel shadow task mechanism.
Specifically, CAGE permits the GPU software stack to create
and manage stub GPU applications corresponding to real
GPU applications in realms, then verifies and synchronizes
these operations to the real GPU applications in the Monitor
(§IV-B). C2: Without the latest RME-DA support, generic
Arm CCA design regards the GPU device as normal world
peripheral and disallows it to access the realm. Thus, it is
not intended to achieve the same CPU-side isolation on GPU
nor protects the GPU execution environment from various
attacks. Worse, the unified-memory GPU shares the memory
with the untrusted software and peripherals, exposing a large
attack surface during the computing. To address this challenge,
CAGE proposes a two-way isolation mechanism for GPU
environment protection. By leveraging the existing GPC for the
CPU and peripherals, CAGE provides different GPU memory
views for each realm during confidential GPU computation
while securing the GPU environment from the untrusted
software and peripherals (§IV-C). C3: Based on the above
GPU protection mechanism, CAGE must create multiple
Granule Protection Tables (GPTs) for the corresponding GPCs
and synchronize these GPTs during the GPU environment

protection, generating additional performance overhead. For
this challenge, we propose optimization techniques in GPT
maintenance, especially on synchronizing GPTs for untrusted
components and initializing GPU GPTs for realms (§IV-D).

We prototype CAGE on two official platforms: The Arm
Fixed Virtual Platform (FVP) [24] with software-simulated
Arm CCA feature and the Arm Juno R2 development
board [10] with a Mali-T624 GPU. Our prototype introduces
1,301 lines of code (LoC), reaching a thin TCB. We analyze
the system design of CAGE by fairly comparing it with other
CCA extensions (including the RME-DA) and the state-of-
the-art GPU TEEs. Moreover, we compare the performance
by running the Rodinia GPU benchmark suite [37], a popular
benchmark for varied GPU TEEs [39], [52]. Next, we examine
the effectiveness of our optimization techniques and verify the
robustness with three neural network models (LeNet-5 [56],
SqueezeNet [50], and MobileNet-v1 [46]). We also discuss
the security of CAGE against the assumed adversary. Results
indicate that CAGE securely provides GPU support for Arm
CCA with an average of 2.45% performance overhead.

We claim the following contributions to this work:

• We present CAGE, which provides GPU acceleration
support for Arm CCA. In confidential GPU comput-
ing, CAGE secures the sensitive data from the strong
adversary assumed in Arm CCA.

• We prototype CAGE on the Arm official emulator
and a real-world development board without hardware
changes. We share the source code of CAGE1 and will
maintain it to benefit the Arm community.

• We comprehensively evaluate CAGE with respect to
its performance and security. The results indicate that
CAGE effectively secures the sensitive data and code
with an average of 2.45% performance overhead.

II. BACKGROUND

A. Arm TrustZone and Arm CCA

Arm introduced the hardware-based TrustZone [8] that
provides an isolated and confidential environment for sensitive
data and security-critical code. TrustZone creates two separate
worlds for execution states: (1) normal world, which runs the
traditional OS, applications, and hypervisor, and (2) secure
world, which is a mirrored but isolated environment to run
secure components. Resources such as memory, interrupts, and
peripherals are also separated into the two worlds based on
the TrustZone hardware (e.g., TZASC [9] and TZPC [27]).
As part of the firmware, TrustZone leverages special Secure
Monitor code, which is of the highest privilege, to handle the
world switching (e.g., through a special instruction, smc) and
resource partitioning to protect the security-critical data and
code in secure world. However, studies [35], [36] have shown
that the secure world components, such as the secure OS and
secure hypervisor, are still vulnerable: an attacker can gain
control of these components to fully compromise the system,
including the normal world software and the Secure Monitor.

1https://github.com/Compass-All/NDSS24-CAGE

2

Table I: Access control of physical address space in GPC.

Security State Normal PAS Secure PAS Realm PAS Root PAS

Normal ✓ ✗ ✗ ✗
Secure ✓ ✓ ✗ ✗
Realm ✓ ✗ ✓ ✗

Root ✓ ✓ ✓ ✓

In the latest Armv9 architecture [12], Arm has advanced the
state of confidential computing through two enabling technolo-
gies: (1) the Confidential Compute Architecture (CCA) [20],
and (2) an associated hardware primitive, called Realm Man-
agement Extensions (RME) [22]. Figure 1 shows the software
architecture of Arm CCA. CCA retains the normal world and
secure world dichotomy. In addition, CCA introduces a realm
world in which to run multiple confidential realms. These
realms are isolated from the other worlds, but are managed
by untrusted software components (e.g., a normal hypervisor).
As for the memory isolation between realms, CCA provides
a lightweight Realm Management Monitor (RMM) running in
the hypervisor-layer of realm world. Besides the realm world,
CCA also provides a root world in which to house the highest-
privilege Monitor code stored in the firmware. This Moni-
tor leverages a new memory isolation mechanism, Granule
Protection Check (GPC), to achieve flexible and fine-grained
access control for the entire main memory. Specifically, when a
software component accesses a physical address space (PAS),
the GPC checks the Granule Protection Table (GPT) to fetch
the security attribute of the PAS and determine whether the
access is valid (summarized in Table I). For security purposes,
CCA advises storing the GPT in root PAS and only permits
the Monitor to configure GPC registers.

Key observation. Compared to the traditional Arm TrustZone,
Arm CCA secures the highest-privilege Monitor in a hardware-
isolated root world and provides novel hardware-assisted
mechanisms for memory isolation. Based on this, CAGE
deploys its security modules in the Monitor to additionally
secure GPU computation, such as controlling access to GPU
memory and GPU registers.

Realm World Normal World

Root World

RMM Hypervisor

R
ea

lm
 1 App

Monitor

OS

App

OS

App

Realm 2

App

OS

Realm 1 Host

R
ea

lm
 2 S-App

S-OS

S-Hyp

Secure World

Figure 1: Architecture overview of Arm CCA.

B. Arm GPU and SMMU

Unlike discrete GPUs on Intel-based devices, mainstream
Arm GPUs share a unified memory with the CPU and other
peripherals. To perform data transfer and communication be-
tween the host and GPU, Arm employs a set of GPU software,
including the kernel-layer driver (e.g., Midgard [16] driver) and
the user-layer runtime (e.g., OpenCL [17] libraries). Specif-
ically, the GPU software manages (1) the GPU computation
environment and (2) the interaction with the GPU hardware.To

prepare the execution environment, the GPU software allo-
cates physical memory and creates GPU buffers based on
the requirements of the GPU task. Next, it loads the critical
components of the GPU task into the GPU memory, including
GPU task code, data, and metadata (e.g., job descriptors that
indicate the address of the GPU buffer). Note that the GPU
software stack should create the GPU page table and configure
the corresponding GPU registers to allow the GPU to access
the critical components via Direct Memory Access (DMA).
As for interacting with the GPU hardware, the GPU software
schedules the execution order and submits the GPU tasks via
Memory-Mapped Input/Output (MMIO). When GPU compu-
tation is terminated, the GPU software fetches the execution
results and restores the environment.

Since the GPU and other peripherals share the main
memory with the CPU, Arm introduced the System Memory
Management Unit (SMMU) to manage DMA-capable periph-
erals. Currently, most Arm GPUs (e.g., Arm Mali GPUs [21],
Qualcomm Adreno GPUs [71], NVIDIA Tegra X1 Maxwell
GPUs [68]) and other peripherals are physically connected to
an SMMU. Like the CPU MMU, SMMU supports address
translations (i.e., Stage-1 and Stage-2 translation) to control
the access from the peripheral to the PAS. To enable access
control, privileged software configures SMMU registers (e.g.,
page table registers and translation configuration registers) via
MMIO. Besides address translation, GPC is also supported
on SMMU [23] in Arm CCA. To protect the SMMU GPC,
CCA introduces additional SMMU MMIO registers that are
only accessible to the root world. These registers provide
basic configurations of SMMU GPC, such as GPT base, GPC
controls, fault handling, and TLB invalidation.

Key observation. The workflow of Arm GPU can be adapted
to Arm CCA’s realm-style architecture. On the one hand, the
GPU software performs most of its functions without access-
ing sensitive data. We use this observation to reserve these
components in the untrusted host and perform data-dependent
functions within a TCB. On the other hand, a peripheral’s
memory access is also subject to the corresponding GPC,
which allows CAGE to ensure GPU environment isolation.

III. THREAT MODEL AND ASSUMPTIONS

Following with Arm CCA, we assume a strong adversary
who controls the entire software stack in both normal world
and secure world, including the GPU software, untrusted OS
and hypervisor, and the same layer software in secure world.
The adversary aims to leak or tamper with the sensitive data
(i.e., the input, intermediate data, and execution result) of
confidential GPU tasks. Specifically, the adversary can directly
access the unified memory that stores the sensitive data or
control DMA-capable peripherals to perform the same attack.
Moreover, the adversary seeks to break the isolated execution
environment by compromising the GPU software components,
such as compromising the memory management, changing
the execution order of the confidential tasks, and modifying
the GPU register states. We also assume that the adversary
may submit malicious GPU tasks and use GPU to access or
tamper with the sensitive data inside other realms. In addition
to software attacks, we can defend against several physical
attacks (e.g., cold-boot attacks [78]) on memory by using the
memory encryption support built in Arm CCA. We further

3

discuss these in §VII. Lastly, we consider the side-channel
attacks and Denial-of-Service are out of the scope of this paper.

On the hardware side, we assume next-generation Arm de-
vices use hardware security primitives such as the RME, which
provides hardware extensions for Arm CCA, and hardware
root of trust, which assists the secure boot, remote attestation,
and constructing secure communication channel with a realm
user. We also trust the GPU and assume its memory access is
subjected to GPC, such as an SMMU with RME support [23].
On the software side, we trust the Monitor since its firmware
is securely verified and loaded during the secure boot.

IV. DESIGN

CAGE provides the support of GPU acceleration for Arm-
based confidential computing. Based on this, we design CAGE
by achieving four critical goals:

G1: Compatibility with CCA. CAGE should follow Arm
CCA’s realm-style architecture (i.e., creating and managing
realms by normal world software but hiding the sensitive
data in realms from this software) to manage confidential
GPU computation. More concretely, CAGE must delegate the
complex but data-independent functions (e.g., memory man-
agement and task scheduling) to the untrusted GPU software
stack and ensure data security with a marginal increase in TCB.

G2: Strong data security. As a supplement for Arm CCA,
CAGE must protect the data security of realms from the
strong adversary assumed in Arm CCA. During confidential
GPU computation, CAGE must defend against attacks from
privileged software (e.g., untrusted OS, hypervisor, and the
secure world software) and untrusted peripherals.

G3: Optimized performance. Compared with the native
GPU execution workflow, CAGE must not generate a high
performance overhead during confidential GPU computation.

G4: No hardware modification. CAGE must preserve
hardware compatibility with next-generation Arm devices. In
the design and implementation of CAGE, we must leverage
generic hardware features in Arm CCA and GPU without
introducing hardware changes.

A. CAGE Overview

We envision scenarios where users or third-party devel-
opers request a realm to persistently store and execute the
confidential GPU applications. The realm user transfers sen-
sitive data through a secure and encrypted channel [32], [58],
[79] to the requested realm. To follow Arm CCA’s realm-style
architecture, the realm user provides (1) GPU task code and (2)
descriptions of data buffers to the untrusted GPU software to
help construct a stub execution environment, including meta-
data, GPU buffers, and GPU page table. Since the untrusted
GPU software may tamper with code and descriptions, the user
should also transfer the signatures of code and descriptions
to the realm for integrity verification. Once the environment
is created, CAGE protects the GPU, creates a real GPU
environment to replace the stub one, and submits the real GPU
task to the GPU after security introspection. Lastly, the GPU
computes sensitive data and stores results in the realm, from
which user retrieves the data via a secure channel.

Realm World Normal World

Monitor

Host

User-level Runtime
Stub GPU App 1

Root World

Realm 2Realm 1

TCB of CAGE

Untrusted

Hypervisor

GPU Environment
Protection (§4.3)

Other Peripheral
DriversGPU Driver

OS

Shadow Task
Mechanism (§4.2)

GPT Maintenance
Optimization (§4.4)

RME
Hardware

Root of Trust GPU

R-EL0

R-EL1

R-EL2

EL3

NS-EL2

NS-EL1

NS-EL0
Stub GPU App 2Real GPU App 2Real GPU App 1

Data Data

TCB of Realm 2TCB of Realm 1

ModifiedOptional

Realm OS Realm OS

RMM

Figure 2: CAGE architecture overview. Note that the secure
world is omitted since CAGE does not modify the software
components in this world.

Figure 2 shows an overview of CAGE. Based on the
existing architecture and hardware primitives in Arm CCA,
CAGE supports generic Arm-based confidential computing
with GPU acceleration. CAGE deploys three security compo-
nents in the highest-privilege Monitor to guarantee confidential
GPU computation. The Monitor is housed in the root world
that is natively isolated from the untrusted components in other
worlds. In addition, it provides several APIs to configure these
hardware primitives that enable reaching CAGE’s security
goals. (G1:) To achieve confidential GPU computation on
next-generation Arm devices, CAGE uses a shadow task
mechanism (§IV-B) based on CCA’s realm-style architecture.
To avoid exposing sensitive data, the shadow task mechanism
requires the untrusted GPU software stack to create and
manage stub GPU tasks, which are securely replaced by real
GPU tasks with authentic data before submission. (G2:) Next,
CAGE ensures strong data security during the process of the
above GPU workflow. The RMM and previous work [80]
isolate realms on CPU side but have yet to isolate GPU
computation. Thus, we propose a two-way realm isolation on
GPU by leveraging the GPC on CPU, GPU and untrusted
peripherals. We restrict access from untrusted components by
configuring GPCs for CPU and untrusted peripherals. Further,
we isolate realms in GPU computing by providing each realm
with different GPU memory view in GPU GPC (§IV-C). (G3:)
Moreover, since our memory protection mechanism manages
various GPT views for realms and peripherals, we also mitigate
the additional performance overhead in GPT management.
Our optimization mechanism focuses on two aspects: (1)
synchronizing CPU and untrusted peripheral GPTs, and (2)
initializing GPU GPTs. To achieve this, we design a specific
structure of GPTs and the corresponding maintenance process
(§IV-D) without undermining the security of our protection.
We deploy our security modules in the root world Monitor
and introduce minimal modification on the untrusted GPU
driver to collaborate with the Monitor. (G4:) Note that our
design neither requires additional hardware nor customizes the
existing CPU and GPU, ensuring high hardware compatibility.

Deployment scenario. As shown in Figure 2, CAGE only
requires realms to store the sensitive data provided by the realm

4

user and real GPU applications, while Realm OS and RMM are
optional. It allows CAGE to handle application scenarios on
both servers and endpoint devices. When running on servers,
CAGE trusts a RMM, which collaborates with the hypervisor
to create and isolate realm VMs. Based on this, CAGE extends
confidential GPU computing support for these realm VMs. As
for endpoint devices that currently do not run a hypervisor
(and possibly do not run a RMM in next-generation devices),
CAGE satisfies confidential GPU computation for user-level
realms, which can be created and isolated by GPU GPC in
recent work [80]. Following CCA’s realm-style architecture,
our confidential GPU computation starts with being created
through normal world GPU software, then proceeds to the
Monitor to execute the GPU workload confidentially.

B. Shadow Task Management

The primary goal of CAGE is to provide GPU acceleration
support for Arm CCA. To achieve this goal, a naive solu-
tion [52], [54], [73], [81] is to encapsulate the heavyweight
GPU software stack (e.g., the GPU driver and the user-level
runtime) into each realm. However, this introduces a very
large TCB within the realm and exposes a correspondingly
large attack surface. To address this problem, we adapt CCA’s
realm-style architecture to the GPU workflow. Specifically, we
delegate the heavyweight, complex but data-independent func-
tions to the normal world, and meanwhile preserve sensitive
data within realms. Based on this, realms benefit from GPU
acceleration without needing to expose the whole TCB entailed
by the entire GPU software stack.

C1. However, adapting this workflow to CCA’s realm-
style architecture is challenging, primarily because the GPU
software on the host is not intended to create and manage GPU
applications belonging to other virtual machines or the realms.
This workflow requires frequent interaction with the hypervisor
and world switching, generating a large performance overhead
and even conflicting with the functionality of the hypervisor.

Solution to C1. To address this challenge, we propose a
novel shadow task mechanism. Figure 3 shows the design of
the shadow task mechanism. We build a pair of GPU tasks: (1)
the stub GPU task, which has the same structure as a normal
GPU task (e.g., the GPU buffers, metadata, and GPU page
table) but does not contain any sensitive data, and (2) the
real GPU task, which includes sensitive data to be processed
on the GPU hardware. Thus, we require the GPU software
on the host to create and manage the stub GPU task during
the confidential GPU computing without frequent interactions
with the hypervisor, the monitor, and the realms. Next, we
replace the stub task with the real task data in the Monitor
and synchronize data-independent operations to the real task.
To guarantee data security, we secure the data path between
the real task and the GPU hardware. After GPU computation,
the execution results are finally stored in the realm and fetched
by the realm user. We elaborate the workflow of the shadow
task mechanism as follows.

Initialization and stub task creation. A key aspect of the
shadow task mechanism is to create an empty stub GPU
application which is later populated with real task data. By
doing so, an adversary that compromises the system will only
see the empty stub task and will not have access to the sensitive

task data that is protected by realms. To achieve this, the
user provides the host with two essential components: The
GPU task code and the descriptions of GPU data buffers.
The descriptions show the expected attributes of the data
buffers, such as the buffer size and input data. Considering
that the untrusted host may compromise execution integrity by
modifying the code and descriptions, or changing the execution
order of GPU task, we require the user to additionally provide a
GPU task signature (e.g., Hash-based Message Authentication
Code) for integrity verification. Specifically, the user generates
the signature by combining the memory content of code,
descriptions, and task index. Next, the user transfers the
sensitive data and signatures to the realm via a secure channel.
As a result, CAGE uses signature to verify the integrity of
GPU tasks before submission.

Based on the code and descriptions, the GPU software
allocates memory, prepares the stub task, and stages sensitive
code and data descriptions into the corresponding data buffers.
One additional issue here is to record the creation and update
of the GPU page table for the stub task (i.e., Stub GPU
PTE in Figure 3), which enables synchronizing the page table
of the real task with the stub task (i.e., Real GPU PTE
in Figure 3). However, using simple creation/synchronization
approaches for the two page tables, such as (1) copying the
entire stub table to the real one, or (2) synchronously replaying
the operations on the stub table to the real one, can incur
substantial performance overhead. To mitigate this overhead,
one key observation is that the GPU software generally does
not update the GPU page table during execution, which allows
CAGE to asynchronously replay the previous operations on the
stub table to the real one. To achieve this, the GPU software
records the new or updated entries of the stub page table in
batch, then submits them to the Monitor for further update or
synchronization after security introspection.

When the stub task is prepared, the GPU software inserts it
into the GPU task queue to schedule the task execution order.
The GPU software follows the general workflow to process
the non-confidential GPU tasks (i.e., directly submitting the
normal tasks to the GPU hardware), while the workflow is
different for handling the stub tasks. Since the running tasks
inside the GPU may map to the GPU memory of other tasks
(and thus leak sensitive data), the GPU software must help
to create an exclusive computing environment for the stub
tasks. Therefore, when processing the stub tasks, the GPU
software stack cleans up the GPU hardware by (1) temporarily
blocking the submission of other tasks and (2) waiting until
the current GPU computation (if any) is finished. When the
GPU computation completes, it unblocks the submission of
new tasks. Next, the GPU software routes the stub tasks to
the Monitor to proceed with execution. However, since the
adversary can compromise the GPU software, we must double-
check the GPU status in the Monitor.

Real task creation and execution. When receiving the stub
task, the Monitor creates a corresponding real task inside the
realm, then replaces the stub task with the real one and submits
the real task to the GPU device. We provide the memory layout
of this process in Figure 3 and detail the operations as follows.

The structure of the real task is similar to that of the
stub task. Specifically, it reuses the metadata and code buffers
inside the stub task but prepares different data buffers and

5

Unprotected

TTBR

Protected

Stub Task
Creation

Stub Task Real Task

Real
GPU PTE

Data Buf. 2
(empty) Data Data Buf. 1

(Data)
Stub

GPU PTE GPU MMIO Metadata Code Buf.
(code)

Code and
Descriptions

Data Buf. 1
(desc. 1)

Data Buf. 2
(desc. 2)

Data GPU MMIO Code and
Descriptions

TTBR

Data Stub
GPU PTE GPU MMIO Metadata Code Buf.

(code)
Code and

Descriptions
Data Buf. 1

(desc. 1)
Data Buf. 2

(desc. 2)

Buffer Pointer

Buffer Pointer

Data GPU MMIO Code and
Descriptions Results

Real Task
Execution

Environment
Restoration

Initialization

Real Task
Creation

TTBR

Data Stub
GPU PTE GPU MMIO Metadata Code Buf.

(code)
Code and

Descriptions
Data Buf. 1

(desc. 1)
Data Buf. 2

(desc. 2)

Buffer Pointer

Real
GPU PTE

Data Buf. 2
(empty)

Data Buf. 1
(Data)

Figure 3: The design of shadow task mechanism. Note that Data Buf. 1 is the input buffer and Data Buf. 2 is the output buffer.

GPU page tables. To create the data buffers, we verify the
integrity of the descriptions by the provided signature, then
faithfully construct buffers based on the provided attributes
(e.g., the buffer size). If the description requires, we fill
sensitive data into the target real data buffers. Next, to construct
the page table, we check the recorded page table entries (e.g.,
whether they have duplicated mapping or illegal mapping)
and replay the mappings in the realm. Since the stub data
buffers do not participate in the GPU computing, we change
the corresponding mappings to map the real buffers.

To execute the real task, the Monitor first protects the GPU
environment (detailed in §IV-C) by locking three regions: (1)
the GPU MMIO, which includes the base address of the GPU
page table (i.e., TTBR in Figure 3), (2) the metadata, which
contains the pointer to the GPU buffers, and (3) the code
buffers. If these regions are unprotected, the adversary can
leak or modify sensitive data (e.g., by exporting the execution
results to an unprotected buffer or by executing malicious
code). After protection, we replace the stub task with the real
task by (1) changing the stub GPU page table to the real one
in TTBR and (2) modifying the buffer pointer to point to the
new buffers in the realm. Considering that the compromised
GPU software may provide incorrect task code and data buffer
descriptions, we must verify the signature to ensure integrity.
The adversary may also tamper with the metadata or provide
incorrect address of metadata, while it incurs a Denial-of-
Service without leaking the sensitive data. Next, the Monitor
checks the current GPU status, ensuring that no malicious GPU
tasks are hidden in the GPU. Once the verification passes, the
Monitor submits the real task by writing the start command to
the corresponding GPU registers. Since the MMIO to the GPU
registers is already protected before GPU status checking, the
adversary can neither hide malicious tasks in the GPU nor
modify the verification results.

Environment restoration. When the GPU finishes computing,
the Monitor restores and cleans the execution environment in
tandem with the GPU software stack. We first restore the
values of GPU MMIO registers and metadata (e.g., buffer
pointers). Next, we clean the previous GPU environment, such
as flushing GPU caches and TLB entries of the GPU page
table. Once the environment is cleaned, we restore access to
GPU MMIO, metadata, and code buffers, while the execution

results are stored inside the realm.

C. GPU Environment Protection

Normal Realm

RMM

GPU GPT
for Realm 1

Root

GPU GPT
for Realm2

CPU GPT R1 R2

Untrusted
Peripheral GPTs

GPU
MMIO

Secure

R1 Stub Task R2 Stub Task

Figure 4: Access control and isolation of GPU environment
when CAGE performs confidential GPU computation. The
untrusted peripherals indicate the normal or secure peripherals
with DMA capability and are accessible to memory with
corresponding security states.

CAGE ensures data confidentiality, integrity, and isolated
execution environment to support the confidential GPU ac-
celeration. Based on the memory layout in the shadow task
mechanism, we secure both the GPU runtime and the GPU
memory, preventing illegal access to sensitive data, code, and
GPU environment configuration.

C2. However, the latest support for GPU computation in
Arm CCA (i.e., RME-DA [25]) is only an abstract concept
without completed hardware or firmware implementations.
Thus, GPU hardware in the existing implementation of Arm
CCA is considered as a normal peripheral, whose security
status cannot be re-configured as realm due to the lack of
hardware support. This problem makes the existing memory
isolation mechanisms for realms (i.e., the RMM) challeng-
ing to directly protect the execution environment of unified-
memory GPU: First, since the GPU is considered normal
hardware, it can be manipulated by privileged software from
any world, including the normal world and secure world
components that are untrusted in Arm CCA. Second, the RMM
does not have excessive privilege compared to the same-layer
software in other worlds (i.e., secure and normal hypervisor).
Therefore, the RMM cannot introspect and prevent malicious
access to the GPU environment from adversaries.

6

Solution to C2. We leverage the existing memory isolation
mechanism in Arm CCA, GPC, to achieve two-way isolation
between the GPU execution environment and the other compo-
nents, including the untrusted software, peripherals, and other
realms. Deployed on the CPU MMU and peripheral SMMUs,
the GPC is initially used to show the security view of the main
memory. We further extend this feature to achieve memory
access control and GPU environment isolation for the normal
GPU device.

Figure 4 shows various GPT configurations in our GPU
environment protection mechanism. To achieve this, we design
two types of GPT: (1) the CPU and untrusted peripheral
GPTs for access control of untrusted components, and (2)
the GPU GPT for realm isolation on GPU. The first type of
GPT has a similar security view of the main memory but can
be customized for different access control requirements (e.g.,
allowing a peripheral to access its MMIO but restricting the
other peripherals to access the same region). When it is used
for CPU GPC, it disallows the normal and secure software to
access the protected regions (i.e., realm and root regions). Such
restriction is also valid for the normal and secure peripherals
that are fully controlled by the adversary. In regard to the
GPU GPT for confidential computing, we provide each realm
with a unique GPU GPT, in which the corresponding GPU
environment is strictly isolated from the other regions. Our
protection mechanism is based on the existing GPC design
in Arm CCA without introducing any hardware modification
of the CPU or GPU. We elaborate upon the design and
configuration of GPU environment protection below.

Preventing access from untrusted components. CAGE re-
stricts illegal access to the GPU environment from untrusted
software and peripherals. Recall from §IV-B that we secure
the sensitive data and the real data buffers in realms. Thus,
the adversary cannot access the authentic data during GPU
computing. However, we still need to temporarily protect (1)
the reused metadata and code buffers, and (2) the GPU MMIO
since the shadow task mechanism allows the untrusted software
stack to manage these components. To secure the reused
metadata and the code buffers, we configure these regions
as realm in CPU GPT and untrusted peripheral GPTs, while
the illegal access from other realms is prevented by CPU-
side isolation (e.g., RMM). Considering that the compromised
GPU driver may provide the incorrect address of the reused
metadata and the code buffers, we must check whether these
regions overlap with other realm or root regions in CPU GPT.
If overlapped, we terminate the GPU computing and restore
the GPU environment. As for the GPU MMIO protection,
we configure this region as root in CPU GPT and untrusted
peripheral GPTs. Note that the GPU MMIO is a fixed and
unmodifiable region in most Arm-based devices [6], [10], [42],
[74]. Moreover, we flush the TLB entries for CPU GPC and
untrusted peripheral GPCs to defend against the TLB attacks.

Realm isolation on GPU. Besides access control on the
CPU and untrusted peripherals, we must isolate the GPU’s
access to the unauthorized regions to complement our two-
way isolation. Therefore, we design GPU GPTs for different
realms. When the GPU executes a confidential task, CAGE
fetches the corresponding GPU GPT to confine GPU’s memory
access. Since GPU GPTs and GPC configurations are only
accessible to the root world Monitor, the executed task cannot

bypass the GPU GPC to access the unauthorized physical
memory. As for the configuration of GPU GPTs, we only
permit access to the realm region, the reused metadata, and the
code buffers, primarily because they can access the sensitive
data of other realms via GPU. To allow GPU to access these
regions, we configure the corresponding PAS as normal in
GPU GPT. Finally, to enable GPU GPC for this realm, we
configure GPU GPC registers (e.g., set the base address of
GPU GPT to that of the realm) and flush the TLB entries.
Since both CAGE and other CCA studies [73], [80] leverage
GPC to achieve environment isolation, we provide a detailed
comparison between CAGE and these studies in §IV-F.

The GPC configuration in CAGE does not conflict with
the native GPC usability on CPU, GPU and other peripherals.
For GPC on CPU-side access, CAGE does not interfere with
the functionality of software components, such as the realm
manager and the GPU software stack in the Host and the
memory protection module in the Monitor. Moreover, the GPC
on GPU-side access does not interfere with the memory access
and computation within the GPU. Specifically, CAGE allows
the GPU to access the page table, metadata, and buffers to
compute using the data. Lastly, CAGE allows the untrusted
peripherals to access their own device memory to fulfill their
functional purpose. Thus, by configuring GPCs for CPU,
GPU, and untrusted peripherals, CAGE achieves a two-way
isolation between the GPU execution environment and other
components. We also analyze our security guarantees in §VI-B.

D. GPT Maintenance Optimization

As discussed in §IV-C, CAGE ensures memory isolation
between the confidential GPU environment and untrusted com-
ponents with different GPTs. The CPU GPT and peripheral
GPTs are initialized in the monitor during the boot phase. As
for the GPU GPTs, they are initialized during the creation
of the corresponding realms. Further, CAGE dynamically
maintains these GPTs during confidential GPU computation.

C3: However, managing multiple GPTs can introduce non-
trivial performance overhead for two reasons. First, during
the confidential GPU computation, we must synchronize the
access control of CPU and untrusted peripherals on their GPTs.
Second, in the realm initialization process, we must create a
unique GPU GPT that describes the fine-grained layout of the
entire main memory.

Solution to C3. Based on the structure feature of GPTs,
we present our optimization mechanism for these two issues.

First, we propose a new solution to mitigate the redundant
synchronization process on CPU and peripheral GPTs. Recall
from §IV-C that CAGE configures CPU GPT and peripheral
GPTs to protect the reused metadata and code buffers. To sim-
plify the synchronization process, a straightforward solution is
to use a unified GPT to replace these GPTs. However, this
may conflict with the customized access control requirements
of these components. Nevertheless, we propose an optimized
technique based on two features of GPT: (1) GPT supports
a hierarchical architecture which is composed of a top-level
table and a sub-level table. (2) Unlike the address translation
entry, the GPT descriptors in the sub-level table only describes
the security attribute of the target memory without the output
address, the read/write permissions, and other attributes. These

7

features allow us to configure a sub-level GPT, which is
shared with the CPU GPT and untrusted peripheral GPTs, to
protect the reused region (i.e., metadata and code) on GPU
memory. Figure 5 shows our optimization mechanism on GPT
synchronization. We require the GPU software to prepare the
stub GPU tasks on a specific memory region, whose access
control is managed by a unified sub-level table. Next, we
configure the table descriptors of various GPTs to point to the
same sub-level GPT. Since this region is reserved for usage by
the GPU, we flexibly modify the sub-level table to protect or
unprotect the metadata and code without interfering with the
functionality of other peripherals.

Second, we inspire from optimization [80] on CPU GPT
construction to reduce the latency when creating GPU GPTs.
The GPU GPT in CAGE only indicates two types of memory
regions: The normal (i.e., accessible) regions and the root (i.e.,
inaccessible) regions. Thus, the GPU GPTs for different realms
are derived from one GPT template with minimal adjustment.
Specifically, we fork the GPU GPT from a template configur-
ing the entire main memory as root, then set the realm region as
normal. During confidential GPU computation, we additionally
configure the reused GPU memory (i.e., code and metadata)
as normal to permit the GPU to access them.

Table desc.

Table desc.

Table desc.

Peri. 1 GPT

Peri. 2 GPT

CPU GPT

Sub-level GPT

Page desc. 1
Page desc. 2

Page desc. n

...

G
PU

 m
em

or
y

Figure 5: Optimization mechanism in GPT synchronization.
Based on these mechanisms, CAGE successfully mitigates

the performance overhead in GPT maintenance. We also
demonstrate the efficiency of our optimization in §VI-E.

E. Trust Establishment in CAGE

In this section, we discuss our assumptions of how the
realm user establishes trust with the software and hardware
components in confidential GPU computation.

Secure boot. CAGE leverages CCA’s secure boot process [19]
to safely initialize its security modules. During the secure
boot process, it verifies the Monitor firmware image, the
image metadata, and the payload to ensure the integrity and
authenticity of CAGE’s security modules. Based on this, we
securely initialize CAGE to protect GPU computing.

Remote attestation and key management. Following Arm
CCA’s design [25], CAGE can assist the realm in attesting
its execution environment by leveraging hardware Root of
Trust (e.g., a hard-coded private key in ROM). Such attestation
includes (1) the initial state of the realm, and (2) the Arm
device including GPU hardware. CAGE can combine them to
generate an attestation report for each realm to validate the
GPU computing environment.

CAGE can benefit from other works [32], [39], [63]
to manage keys for each realm. Specifically, the user can
exchange keys with its realm via Diffie-Hellman [40] or
Elliptic-curve Diffie-Hellman [64] protocol. To defend against
the man-in-the-middle attacks, we can install a public key
infrastructure (with certificates and public-private key pairs) in
the Monitor. This infrastructure allows the user to authenticate
its realm and encrypt the exchanged keys, preventing the
attacker from impersonating the realm and leaking the secret
keys. The exchanged keys are safely stored in the realm
to defend against the unauthorized access. Based on this, a
secure communication channel is built between the realm user
and the realm through which to transfer the sensitive data
and the signature. Thus, the transferred data are decrypted in
realms before GPU computing, without requiring additional
key exchange with the GPU.

F. Comparison to CCA Extensions and GPU TEEs

Comparison to RME-DA and ACAI. We discuss two CCA
extensions for GPUs: The official RME Device Assignment
(RME-DA) [25] and ACAI [73]. CAGE outperforms these
extensions due to three reasons. First, CAGE maintains a
smaller realm TCB compared with these designs. Realms
running on RME-DA and ACAI must employ large GPU
software stack to manage GPU applications. Instead, CAGE
removes the software from the realm via the shadow task
mechanism. Second, both RME-DA and ACAI rely on Stage-
2 translation on SMMU, which suffers from the untrusted
hypervisor, to isolate GPU execution environment. Thus, they
must address the threat from hypervisor with non-trivial mod-
ification. Specifically, RME-DA introduces hardware changes
on SMMU (e.g., adding a device permission table) to safely
allocate GPU resources to realms, and ACAI replaces the
SMMU configuration code with special interfaces in hyper-
visor software. Instead, CAGE isolates and protects GPU
environment with GPC, which natively defends against the
attack from the hypervisor. Third, CAGE is compatible with
more Arm devices. The RME-DA and ACAI extensions rely
on the RMM to build a GPU TEE, which is typically ab-
sent on endpoint devices. Nonetheless, RME-DA proposes a
standardized mechanism (called TEE Device Interface Security
Protocol) to attest and manage the GPU device interface, which
potentially benefits CAGE for authenticating GPU hardware.

Comparison to Shelter. Next, we discuss a user-space iso-
lation extension for Arm CCA, Shelter [80]. Although both
CAGE and Shelter leverage GPC to isolate execution environ-
ments and optimize GPT maintenance, they differ in three as-
pects. First, Shelter only provides the CPU GPT configuration
because it targets CPU-side isolation. However, since unified-
memory GPUs share memory with untrusted components,
CAGE must provide complete GPT configurations for GPC
on CPU, GPU, and untrusted peripherals. Second, Shelter
provides each isolated user space with a unique CPU GPT
for environment isolation. In CAGE, we adapt this approach
so that GPU GPT design not only isolates realms on the GPU,
but also allows the GPU to access realms. This is because
the GPU is regarded as a normal device and cannot be re-
configured as a realm device. Third, Shelter does not optimize
redundant GPT synchronization processes on CPU and periph-
eral GPTs. In CAGE, we manage CPU and peripheral access
to GPU memory with a sub-level GPT (described in §IV-D).

8

Table II: Comparison between CAGE and the state-of-the-art GPU TEEs.

GPU Memory Protection Mechanism Minimal TEE TCB Sharing of GPU HW Compatibility Native Size of Trusted Components (LoC) Runtime TCB Increment (LoC)

Non-Arm Designs

Graviton [76] Dedicated Customized GPU HW ✓ ✓ ✗ Firmware (N/A) N/A
HIX [52] Dedicated Intel SGX ✗ ✓ ✗ Firmware (N/A) N/A

HETEE [81] Dedicated Customized HW ✗ ✗ ✗ Firmware (N/A) N/A
CURE [31] Unified Customized HW ✗ ✗ ✗ Firmware (N/A) 3.1K on Firmware

HoneyComb [61] Dedicated AMD SEV-SNP ✓ ✓ ✓ Security Monitors (N/A) 83K on Security Monitors

Arm Designs

Cronus [54] Dedicated TZASC + S-Hyp ✗ ✓ ✓ S-Hyp (34K) + Monitor (0.4M) 6.4K on S-Hyp
StrongBox [39] Unified TZASC + S2 trans. ✓ ✗ ✓ OP-TEE (0.3M) + Monitor (0.4M) 1.2K on Monitor

GR-T [70] Unified TZASC + Remote VM ✗ ✗ ✓ VM (17M) + OP-TEE (0.3M) + Monitor (0.4M) 1K on VM + 3.5K on OP-TEE
ACAI [73] Unified / Dedicated GPC + RMM ✗ ✗ ✓ RMM (26K) + Monitor (0.4M) 0.4K on RMM + 1.6K on Monitor

CAGE Unified GPC ✓ ✓ ✓ CPU-side Isolation (2–26K) + Monitor (0.4M) 1.3K on Monitor

Thus, compared to Shelter, CAGE effectively and efficiently
achieves confidential GPU computing.

Comparison to StrongBox. We further compare CAGE with
the unified-memory GPU TEE, StrongBox [39]. Compared
with StrongBox, CAGE is more suitable for confidential
GPU computing on next-generation Arm devices for four
reasons. First, StrongBox trusts the entire of the secure world
components (e.g., a secure OS and secure hypervisor), while
these components are excluded in CAGE’s TCB to follow
the threat model in Arm CCA. Second, CAGE supports
GPU computation on both edge endpoints and servers. CAGE
ensures confidential GPU environment by configuring GPCs on
CPU and peripherals. Thus, hypervisors do not conflict with
our protection and cannot bypass the GPC. However, Strong-
Box is not compatible with hypervisors since a compromised
hypervisor can bypass the Stage-2 translation, which is the key
protection mechanism in CAGE. Third, CAGE outperforms
StrongBox in performance. CAGE allows a realm to receive
encrypted data from the realm user and decrypt data ahead of
computation. In addition, our shadow task mechanism enables
creating data buffers inside the realm, so that we securely
transfer plaintext data to these buffers and store the results.
Since sensitive data are not operated upon by the GPU software
directly, CAGE does not require cryptographic operations,
which is essential to StrongBox in GPU computation. Fourth,
CAGE is more flexible than StrongBox. To protect the GPU
environment, StrongBox achieves application-level exclusivity
for the GPU. Specifically, it blocks the submission of other
confidential tasks until all tasks of the current application are
finished. Instead, CAGE achieves task-level exclusivity by
introducing the shadow task mechanism. Realms exclusively
occupy the GPU hardware in a task-level time slot rather
than needing to completely finish long-running applications,
enabling flexible task scheduling.

Comparison to other GPU TEEs. Lastly, we compare
CAGE with other GPU TEEs in Table II. Without hardware
modification, CAGE leverages the latest memory protection
mechanism in Arm CCA (i.e., GPC) to secure GPU TEE from
a strong adversary, while hardware primitives in other GPU
TEEs (e.g., Intel SGX in HIX [52] and Arm TZASC in Arm
GPU TEEs [39], [54], [70]) are not suitable for next-generation
Arm devices. Moreover, although CAGE does not optimize
the native runtime TCB (i.e., the Monitor and the RMM),
CAGE maintains a minimal TCB for realms by the shadow
task mechanism instead of loading the heavyweight GPU
software into the TEE [31], [52], [54], [70], [81]. Note that
the shadow task mechanism also allows the GPU applications
from both untrusted software and multiple TEEs to share the
same GPU. In addition, we ensure task-level exclusivity for
realms to secure GPU computing. In addition, we also compare

the software TCB between CAGE and state-of-the-art in two
aspects: the native size of trusted components and the size of
incremented TCB. CAGE ensures data security with a thin
TCB increment (1.3K LoC) on the Monitor, similar to several
state-of-the-art (e.g., 1.6K LoC in ACAI [73] and 1.2K LoC in
StrongBox [39]). We also discuss the performance comparison
between CAGE and state-of-the-art in §VI-C.

V. IMPLEMENTATION

To implement CAGE, we craft two prototypes: (1) a
functionality prototype, which verifies CAGE’s functions and
examines the system security, and (2) a performance prototype,
which emulates the latency of the functionality prototype. We
elaborate our implementation as follows.

A. Functionality Prototype

We prototype CAGE on Arm FVP Base RevC-
2xAEMvA [24] simulator with RME enabled.2 It simulates
the latest Armv9 hardware features and is widely used in
previous studies [41], [58], [60], [73], [80]. The FVP does not
support an authentic unified-memory GPU model [26]. Instead,
it provides a connected test engine that faithfully performs
memory accesses as though it is a DMA-capable peripheral,
and an SMMU with RME support, which controls memory
access from peripherals. We leverage these simulated hardware
devices to verify CAGE’s functionality, including the shadow
task mechanism and GPC protection. Specifically, we reserve
a 1GB memory region (0x880000000 – 0x8BFFFFFFF)
for the test engine. In this region, we control the test engine
to perform memory access as a unified-memory GPU. We run
Linux v5.3.0 kernel as the normal world Host and Trusted
Firmware-A (TF-A) v2.8 [29] as the Monitor.

To verify the memory isolation mechanism in CAGE, we
initialize GPTs on the FVP prototype and test with the CPU
and the test engine peripheral. Note that the existing TF-A
v2.8 firmware assigns the same GPT for these components,
so we need to additionally prepare peripheral GPTs in a
32MB reserved memory (0xA0000000 – 0xA1FFFFFF).
Moreover, to use these GPTs to control the memory access
from CPU and peripherals, we configure the system registers
of MMU and SMMUs. Specifically, we set GPTBR_EL3 as
the base of CPU GPT and set GPCCR_EL3 to enable CPU
GPC. Similarly, we configure SMMU_ROOT_GPT_BASE and
SMMU_ROOT_GPT_BASE_CFG to enable peripheral GPC.
Since we update both CPU GPT and peripheral GPTs in
our GPU environment protection (described in §IV-C), we
must invalidate the stale GPC TLBs in both MMU and

2CAGE uses the software-based simulator since currently no RME-enabled
hardware is available.

9

SMMUs. To achieve this, we execute TLBI PAALLOS in-
struction to flush the TLB in MMU. As for TLB invalidation
on SMMUs, we write the range of the region to be inval-
idated to SMMU_ROOT_TLBI and invalidation command to
SMMU_ROOT_TLBI_CTRL. Overall, our prototype provides
a faithful basis on which to demonstrate confidential GPU
computation, which is shown in §VI.

B. Performance Prototype

Since the platform of our functionality prototype is not
cycle-accurate [24], [80], we implement an ecologically valid
physical prototype for measuring performance by adapting the
Armv9 CCA features to Armv8 hardware. To measure the per-
formance of CAGE, we further transplant our FVP prototype
to an Arm Juno R2 board [10] with a Mali-T624 GPU and 8GB
DRAM. To interact with the GPU, we deploy the Arm official
Midgard GPU driver [16] and OpenCL [17] libraries on the
board. To accurately estimate the performance overhead, we
measure the CPU cycles via CNTPCT_EL0 register. However,
considering the architecture variance between the FVP and
the development board, we must implement two additional
measures on the performance prototype.

Emulation of Arm CCA. Since the processors of the de-
velopment board are based on the traditional Armv8 archi-
tecture [11] and do not support Arm CCA, we develop an
approach to faithfully model the expected real-world perfor-
mance overhead associated with CCA-related operations.

First, we replace CCA-related instructions with Armv8
instructions that cost similar latency. We consider two types
of instructions that must be replaced: (1) Read or write
instructions from or to GPT system registers (e.g., mrs or
msr instructions applied to GPCCR_EL3 or GPTBR_EL3
registers). In our prototype, we rewrite these instructions to
operate on other Monitor system registers available on Armv8
(e.g., ACTLR_EL3). (2) TLB invalidation instructions related
to the CPU GPC (e.g., TLBI PAALLOS). In our prototype,
we emulate these instructions by executing TLB invalidation
instructions for address translation.

Second, we replace the MMIO operations on
peripheral GPCs since the development board does
not implement the associated SMMU registers (e.g.,
SMMU_ROOT_GPT_BASE_CFG). We perform the memory
access on other memory regions to emulate these
operations. Moreover, to emulate TLB invalidation on
SMMU (i.e., operating SMMU_ROOT_TLBI_CTRL and
SMMU_ROOT_TLBI registers), we both perform memory
access and TLB invalidation on the target memory region.

Third, we emulate the configurations on several GPT
instances. We implement this step by directly operating on the
table entries of these GPTs since it mainly requires read and
write operations to the corresponding GPT memory. If mainte-
nance operations must access the values of GPT base registers
(i.e., GPTBR_EL3 and SMMU_ROOT_GPT_BASE_CFG), we
fetch them from the replaced registers or memory regions.

Interaction with GPU hardware. Although the test engine
performs memory access as the GPU, the performance proto-
type still need three additional steps to interact with the Arm
Mali GPU on development board. First, we verify the status
of Mali GPU by accessing the JS_STATUS register for each

GPU job slot via GPU MMIO. If the returned value is not zero,
it indicates that the adversary hides malicious GPU tasks in the
GPU. Second, when submit the GPU task, we write the start
command into JS_COMMAND_NEXT register. Lastly, since the
native GPU generates a normal interrupt (i.e., not handled
by the Monitor) after execution, we must temporarily set this
interrupt as the Monitor interrupt for further operations (e.g.,
catch the interrupt and restore environment) in the Monitor.

By following these steps, we devise a real Armv8 hardware
prototype that can accurately model the latencies associated
with implementing Armv9 CCA operations.

VI. EVALUATION

In this section, we evaluate our CAGE prototypes (§V)
with respect to five research questions:

RQ1: How large is the TCB of CAGE?

RQ2: Can CAGE defend against privileged adversaries?

RQ3: How much performance overhead does CAGE incur?

RQ4: How much overhead does CAGE incur on neural
network models?

RQ5: How effective is our optimization on GPT maintenance?

For these questions, we evaluate the functionality prototype
to answer RQ1 and RQ2. Next, we measure the performance
prototype for RQ3, RQ4, and RQ5.

A. RQ1: TCB Size of CAGE
Table III: Introduced TCB size of CAGE.

Function Lines of Code (LoC)

Shadow Task Management 667
GPU Environment Protection 350
GPT Maintenance Optimization 137
Other Configuration 147

All 1,301

We use a generic code statistic tool, cloc [2], to measure
the TCB size of CAGE in terms of standard lines of source
code. CAGE modifies an Arm Trusted Firmware-A v2.8 [29]
Monitor by introducing 1,301 LoC additions, which is detailed
in Table III. In addition, CAGE trusts a thin CPU-side isolation
software (e.g., TF-RMM v0.2 [28] with 26K LoC, or Shel-
ter [80] with 2K LoC). Overall, the introduced TCB is smaller
than the heavy-weight GPU software stack (e.g., a 30K LoC
Midgard GPU driver [16] and 32MB OpenCL libraries [17]).

B. RQ2: Security Analysis of CAGE

To show that CAGE ensures data security in confidential
GPU computing, we analyze a wide range of attacks based on
our threat model (§III) and use them to evaluate our function-
ality prototype. Table IV shows a list of attack scenarios and
adversary capabilities along with corresponding solutions.

Unauthorized memory access and modification. To subvert
data security, the adversary may directly leak or tamper with
the sensitive data inside the GPU memory. To defend against
this attack, we leverage GPC to secure sensitive regions from
untrusted software during confidential GPU computing. We

10

Table IV: Three types of adversary with the corresponding
attack scenarios and the defense mechanism in CAGE. 1⃝
indicates the GPC on CPU and peripheral access. 2⃝ indicates
the integrity verification. 3⃝ indicates the Monitor checks. 4⃝
indicates the fixed MMIO address. 5⃝ indicates the hardware-
assisted isolation of root world. 6⃝ indicates the TLB invali-
dation. 7⃝ indicates the CPU-side memory isolation.

Adversary Type Attack Scenarios Defense

Untrusted software

Unauthorized memory access and modification 1⃝ 2⃝
Illegal GPU memory management 1⃝ 3⃝
Illegal GPU task scheduling 2⃝ 3⃝
Malicious GPU tasks 1⃝ 3⃝
Fake GPU and SMMU 4⃝
CPU GPC circumvention 1⃝ 5⃝ 6⃝

Peripherals Malicious DMA 1⃝
Peripheral GPC circumvention 1⃝ 5⃝ 6⃝

Realms Realm abuse 1⃝ 7⃝

also require the realm user to transfer sensitive data via a
secure channel. Besides having direct access to the sensitive
data, the adversary could modify the metadata to export the ex-
ecution result to the unprotected region. However, we prevent
modification of metadata by GPC protection. Moreover, the
adversary may modify the task code or the descriptions of data
buffers to mislead the GPU computation or cause malicious
code to execute. We address this by verifying the integrity of
code and descriptions (e.g., calculating the signature) before
submitting the GPU task. Since the authentic signature is
already transferred to the realm via a secure channel, our
integrity verification process cannot be subverted.

Illegal GPU memory management. Since CAGE delegates
GPU software stack to manage GPU memory, the adversary
may subvert these functions to leak sensitive data. For instance,
an Iago-style [38] attack could return incorrect addresses of the
allocated metadata and buffers. To defend against this attack,
the Monitor checks whether the metadata and GPU buffers
overlap with TCB of other realms and CAGE. Specifically,
the Monitor verifies whether the PAS of the metadata and
GPU buffers overlaps with the normal world PAS (i.e., the
PAS of metadata and GPU buffers) in other realms’ GPU
GPT. The adversary may provide an incorrect metadata value
to mislead the protection, while it incurs a Denial-of-Service
without leaking the sensitive data. Another attack is to provide
incorrect GPU mappings (e.g., double mapping or mapping to
the unauthorized region). In this case, we have the Monitor
validate mappings before updating the real GPU page table
to mitigate this attack. In our functionality prototype, since
the test engine may lack a private MMU to perform address
translation, we measure this attack by configuring the SMMU
Stage-2 translation. Note that the SMMU Stage-2 translation
has similar page table structure as that in GPU and is also
restricted by the SMMU GPC.

Illegal GPU task scheduling. The adversary may compromise
the task scheduling to subvert confidential GPU computing.
The adversary may submit the confidential task to the GPU
instead of the Monitor. However, the submitted stub task does
not contain any sensitive data. Another attack is to provide the
incorrect owner of the stub task or the incorrect task execution
order, while the task fails the integrity check in the Monitor.
Note that the adversary cannot modify the signature which is
already stored in the realm.

Fake GPU and SMMU. The adversary may impersonate a
GPU device and route confidential tasks into the fake device.
Besides the GPU, the adversary may emulate the SMMUs to
spoof the GPC configuration. However, we ensure the Monitor
interacts with the authentic hardware instead of the software-
emulated device. Specifically, the Arm device manual [10] in-
dicates that the physical addresses of both the GPU and SMMU
MMIO registers are fixed and unmodifiable. Other malicious
or fake devices would be mapped to other (unmodifiable)
addresses. This allows us to ensure that any communication
with the GPU will go to the real physical device.

Malicious GPU tasks. The adversary may directly leak or
tamper with the sensitive data in realms. To achieve this,
she may map the address space of the realms in the GPU
page table of a malicious GPU task so that the malicious
task can access the sensitive data via the GPU. However, this
attack fails to bypass the GPU GPC restriction. Moreover,
she may compromise the isolated execution environment of
confidential tasks. During the confidential GPU computation,
she may submit a malicious task to monitor the execution
of victim tasks. Therefore, we control the GPU interrupt and
the illegal access to GPU MMIO registers. In addition, she
may launch an Iago-style [38] attack in the GPU driver. To
hide a malicious GPU task, she may provide incorrect GPU
status when submitting the confidential task to the Monitor. To
defend against this attack, the Monitor must protect the GPU
MMIO and verify the GPU registers again before submission.
Overall, CAGE defends against malicious GPU tasks with
GPC protection and additional security checks in the Monitor.

CPU GPC circumvention. We consider three approaches by
which an adversary may bypass the CPU GPC. First, the
adversary may disable the GPC or replace the authentic CPU
GPT with a malicious one. However, the adversary cannot
access the GPC-related registers since she lacks root world
privilege. Second, the adversary may modify the CPU GPT to
remove memory isolation. To defend against this attack, we
place GPTs in root world memory. Thus, any illegal access to
the GPT generates a GPC fault and fails to proceed. Third, the
adversary may exploit GPC TLB entries to access the newly
protected regions (e.g., the metadata and GPU MMIO). To
defend against this attack, we must invalidate the TLB entries
when modifying the CPU GPT.

Malicious DMA. The adversary may control other normal and
secure peripherals (e.g., sensors, USB, and display devices) to
perform malicious DMA to the GPU execution environment.
To defend against this attack, CAGE configures the corre-
sponding peripheral GPC to restrict DMA to these regions.
Specifically, we follow the configurations in CPU GPT to set
the protected regions with the root or realm attributes, which
disallow access from the untrusted peripherals. In addition, the
adversary may execute a malicious confidential application to
replay the same attack. As a mitigation, we also configure
the GPU GPT for confidential GPU applications, so that the
application is only permitted to access the corresponding realm
in confidential GPU computing.

Peripheral GPCs circumvention. Similar to the attack sce-
nario with untrusted software, the adversary may attempt to
bypass the peripheral GPCs to perform malicious DMA on
GPU memory, realms, and the TCB of CAGE. However, they
fail to access the GPC-related registers due to the lack of root

11

Table V: Problem size of the selected Rodinia benchmark.

Application Size Data Buffers Tasks Memory

KNN 42764 nodes 2 1 0.49 MB
PF 100000 × 100 points 4 5 38.59 MB

LUD 2048 × 2048 nodes 1 382 16.00 MB
H3D 512 × 512 × 8 nodes 3 500 24.00 MB
LMD 25 × 25 × 25 boxes 4 1 63.42 MB
GS 2048 × 2048 nodes 3 4094 32.01 MB

privilege. In addition, we protect peripheral GPTs so that the
adversary cannot modify them to revoke the access control.
Considering that the adversary may leverage the TLB to bypass
our GPC, we invalidate the TLB entries in SMMU when the
GPT is modified. Note that the adversary cannot modify these
TLB entries since it is not supported on Arm SMMU.

Abuse of realms. The adversary may request a realm to direct
access or tamper with the sensitive data and code in other
realms. However, it fails to bypass the memory isolation on
CPU side (e.g., Stage-2 translation in RMM or CPU GPC in
Shelter [80]). Moreover, the adversary may launch confidential
GPU applications to achieve the same attack from the GPU,
but this is restricted by GPU SMMU GPC.

C. RQ3: Evaluations on GPU Benchmarks

Experimental setup. To measure the performance of our pro-
totype, we follow best practices from previous GPU TEE stud-
ies [39] and select six applications from the well-recognized
Rodinia benchmark suites [37]. We select these benchmarks
because they cover a wide range of use cases for Arm GPUs,
including a lightweight KNN, three medium-weight applica-
tions (LUD, PF, and H3D), and two heavy-weight applications
(GS and LMD). We report the problem size and memory
consumption in Table V. We introduce two minimal modifi-
cations to the benchmark applications to perform confidential
computing. First, we replace the input sensitive data and the
corresponding data buffer descriptions with hash values. This
is because we disallow the untrusted software stack to directly
operate the sensitive data, while we perform these operations
in the Monitor based on the descriptions. Note that the realm
user has transferred the sensitive data to the realms before
confidential GPU computing. Second, we prevent a GPU buffer
from sharing the same physical page, which is the minimal
granule in GPT, with other buffers or metadata. To achieve
this goal, we introduce several wrapped OpenCL APIs to
reside the GPU buffers in isolated physical pages. Compared
to the problem size of the benchmark, our modification only
introduces minimal memory consumption during computation.

Based on these configurations, we perform confidential
GPU computing on the six applications and compare the
performance with that of normal GPU computation. To better
understand the performance, we also provide a breakdown of
the performance overhead of our prototype into four com-
ponents: GPU, which is the execution time on the GPU
hardware; GStack, which shows the performance overhead for
the untrusted GPU software stack; STask, which reports the
overhead for the shadow task mechanism; and GProtect, the
latency induced by protecting the GPU environment.

Performance analysis. Figure 6 shows the performance com-
parison between our CAGE prototype and the native system.
It indicates that CAGE introduces 0.58% – 5.31% overhead

Table VI: Breakdown (ms) of overhead of CAGE prototype.

GPU GStack STask GProtect

KNN 0.31 58.36 0.62 0.02
PF 2788.71 271.83 82.02 0.65
LUD 3362.08 431.86 48.15 6.03
H3D 4902.95 464.44 86.82 9.70
LMD 13474.49 111.62 153.64 1.02
GS 47237.44 2991.07 351.17 71.02

in the six Rodinia benchmark applications. Furthermore, we
provide a detailed breakdown of the performance overhead
in Table VI. GPU computation (GPU) contributes most to
the overhead in most benchmarks except the lightweight KNN
application. Moreover, we observe that the overhead in the
shadow task mechanism (STask) is determined by the number
of tasks and the memory size. It is also reflected in our results:
The shadow task mechanism incurs more overhead in GS
(which consists of 4096 tasks) than PF (only 5 tasks), though
their memory consumption is similar. Next, our mechanism
introduces orders of magnitude of overhead on the large-sized
application (e.g., LMD) compared to the lightweight one (e.g.,
KNN). Lastly, Table VI reports that the protection on the GPU
environment (GProtect) introduces the least latency in the
entire application. The major reason is that our protection is
mainly achieved by varied GPCs with optimized GPT mainte-
nance and integrity verification. At the same time, we do not
introduce additional security operations on GPU memory (e.g.,
cryptographic operations). Note that the execution time on both
CAGE prototype and the native system may slightly increase
in real CCA-supported devices since we only configure GPTs
instead of performing GPC on MMU/SMMU.

Comparison to state-of-the art. We further discuss the
performance comparison between CAGE and state-of-the-
art. However, most state-of-the-art GPU TEEs lack source
code [31], [52], [61], [73], [76], [81] and are implemented on
different platforms (e.g., Cronus [54] on QEMU, GR-T [70]
on Hikey960, and StrongBox [39] on Juno R2), incurring
costly re-implementation efforts. Thus, we compare CAGE
and StrongBox on the same Rodinia benchmarks. Figure 6
shows that CAGE introduces slightly lower overhead on these
benchmarks. The major reason is that StrongBox leverages
the untrusted GPU driver to directly operate the memory
with sensitive data, thus it introduces additional cryptographic
operations to protect these data. However, CAGE does not
require these operations due to the shadow task mechanism.

D. RQ4: Evaluation on Neural Network Models

To verify whether CAGE has the capability to secure the
sensitive data in complex GPU computation scenarios, we
next perform machine learning inference on three neural net-
work models (LeNet-5 [56], SqueezeNet [50], and MobileNet-
v1 [46]), which cover a wide range of use case (detailed in
Table VII). Compared with the protection on general com-
puting, we additionally guarantee data confidentiality for the
weights and bias parameters since they directly influence the
execution results during the inference process. We export the
model code to the untrusted GPU software, but protect it
during GPU computation. Table VII reports the performance
comparison between CAGE and the native system with a
detailed breakdown. It shows that CAGE introduces 1.24% –

12

Table VII: Problem size and execution time of the selected neural network models.

Tasks Memory Data Buffers Vanilla CAGE
Total GPU GStack STask GProtect

LeNet-5 6 242.20 KB 13 332.58ms 336.70ms 1.30ms 333.91ms 1.38ms 0.11ms
SqueezeNet 30 13.22 MB 67 788.73ms 812.62ms 346.49ms 453.42ms 12.27ms 0.44ms
MobileNet-v1 47 37.27 MB 167 898.62ms 967.30ms 532.27ms 359.50ms 73.85ms 1.68ms

7.64% performance overhead on the selected models. Although
SqueezeNet and MobileNet-v1 require to protect more physical
memory and data buffers than LeNet-5, their additional per-
formance overhead is not sharply increased. The major reason
is that our shadow task mechanism (STask) only replaces and
secures the processed GPU buffers in the current GPU task
instead of all the GPU buffers in the application.

KNN PF LUD H3D LMD GS
100

101

102

103

104

105

Ti
m

e:
 (m

s)

58

3.0k 3.8k 5.2k
14k

49k

59

3.1k 3.8k 5.5k
14k

51k

61

3.5k 4.3k 5.8k
15k

52k
Vanilla CAGE StrongBox

Figure 6: Performance overhead on six Rodinia benchmarks.

E. RQ5: Evaluation on GPT Optimization

Synchronizing CPU and peripheral GPTs. CAGE optimizes
the GPT synchronization in GPU memory protection. Rather
than modifying the access control on CPU GPT and every
untrusted peripheral GPT, we only maintain a unified sub-level
GPT that represents the security view of the GPU memory.
To prove the effectiveness of our optimization mechanism, we
evaluate it with (1) different sizes of protected memory regions
and (2) varied number of GPTs that share the sub-level GPT.
As shown in Figure 7, CAGE mitigates 87.40% – 87.50%
of performance overhead in GPT synchronization when we
scale up the protected memory size, and 50.01% – 93.65%
of performance overhead in the varied number of GPTs.
It shows that CAGE effectively optimizes the overhead of
updating GPT entries to protect both small-size and large-size
physical memory. Moreover, the increasing number of GPTs
only introduces a small additional overhead to our optimization
mechanism. This is because the new GPTs still share the same
sub-level table with previous GPTs, and meanwhile flushing
the TLB of the new peripheral GPCs incurs minimal overhead.

Initializing GPU GPT for each realm. We further compare
our GPU GPT initialization mechanism with the native solu-
tion. Since the existing TF-A has yet to provide the specific
GPT configuration for GPU, we emulate it by invoking the
CPU GPT initialization APIs in TF-A v2.8 [29]. As for the
GPT configuration, we describe half of the main memory with
1GB-level granule descriptors and the remaining memory with
4KB-level granule descriptors. We measure the performance
overhead of the native solution and CAGE with four different
size of the main memory (2GB, 4GB, 8GB, and 16GB). As
shown in Figure 8, we mitigate 84.63% – 96.55% performance
overhead of GPU GPT initialization in these configurations.
During initialization, increasing the size of main memory

2MB 4MB 8MB 16MB

5000

10000

Ti
m

e:
 (

s)

1457
2913

5823

11648

183 367 728 1456

Vanilla CAGE

2GPTs 4GPTs 8GPTs 16GPTs

2000

4000

6000

8000

10000

Ti
m

e:
 (

s)

728
1457

2913

5829

364 365 367 370

Vanilla CAGE

Figure 7: Performance comparison between the non-optimized
mechanism and CAGE in GPT synchronization. Note that the
upper benchmark configures the GPT number as 8 and the
lower benchmark sets the size of the protected region as 4MB.

unavoidably generates more latency, while we still reduce a
large portion of the overhead compared to the native solution.

2GB 4GB 8GB 16GB

1000

2000

3000

4000

5000

Ti
m

e:
 (

s)

2377 2605
3121

4113

82 160 318 632

No Opt CAGE

Figure 8: Performance improvement in GPU GPT initialization
with four different size of main memory.

VII. DISCUSSION

Physical adversaries. Currently, CAGE mainly focuses on
software adversaries since our prototype is based on the latest
RME-supported FVP model which lacks hardware-assisted
memory encryption support. Nevertheless, we discuss potential
solutions against several physical threats.

By leveraging the Memory Protection Engine (MPE) built
in future CCA devices, CAGE can protect realms’ sensitive
data from cold-boot attacks [78]. The MPE automatically
encrypts/decrypts the data that are transferred between the
system bus and DRAM, preventing the adversary from di-
rectly accessing the plaintext DRAM contents. Moreover, the
adversary may launch rollback attacks on GPU memory, while
we can use the monotonic counters [31], [62] to record data
states and guarantee the freshness of GPU memory. In addition,
the adversary may attempt to launch bus probing or hardware
man-in-the-middle attacks when CAGE accesses the GPU and
SMMU MMIO, though it is unclear how these attacks can be
deployed on the MPE-supported devices. In the future, we can
apply other techniques (e.g., encrypting the access patterns on
memory bus [1], [30]) to secure the bus traffic from these
attacks.

13

Arm xPU TEEs. Besides the GPU hardware, we consider
CAGE can potentially support other widely-used accelerators
such as NPUs and DPUs. As with GPUs, these xPU devices
delegate untrusted software components (e.g., Arm Ethos-N
driver [13]) to manage applications such as memory allocation
and xPU task scheduling. In addition, Arm xPUs also share
the unified memory with CPU and peripherals so that they
are threatened by the same scope of adversaries as GPUs.
To secure xPU computing, previous studies [47], [57], [66]
leverage TrustZone or customized hardware to construct xPU
TEEs, which can benefit CAGE to extend CCA on Arm xPUs.

Mitigating performance overhead CAGE protects GPU
MMIO by configuring GPCs for CPU, GPU, and untrusted
peripherals. Nevertheless, it can be optimized by configuring
a Completer-side PAS filter [25]. As a private module for a pe-
ripheral, this filter decides which type of request (e.g., normal
world or root world request) can access the peripheral MMIO
registers. Thus, we can configure the GPU filter only once
to confine accesses from the CPU and untrusted peripherals.
However, since it is uncertain how Arm FVP and real-world
GPUs support this filter, we instead configure every GPC (i.e.,
GPC on CPU, GPU, and other peripherals) to restrict the illegal
accesses to GPU MMIO. We suggest Arm provides detailed
support for this filter in the future.

Suggestions for future Arm CCA CAGE configures GPCs
on both MMU and SMMU to secure GPU computing. During
the configuration of SMMU, we find that several real-world
Arm devices [33], [68], [72] implement an integrated SMMU
to manage the memory access from multiple peripherals. To
distinguish these accesses, SMMU provides each peripheral
with a unique StreamID, from which SMMU fetches the
corresponding table (e.g., address translation table) to check
access. The StreamID-based access control is supported in
traditional mechanisms such as the Stage-2 translation, while
it has yet to support the latest GPC. SMMU only provides a
single MMIO region to set the GPT, so that all the connected
peripherals share the same view of main memory in GPC.
In the future, we suggest that Arm introduce StreamID
to distinguish different SMMU GPCs, or allows SMMUs
to provide each peripheral with a unique Root control
page to configure its own peripheral GPC.

VIII. RELATED WORK

Arm confidential computing. Studies [32], [44], [48], [53],
[75] have leveraged Arm TrustZone to simulate confidential
computing environments in normal world and secure world.
However, these security features are vulnerable to the secure
world attacker [35] and new yet-unrealized adversaries in Arm
CCA. Furthermore, these studies consider GPUs as untrusted
peripherals that do not provide any support for confidential
computing. On the other hand, recent studies focus on ex-
ploring Arm CCA’s security feature to achieve confidential
computing. Shelter [80] secures application enclaves from
privileged software by constructing multiple GPTs. Li et
al. [59] build realms for confidential computing and verifies
the security of these regions. Twinvisor [58] provides confi-
dential virtual machines with simulated Arm CCA features.
ReZone [35] addresses the excessive privilege of secure OS
to create an isolated execution environment. However, these
studies have yet to ensure confidential GPU computing.

GPU TEE. Researchers have explored GPU TEEs to guarantee
data security on GPUs. To achieve secure communication
between the user and the GPU, typical GPU TEEs leverage
a CPU-side TEE to transfer sensitive data to the GPU and
control access to GPU MMIO. For instance, HIX [52] and
HoneyComb [61] create GPU enclaves and secure GPU MMIO
with Intel SGX and AMD SEV-SNP, respectively. CURE [31]
secures the GPU enclaves by introducing an access filter in
the system bus. HETEE [81] introduces a security controller on
FPGA hardware to distribute workloads into isolated execution
environment with GPU resources. However, migrating non-
Arm GPU TEEs to Arm devices may not be possible due
to variations in architecture and organization. Recent works
have also proposed several Arm-based GPU TEEs [39],
[54], [70], [77]. These GPU TEEs leverage traditional Arm
security features (e.g., TrustZone and Arm secure/non-secure
virtualization) to achieve the same protection on GPUs, while
they have yet to provide sufficient protection against new
adversaries in Arm CCA. Lastly, few GPU TEEs directly
construct TEE inside GPU without the need for CPU-side TEE,
such as Graviton [76] and NVIDIA H100 GPU [67]. These
GPU TEEs construct a channel between the untrusted Host
and GPU, with which they monitor the command submission
and data transfer. However, data protection in these GPU TEEs
mainly depends on the physical memory isolation between
GPU and CPU-side adversary. Thus, they are infeasible for
the unified-memory GPU that shares the memory with CPU.

IX. CONCLUSION

In this paper, we present CAGE to extend GPU support
on Arm CCA. Our design follows the Arm CCA’s realm-
style architecture in GPU computing, achieved through the
novel shadow task mechanism. We ensure data security by
leveraging the GPC on the CPU, GPU and untrusted pe-
ripherals, achieving two-way isolation between realm’s GPU
execution environment and the other components. To maintain
multiple GPTs, we also present two optimization techniques on
GPT synchronization and initialization. CAGE’s design and
implementation require no hardware changes, ensuring high
compatibility with next-generation Arm devices. To demon-
strate the functionality of our approach, we prototype CAGE
on an official software-simulated platform. We then port this
prototype to an off-the-shelf development board, and evaluate it
with rigorous benchmarks. Results show that CAGE provides
effective support for confidential GPU computing with an
average of 2.45% performance overhead.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable com-
ments. This work is partly supported by the National Natural
Science Foundation of China under Grant No. 62372218, No.
62002151 and No. 62102175, and Shenzhen Science and Tech-
nology Program under Grant No. SGDX20201103095408029,
and HK RGC General Research Fund No. PolyU 15220020,
and HK RGC Collaborative Research Fund No. C2004-21GF,
and the Research Institute for Artificial Intelligence of Things,
The Hong Kong Polytechnic University. This work is also in
part supported by Ant Group Research Fund.

14

REFERENCES

[1] S. Aga and S. Narayanasamy, “Invisimem: Smart memory defenses
for memory bus side channel,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, 2017, pp. 94–106.

[2] AlDanial, “cloc,” https://github.com/AlDanial/cloc, 2021.
[3] AMD, “AMD Secure Encrypted Virtualization (SEV),” https://

developer.amd.com/sev/, 2022.
[4] ——, “AMD Radeon™ RX Graphics Cards,” https://www.amd.com/en/

graphics/radeon-rx-graphics, 2023.
[5] ——, “Confidential Computing Solution Brief,” https://www.amd.com/

en/processors/epyc-confidential-computing-cloud, 2023.
[6] Amlogic, Inc., “S905 Datasheet,” https://dn.odroid.com/S905/

DataSheet/S905 Public Datasheet V1.1.4.pdf, 2016.
[7] Apple, “Discover Metal enhancements for A14 Bionic,” https://

developer.apple.com/videos/play/tech-talks/10858/, 2022.
[8] ARM, “ARM Security Technology Building a Secure System us-

ing TrustZone Technology,” https://developer.arm.com/documentation/
PRD29-GENC-009492/latest/, 2009.

[9] ——, “ARM CoreLink TZC-400 TrustZone Address Space
Controller Technical Reference Manual,” https://developer.arm.
com/documentation/ddi0504/latest/, 2014.

[10] ——, “Juno r2 ARM Development Platform SoC,” https://developer.
arm.com/documentation/ddi0515/latest, 2016.

[11] ——, “Arm Architecture Reference Manual Armv8, for Armv8-A
architecture profile,” https://developer.arm.com/documentation/ddi0487/
latest/, 2022.

[12] ——, “Arm Architecture Reference Manual Supplement Armv9,
for Armv9-A architecture profile,” https://developer.arm.com/
documentation/ddi0608/latest, 2022.

[13] ——, “Arm Ethos-N Driver Stack,” https://github.com/ARM-software/
ethos-n-driver-stack, 2022.

[14] ——, “Azure confidential computing,” https://developer.arm.com/
documentation/den0125/0200/, 2022.

[15] ——, “Mali Texture Compression Tool,” https://
developer.arm.com/tools-and-software/graphics-and-gaming/
mali-texture-compression-tool, 2022.

[16] ——, “Open Source Mali Midgard GPU Kernel Drivers,”
https://developer.arm.com/tools-and-software/graphics-and-gaming/
mali-drivers/midgard-kernel, 2022.

[17] ——, “OpenCL,” https://developer.arm.com/tools-and-software/
graphics-and-gaming/mali-drivers/user-space, 2022.

[18] ——, “VR best practice,” https://developer.arm.com/solutions/
graphics-and-gaming/developer-guides/vr-best-practice, 2022.

[19] ——, “Arm CCA Security Model 1.0,” https://developer.arm.com/
documentation/DEN0096/latest/, 2023.

[20] ——, “Arm Confidential Compute Architecture,” arm.com/architecture/
security-features/arm-confidential-compute-architecture, 2023.

[21] ——, “Arm Mali Graphics Processing Units (GPUs),” https://developer.
arm.com/ip-products/graphics-and-multimedia/mali-gpus, 2023.

[22] ——, “Arm Realm Management Extension (RME) System Architec-
ture,” https://developer.arm.com/documentation/den0129/latest/, 2023.

[23] ——, “Arm System Memory Management Unit Architecture Specifica-
tion,” https://developer.arm.com/documentation/ihi0070/latest/, 2023.

[24] ——, “Fixed Virtual Platforms,” https://www.arm.com/products/
development-tools/simulation/fixed-virtual-platforms, 2023.

[25] ——, “Introducing Arm Confidential Compute Architecture guide,”
https://developer.arm.com/documentation/den0125/latest/, 2023.

[26] ——, “Mali-G76,” https://developer.arm.com/documentation/100964/
1121/Fast-Models-components/Media-components/Mali-G76, 2023.

[27] ——, “PrimeCell Infrastructure AMBA 3 TrustZone Protection
Controller (BP147),” https://developer.arm.com/documentation/
dto0015/latest/, 2023.

[28] ——, “TF-RMM,” https://git.trustedfirmware.org/TF-RMM/tf-rmm.git/
tag/?h=tf-rmm-v0.2.0, 2023.

[29] ——, “Trusted Firmware-A release v2.8,” https://git.trustedfirmware.
org/TF-A/trusted-firmware-a.git/tag/?h=v2.8, 2023.

[30] A. Awad, Y. Wang, D. Shands, and Y. Solihin, “ObfusMem: A Low-
Overhead Access Obfuscation for Trusted Memories,” in Proceedings
of the 44th Annual International Symposium on Computer Architecture,
2017, pp. 107–119.

[31] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek,
A.-R. Sadeghi, and E. Stapf, “CURE: A Security Architecture with
CUstomizable and Resilient Enclaves,” in Proceedings of the 30th
USENIX Security Symposium, 2021, pp. 1073–1090.

[32] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, “SANC-
TUARY: ARMing Trustzone with User-space Enclaves,” in Proceedings
of the 26th Annual Network and Distributed System Security Sympo-
sium, 2019.

[33] Broadcom, “Product Brief: Stingray PS225,” https://docs.broadcom.
com/doc/PS225-PB, 2022.

[34] Q. Cao, N. Balasubramanian, and A. Balasubramanian, “MobiRNN:
Efficient Recurrent Neural Network Execution on Mobile GPU,” in
Proceedings of the 1st International Workshop on Deep Learning for
Mobile Systems and Applications, 2017, pp. 1–6.

[35] D. Cerdeira, J. Martins, N. Santos, and S. Pinto, “ReZone: Disarming
TrustZone with TEE Privilege Reduction,” in Proceedings of the 31st
USENIX Security Symposium, 2022, pp. 2261–2279.

[36] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “SoK: Understand-
ing the Prevailing Security Vulnerabilities in TrustZone-assisted TEE
Systems,” in Proceedings of the 41st IEEE Symposium on Security and
Privacy. IEEE, 2020, pp. 1416–1432.

[37] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous
Computing,” in Proceedings of the 12nd IEEE International Symposium
on Workload Characterization. Ieee, 2009, pp. 44–54.

[38] S. Checkoway and H. Shacham, “Iago Attacks: Why the System Call
API is a Bad Untrusted RPC Interface,” ACM SIGARCH Computer
Architecture News, vol. 41, no. 1, pp. 253–264, 2013.

[39] Y. Deng, C. Wang, S. Yu, S. Liu, Z. Ning, K. Leach, J. Li, S. Yan,
Z. He, J. Cao et al., “Strongbox: A GPU TEE on Arm Endpoints,” in
Proceedings of the 29th ACM SIGSAC Conference on Computer and
Communications Security, 2022, pp. 769–783.

[40] W. Diffie and M. Hellman, “New Directions in Cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[41] R. M. Farkhani, M. Ahmadi, and L. Lu, “PTAuth: Temporal Memory
Safety via Robust Points-to Authentication,” in Proceedings of the 30th
USENIX Security Symposium, 2021, pp. 1037–1054.

[42] FuZhou Rockchip Electronics Co., Ltd., “Rockchip RK3288 Technical
Reference Manual Part1,” http://opensource.rock-chips.com/images/8/
8f/Rockchip RK3288 TRM V1.2 Part1-20170321.pdf, 2017.

[43] Google, “Confidential Computing,” https://cloud.google.com/
confidential-computing, 2023.

[44] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
“TrustShadow: Secure Execution of Unmodified Applications with
ARM TrustZone,” in Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, 2017, pp.
488–501.

[45] C. Holmes, D. Mawhirter, Y. He, F. Yan, and B. Wu, “GRNN: Low-
Latency and Scalable RNN Inference on GPUs,” in Proceedings of the
14th European Conference on Computer Systems, 2019, pp. 1–16.

[46] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient Con-
volutional Neural Networks for Mobile Vision Applications,” arXiv
preprint arXiv:1704.04861, 2017.

[47] W. Hua, M. Umar, Z. Zhang, and G. E. Suh, “GuardNN: Secure
Accelerator Architecture for Privacy-Preserving Deep Learning,” in
Proceedings of the 59th ACM/IEEE Design Automation Conference,
2022, pp. 349–354.

[48] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vTZ:
Virtualizing ARM TrustZone,” in Proceedings of the 26th USENIX
Security Symposium, 2017, pp. 541–556.

[49] G. D. Hunt, R. Pai, M. V. Le, H. Jamjoom, S. Bhattiprolu, R. Boivie,
L. Dufour, B. Frey, M. Kapur, K. A. Goldman et al., “Confidential
computing for OpenPOWER,” in Proceedings of the 16th European
Conference on Computer Systems, 2021, pp. 294–310.

15

https://github.com/AlDanial/cloc
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://www.amd.com/en/graphics/radeon-rx-graphics
https://www.amd.com/en/graphics/radeon-rx-graphics
https://www.amd.com/en/processors/epyc-confidential-computing-cloud
https://www.amd.com/en/processors/epyc-confidential-computing-cloud
https://dn.odroid.com/S905/DataSheet/S905_Public_Datasheet_V1.1.4.pdf
https://dn.odroid.com/S905/DataSheet/S905_Public_Datasheet_V1.1.4.pdf
https://developer.apple.com/videos/play/tech-talks/10858/
https://developer.apple.com/videos/play/tech-talks/10858/
https://developer.arm.com/documentation/PRD29-GENC-009492/latest/
https://developer.arm.com/documentation/PRD29-GENC-009492/latest/
https://developer.arm.com/documentation/ddi0504/latest/
https://developer.arm.com/documentation/ddi0504/latest/
https://developer.arm.com/documentation/ddi0515/latest
https://developer.arm.com/documentation/ddi0515/latest
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0608/latest
https://developer.arm.com/documentation/ddi0608/latest
https://github.com/ARM-software/ethos-n-driver-stack
https://github.com/ARM-software/ethos-n-driver-stack
https://developer.arm.com/documentation/den0125/0200/
https://developer.arm.com/documentation/den0125/0200/
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-texture-compression-tool
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-texture-compression-tool
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-texture-compression-tool
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/midgard-kernel
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/midgard-kernel
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/user-space
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-drivers/user-space
https://developer.arm.com/solutions/graphics-and-gaming/developer-guides/vr-best-practice
https://developer.arm.com/solutions/graphics-and-gaming/developer-guides/vr-best-practice
https://developer.arm.com/documentation/DEN0096/latest/
https://developer.arm.com/documentation/DEN0096/latest/
arm.com/architecture/security-features/arm-confidential-compute-architecture
arm.com/architecture/security-features/arm-confidential-compute-architecture
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus
https://developer.arm.com/documentation/den0129/latest/
https://developer.arm.com/documentation/ihi0070/latest/
https://www.arm.com/products/development-tools/simulation/fixed-virtual-platforms
https://www.arm.com/products/development-tools/simulation/fixed-virtual-platforms
https://developer.arm.com/documentation/den0125/latest/
https://developer.arm.com/documentation/100964/1121/Fast-Models-components/Media-components/Mali-G76
https://developer.arm.com/documentation/100964/1121/Fast-Models-components/Media-components/Mali-G76
https://developer.arm.com/documentation/dto0015/latest/
https://developer.arm.com/documentation/dto0015/latest/
https://git.trustedfirmware.org/TF-RMM/tf-rmm.git/tag/?h=tf-rmm-v0.2.0
https://git.trustedfirmware.org/TF-RMM/tf-rmm.git/tag/?h=tf-rmm-v0.2.0
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tag/?h=v2.8
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tag/?h=v2.8
https://docs.broadcom.com/doc/PS225-PB
https://docs.broadcom.com/doc/PS225-PB
http://opensource.rock-chips.com/images/8/8f/Rockchip_RK3288_TRM_V1.2_Part1-20170321.pdf
http://opensource.rock-chips.com/images/8/8f/Rockchip_RK3288_TRM_V1.2_Part1-20170321.pdf
https://cloud.google.com/confidential-computing
https://cloud.google.com/confidential-computing

[50] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer pa-
rameters and < 0.5 MB model size,” arXiv preprint arXiv:1602.07360,
2016.

[51] Intel Corporation, “Intel Trust Domain Extensions,” https://cdrdv2.intel.
com/v1/dl/getContent/690419, 2022.

[52] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh, “Hetero-
geneous Isolated Execution for Commodity GPUs,” in Proceedings
of the 24th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 455–468.

[53] J. Jang, C. Choi, J. Lee, N. Kwak, S. Lee, Y. Choi, and B. B. Kang,
“PrivateZone: Providing a Private Execution Environment Using ARM
TrustZone,” IEEE Transactions on Dependable and Secure Computing,
vol. 15, no. 5, pp. 797–810, 2016.

[54] J. Jiang, J. Qi, T. Shen, X. Chen, S. Zhao, S. Wang, L. Chen,
G. Zhang, X. Luo, and H. Cui, “CRONUS: Fault-isolated, Secure and
High-performance Heterogeneous Computing for Trusted Execution
Environment,” in Proceedings of the 55th IEEE/ACM International
Symposium on Microarchitecture. IEEE, 2022, pp. 124–143.

[55] S. S. Latifi Oskouei, H. Golestani, M. Hashemi, and S. Ghiasi, “CN-
Ndroid: GPU-Accelerated Execution of Trained Deep Convolutional
Neural Networks on Android,” in Proceedings of the 24th ACM Inter-
national Conference on Multimedia, 2016, pp. 1201–1205.

[56] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[57] S. Lee, J. Kim, S. Na, J. Park, and J. Huh, “TNPU: Supporting Trusted
Execution with Tree-less Integrity Protection for Neural Processing
Unit,” in Proceedings of the 28th IEEE International Symposium on
High-Performance Computer Architecture. IEEE, 2022, pp. 229–243.

[58] D. Li, Z. Mi, Y. Xia, B. Zang, H. Chen, and H. Guan, “Twinvisor:
Hardware-isolated Confidential Virtual Machines for ARM,” in Pro-
ceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, 2021, pp. 638–654.

[59] X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, and G. Stockwell, “Design
and Verification of the Arm Confidential Compute Architecture,” in
Proceedings of the 16th USENIX Symposium on Operating Systems
Design and Implementation, 2022, pp. 465–484.

[60] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg, and
N. Asokan, “PAC it up: Towards Pointer Integrity using ARM Pointer
Authentication,” in Proceedings of the 28th USENIX Security Sympo-
sium, 2019, pp. 177–194.

[61] H. Mai, J. Zhao, C. Kozyrakis, M. Gao, H. Zheng, Q. Li, Z. Liu,
C. Wang, H. Cui, and X. Feng, “Honeycomb: An Secure, Efficient GPU
Execution Environment with Minimal TCB,” in Proceedings of the 17th
USENIX Symposium on Operating Systems Design and Implementation,
2023.

[62] A. Martin, C. Lian, F. Gregor, R. Krahn, V. Schiavoni, P. Felber, and
C. Fetzer, “ADAM-CS: Advanced Asynchronous Monotonic Counter
Service,” in Proceedings of the 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. IEEE, 2021, pp.
426–437.

[63] J. Ménétrey, M. Pasin, P. Felber, and V. Schiavoni, “WaTZ: A Trusted
WebAssembly Runtime Environment with Remote Attestation for Trust-

Zone,” in Proceedings of the 42nd IEEE International Conference on
Distributed Computing Systems. IEEE, 2022, pp. 1177–1189.

[64] A. Menezes and S. S. A. Vanstone, Guide to elliptic curve cryptography.
New York: Springer, 2004.

[65] Microsoft, “Azure confidential computing,” https://azure.microsoft.com/
en-us/solutions/confidential-compute/, 2023.

[66] ——, “Confidential Computing within an AI Accelera-
tor,” https://www.microsoft.com/en-us/research/publication/
confidential-computing-within-an-ai-accelerator/, 2023.

[67] NVIDIA, “NVIDIA CONFIDENTIAL COMPUTING,” https://www.
nvidia.com/en-us/data-center/solutions/confidential-computing/, 2022.

[68] ——, “Tegra X1,” https://developer.nvidia.com/content/tegra-x1/, 2022.
[69] ——, “Graphics Cards,” https://www.nvidia.com/en-us/geforce/

graphics-cards/, 2023.
[70] H. Park and F. X. Lin, “Safe and Practical GPU Computation in Trust-

Zone,” in Proceedings of the 18th European Conference on Computer
Systems, 2023, pp. 505–520.

[71] Qualcomm, “Adreno Graphics Processing Units,” https://developer.
qualcomm.com/software/adreno-gpu-sdk/gpu/, 2022.

[72] ——, “The ARM SMMU and the Adreno GPU,” https://static.linaro.
org/connect/lvc20/presentations/LVC20-309-0.pdf, 2022.

[73] S. Sridhara, A. Bertschi, B. Schlüter, M. Kuhne, F. Aliberti, and
S. Shinde, “ACAI: Extending Arm Confidential Computing Ar-
chitecture Protection from CPUs to Accelerators,” arXiv preprint
arXiv:2305.15986, 2023.

[74] STMicroelectronics, “GPU device tree configuration,” https://wiki.st.
com/stm32mpu/wiki/GPU device tree configuration, 2022.

[75] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, “TrustICE: Hardware-
Assisted Isolated Computing Environments on Mobile Devices,” in
Proceedings of the 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. IEEE, 2015, pp. 367–378.

[76] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted Execution En-
vironments on GPUs,” in Proceedings of the 13th USENIX Symposium
on Operating Systems Design and Implementation, 2018, pp. 681–696.

[77] J. Wang, Y. Wang, and Z. Ning, “Secure and Timely GPU Execution
in Cyber-physical Systems,” in Proceedings of the 30th ACM SIGSAC
Conference on Computer and Communications Security, 2023.

[78] S. F. Yitbarek, M. T. Aga, R. Das, and T. Austin, “Cold boot attacks are
still hot: Security analysis of memory scramblers in modern processors,”
in Proceedings of the 23rd IEEE International Symposium on High
Performance Computer Architecture. IEEE, 2017, pp. 313–324.

[79] J. Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena, “Elasticlave: An
Efficient Memory Model for Enclaves,” in Proceedings of the 31st
USENIX Security Symposium, 2022, pp. 4111–4128.

[80] Y. Zhang, Y. Hu, Z. Ning, F. Zhang, X. Luo, H. Huang, S. Yan, and
Z. He, “SHELTER: Extending Arm CCA with Isolation in User Space,”
in Proceedings of the 32nd USENIX Security Symposium, 2023.

[81] J. Zhu, R. Hou, X. Wang, W. Wang, J. Cao, B. Zhao, Z. Wang, Y. Zhang,
J. Ying, L. Zhang et al., “Enabling Rack-scale Confidential Computing
using Heterogeneous Trusted Execution Environment,” in Proceedings
of the 41st IEEE Symposium on Security and Privacy. IEEE, 2020,
pp. 1450–1465.

16

https://cdrdv2.intel.com/v1/dl/getContent/690419
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://www.microsoft.com/en-us/research/publication/confidential-computing-within-an-ai-accelerator/
https://www.microsoft.com/en-us/research/publication/confidential-computing-within-an-ai-accelerator/
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing/
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing/
https://developer.nvidia.com/content/tegra-x1/
https://www.nvidia.com/en-us/geforce/graphics-cards/
https://www.nvidia.com/en-us/geforce/graphics-cards/
https://developer.qualcomm.com/software/adreno-gpu-sdk/gpu/
https://developer.qualcomm.com/software/adreno-gpu-sdk/gpu/
https://static.linaro.org/connect/lvc20/presentations/LVC20-309-0.pdf
https://static.linaro.org/connect/lvc20/presentations/LVC20-309-0.pdf
https://wiki.st.com/stm32mpu/wiki/GPU_device_tree_configuration
https://wiki.st.com/stm32mpu/wiki/GPU_device_tree_configuration

	Introduction
	Background
	Arm TrustZone and Arm CCA
	Arm GPU and SMMU

	Threat Model and Assumptions
	Design
	CAGE Overview
	Shadow Task Management
	GPU Environment Protection
	GPT Maintenance Optimization
	Trust Establishment in CAGE
	Comparison to CCA Extensions and GPU TEEs

	Implementation
	Functionality Prototype
	Performance Prototype

	Evaluation
	RQ1: TCB Size of CAGE
	RQ2: Security Analysis of CAGE
	RQ3: Evaluations on GPU Benchmarks
	RQ4: Evaluation on Neural Network Models
	RQ5: Evaluation on GPT Optimization

	Discussion
	Related Work
	Conclusion
	References

